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We develop a high-precision model for laser ranging interferometric (LRI) observables of the GRACE
Follow-On (GRACE-FO) mission. For this, we study the propagation of an electromagnetic wave in the
gravitational field in the vicinity of an extended body, in the post-Newtonian approximation of the general
theory of relativity. We present a general relativistic model for the phase of a plane wave that accounts for
contributions of all the multipoles of the gravitating body and its angular momentum, as well as the
contribution of tidal fields produced by external sources. We develop a new approach to model a coherent
signal transmission in the gravitational field of the Solar System that relies on a relativistic treatment of the
phase. We use this approach to describe high-precision interferometric measurements on GRACE-FO and
formulate the key LRI observables, namely, the phase and phase rate of a coherent laser link between the
two spacecraft. We develop a relativistic model for the LRI-enabled range between the two GRACE-FO
spacecraft, accurate to less than 1 nm, and a high-precision model for the corresponding range rate, accurate
to better than 0.1 nm/s. We also formulate high-precision relativistic models for the double one-way range
(DOWR) and DOWR-enabled range-rate observables originally used on GRACE and now studied for
interferometric measurements on GRACE-FO. Our formulation justifies the basic assumptions behind the
design of the GRACE-FO mission and highlights the importance of achieving nearly circular and nearly
identical orbits for the GRACE-FO spacecraft.
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I. INTRODUCTION

TheGravity Recovery andClimate Experiment (GRACE)
was a very successful 2002 US-German space mission.
A pair of satellites spent 9 years mapping the gravitational
field of the Earth using a highly accurate microwave ranging
system between the two spacecraft, which were flying in
nearly identical orbits. GRACE demonstrated the feasibility
ofmonitoring temporal variations in the Earth’s gravitational
field and thus detecting, for instance, both seasonal variations
and long-term changes in the hydrosphere.
GRACE’s planned successor, tentatively called the

GRACE Follow-On (GRACE-FO) mission, is scheduled
for launch in 2017. In addition to a microwave ranging
system similar to that of GRACE and operating in the
Ka-band, GRACE-FO will be equipped with a laser
ranging interferometer (LRI) instrument [1], a system using
heterodyne optical interferometry. The LRI is expected to
provide a range with an accuracy of a few nm and
corresponding estimates for the range rate.
The LRI experiment onboard GRACE-FO will rely on

two-way measurements, designating one spacecraft as
master and the other as transponder (we shall call them
GRACE-FO-A and GRACE-FO-B, correspondingly) and
utilizing a phase-locked active laser transponder with a
frequency offset [2]. Phase locking in the transponder is
expected to eliminate transponder laser frequency noise,

leaving the transmitter laser frequency noise and phase noise
due to pointing errors, experimental features that are captured
in the instrument design [1,2], as the twomajor noise sources.
Although the original GRACE model formulation was

based on Newtonian arguments (see details in [3]), from the
early stages of the GRACE-FO mission development it
became clear that at the level of accuracy expected from
GRACE-FO, general relativistic effects may become sig-
nificant. The two-way nature of the experiment reduces the
contribution of some of these effects to the GRACE-FO
observables, yet their influence on the modeling of these
quantities must be carefully analyzed. The mathematical
model of the ultimate LRI observables—time series data
obtained at the master spacecraft, recording continuous
changes in the phase difference between the local laser
oscillator and the laser beam returned by the transponder
spacecraft—must take into account general relativistic
contributions to the length of the signal path and differences
between coordinate time and proper time.
In this paper, we focus on the formulation of a relativistic

model, accurate to 1 nm in range, for computing and
processing the observables of the GRACE-FO mission. We
rely on a previously developed theory of relativistic proper
reference frames within a system of N extended bodies and
the motion of light and test particles in the vicinity of an
extended body [4]. The organization of the paper is as
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follows: In Sec. II we discuss light propagation in the
vicinity of the extended Earth and derive a general
relativistic solution for the phase of an electromagnetic
wave. In Sec. III we discuss the process of forming the
intersatellite LRI observables of GRACE-FO and derive a
model for the phase and the relevant LRI-enabled range
observable. We also develop a relativistic model for the
frequency observable and a related model for the inter-
ferometric range rate. We develop equations to model
observable fluctuations in the phase rate and range accel-
eration. In Sec. IV we discuss the possibility of extracting
dual-one-way (DOWR) style observables from the inter-
ferometric data, similar to that used by the GRACE-FO
microwave ranging system. We develop the relevant
equations and models for range, range-rate and range
acceleration observations. We conclude with a set of
recommendations and an outlook in Sec. V.
In an attempt to streamline the presentation of results

and to keep the main body of the paper focused, we present
some relevant details in the form of appendices. In
Appendix Awe discuss the post-Newtonian approximation
of general relativity, introduce the metric tensor in this
formulation, and discuss its properties. In Appendix B we
present details of the derivation of instantaneous distances
between the spacecraft. In Appendix C we emphasize the
need to properly include the quadrupole moment of the
Earth into relativistic coordinate transformations, equations
of light propagation and equations of the motion of geo-
centric satellites. Finally, in Appendix D we introduce some
useful relations that help in the evaluation of the magni-
tudes of various expressions that involve combinations of
orbital parameters of the GRACE-FO spacecraft.
The notational conventions employed in this paper are

those used in [5]. Letters from the second half of the Latin
alphabet, m; n;… ¼ 0…3, denote spacetime indices.
Greek letters α; β;… ¼ 1…3 denote spatial indices. The
metric γmn is that of Minkowski spacetime with γmn ¼
diagðþ1;−1;−1;−1Þ in the Cartesian representation. We
employ the Einstein summation convention with indices
being lowered or raised using γmn. We use powers of G and
negative powers of c as bookkeeping devices for order
terms. Other notations are explained as they occur.

II. PHASE OF AN ELECTROMAGNETIC WAVE
IN THE VICINITY OF THE EARTH

A. The Geocentric Coordinate Reference System

In the vicinity of the Earth, we utilize a standard
coordinate system: the Geocentric Coordinate Reference
System (GCRS), centered at the Earth’s center of mass; it is
used to track orbits in the vicinity of the Earth. Recently, we
developed a new perturbative solution of the gravitational
N-body problem in general relativity [4] and presented a
formulation of the proper reference frame associated with
an extended and rotating gravitating body. Based on this

formulation, we determined the metric tensor gEmn of the
nonrotating GCRS [4,6]. We denote the coordinates of this
reference frame as fxmE g≡ ðx0 ¼ ct;xÞ and present the
metric tensor gEmn in the following form:

gE00 ¼ 1 − 2

c2
wE þ

2

c4
w2
E þOðc−6Þ;

gE0α ¼ −γαλ 4

c3
wλ
E þOðc−5Þ;

gEαβ ¼ γαβ þ γαβ
2

c2
wE þOðc−4Þ; (1)

where wE is the scalar harmonic potential that is given by

wE ¼ UE þ utidalE þOðc−3Þ: (2)

The scalar potential wE is formed as a linear superposition
of the gravitational potential UE of the isolated Earth and
the tidal potential utidalE produced by all the Solar System
bodies (excluding the Earth itself) evaluated at the origin of
the GCRS. The Earth’s gravitational potential UE at a
location defined by spherical coordinates ðr≡ jxj;ϕ; θÞ is
given by

UE ¼ G
Z

σðt;x0Þd3x0
jx − x0j þOðc−4Þ

¼ GME

r

�
1þ

X∞
l¼2

Xþl

k¼0

�
RE

r

�
l

× Plkðcos θÞðCE
lk cos kϕþ SElk sin kϕÞ

�
þOðc−4Þ;

(3)

where σðt;x0Þ is the relativistic mass density inside the Earth
(see discussion inAppendixA),ME is the Earth’smass,RE is
its radius, Plk are the Legendre polynomials, while CE

lk and
SElk are relativistic normalized spherical harmonic coeffi-
cients that characterize the Earth [see also Eqs. (43)–(44) in
Ref. [7] and the subsequent discussion therein]. While the
GRACE-FO experiment is designed to model gravitational
harmonics of the Earth at a fine spatial resolution, at the level
of sensitivity of the project, only the lowest order harmonics
are affected by relativistic contributions, and time-dependent
contributions to relativistic effects due to the elasticity of the
Earth can be ignored. Insofar as the tidal potential utidalE is
concerned, for GRACE-FO it is sufficient to keep only its
Newtonian contribution (primarily due to the Sun and the
Moon), which can be given as usual:

utidalE ¼
X
b≠E

ðUbðrbE þ xÞ −UbðrbEÞ − x ·∇UbðrbEÞÞ

≃X
b≠E

GMb

2
ð3ðnbE · xÞ2 − x2Þ þOðr−4bE ; c−2Þ; (4)
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whereUb is the Newtonian gravitational potential of body b,
rbE is the vector connecting the center ofmass of body bwith
that of the Earth, and ∇Ub denotes the gradient of the
potential. Note that in Eq. (4) we omitted relativistic tidal
contributions of Oðc−2Þ that are produced by the external
gravitational potentials. These are of the order of 10−16
compared to UE and, thus, negligible even at the level of
accuracy of theGRACE-FOLRI.We present only the largest
term in the tidal potential, which is of the order of ∼r−3bE;
however, using the explicit form of this potential on the left
side of Eq. (4), one can easily evaluate this expression to any
order needed to solve a particular problem.
Finally, the contribution of the body’s rotation is cap-

tured by the vector harmonic potential wα
E, defined as

wα
E ¼ G

Z
σαðt;x0Þd3x0
jx − x0j þOðc−2Þ

¼ −GME

2r3
½x × SE�α þOðr−4; c−2Þ; (5)

where σαðt;x0Þ is the relativistic current density of the
matter distribution inside the rotating Earth. Also, in (5) we
explicitly account for only the largest rotational moment,
SE, which is the Earth’s spin moment (angular momentum
per unit of mass). The contribution of other vector
harmonics due to rotation of the Earth is negligible.
The metric tensor (1) with the gravitational potentials

(2)–(5) represents spacetime in the GCRS, which we
choose to formulate the relativistic model for GRACE-
FO observables. Details on the formulation of the GCRS
are in [4,6,7].

B. Geometric optics approximation for the wave
propagation in the vicinity of the Earth

The phase of an electromagnetic wave is a scalar function
that is invariant under a set of general coordinate trans-
formations. In the geometric optics approximation, the phase
φ is found as a solution to the eikonal equation [5,8–11]:

gmn∂mφ∂nφ ¼ 0; (6)

which is a direct consequence of Maxwell’s equations. Its
solution describes thewave front of an electromagnetic wave
propagating in curved spacetime. The solution’s geometric
properties are defined by the metric tensor gmn which is
derived as the solution of Einstein’s field equations. In the
vicinity of the Earth this tensor is given by Eqs. (1)–(4).
To solve Eq. (6), we introduce a covector of the

electromagnetic wave front in curved spacetime, Km ¼
∂mφ. We use λ to denote an affine parameter along the
trajectory of a light ray being orthogonal to the wave front φ
[note that the dimension of λ is ðlengthÞ2]. The vectorKm ¼
dxm=dλ ¼ gmn∂nφ is tangent to the light ray. Equation (6)
states that Km simply is null or gmnKmKn ¼ 0. Therefore,
the light rays are null geodesics [5] described by

dKm

dλ
¼ 1

2
∂mgklKkKl: (7)

Since the eikonal and light ray equations, given by Eqs. (6)
and (7), respectively, have equivalent physical content in
the general theory of relativity, one can use either of them to
study the properties of an electromagnetic wave. However,
the eikonal equation offers a more straightforward way to
study the propagation of a wave.
To find a solution of Eq. (6), we expand the eikonal φ

with respect to the gravitational constant G assuming that
the unperturbed solution is a plane wave. The expansion
may be given as

φðt;xÞ ¼ φ0 þ
Z

kmdxm þ φGðt;xÞ þOðG2Þ; (8)

where φ0 is an integration constant and km ¼ k0ð1;kÞ is a
constant (with respect to the Minkowski metric) null vector
(i.e., γmnkmkn ¼ 0) along the direction of propagation of
the unperturbed electromagnetic plane wave. The wave
direction is given by the vector k≡ kϵ, which is the unit
vector along the ray’s path, jkj ¼ 1. Furthermore,
k0 ¼ ω=c, where ω is the constant angular frequency of
the unperturbed wave, and φG is the perturbation of the
eikonal of first order in G, which is yet to be determined.
Also, as a consequence of Eq. (8), the wave vector of an
electromagnetic wave in curved spacetime, Kmðt;xÞ,
admits a series expansion with respect to G in the form

Kmðt;xÞ ¼ dxm

dλ
≡ gmn∂nφ ¼ km þ kmGðt;xÞ þOðG2Þ;

(9)

where kmGðt;xÞ ¼ γmn∂nφGðt;xÞ is the first order pertur-
bation of the wave vector with respect to G.
To solve Eqs. (6) and (8) for φG in the GCRS, we first

substitute (8) into (6). Then, defining hmn ¼ gmn − γmn

[as given in (A1)] with gmn given by Eqs. (1)–(4) and
keeping only first order terms in G, we obtain an ordinary
differential equation to determine φG:

dφG

dλ
¼ − 1

2
hmnkmkn ¼ − 2k20

c2
wE − 4k20

c3
ðkϵwϵ

EÞ þOðG2Þ;
(10)

where dφG=dλ ¼ km∂mφ. Equation (10) can alternatively
also be obtained by integrating the null geodesic equa-
tion (7). Substituting the scalar and vector potentialswE and
wλ
E from Eqs. (2)–(4), we obtain

dφG

dλ
¼ dφE

G

dλ
þ dφS

G

dλ
þ dφtidal

G

dλ
; (11)

where the three terms of the relativistic phase due to the
mass multipole moments of Earth’s gravity, φE

G [determined
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by the potential (3)], the contribution due to the Earth’s
rotation, φS

G [due to the potential (5)], and the tidal
gravitational field of external bodies in the GCRS, φtidal

G
[due to (4)], are determined from the following equations:

dφE
G

dλ
¼ − 2k20G

c2

Z
σEðt;x0Þd3x0
jx − x0j þOðG2Þ; (12)

dφS
G

dλ
¼ −

4k20G
c3

kϵ

Z
σϵEðt;x0Þd3x0
jx − x0j þOðG2Þ; (13)

dφtidal
G

dλ
¼ −

X
b≠E

GMb

c2
k20
r3bE

ð3ðnbE · xÞ2 − x2Þ þOðr−4bE ; G2Þ:

(14)

We represent the light ray’s trajectory, correct to the
Newtonian order, as

fxmg≡ ðx0 ¼ ct;xðtÞ ¼ x0 þ kcðt − t0ÞÞ þOðGÞ: (15)

This representation allows us to express the Newtonian part
of the wave vector Km presented by Eq. (9) as follows:
km ¼ dxm=dλ ¼ k0ð1;kÞ þOðGÞ, where k0 is immedi-
ately derived as k0 ¼ cdt=dλþOðGÞ and jkj ¼ 1.
Keeping in mind that km is constant, we establish an
important relationship:

dλ ¼ cdt
k0

þOðGÞ; (16)

which we will use to integrate (12). This expression allows
us to include contributions from all multipoles of the
Earth’s mass distribution, as given in Eq. (3). Using (15)
we present the right-hand side of Eq. (12) as

dφE
G

dλ
¼ − 2k20G

c2

Z
σEðt;x0Þd3x0

jx0 þ kcðt − t0Þ − x0j : (17)

In this and preceding equations, we presented the density
σðt;x0Þ as a time-dependent quantity, reflecting the fact that
the GRACE-FO is intended, among other things, to study
the temporal evolution of the Earth’s gravitational field due
to shifting masses. During the ∼1 ms propagation time of a
light signal between the two spacecraft, however, changes
in mass distribution inside the Earth are completely
negligible, and on these time scales, we can safely assume
that the matter distribution is static. In other words, the
characteristic time for changes occurring inside the Earth
are much longer than the light transit time. This allows us to
integrate Eq. (17) as if the density is static, allowing us to
treat σðt;x0Þ as a time-independent quantity. Under these
assumptions and relying on Eqs. (15)–(16), we integrate
Eq. (17) with respect to time from t0 to t and write a plane
wave solution that includes the Earth’s gravity contribution
to the waveform in the following form:

φE
Gðt;xÞ ¼ − 2k0G

c2

Z
σEðt;x0Þ

× ln
� jx − x0j þ k · ðx − x0Þ
jx0 − x0j þ k · ðx0 − x0Þ

�
d3x0 þOðG2Þ:

(18)

The resulting solution extends all previously obtained
solutions for the gravitational delay of light by account-
ing for the contributions from all the multipoles of the
extended body. As the density σðt;x0Þmay be thought of as
a collection of a large number of elementary mass monop-
oles, the integral in (18) is a sum of the corresponding
Shapiro delays produced by each of these elementary
masses integrated over the mass distribution.
Equation (18) allows one to calculate the contributions

to the wave front due to any mass multipole moment.
However, for the purposes of the analysis of the GRACE-
FO mission, we will only keep contributions from the
largest multipoles, namely, the monopole ME and quadru-
pole moments JϵλE . (In fact, we have derived the expression
and estimated the magnitude of the octupole term, JαβϵE ,
which turned out to be negligible for GRACE-FO.) To do
this, we expand this expression under the integral sign.
Using the fact that outside the body of the Earth jx0j < jxj,
we obtain

lnðjx−x0j þk · ðx−x0ÞÞ

¼ lnðrþk ·xÞþ ðnϵþ kϵÞx0ϵ
rþk ·x

− 1

2

�ðnϵþ kϵÞðnλþ kλÞ
ðrþk ·xÞ2 þ 1

r
γϵλþnϵnλ
ðrþk ·xÞ

�
x0ϵx0λþOðx03Þ:

(19)

Similarly, one can develop an expression for
lnðjx0 − x0j þ k · ðx0 − x0ÞÞ, when x0 is outside the body
and jx0j < jx0j.
We can now integrate (18) over the body’s volume using

a spherical harmonics expansion of the Earth’s gravity
potential (3) produced by the density of matter distribution
inside the Earth, σEðt;xÞ, where the mass ME, dipole
moment dϵE, quadrupole moment JϵλE , and spin moment SαβE
of the Earth’s gravitational field are defined as

ME ¼
Z

d3x0σEðt;x0Þ;

dϵE ¼ M−1
E

Z
d3x0σEðt;x0Þx0ϵ ≡ 0;

JϵλE ¼ M−1
E

Z
d3x0σEðt;x0Þð3x0ϵx0λ þ γϵλr02Þ;

SαβE ¼ M−1
E

Z
d3x0σEðt;x0Þðv0αx0β − v0βx0αÞ ¼ γμνϵ

αβ
μS

μ
E;

(20)
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where ϵαμν is the fully antisymmetric Levi-Civita symbol,
ϵ123 ¼ 1, and SμE is the spin moment of the Earth.
As a result, the expression describing the contribution of

mass multipoles of Earth’s gravity to the waveform has the
following form:

φE
Gðt;xÞ ¼ − 2GME

c2
k0

�
ln

�
rþ k · x
r0 þ k · x0

�

−
1

6

�ðnϵ þ kϵÞðnλ þ kλÞ
ðrþ k · xÞ2 þ 1

r
γϵλ þ nϵnλ
ðrþ k · xÞ

− ðn0ϵ þ kϵÞðn0λ þ kλÞ
ðr0 þ k · x0Þ2

− 1

r0

γϵλ þ n0ϵn0λ
ðr0 þ k · x0Þ

�
JϵλE

�

þOðG2Þ: (21)

The solution for the contribution of the quadrupole moment
to the relativistic delay generalizes similar expressions
obtained by other means and under much simplifying
assumptions on JϵλE , notably [12,13]. To the level of
accuracy that is sufficient for GRACE-FO, our results also
agree with those obtained in [14,15]. Although Eq. (19)
naturally yields the introduction of a moment of inertia,
IϵλE ¼ M−1

E

R
d3x0σEðt;x0Þx0ϵx0λ, we, nevertheless, for con-

sistency reasons [5,8], have introduced the quadrupole
mass moment JϵλE in (20). As the expression in front of
x0ϵx0λ in Eq. (19) is trace-free, the quadrupole term in (21)
has an additional factor of 1

3
.

Similarly to the approach that led to the solution (21), by
assuming a constant rotation, we represent the mass current
as σαEðt;xÞ ¼ σEðt;xÞvαEðt;xÞ, and now we can integrate
Eq. (13) as

φS
Gðt;xÞ ¼ − 4k0G

c3
kϵ

Z
σEðt;x0ÞvϵEðt;x0Þ

× ln

� jx − x0j þ k · ðx − x0Þ
jx0 − x0j þ k · ðx0 − x0Þ

�
d3x0 þOðG2Þ:

(22)

Further assuming a constant rotation with frequency
ωα
E allows us to express the velocity field inside the

Earth as vαEðxÞ ¼ ϵαλμω
λ
Ex

μ. Also, using the fact that

ðk · ½k × SE�Þ ¼ 0, we can determine the contribution
due to the spin moment of the Earth, φS

G, in the form

φS
Gðt;xÞ

¼ − 2GME

c3
k0

�
k ·

�
SE ×

�
n

rþ k · x
− n0

r0 þ k · x0

���

þOðr−2; G2Þ: (23)

Although, analogously to Eq. (18), we can use (22) to
extend (23) to include contributions from current moments
of an arbitrary order, we will limit ourselves to the
contribution of the lowest, first order moment only (i.e.,
spin moment), as the effect of higher order current
moments on the relativistic delay of light in the Solar
System is negligibly small.
The contribution of external gravitational fields can be

obtained by integrating (14) as follows:

φtidal
G ðt;xÞ ¼ −X

b≠E

GMb

2c2
γϵλ þ 3nbEϵnbEλ

r3bE
k0ðk · ðx − x0ÞÞ

×
�
xϵxλ0 þ xλxϵ0 þ

2

3
ðxϵ − xϵ0Þðxλ − xλ0Þ

�

þOðr−4bE ; G2Þ: (24)

We can now write the post-Minkowskian expansion for
the phase of an electromagnetic wave that propagates in the
vicinity of the extended and rotating gravitating body. In
the body’s proper reference frame (a formulation that
accounts for the presence of the external gravity field
produced by the external bodies of the N-body system
[4,6]), collecting all the appropriate contributions coming
from the Earth’s mass distribution φE

G, Earth’s rotation φS
G,

and external gravity φtidal
G , the total phase Eq. (8) has the

form

φðt;xÞ ¼ φ0 þ
Z

kmdxm þ φE
Gðt;xÞ þ φS

Gðt;xÞ

þ φtidal
G ðt;xÞ þOðG2Þ; (25)

which, with the help of solutions represented by Eqs. (21),
(23), and (24), can be given as

φðt;xÞ ¼ φ0 þ k0

�
cðt − t0Þ − k · ðx − x0Þ

−
2GME

c2

�
ln

�
rþ k · x
r0 þ k · x0

�
þ 1

c

�
k ·

�
SE ×

�
n

rþ k · x
− n0

r0 þ k · x0

���

−
1

6

�ðnϵ þ kϵÞðnλ þ kλÞ
ðrþ k · xÞ2 þ 1

r
γϵλ þ nϵnλ
ðrþ k · xÞ −

ðn0ϵ þ kϵÞðn0λ þ kλÞ
ðr0 þ k · x0Þ2

− 1

r0

γϵλ þ n0ϵn0λ
ðr0 þ k · x0Þ

�
JϵλE

�

−
X
b≠E

GMb

2c2
γϵλ þ 3nbEϵnbEλ

r3bE
ðk · ðx − x0ÞÞ

�
xϵxλ0 þ xλxϵ0 þ

2

3
ðxϵ − xϵ0Þðxλ − xλ0Þ

��
þOðG2Þ: (26)
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Equation (26) extends the well-known expression for
relativistic delay. In addition to the classic Shapiro gravi-
tational time delay due to a mass monopole (represented by
the logarithmic term), it also includes contributions due to
quadrupole (the term multiplied by JϵλE ) and spin (the term
multiplied by SE) moments of the extended and rotating
Earth, as well as terms due to tidal gravity of external
bodies of the Solar System that are present in the GCRS.

C. Estimating the magnitudes of various terms

We can now evaluate the magnitudes of the terms
involved in Eq. (26) in the context of the GRACE-FO
mission, which will help us to simplify this general
expression for the relativistic phase in GCRS. To do this,
we consider a signal propagating between the two space-
craft GRACE-FO-A and GRACE-FO-B that follow
two worldlines, xAðtÞ and xBðtÞ, correspondingly. The
signal transmission begins at spacecraft A at geocentric

coordinates ðctA;xAÞ. The signal is received by spacecraft
B at ðctB;xBÞ. To describe the relevant geometry we
introduce the geocentric Euclidean vector between the
two events, RAB ¼ xB − xA, the distance between them,
RAB ¼ jRABj, and the unit vector in the direction between
them,NAB ¼ RAB=RAB. Geocentric positions of the space-
craft are described by familiar quantities: nA ¼ xA=rA,
nB ¼ xB=rB, where rA ¼ jxAj, rB ¼ jxBj. The unperturbed
direction of the wave propagation along the unit vector
connecting the two points xAðtÞ and xBðtÞ and defined by
Eq. (15) is given by k ¼ NAB þOðGÞ. Using these
definitions we establish the following exact relation [6]:

rB þ k · xB

rA þ k · xA
¼ rA þ rB þ RAB

rA þ rB − RAB
: (27)

As a result, the expression for the phase (26) at point
ðctB;xBÞ with ðct0;x0Þ ¼ ðctA;xAÞ has the form

φðtB;xBÞ ¼ φ0 þ k0

�
cðtB − tAÞ − k · ðxB − xAÞ

−
2GME

c2

�
ln

�
rA þ rB þ RAB

rA þ rB − RAB

�
þ 1

c

�
k ·

�
SE ×

�
nB

rB þ k · xB
− nA

rA þ k · xA

���

−
1

6

�ðnBϵ þ kϵÞðnBλ þ kλÞ
ðrB þ k · xBÞ2

þ 1

rB

γϵλ þ nBϵnBλ
ðrB þ k · xBÞ

− ðnAϵ þ kϵÞðnAλ þ kλÞ
ðrA þ k · xAÞ2

− 1

rA

γϵλ þ nAϵnAλ
ðrA þ k · xAÞ

�
JϵλE

�

−
X
b≠E

GMb

2c2
γϵλ þ 3nbEϵnbEλ

r3bE
RAB

�
xϵBx

λ
A þ xλBx

ϵ
A þ 2

3
Rϵ
ABR

λ
AB

��
þOðG2Þ: (28)

We can now estimate the sizes of the terms involved in
(28). We assume that both GRACE-FO spacecraft follow
identical, nearly circular orbits with e ¼ 0.001 and other
mission parameters summarized in Table I. Although the
actual spacecraft orbits are not going to be identical
(primarily due to launch vehicle orbit insertion errors,
actual behavior of the spacecraft, etc.), we will use

these values to evaluate the order of the terms in the
model (28).
We start with the Shapiro term. Assuming the instanta-

neous range between the two spacecraft dAB ¼ 270 km, a
spacecraft attitude hG ¼ 450 km, and defining spacecraft’s
semimajor axis a ¼ R⊕ þ hG, with R⊕ ¼ 6371 km, being
the Earth’s radius, this term evaluates to

TABLE I. Select parameters of the GRACE-FO mission, along with corresponding symbols and approximate
formulas used in the text. (A more detailed list of formulas and useful relations is derived and presented in
Appendix D.)

Parameter Symbol Equation Value

Orbital altitude hG 450 km
Orbital eccentricity e 0.001
Interspacecraft range dAB 270 km
Interspacecraft range rate _dAB ¼ ðnAB · vABÞ ≈ vABe (D14) 0.3 m/s
Geocentric velocity vA0 ¼ ðGME=ðR⊕ þ hGÞÞ1=2 (D2) 7.65 km/s
Mean orbital frequency ωG ¼ ðGME=ðR⊕ þ hGÞ3Þ1=2 (D3) 1.12 mHz
Relative spacecraft velocity vAB ≃ vA0dAB=ðR⊕ þ hGÞ (D13) 303 m/s
Geocentric acceleration aA0 ¼ GME=ðR⊕ þ hGÞ2 (D2) 8.57 m=s2

Relative spacecraft acceleration aAB ≃ aA0dAB=ðR⊕ þ hGÞ (D22) 0.34 m=s2

Operating wavelength λA0 1064 nm
Frequency offset foffB 6 MHz
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2GME

c2
ln

�
rA þ rB þ RAB

rA þ rB − RAB

�

≈
1

2
ðγ þ 1Þ 2GME

c2
dAB
a

ð1þ e cosωGtÞ

¼ 1

2
ðγ þ 1Þ · 351.2 μmþ 0.351 μm · cosωGt; (29)

where ωG is the mean orbital frequency of the GRACE-FO
configuration. Note that in (29) we have reinstated the
Eddington parameter γ (see details in [16]). If we were to
compute this term without making use of the small
parameter dAB=a in the approximation, we would get a
result that is slightly higher at 376.5 μm. This estimate
suggests that, should GRACE-FO be able to achieve an
absolute range accuracy at the order of 1 nm, this mission
could yield a new estimate of γ with an accuracy of
σγ ¼ 5.3 × 10−6, which is an improvement by a factor
of 5 over the current best value of σγ ¼ ð2.1� 2.3Þ × 10−5
reported by the Cassini mission [17] (also see discussion in
[18]). Given the anticipated range accuracy of 1 nm, clearly
the Shapiro relativistic delay term is quite significant and
must be kept in the model for GRACE-FO observables.

At the same time, for the chosen GRACE-FO orbits, the
largest contribution of the Shapiro effect is constant and,
most likely, it will be absorbed into other constant terms
without affecting the science data analysis.
Next, we look at the second contribution to the

delay, which is due to the Earth’s rotation. Assuming the
Earth’s spin moment to be that of a rigidly rotating sphere
of uniform density, we arrive at the value of MESE0 ¼
2
5
MEω⊕R2

⊕ ¼ 7.05 × 1033 kgm2=s, which allows us to
evaluate this term to

2GME

c3

�
k ·

�
SE ×

�
nB

rB þ k · xB
− nA

rA þ k · xA

���

≈
2GME

c3
ðk · ½SE × nA�Þ

dAB
a2

¼ 2 × 10−10 m; (30)

which is negligible for GRACE-FO and can be omitted
from the model.
The third term in (28) is the contribution to the delay due

to the quadrupole moment, ΔdJ2 , given as

ΔdJ2 ¼ −GME

3c2

�ðnBϵ þ kϵÞðnBλ þ kλÞ
ðrB þ k · xBÞ2

þ 1

rB

γϵλ þ nBϵnBλ
ðrB þ k · xBÞ

− ðnAϵ þ kϵÞðnAλ þ kλÞ
ðrA þ k · xAÞ2

− 1

rA

γϵλ þ nAϵnAλ
ðrA þ k · xAÞ

�
JϵλE : (31)

From (15) we have xB ¼ xA þ kcðtB − tAÞ þOðGÞ ¼ xA þ kRAB þOðGÞ. Thus, Eq. (31) can be approximated in terms
of the small parameter RAB=rA as

ΔdJ2 ¼
GME

3c2
JϵλE
r2A

�
ðγϵλ þ 3nAϵnAλÞ

RAB

rA
− 3

2
½ðγϵλ þ 5nAϵnAλÞðk · nAÞ − nAϵkλ − nAλkϵ�

R2
AB

r2A

�
þO

�
R3
AB

r3A

�
: (32)

To estimate the magnitudes of the terms in Eq. (32), we introduce a convenient quantity jϵλE ¼ JϵλE =ð3R2
⊕J2⊕Þ, which

essentially represents the components of the Earth’s quadrupole tensor (20), normalized to the Earth’s oblateness,
J2⊕ ¼ 1.08263 × 10−3. Such a definition implies jjjϵλE jj≃ 1. Next, accounting for the expected orbital parameters of the
GRACE-FOmission and takingRAB ¼ jxBðtBÞ − xAðtAÞj ¼ dABðtBÞ þOðc−1Þ, we estimate the magnitudes of both terms:

ΔdJ2 ≈
GME

c2
dAB
a

R2
⊕J2⊕
a2

�
ðγϵλ þ 3nAϵnAλÞ − 3

2
½ðγϵλ þ 5nAϵnAλÞðk · nAÞ − nAϵkλ − nAλkϵ�

dAB
a

�
jϵλE

≈ 1.66 × 10−7 m · ðγϵλ þ 3nAϵnAλÞjϵλE þ 9.85 × 10−9 m · ðnAϵkλ þ nAλkϵÞjϵλE ; (33)

where we used (D18) and (D11) to estimate ðk · nAÞ ¼ ðnAB · nAÞ ¼ dAB=2aþOðeÞ ≈ 0.02. Thus, even the term of the
second order in dAB=a in the quadrupole contribution to the delay is large enough to be observable by GRACE-FO.
Finally, we evaluate the contribution of the external gravity given by the last term in Eq. (28):

X
b≠E

GMb

2c2
γϵλ þ 3nbEϵnbEλ

r3bE
RAB

�
xϵBx

λ
A þ xλBx

ϵ
A þ 2

3
Rϵ
ABR

λ
AB

�

≈
X
b≠E

GMb

c2
ð3ðnbEnAÞ2 − 1Þ dABr

2
A

r3bE
≤
2GMm

c2
dABa2

r3mE
þ 2GM⊙

c2
dABa2

r3⊙E
¼ 2.41 × 10−11 mþ 1.11 × 10−11 m: (34)
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Clearly, the tidal contributions to the delay due to the Moon and the Sun are very small; contributions from other bodies of
the Solar System (i.e., Mars, Jupiter) are even smaller. Therefore, the entire contribution to light propagation due to the
gravity of external bodies may be omitted.

D. General relativistic phase model for GRACE-FO

The evaluations conducted in the preceding section allowed us to neglect the contributions due to the spin moment and
tidal gravity in Eq. (28). As a result, the phase of a plane electromagnetic wave in the vicinity of the extended Earth can be
expressed, at the level of accuracy required for the LRI experiment on GRACE-FO (see Sec. II C), as

φðt;xÞ ¼ φ0 þ k0

�
cðt − t0Þ − k · ðx − x0Þ − 2GME

c2

�
ln
�
rþ k · x
r0 þ k · x0

�

−
1

6

�ðnϵ þ kϵÞðnλ þ kλÞ
ðrþ k · xÞ2 þ 1

r
γϵλ þ nϵnλ
ðrþ k · xÞ −

ðn0ϵ þ kϵÞðn0λ þ kλÞ
ðr0 þ k · x0Þ2

− 1

r0

γϵλ þ n0ϵn0λ
ðr0 þ k · x0Þ

�
JϵλE

��
; (35)

which is accurate up toOð0.2 nmÞ. By dropping subscripts
A and B and reinstating ðt0;x0 ≡ x0ðt0ÞÞ and ðt;xÞ in (35),
we return to a generic form of the expression for φðt;xÞ.
This form is more convenient for the purpose of inves-
tigating the physical properties of the eikonal, aiming at a
formulation of the LRI observables of the GRACE-FO.
It is instructional to present Eq. (35) in the following

equivalent from:

φðt;xÞ ¼ φ0 þ k0ðcðt − t0Þ −Rðx0ðt0Þ;xðtÞÞÞ; (36)

where we introduced Rðx0;xÞ, which is the total distance
traveled by light between the instant of emission t0 and
arbitrary instant t. At the level of accuracy appropriate for
GRACE-FO, Eq. (35) yields the following form of this
function:

Rðx0;xÞ ¼ k · ðx − x0Þ þ
2GME

c2

�
ln

�
rþ k · x
r0 þ k · x0

�

−
1

6

�ðnϵ þ kϵÞðnλ þ kλÞ
ðrþ k · xÞ2 þ 1

r
γϵλ þ nϵnλ
ðrþ k · xÞ −

ðn0ϵ þ kϵÞðn0λ þ kλÞ
ðr0 þ k · x0Þ2

− 1

r0

γϵλ þ n0ϵn0λ
ðr0 þ k · x0Þ

�
JϵλE

�
þOðG2Þ: (37)

It does not depend on the wave’s frequency and is
determined solely by the geometry of the problem.
Clearly, Rðx0;x0Þ ¼ 0. The complete form of this
quantity is easily recovered from Eq. (26). In the general
case, in addition to the Euclidean distance R ¼ k·
ðx − x0Þ traversed by the signal between the two points,
the total path R includes several important general
relativistic contributions, namely, those due to the
monopole, quadrupole, and spin induced gravitational
fields of the extended Earth and also tidal gravity terms
induced by the external bodies.
Along the four-dimensional path of a ray of light

(a null geodesic in empty space), the phase always
stays constant and equal to its initial value at the time
of emission. By equating the phase (36) [or, in a
more general case, (26)] at two events—the signal’s
emission at the point ðt0;x0Þ and at an arbitrary event on
the light part with coordinates ðt;xÞ—we can write
φðt0;x0Þ≡φ0¼φðt;xÞ¼φ0þk0ðcðt−t0Þ−Rðx0ðt0Þ;xðtÞÞÞ
and recover the light-cone equation synchronizing the
events for the signal moving through a stationary
spacetime:

cðt − t0Þ ¼ Rðx0ðt0Þ;xðtÞÞ: (38)

Note that in the post-Newtonian approximation of the
general theory of relativity, Eq. (38) is exact and, as
such, it is valid to all orders of the gravitational constant
G. Equations (37) and (38) are the post-Minkowskian
representation of the light cone [6] corresponding to the
Green’s function solution of the linearized homogeneous
equations of the general theory of relativity for light
propagation in the appropriate order. Any dependence
on G comes only via the geodesic distance R traveled
by a ray of light, which, with the accuracy sufficient to
analyze GRACE-FO, is given by (37).

III. LASER RANGING INTERFEROMETRIC
OBSERVABLES FOR GRACE-FO

There are two types of data analysis that may be realized
on GRACE-FO. The preferred LRI operating mode relies
on a two-way configuration, in which the original signal
sent by the first spacecraft is retransmitted by an active
transponder onboard the second spacecraft, to be ultimately
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received again on the first spacecraft. An alternative, which
will be considered especially if coherent retransmission
cannot be achieved reliably, may be to utilize dual one-way
range (see discussion in [19] in the context of the GRAIL
mission). The present section discusses the LRI operating
mode in detail; the DOWR mode, which relies on precision
timing and post-processing, is discussed in Sec. IV below.

A. Relativistic clock synchronization
and the geodesic signal path

In the LRI operating mode, the interferometer onboard
the first spacecraft compares the phase of the onboard laser
oscillator to that of a signal received from the transponder
on the second spacecraft. That transponder coherently
retransmits a signal that was originally sent by the first
spacecraft. The interferometer produces the phase differ-
ence and frequency observables from which the range and
range rate between the two spacecraft are deduced. These
time series of phase and frequency values constitute the set
of LRI observables of GRACE-FO [1,2].
To formulate a model for LRI observables, we consider a

situation when a laser transponder system on spacecraft A,
moving on a worldline xAðtÞ, sends a continuous laser

signal towards spacecraft B, which is then retransmitted by
spacecraft B to be received by spacecraft A (as shown in
Fig. 1). In the rest of this section, we shall use the shorthand
xA1 ¼ xAðt1Þ, xB2 ¼ xBðt2Þ, and xA3 ¼ xAðt3Þ to indicate
the events of original transmission, retransmission by the B
transponder, and final reception by the A spacecraft, with
corresponding subscript notation for the quantities r, n,
and nα.
At the instant of reception on spacecraft B during

the forward trip, from Eq. (36) the signal’s phase is
characterized as

φðt2;xB2Þ ¼ φðt1;xA1Þ þ
2π

c
fA0

�
dτA
dt

�
t1

× ðcðt2 − t1Þ −RABðxA1;xB2ÞÞ; (39)

where fA0 is the proper frequency of the transmitter on
spacecraft A, while fA ¼ fA0ðdτA=dtÞt1 is its coordinate
frequency, as measured at the time of the signal’s emission,
t1. We consider φðt1;xA1Þ to be the phase of the original
transmission.RAB is the total geodesic distance traveled by
the signal, which from (37) is determined as

RABðxA1;xB2Þ ¼ jxBðt2Þ − xAðt1Þj þ
2GME

c2

�
ln

�
rA1 þ rB2 þ RA1B2

rA1 þ rB2 − RA1B2

�

−
1

6

�ðnB2ϵ þ kϵÞðnB2λ þ kλÞ
ðrB2 þ k · xB2Þ2

þ 1

rB2

γϵλ þ nB2ϵnB2λ
ðrB2 þ k · xB2Þ

− ðnA1ϵ þ kϵÞðnA1λ þ kλÞ
ðrA1 þ k · xA1Þ2

− 1

rA1

γϵλ þ nA1ϵnA1λ
ðrA1 þ k · xA1Þ

�
JϵλE

�
:

(40)

The phase of the signal does not change along the signal’s
worldline: φðt2;xB2Þ ¼ φðt1;xA1Þ. From (39) we get

t2 − t1 ¼ c−1RABðxAðt1Þ;xBðt2ÞÞ; (41)

which is the equation for the coordinate time transfer
between the time of emission t1 and time of reception t2.
The transponder on spacecraft B responds with a phase

coherent retransmission of a signal, which is then received
onboard spacecraft A at t3. At this point, using Eq. (36), the
retransmitted signal is characterized as

φðt3;xA3Þ ¼ φðt2;xB2Þ þ
2π

c
fB0

�
dτB
dt

�
t2

× ðcðt3 − t2Þ −RBAðxB2;xA3ÞÞ; (42)

where fB ¼ fB0ðdτB=dtÞt2 is its coordinate frequency at
the moment t2 of the signal’s coherent retransmission and
φðt2;xB2Þ is the phase at this moment.RBA is the total one-
way distance of the return path, given by

FIG. 1 (color online). Timing events on GRACE-FO: Depicted
(not to scale) are the trajectories of the GRACE-FO-A and
GRACE-FO-B spacecraft with corresponding proper times τA
and τB and with three events in the GCRS, corresponding to
signal transmission at xAðt1Þ, coherent retransmission by the B
spacecraft transponder at xBðt2Þ, and final reception at xAðt3Þ.
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RBAðxB2;xA3Þ ¼ jxAðt3Þ− xBðt2Þj þ
2GME

c2

�
ln

�
rA3 þ rB2 þRB2A3

rA3 þ rB2 −RB2A3

�

−
1

6

�ðnA3ϵ − kϵÞðnA3λ − kλÞ
ðrA3 −k · xA3Þ2

þ 1

rA3

γϵλ þ nA3ϵnA3λ
ðrA3 −k · xA3Þ

− ðnB2ϵ − kϵÞðnB2λ − kλÞ
ðrB2 −k · xB2Þ2

− 1

rB2

γϵλ þ nB2ϵnB2λ
ðrB2 −k · xB2Þ

�
JϵλE

�
;

(43)

where we accounted for the fact that during the return trip
the wave vector points in the opposite direction, k → −k.
Using (42) and the fact that φðt2;xB2Þ ¼ φðt3;xA3Þ, the
coordinate time transfer between t2 and t3 is given by

t3 − t2 ¼ c−1RBAðxBðt2Þ;xAðt3ÞÞ: (44)

We observe that, although events of the original signal
emission at t1 and its ultimate reception at t3 are not directly
connected by a light cone, we nevertheless may compute
the total time elapsed between the two events (as was first
observed in [8]). Indeed, with the help of Eqs. (41) and (44)
we have

t1¼ t3−c−1ðRABðxAðt1Þ;xBðt2ÞÞþRBAðxBðt2Þ;xAðt3ÞÞÞ:
(45)

Thus, the total coordinate time elapsed between the two
events is fully determined by the geocentric positions of
the two spacecraft at various specific instances along the
two-way light path.

B. The interspacecraft interferometric observables

The GRACE-FO LRI observable is formed on spacecraft
A after a coherent retransmission of a signal originally
transmitted by A is received onboard the A spacecraft and
compared to the onboard laser oscillator. A coherent
retransmission of the signal at B2 implies a return signal
originating at xB2 with phase φðt2;xB2Þ ¼ φðt1;xA1Þ, to
be received at xA3 with phase φðt3;xA3Þ ¼ φðt2;xB2Þ.
A phase observable is formulated by taking the difference
between the received signal at xA3 and the phase of
the local oscillator onboard spacecraft A at t3, that is,
δφ ¼ φðt3;xA3Þ − φðt1;xA1Þ.
To describe the LRI observables, first consider an

oscillator with proper frequency fA0, located at a moving
point A1, that generates a signal with frequency fA0ðτA1Þ at
proper time τA1 measured along the worldline xA of the
oscillator (see Fig. 1). This signal is transmitted from point
A1 and received at point B2, at proper time τB2 taken along
the worldline xBðtÞ. The instantaneous phase of the
received signal is compared with the phase of the local
oscillator located at point B2, whose proper frequency at
that instant is fB0ðτB2Þ.
At reception, the measurable quantity is the difference

between the instantaneous phases of the two signals
compared at xB2. Instrumentally, at xB2 one measures
the infinitesimal difference dnrxAB in the received number

of cycles dnBAðτB2Þ originally transmitted at xA1 and the
number of the locally generated cycles dnBðτB2Þ. This
quantity may be expressed using proper frequencies and the
infinitesimal proper time interval dτB2 as

dnrxABðτB2Þ ¼ dnBðτB2Þ − dnBAðτB2Þ
¼ fB0ðτB2ÞdτB2 − fBAðτB2ÞdτB2; (46)

where fBA is the proper frequency of the oscillator A as
measured at B.
Assuming that the fractional number of cycles sent from

spacecraft A at proper time τA1, denoted here as
nA1 ¼ nAðτA1Þ, and received on spacecraft B at proper
time τB2 and denoted as nB2A ¼ nBAðτB2Þ are the same, or in
infinitesimal form, dnA1 ¼ dnB2A , we can express the
frequency fBAðτB2Þ via its value fA0ðτA1Þ at the proper
time τA1 of emission on spacecraft A:

fBAðτB2Þ
fA0ðτA1Þ

¼ dnB2A
dτB2

dτA1
dnA1

¼ dτA1
dτB2

: (47)

The infinitesimal difference between the number of cycles
generated locally on spacecraft B and those received from
spacecraft A, as given by Eq. (46), takes the form

dnrxABðτB2Þ ¼ dnBðτB2Þ − dnAðτA1Þ
¼ fB0ðτB2ÞdτB2 − fA0ðτA1ÞdτA1
¼

�
fB0ðτB2Þ − fA0ðτA1Þ

dτA1
dτB2

�
dτB2: (48)

The laser transponder system at spacecraft B is a phase-
locked transponder capable of locking onto the incoming
signal. It will be able to respond to frequency fluctuations
of the received signal for its subsequent retransmission.
Coherency between the received signal and the local
oscillator implies nrxAB ¼ const, and, from (48), the fre-
quency of the signal and the infinitesimal number of cycles
received at spacecraft B are given as

fB0ðτB2Þ¼fA0ðτA1Þ
dτA1
dτB2

and dnBðτB2Þ¼dnAðτA1Þ
(49)

However, the transponder on GRACE-FO-B is an offset
phase-locked transponder in which a fixed frequency offset,
foffB ðτB2Þ, is added to (49) [1,2], so the retransmission will
be done at the shifted frequency
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ftxB0ðτB2Þ ¼ fB0ðτB2Þ þ foffB ðτB2Þ: (50)

The introduction of the offset frequency will also affect the
transmitted phase, given here by the number of transmitted
cycles, ntxB ðτB2Þ. Thus, compared to a coherent transmission
where the properties of the transmitted signal are identical
to those of the received signal [as summarized by (49)], the
presence of the offset frequency results in adding to the
infinitesimal number of transmitted cycles a linear ramp
of foffB dτB2:

dntxB ðτB2Þ ¼ dnBðτB2Þ þ foffB ðτB2ÞdτB2: (51)

The LRI observable on GRACE-FO is formed by
comparing the properties of the signal generated by the
local oscillator (that is already shifted by the offset
frequency) to those of the incoming signal [2]. As before,
the measurable quantity is the infinitesimal difference in the
number of cycles, dntxABðτB2Þ, given as

dntxABðτB2Þ ¼ dntxB ðτB2Þ − dnAðτA1Þ

¼
�
ftxB0ðτB2Þ − fA0ðτA1Þ

dτA1
dτB2

�
dτB2: (52)

This expression represents the beat-note signal measured
by the phase meter on the transponder spacecraft B [20].
Similarly, we develop an expression describing light

propagation from spacecraft B back to spacecraft A, where
it is received at proper time τA3 and measured with respect
to the local oscillator. In this case the quantity of interest is
the infinitesimal number of cycles dnBA, which is given as

dnBAðτA3Þ ¼ dnAðτA3Þ − dntxB ðτB2Þ

¼
�
fA0ðτA3Þ − ftxB0ðτB2Þ

dτB2
dτA3

�
dτA3: (53)

Substituting the transmitted frequency ftxB0ðτB2Þ, given
by (50), and the number of cycles dntxB ðτB2Þ, given by (51),
in Eqs. (52)–(53), we obtain models for the beat-note
signals measured by the phase meters:

dntxABðτB2Þ ¼ dðnBðτB2Þ−nAðτA1ÞÞþ foffB ðτB2ÞdτB2
¼
�
fB0ðτB2ÞþfoffB ðτB2Þ− fA0ðτA1Þ

dτA1
dτB2

�
dτB2;

(54)

dnBAðτA3Þ ¼ dðnAðτA3Þ − nB2ðτB2ÞÞ − foffB ðτB2ÞdτB2
¼

�
fA0ðτA3Þ − ðfB0ðτB2Þ

þ foffB ðτB2ÞÞ
dτB2
dτA3

�
dτA3: (55)

Equations (54) and (55) represent an important
starting point in the derivation of observational
equations needed to process interferometric data on
GRACE-FO. If one assumes coherent reception and
retransmission on spacecraft B, this mode of operation
leads to the LRI type of observables (which we discuss
in Sec. III C). If no coherent link between the spacecraft
is assumed, the process will depend on the stability of
local oscillators onboard the spacecraft and a phase
reconstruction based, for example, on a high-precision
interpolation of phase measurements [21]. This process
leads to the DOWR type of observables (discussed in
Sec. IV below).

C. Formulating the phase for LRI

For LRI measurements, which are based on the
coherent reception of the signal from spacecraft A
and its retransmission back to the same spacecraft,
the quantity of interest is nBA, which will be provided
by a phase meter on spacecraft A. Coherent operation
of the transponder onboard spacecraft B is captured
by Eq. (49). Substituting these expressions into (54), we
obtain

dntxABðτB2Þ ¼ foffB ðτB2ÞdτB2: (56)

Equation (56) describes the phase meter’s signal of the
offset phase-locked transponder [2] on spacecraft B, for
which the laser phase will be controlled by feeding back
the detected signal so that the beat-note phase on the
transponder spacecraft, ntxABðτB2Þ, is driven to follow a
linear ramp, i.e. foffB ðτB2ÞτB2.
The right-hand side of (55), together with the conditions

(49) of coherent reception, yields

dnBAðτA3Þ

¼
�
fA0ðτA3Þ − fA0ðτA1Þ

dτA1
dτA3

− foffB ðτB2Þ
dτB2
dτA3

�
dτA3;

(57)

which describes the phase of the beat note on the phase
meter on spacecraft A—our signal of interest for LRI.
To develop Eq. (57) further, we use the differential

equation that relates the rate of the spacecraft proper
times, τA and τB, as measured by an onboard clock in
Earth’s orbit, to the time in GCRS, denoted here as t (see
Ref. [4]), as

dτA
dt

¼ 1 − 1

c2

�
v2A
2
þ UEðyAÞ

�
þOðc−4Þ and

dτB
dt

¼ 1 − 1

c2

�
v2B
2
þ UEðyBÞ

�
þOðc−4Þ: (58)
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Using ðdτA=dtÞti to mean the value of the expression (58) at
t ¼ tiði ¼ 1; 3Þ, we have

dτA1 ¼
�
dτA
dt

�
t1

dt1; dτA3 ¼
�
dτA
dt

�
t3

dt3; and

dτB2 ¼
�
dτB
dt

�
t2

dt2; (59)

where the instances of coordinate time t1 and t3, corre-
sponding to the events of the signal’s emission and its
ultimate reception by the same spacecraft, are not inde-
pendent and are related by (45). Similarly, t2 and t3 are
related by (44). Therefore, the ratio of proper times in (57)
may be expressed via the ratio of their coordinate counter-
parts as

dτA1
dτA3

¼
�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

dt1
dt3

and

dτB2
dτA3

¼
�
dτB
dt

�
t2

�
dτA
dt

�−1

t3

dt2
dt3

: (60)

As a result, Eq. (57) takes the form

dnBAðτA3Þ ¼
�
fA0ðτA3Þ − fA0ðτA1Þ

�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

dt1
dt3

− foffB ðτB2Þ
�
dτB
dt

�
t2

�
dτA
dt

�−1

t3

dt2
dt3

�
dτA3:

(61)

Using (44) and (45) we have the following exact
expression for the ratio of coordinate times present in this
equation:

dt1
dt3

¼ 1 − 1

c
d
dt3

½RABðxA1;xB2Þ þRBAðxB2;xA3Þ�; (62)

dt2
dt3

¼ 1 − 1

c
d
dt3

½RBAðxB2;xA3Þ�: (63)

The results given by Eqs. (62) and (63) allow us to
present (61), describing the infinitesimal difference
between the number of cycles coherently retransmitted
from B and received at spacecraft A, and the number of
cycles generated by the oscillator onboard spacecraft A, as

dnBAðτA3Þ ¼
�
fA0ðτA3Þ − fA0ðτA1Þ

�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

− foffB ðτB2Þ
�
dτB
dt

�
t2

�
dτA
dt

�−1

t3

þ 1

c
fA0ðτA1Þ

�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

d
dt3

½RABðxA1;xB2Þ þRBAðxB2;xA3Þ�

þ 1

c
foffB ðτB2Þ

�
dτB
dt

�
t2

�
dτA
dt

�−1

t3

d
dt3

½RBAðxB2;xA3Þ�
�
dτA3: (64)

The resulting expression is valid for arbitrary trajectories of
spacecraft A and B. Although (64) contains all three values
of time, t1, t2, t3, any two of these values are determined by
the third. The logic of the LRI measurements dictates that it
is t3, the instant of signal reception back at spacecraft A,
that should be treated as an independent variable. The
values of t1 and t2 may be explicitly expressed via t3 as
t1ðt3Þ and t2ðt3Þ by applying the transformations (40), (41),
and (43), (44). Furthermore, Eqs. (58) and (59) relate the
coordinate time t3 to the proper time τA3 and can be
integrated to determine t3 ¼ t3ðτA3Þ and vice versa.
Substituting (49) in the left-hand side of (55), this

quantity may be expressed in infinitesimal form as

dnBAðτA3Þ ¼ dðnAðτA3Þ − nAðτA1ÞÞ − foffB ðτB2ÞdτB2:
(65)

The first two terms in (65) represent the infinitesimal
difference between the number of cycles generated locally
at spacecraft A, nAðτA3Þ at proper time τA3, and received

cycles nAðτA1Þ that were originally generated by the same
oscillator at proper time τA1.
The GRACE-FO optical transponder experiment uses

a continuous signal. The onboard optical interferometer
is designed to track the instantaneous phase of the
received signal. Information on the phase of the received
signal and its rate of change (and the associated range
and range rate) is used to address the GRACE-FO
science objectives.
To capture this logic of the LRI measurements, we now

treat τA3, τB2, and τA1 as continuous variables, allowing us
to formally integrate Eq. (65). This yields, up to an arbitrary
integration constant that represents the combined phases
of the transmitter, receiver, and offset generator at the
beginning of the integration interval, the expression

ΔφðτA3Þ ¼ 2π

Z
dnBA

¼ φðτA3Þ − φðτA1Þ − 2πfoffB ðτB2ÞτB2: (66)
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The quantity ΔφðτA3Þ is one of the LRI observables on
GRACE-FO formed at spacecraft A. It compares the phase
of the local oscillator on spacecraft A, denoted here by
φAðτA3Þ, with itself but taken a round-trip light time earlier,
φAðτA1Þ ¼ φAðτA3 − 2c−1ρABðτA3ÞÞ, while applying a lin-
ear phase ramp 2πfoffB ðτB2ÞτB2 due to the offset frequency.

To investigate how ΔφðτA3Þ evolves with time, we use
(64). This integral expresses the cumulative difference
over an arbitrary interval of time in the cycle count
between the oscillator onboard spacecraft A and the
two-way return signal received from spacecraft B,
yielding Δφ=2π:

ΔφðτA3Þ
2π

¼
Z �

fA0ðτA3Þ − fA0ðτA1Þ
�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

− foffB ðτB2Þ
�
dτB
dt

�
t2

�
dτA
dt

�−1

t3

�
dτA3

þ 1

c

Z �
fA0ðτA1Þ

�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

ð _RABðt03Þ þ _RBAðt03ÞÞ þ foffB ðτB2Þ
�
dτB
dt

�
t2

�
dτA
dt

�−1

t3

_RBAðt03Þ
�
dτA3; (67)

where the geodesic distancesRABðt3Þ ¼ RABðxA1ðt3Þ;xB2ðt3ÞÞ andRBAðt3Þ ¼ RBAðxB2ðt3Þ;xA3ðt3ÞÞ are expressed via t3
and are presented by (B7) and (B3) for RABðt3Þ and (B5) for RBAðt3Þ, correspondingly. The overdot in _RABðt3Þ and
_RBAðt3Þ denotes differentiation with respect to t3.
To evaluate the first two terms in square brackets of the first integral of (67), we present them equivalently:

fA0ðτA3Þ − fA0ðτA1Þ
�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

¼ fA0ðτA3Þ − fA0ðτA1Þ þ fA0ðτA1Þ
�
1 −

�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

�
: (68)

The difference fA0ðτA3Þ − fA0ðτA1Þ on the right-hand
side of (68) depends on the laser frequency stabilization on
spacecraft A. The anticipated frequency fluctuations
δfA0 ¼ fA0ðτA3Þ − fA0ðτA1Þ ¼ _fA0ΔτA þOðΔτ2AÞ are of
the order of δfA0=fA0 ¼ _fA0ΔτA=fA0 ≤ 2 × 10−15.
Therefore, during a round-trip transit time of
2dAB=c ¼ 1.8 ms, this term will contribute less than
1 nm to the range error. Expecting that the frequency
stabilization goal will be achieved, the first two terms on
the right-hand side of (68) may be omitted.
We evaluate the third term on the right-hand side of (68)

using the orbital configuration chosen for GRACE-FO. To

do this, we can estimate the first ratio in (60). Thus, using
(58) we have

�
dτA
dt

�
t1

�
dτA
dt

�−1

t3

¼ 1þ 1

c2
d
dt

�
v2A
2
þ UEðyAÞ

�
Δt13

þOðΔt213; c−4Þ; (69)

where Δt13 ¼ t3 − t1. The magnitude of the 1=c2 term here
can be easily evaluated using Eq. (D6). Thus, for a round-
trip time of transmission between the two spacecraft
Δt13 ∼ 2dAB=c, this term has the magnitude

d
dt

�
v2A
2
þGM

rA

�
·
2dAB
c3

≃− 4GM
a2

ffiffiffiffiffiffiffiffi
GM
a

r
dAB
c3

e sinωGt ¼ 2.6 × 10−18 · sinωGt; (70)

which is equivalent to a contribution of ∼7.1 × 10−13 m to the round-trip travel and is clearly negligible for GRACE-FO.
Similarly we evaluate the third term in the square brackets of the first integral of (67). Using the anticipated similarity of

the orbits of the two GRACE-FO spacecraft, we evaluate the ratio involving the proper times as
�
dτB
dt

�
t2

�
dτA
dt

�−1

t3

− 1 ¼ 1

c2

�
1

2
ðv2B − v2AÞ þUEðyBÞ −UEðyAÞ

�
þOðc−4Þ

≈
2GM
c2

dAB
a2

e sinωGt ¼ 5.2 × 10−14 · sinωGt: (71)

As we shall see below, in equations that model observables
this term will always appear multiplied by the small factor
foffB =fA0 ¼ 2.13 × 10−8, where foffB ¼ 6 × 106 Hz is the
offset frequency [1] and fA0 ¼ 2.82 × 1014 Hz, which
is set by the operating wavelength λA0 ¼ 1064 nm.

Consequently, we will omit terms containing the left side
of Eq. (71).
Therefore, accounting for (68)–(71) and treating the

frequencies fA0ðτA3Þ ¼ fA0 and foffB ðτB2Þ ¼ foffB as con-
stant, the phase difference (67), formed between the phase
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of the coherently retransmitted light completing its two-
way round-trip and the phase of the local oscillator at the
moment of reception, may be given by the following
expression:

ΔφðτA3Þ
2π

¼ 1

c

Z
τA3

τ0A3

½fA0ð _RABðt03Þ þ _RBAðt03ÞÞ

þ foffB
_RBAðt03Þ�dτA3 − foffB ðτA3 − τ0A3Þ: (72)

We can now introduce the intersatellite range ρABðtÞ:

ρABðt3Þ ¼
1

2
ðRABðt3Þ þRBAðt3ÞÞ

þ foffB

2fA0 þ foffB

1

2
ðRBAðt3Þ −RABðt3ÞÞ; (73)

whereRABðt3Þ≡RABðt�3Þ is taken at a delayed time given
as t2 ≡ t�3 ¼ t3 − c−1RBAðt3Þ, in accordance with (B4).
The first term in (73) is the geometric range between the
two spacecraft, ρ0ABðt3Þ, which is defined using (45) as

ρ0ABðt3Þ≡ 1

2
cðt3 − t1Þ

¼ 1

2
½RABðxA1;xB2Þ þRBAðxB2;xA3Þ�; (74)

where RABðxA1;xB2Þ and RBAðxB2;xA3Þ are expressed as
functions of time t3. The second term in (73) is a correction
to the physical range between the two spacecraft due to the
fact that the frequency of the signal that will be used to
measure the one-way rangeRBA is higher by foffB compared
to the frequency that will be used to measureRAB. It is also
convenient to introduce the intersatellite range rate
_ρABðt3Þ ¼ dρABðt3Þ=dt3:

_ρABðt3Þ ¼
1

2
ð _RABðt3Þ þ _RBAðt3ÞÞ

þ foffB

2fA0 þ foffB

1

2
ð _RBAðt3Þ − _RABðt3ÞÞ: (75)

Substituting (75) into (72), we can present one of the LRI
observables, the phase difference, as

ΔφðτA3Þ
2π

¼ 1

c
ð2fA0 þ foffB Þ

Z
τA3

τ0A3

_ρABðt03Þdτ0A3

− foffB ðτA3 − τ0A3Þ: (76)

The primary LRI observable on GRACE-FO is the
fractional number of cycles received at spacecraft A per
unit of proper time τA3 (as opposed to the absolute number
of cycles [2]). This quantity can be developed by differ-
entiating (76) with respect to proper time dτA3, which
results in the following:

dΔφðτA3Þ
2πdτA3

¼ 1

c
ð2fA0 þ foffB Þ_ρABðt3Þ − foffB ; (77)

where the range rate _ρABðt3Þ≡ _ρABðt3ðτA3ÞÞ is given by
(75), with t3 ¼ t3ðτA3Þ determined with (58).
In addition to phase and phase rate observables,

LRI data will be used to numerically compute phase
rate fluctuations. A model for this quantity may be
developed by differentiating (77) with respect to the proper
time τA3:

d2ΔφðτA3Þ
2πdτ2A3

¼ 1

c
ð2fA0 þ foffB Þ

�
dτA
dt

�−1

t3

ρ̈ABðt3Þ; (78)

where, similarly to Eqs. (74)–(75), the range acceleration
ρ̈ABðt3Þ ¼ d2ρABðt3Þ=dt23 may be computed from (73).

D. Phase difference observable and associated range

As we saw in the preceding sections, the instances
of time corresponding to the events of emission,
retransmission, and reception on GRACE-FO are not
independent and are linked by the light-cone equations.
Given an instant of reception t3, we can reconstruct the
corresponding instances of retransmission (t2) and original
transmission (t1). This is done by using light-cone equa-
tions discussed in Sec. III A and with the help of instanta-
neous positions for both spacecraft, xAðt3Þ and xBðt3Þ. In
other words, we can express t2 and t1 as functions of the
final time of reception t3: t2 ¼ t2ðt3Þ and t1 ¼ t1ðt3Þ.
As a result, using (76), we present the observable phase

difference ΔφðτA3Þ, which is the difference between the
phase of the coherently retransmitted signal completing its
two-way round-trip and the phase of the local oscillator,
relating this differential quantity to the intersatellite range
ρAB as

c
2fA0 þ foffB

�
ΔφðτA3Þ

2π
þ foffB ðτA3 − τ0A3Þ

�

¼
Z

τA3

τ0A3

_ρABðt03Þdτ0A3; (79)

with the proper time τA related to GCRS time t via (58).
The integral in (79) depends on the coordinate-to-proper

time conversion and may be evaluated as

Z
τA3

τ0A3

_ρABðt03Þdτ0A3 ¼
Z

t3

t0
3

_ρABðt03Þ
�
dτ0A3
dt03

�
dt03

¼ ρABðt3Þ − ρABðt03Þ

þ
Z

t3

t0
3

_ρABðt03Þ
��

dτ0A3
dt03

�
− 1

�
dt03;

(80)
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where the instantaneous range ρABðtÞ is given by (82). Using (D1), (D2), and (D13), we evaluate the integrand in the
expression on the right-hand side of (80) as

_ρABðtÞ
��

dτA
dt

�
− 1

�
¼ − 1

c2
ðnAB · vABÞ

�
v2A
2
þ UEðyAÞ

�
¼ − 1

c2

�
GME

a

�
3=2 3dAB

2a

�
e cos β þ 17

14
e2 sin 2β þOðe2Þ

�

¼ 0.3 nm=s · cosωGtþ 0.8 pm=s · sin 2ωGtþOðe2Þ: (81)

The magnitude of the largest term here is almost 0.3 nm/s; it comes at the orbital frequency, and thus, after a sufficiently
long integration, it may contribute to the science measurements of GRACE-FO. Therefore, we advocate to keep the term on
the right-hand side of (79) in the integral form.
Todevelopananalytical expression for thephysical intersatellite range (73),westart fromthegeometric rangewhich isgiven

by (74). The optical path lengthRABðt3Þ as a function of t3 is presented by (B3) and (B7), whereasRBAðt3Þ is given by (B5).
Assumingthat thequadrupolemomentdoesnotchangeduringtheround-trip light transit time, thegeometric intersatellite range
(74) has the form

ρ0ABðt3Þ ¼
1

2
ðjxAðt3Þ − xBðt2Þj þ jxBðt2Þ − xAðt1ÞjÞ þ

GME

c2
ln

��
rA3 þ rB2 þ RB2A3

rA3 þ rB2 − RB2A3

��
rA1 þ rB2 þ RA1B2

rA1 þ rB2 − RA1B2

��

−
GME

6c2

��ðnA3ϵ − kϵÞðnA3λ − kλÞ
ðrA3 − k · xA3Þ2

þ 1

rA3

γϵλ þ nA3ϵnA3λ
ðrA3 − k · xA3Þ

− ðnB2ϵ − kϵÞðnB2λ − kλÞ
ðrB2 − k · xB2Þ2

− 1

rB2

γϵλ þ nB2ϵnB2λ
ðrB2 − k · xB2Þ

þ ðnB2ϵ þ kϵÞðnB2λ þ kλÞ
ðrB2 þ k · xB2Þ2

þ 1

rB2

γϵλ þ nB2ϵnB2λ
ðrB2 þ k · xB2Þ

− ðnA1ϵ þ kϵÞðnA1λ þ kλÞ
ðrA1 þ k · xA1Þ2

− 1

rA1

γϵλ þ nA1ϵnAλ
ðrA1 þ k · xA1Þ

�
JϵλE

�
; (82)

where we neglected the terms that are Oðc−3Þ and also those that are below 0.1 nm in range for GRACE-FO.
We use (B2)–(B5) to express the Euclidean distances traveled by light as functions of geocentric time with t3 ≡ t, while

t1 ¼ t1ðtÞ and t2 ¼ t2ðtÞ, as given below:

1

2
ðjxAðt3Þ − xBðt2Þj þ jxBðt2Þ − xAðt1ÞjÞ

¼ dAB − 1

c
ðdAB · vABÞ þ

dAB
2c2

ðv2AB þ v2A þ ðnAB · vBÞ2 þ ðdAB · ðaAB − aAÞÞÞ þOðc−3; GÞ; (83)

where all the terms on the right-hand side are taken at time t3 ≡ t. Expressing the remainingGME=c2 terms in Eq. (82) also
as functions of t3, and neglecting Oð1=c3Þ contributions, with the help of result (83) we can present an expression for the
range ρAB given by (82) in the following form:

ρ0ABðt3Þ ¼ dAB − 1

c
ðdAB · vABÞ þ

dAB
2c2

ðv2AB þ v2A þ ðnAB · vBÞ2 þ ðdAB · ðaAB − aAÞÞÞ

þ 2GME

c2
ln

�
rA þ rB þ dAB
rA þ rB − dAB

�
−GME

3c2

��
nBϵ
r2B

− nAϵ
r2A

�
kλ þ

�
nBλ
r2B

− nAλ
r2A

�
kϵ

�
JϵλE

þ GME

6c2
dAB

�
ðγϵλ þ 2kϵkλÞ

�
1

r3B
þ 1

r3A

�
þ 3nBϵnBλ

r3B
þ 3nAϵnAλ

r3A

�
JϵλE þOð0.5 nmÞ: (84)

To further simplify the expression for the quadrupole
term in (84), we took into account Eq. (D18), which
allowed us to introduce the following approximation:
ðk · xAÞ ¼ ðnAB · xAÞ ¼ − 1

2
dAB þOðeÞ. The size of the

error term of Oð0.5 nmÞ in (84) is determined by the
omitted quadrupole terms as a result of this approximation.
We can now estimate the sizes of the terms involved.

Using (D15), the second term in (84) can be estimated:

1

c
ðdAB · vABÞ ¼ − 1

c

ffiffiffiffiffiffiffiffi
GM
a

r
d2AB
a

e sinωGt

≈ −272.6 μm · sinωGt: (85)

In addition to the once-per-orbit (1/rev) periodic term,
Eq. (85) also contributes periodic terms up to the ∼e3 order
which will bring 2/rev and 3/rev terms that are important to
the GRACE-FO science data analysis.
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The combination of the terms in Eq. (84),

dAB
2c2

ðv2AB þ ðdAB · aABÞÞ ¼
dAB
2c2

d
dt

ðdAB · vABÞ

¼ −GM
2c2

d3AB
a3

e cosωGt

¼ 1.38 × 10−10 m · cosωGt;

(86)

can be evaluated using (85) and (D3). This combination of
terms is too small to be accounted for in the range model.
Next, we look at the remaining 1=c2 terms in (84) and

evaluate them:

dAB
2c2

ðv2A þ ðnAB · vBÞ2 − ðdAB · aAÞÞ

¼ GME

c2
dAB
a

ð1þ 2e cosωGtÞ þ
GME

c2
d3AB
4a3

¼ 1.76 × 10−4 mþ 3.51 × 10−7 m · cosωGt

þ 6.88 × 10−8 m: (87)

Therefore, all of these terms should be included in the range
model that is accurate to 1 nm.
The Shapiro term in (84) was already evaluated in (29)

and, with a magnitude of 376.5 μm, it must be accounted
for. A periodic contribution from the Shapiro term appears
because of the eccentricity. As such, it comes at the orbital
frequency and was estimated to be 0.377 μm · cosωGt,
which is significant.
The first among the quadrupole terms in (84), which is

antisymmetric under the exchange of A and B, can be
estimated as

−GME

3c2

��
nBϵ
r2B

− nAϵ
r2A

�
kλ þ

�
nBλ
r2B

− nAλ
r2A

�
kϵ

�
JϵλE

≈
2

c2
aABR2

⊕J2⊕jjjϵλE jj

¼ 2GME

c2
dAB
a3

R2
⊕J2⊕ ¼ 3.32 × 10−7 m: (88)

The second quadrupole term, symmetric under the
exchange of A and B, is evaluated to be nearly of the
same size as the first one, ∼4.98 × 10−7 m. The periodic
terms in the quadrupole contribution are further reduced by
the eccentricity down to ∼5 × 10−10 m, have 1/rev perio-
dicity, and are omitted here. Thus, both of these terms
should be present in the 1 nm range model.
To develop the second term in (72), we observe that its

contribution will be reduced by the small factor of
ðfoffB =4fA0Þ ¼ 5.3 × 10−9, which determines the size of
the terms that we would need to keep inRBAðtÞ −RABðtÞ.
Using (B7), (B3), and (B5), to sufficient accuracy we have
that

foffB

2fA0 þ foffB

1

2
ðRBAðtÞ −RABðtÞÞ

¼ − foffB

2fA0

1

c
ðdAB · vAÞ ¼

foffB

2fA0

1

c

ffiffiffiffiffiffiffiffi
GM
a

r
dAB ¼ 73 nm:

(89)

Thus, this constant term deserves to be in the
range model.
Substituting the results obtained in Eq. (73), we can

present the intersatellite range in the form

ρABðtÞ ¼ dAB − 1

c
ðdAB · vABÞ þ

dAB
2c2

ðv2A þ ðnAB · vBÞ2 − ðdAB · aAÞÞ þ
2GME

c2
ln

�
rA þ rB þ dAB
rA þ rB − dAB

�

−
GME

3c2

��
nBϵ
r2B

− nAϵ
r2A

�
kλ þ

�
nBλ
r2B

− nAλ
r2A

�
kϵ − dAB

2

�
ðγϵλ þ 2kϵkλÞ

�
1

r3B
þ 1

r3A

�
þ 3nBϵnBλ

r3B
þ 3nAϵnAλ

r3A

��
JϵλE

−
foffB

2fA0 þ foffB

1

c
ðdAB · vAÞ þOð0.5 nmÞ; (90)

where all the quantities involved are functions of the GCRS
time t (where we set t3 ≡ t). With an ultimate precision of
0.5 nm, the model for the LRI-enabled range given in
Eq. (90) accounts for all the terms that one needs to include
in order to develop a model for the range observable for
GRACE-FO measurements accurate to 1 nm.
Equation (79), togetherwith theexpression for themodeled

range (90), is the equation needed for processing the LRI-
enabled phase difference observable on GRACE-FO.

E. Phase rate observable and associated range rate

The phase rate observable at spacecraft A is obtained by
differentiating the interferometric phase difference observ-
able with respect to the proper time at the moment of signal
reception, as given in Eq. (77). We can use this equation to
solve for the range rate _ρ, allowing us to express this
quantity in terms of the proper time derivative of the phase
difference Δφ:
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c
2fA0 þ foffB

�
dΔφðτAÞ
2πdτA

þ foffB

�
¼ _ρABðtÞ: (91)

To derive an explicit expression for the range rate _ρAB, we differentiate the range ρAB, (90), with respect to time. To the
required 1=c3 order, the derivative dρABðtÞ=dt is obtained as

_ρABðtÞ ¼ ðnAB · vABÞ − 1

c
ðv2AB þ ðaAB · dABÞÞ þ

1

2c2
fðv2A − ðnAB · vBÞ2 − ðdAB · aAÞÞðnAB · vABÞ

þ 2ðvAB · vBÞðnAB · vBÞ þ dABð2ðvA · aAÞ þ 2ðnAB · vBÞðnAB · aBÞ − ðvAB · aAÞ − ðdAB · _aAÞÞg

þ 4GM
c2

�ðnAB · vABÞ
ðrA þ rBÞ

− dABððnB · vBÞ þ ðnA · vAÞÞ
ðrA þ rBÞ2

�
− foffB

2fA0 þ foffB

1

c
ððvAB · vAÞ þ ðdAB · aAÞÞ

þGME

3c2

�
−
�
vμB
r3B

− vμA
r3A

�
ðγϵμkλ þ γλμkϵÞ þ

dAB
2

�
vμB
r4B

ðγϵμnBλ þ γλμnBϵÞ þ
vμA
r4A

ðγϵμnAλ þ γλμnAϵÞ
��

JϵλE : (92)

Note that while evaluating the quadrupole terms in (92),
we omitted the terms that contain a dot product between
a positional unit vector n and a velocity vector v.
According to (D4), the overall contribution of a term
containing such a product is multiplied by the orbital
eccentricity e as ðn · vÞ≃ jvje, and thus, it will be e
times smaller than the other terms in that expression.
Recognizing the fact that the quadrupole terms in (92)
are already very small, we therefore omitted those quadru-
pole terms that contain _rA ¼ ðnA · vAÞ, _rB ¼ ðnB · vBÞ, and
_dAB ¼ ðnAB · vABÞ.
As we discussed above, while developing the range

model (90), we omitted several 1/rev terms in the
quadrupole contribution. The cumulative effect of these
terms behaves as ∼0.5 nm · sinωGt, setting the accuracy
limit for the range model (90). The accuracy of the
range-rate model (92) may be determined directly by
using this quadrupole contribution. To do that, we
differentiate this term with respect to time and observe
that the range-rate model (92) is accurate to ∼1 pm=s·
cosωGt, which is sufficient to study the long-term trends
and seasonal variations in the GRACE-FO data. At the
same time, in order to detect gravity variations on short
spatial scales, GRACE-FO will use short data arcs
integrating an interferometric phase over periods of time

of 30–100 sec. Clearly, in this case one does not need
the full precision available in the range-rate model (92);
a simplified version is sufficient. We will develop such a
model below.
We can now evaluate the magnitude of each of the terms

in Eq. (92) using the basic orbital formation parameters for
GRACE-FO. Defining the semimajor axis of GRACE-FO
spacecraft as a ¼ R⊕ þ hG, with h⊕ being the spacecraft
altitude, we see that the first term in (92) can be evaluated
using Eqs. (D11) and (D14) as

ðnAB · vABÞ ≈ −
ffiffiffiffiffiffiffiffi
GM
a

r
dAB
a

e sin βAB

¼ 30.3 cm=s · sinωGtþOðe2Þ: (93)

The magnitude of this term motivates including all terms up
to the ∼e4 order. As a result, the term (93) will contribute at
several different frequencies ranging from 1 to 4 times the
orbital frequency (or from 1/rev to 4/rev), thereby affecting
the GRACE-FO science program.
Next, to estimate the size of the 1=c term, we observe

that this combination represents a full time derivative of
ðvAB · dABÞ=c, the magnitude of which was estimated in
(85). Using this result, we have

− 1

c
ðv2AB þ ðaAB · dABÞÞ ¼ − 1

c
d
dt

ðvAB · dABÞ ¼ 272.6 μm

ffiffiffiffiffiffiffiffi
GM
a3

r
cosωGt ¼ 306 nm=s · cosωGt: (94)

Correspondingly, both of these terms must be accounted for in the range-rate model for GRACE-FO. Also, this term
will likely contribute at 2/rev and maybe even at 3/rev frequencies (especially if there is a small orbit mismatch
between the two spacecraft). This possibility needs further investigation with realistic orbits for GRACE-FO
constellation.
Among the 1=c2 terms, there are several that cancel each other at the level of 4 nm/s, ultimately resulting in the following

estimate for the magnitude of this set of terms:
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1

2c2
fðv2A − ðnAB · vBÞ2 − ðdAB · aAÞÞðnAB · vABÞ þ 2ðvAB · vBÞðnAB · vBÞ
þ dABð2ðvA · aAÞ þ 2ðnAB · vBÞðnAB · aBÞ − ðvAB · aAÞ − ðdAB · _aAÞÞg

≈ − 1

c2

�
GM
a

�3
2 3dAB

a
e sin βAB ¼ 0.6 nm=s · sinωGt: (95)

The Shapiro term in Eq. (92) is evaluated as

4GM
c2

�ðnAB · vABÞ
ðrA þ rBÞ

− dABððnA · vAÞ þ ðnB · vBÞÞ
ðrA þ rBÞ2

�
≈

1

c2

�
GM
a

�3
2 4dAB

a
e sin βAB ¼ 0.8 nm=s · sinωGt: (96)

Using J2⊕ ∼ 1 × 10−3 for the Earth’s quadrupole coefficient and introducing, for convenience, the quantity
jϵλE ¼ JϵλE =ð3J2⊕R2

⊕Þ ≲ 1, the entire quadrupole contribution in Eq. (92) can be evaluated as

GME

3c2

�
−
�
vμB
r3B

− vμA
r3A

�
ðγϵμkλ þ γλμkϵÞ þ

3dAB
2

�
vμB
r4B

ðγϵμnBλ þ γλμnBϵÞ þ
vμA
r4A

ðγϵμnAλ þ γλμnAϵÞ
��

JϵλE

≈
1

c2

�
GM
a

�3
2 6dAB

a
R2
⊕

a2
J2⊕μG sin βAB ≲ 1.1μG nm=s · sinωGt: (97)

The factor μG introduced in (97) is defined as
μG ¼ 1

3
ðv̂ABϵkλÞjϵλE þ ðv̂AϵnAλÞjϵλE , with v̂ϵAB and v̂ϵA being

the velocity unit vectors v̂ϵAB ¼ vϵAB=vAB and v̂ϵA ¼ vϵA=vA,
correspondingly. For the GRACE-FO configuration,
it is estimated that jμGj≲ 1

3
, suggesting that, at the

level of precision expected in the GRACE-FO LRI
observable, none of the terms in (97) would contribute
to the range rate.
Finally, the frequency offset term in (92) was evaluated

to make a negligible contribution to the range rate:

foffB

2fA0 þ foffB

1

c
ððvAB · vAÞ þ ðdAB · aAÞÞ

≈
foffB

2fA0

1

c

�
GM
a

�
dAB
a

e sin βAB

¼ 8.2 × 10−14 m=s · sinωGt: (98)

The contribution of Eq. (98) is clearly insignificant.
However, the contribution of the terms represented by
Eqs. (95)–(97) must be treated with care. All these terms
contribute to the range rate at a frequency of 1/rev, and such
contributions are likely absorbed into estimates of non-
gravitational noise, such as solar heating which has similar
periodicity. However, the difference between orbital and
solar heating frequencies (due to the drift of the day-night
terminator line) can introduce a slowly varying unmodeled
residual with an annual frequency; this term can either
mask or enhance estimates of seasonal variability of
components of the Earth’s gravitational field.
Putting these considerations aside, small spatial scale

resolution can be achieved even if the terms in (95)–(97) are

omitted. As a result, Eq. (92), the model for the LRI-
enabled range rate, may be presented in a simplified form:

_ρABðtÞ ¼ ðnAB · vABÞ − 1

c
ðv2AB þ ðaAB · dABÞÞ

þOð0.8 nm=s · sinωGtÞ: (99)

As before, the GCRS time t is expressed via proper time τA
as t ¼ tðτAÞ using (58). Equation (99) generalizes the usual
Lorentz frequency transformation to the case of accelerated
motion [19]. The first term in the equation above, as shown
by (93), contributes ∼30.3 cm=s to the range rate, while
the 1=c term was evaluated in (94) to be ∼306 nm=s.
Correspondingly, both of these terms must be accounted for
in the range-rate model for GRACE-FO.
Finally, with the help of Eq. (99), the GRACE-FO LRI

phase rate observable given in Eq. (91) takes the following
form:

c
2fA0 þ foffB

�
dΔφðτAÞ
2πdτA

þ foffB

�

¼ ðnAB · vABÞ − 1

c
ðv2AB þ ðaAB · dABÞÞ

þOð0.8 nm=s · sinωGtÞ: (100)

Note that because of the orbital design chosen for the
GRACE-FO constellation, featuring nearly identical space-
craft orbits with a very small orbital eccentricity of
e ¼ 0.001, the range-rate model (100) does not include
contributions from general relativistic terms even as it
accounts for, in the form as presented, all terms larger than
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0.8 nm=s · sinωGt. At the same time, the GRACE-FO
mission objectives include investigation of long-term phe-
nomena in the Earth’s gravity field. Any study of long-term
trends in the GRACE-FO data will require using long data
arcs over several years. For these investigations, one would
have to use the complete range-rate model given by (92),
which is accurate to ∼1 pm=s · cosωGt.

F. Phase rate fluctuations and range acceleration

Equation (78) defines fluctuations in the phase rate by
connecting them with the range acceleration ρ̈ABðt3Þ as

c
2fA0 þ foffB

d2ΔφðτAÞ
2πdτ2A

�
dτA
dt

�
¼ ρ̈ABðtÞ; (101)

where ρ̈ABðt3Þ ¼ d2ρABðt3Þ=dt23 is computed from (73).
The analytical form of range acceleration may be computed
directly from (99) [which came from the first two terms in
(90)] by differentiating it with respect to time t:

ρ̈ABðtÞ ¼
1

dAB
ðv2AB − ðnAB · vABÞ2 þ ðdAB · aABÞÞ

−
1

c
ð2ðvAB · aABÞ þ ð _aAB · dABÞ þ ðaAB · vABÞÞ

þOð0.7 pm=s2 · sinωGtÞ: (102)

The first term in (102) was evaluated with the help of (93)
to be 340 μm=s2. Similarly, the second term was evaluated
with the help of (94) to be 343 pm=s2. Thus, both of these
terms must be included in the acceleration model.
As discussed in Sec. III E, while the magnitude of the

remaining error term is small, it is a systematic term with 1/
rev periodicity. As such, while it may be absorbed into
estimates for nongravitational forces, it may be necessary to
account for it fully when long-duration studies of GRACE-
FO LRI data are used to estimate seasonal or annual
variabilities of the Earth’s gravitational field.

IV. PROCESSING INTERFEROMETRIC DATA
USING A DUAL ONE-WAY APPROACH

To provide initial estimates for the GRACE-FO orbit and
interspacecraft separation vector, the mission will rely on a
Ka-band microwave system called the Ka-band ranging
(KBR) system. This system records instances of signal
reception times independently on both spacecraft using
onboard clocks that are synchronized using standard
algorithms [6]. When processed together, these observa-
tions can be used to estimate the DOWR and double one-
way range rate (DOWRR).
Motivated by the possibility that both GRACE-FO

spacecraft will be able to capture high-resolution interfero-
metric data with sufficient precision, we may also consider
utilizing the interferometric data to extract DOWR-style
observables. Such an approach is currently being developed

as a technology demonstration for the Time Delay
Interferometric Ranging (TDIR), proposed for the LISA
mission [21,22]. The difference between the standard two-
way LRI and the DOWR-style range and range-rate
observables must be captured in the corresponding model.
The model may also be used to develop appropriate
instrumentation requirements to enable these observables
for the GRACE-FO mission.
Similarly to the standard LRI operations discussed in

Sec. III B, we model a signal that is transmitted by
spacecraft A at proper time τA1 and received by spacecraft
B at proper time τB2, as described by (52) and depicted in
Fig. 2. In this case, the infinitesimal difference between the
number of cycles initially emitted at A and generated
locally at spacecraft B (taking into account that the local
oscillator is ramped by the offset frequency) is given by
(54) as

dntxABðτB2Þ¼
�
fB0ðτB2ÞþfoffB ðτB2Þ−fA0ðτA1Þ

dτA1
dτB2

�
dτB2:

(103)

We no longer assume coherency in the form of Eq. (49):
fB0ðτB2Þ and fA0ðτA1Þ are now independent.
To develop the second observable, we assume that

another signal was generated at spacecraft B at proper
time τB20 . This signal, consisting of a fractional number of
cycles, dnBðτB20 Þ, and combined with the offset frequency,
will be received and recorded at spacecraft A at proper time
τA3. Similarly to (55), the quantity of interest is the
infinitesimal number of cycles dnBA, given as

FIG. 2 (color online). Timing events on GRACE-FO for a
DOWR scenario: Depicted (not to scale) are the trajectories of the
GRACE-FO-A and GRACE-FO-B spacecraft with correspond-
ing proper times τA and τB and with four events in the GCRS,
corresponding to a one-way signal transmission at xAðt1Þ and its
reception by the B spacecraft at xBðt2Þ and, similarly, another
one-way signal transmission at xBðt02Þ by spacecraft B and
reception of this signal at xAðt3Þ.
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dnBAðτA3Þ ¼
�
fA0ðτA3Þ

− ðfB2ðτB20 Þ þ foffB ðτB20 ÞÞ
dτB20

dτA3

�
dτA3:

(104)

In the case of (103), the quantity that will be recorded on
spacecraft B is a high-resolution time series of the infini-
tesimal difference in the fractional number of cycles
between cycles generated by the local oscillator at the
moment of reception, nBðτB2Þ, and those originally emitted,
nAðτA1Þ. Multiplied by 2π, this provides the one-way
phase difference (referenced to a local oscillator onboard
the receiving spacecraft) for the signals traveling from
spacecraft A to B:

ntxABðτB2Þ ¼
1

2π
ðφBðτB2Þ þ 2πfoffB ðτB2ÞτB2 − φAðτA1ÞÞ

¼ Δφdowr
AB ðτB2Þ
2π

: (105)

Similarly, Eq. (104) provides the second observable as

nBAðτA3Þ ¼
1

2π
ðφAðτA3Þ − φBðτB20 Þ − 2πfoffB ðτB20 ÞτB20 Þ

¼ Δφdowr
BA ðτA3Þ
2π

: (106)

The phase differences ΔφABðτB2Þ and ΔφBAðτA3Þ
will be recorded at spacecraft B and A, respectively, and
will be made available as a high-resolution time
series. Laser frequency stabilization on the order of
δfA0=fA0 ≤ 2 × 10−15, combined with millicycle level
phase interpolation (as opposed to a precision timing
implemented for KBR on GRACE and GRAIL missions
[6,23] and a phase interpolation to the level of a microcycle
that is being developed for LISA [21]), may provide the
conditions necessary to process these phase differences in a
DOWR configuration.
Similarly to the development performed in Sec. III B for

LRI observables, we can now develop the DOWR observa-
tional model. We follow the approach presented in [19].
Adding (103) and (104), while using the definitions for the
phase difference observables ΔφABðτB2Þ and ΔφBAðτA3Þ
givenby (105) and (106),weobtain the followingexpression:

d

�
Δφdowr

AB ðτB2Þ
2π

þ Δφdowr
BA ðτA3Þ
2π

�

¼
�
fA0ðτA3Þ − fA0ðτA1Þ

�
dτA
dt

�
1

�
dτB
dt

�−1

2

dτB2
dτA3

�
dτA3

þ
�
fB0ðτB2Þ þ foffB ðτB2Þ − ½fB0ðτB20 Þ þ foffB ðτB20 Þ�

�
dτB
dt

�
20

�
dτA
dt

�−1

3

dτA3
dτB2

�
dτB2

þ 1

c
fA0ðτA1Þ

�
dτA
dt

�
1

�
dτB
dt

�−1

2

dRABðt2Þ
dt2

dτB2 þ
1

c
ðfB0ðτB20 Þ þ foffB ðτB20 ÞÞ

�
dτB
dt

�
20

�
dτA
dt

�−1

3

dRBAðt3Þ
dt3

dτA3: (107)

We used the fact that coordinate times t1 and t2 are
connected by the light-cone equations (B2) and (B3).
To connect coordinate times t20 and t3, we used the second
pair of light-cone equations, (B4) and (B5), replacing t2
with t20 .
Expression (107) describes a generic combination of

the observable phase differences. A model for DOWR
may be obtained simply by assuming in this expression that
the clocks on both spacecraft are synchronized. We can
capture this assumption by equating the appropriate proper
and coordinate times, namely, τB2¼τA3¼τ and t2 ¼ t3 ¼ t.
In addition, the fact that GRACE-FO will rely on nearly
identical Keplerian orbits with very small eccentricities also
allows for a simplification. Thus, relying on the results
(69)–(71) and also on the numerical values of the GRACE-
FO mission parameters from Table I, and assuming that
frequency stabilization and phase matching goals are
achieved, we can treat the frequencies fA0, fB0 and foffB
as constants and present (107) in the following form:

d

�
Δφdowr

AB ðτÞ
2π

þ Δφdowr
BA ðτÞ
2π

�

¼ 1

c
ðfA0 _RABðtÞ þ ðfB0 þ foffB Þ _RBAðtÞÞdτ: (108)

The interspacecraft range ρdowrAB is defined by combining
the one-way ranges in the following manner:

ρdowrAB ðtÞ ¼ 1

2
ðRABðtÞ þRBAðtÞÞ

þ fB0 þ foffB − fA0
fA0 þ fB0 þ foffB

1

2
ðRBAðtÞ −RABðtÞÞ:

(109)

Although the functional form of (109) is similar to that of
(72), the one-way light-travel distancesRABðtÞ andRBAðtÞ
are taken at the same time t. This is contrary to (72), where
RABðt�Þ is taken at a delayed time of t� ¼ t − c−1RBAðtÞ.
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Similarly to (73), the first term in (109) is the geometric
DOWR range between the two spacecraft, defined as
ρdowr 0AB ðtÞ ¼ 1

2
ðRABðtÞ þRBAðtÞÞ. This quantify has the

form

ρdowr 0AB ðtÞ ¼ 1

2
ðjxAðtÞ − xBðt02Þj þ jxBðtÞ − xAðt1ÞjÞ

þ 2GME

c2
ln
�
rA þ rB þ dAB
rA þ rB − dAB

�

−
GME

3c2

��
nBϵ
r2B

− nAϵ
r2A

�
kλ þ

�
nBλ
r2B

− nAλ
r2A

�
kϵ

− dAB
2

�
ðγϵλ þ 2kϵkλÞ

�
1

r3B
þ 1

r3A

�

þ 3nBϵnBλ
r3B

þ 3nAϵnAλ
r3A

��
JϵλE : (110)

To develop ρdowrAB , we first apply light-cone equations
from Appendix B to estimate the following quantity:

1

2
ðjxAðtÞ − xBðt02Þj þ jxBðtÞ − xAðt1ÞjÞ

¼ dAB − 1

2c
ðdAB · vABÞ

þ dAB
2c2

ððvA · vBÞ þ ðnAB · vAÞðnAB · vBÞÞ; (111)

which is accurate to Oðc−3; GÞ. Note that the gravita-
tional contributions to the DOWR and LRI ranges, given

respectively by Eqs. (90) and (114), are identical. Any
difference would appear at the next level of approxima-
tion, ∝ G=c3, which is negligible for GRACE-FO.
Similarly to (72), the contribution of the second term

in (109) will be reduced by the small factor of
ðfoffB =4fA0Þ ¼ 5.3 × 10−9, which determines the size of
the terms that we would need to keep in
RBAðtÞ −RABðtÞ. Using (B3) and (B5) and accounting
for the fact that fA0 ≈ fB0, to sufficient accuracy we
have that

fB0 þ foffB − fA0
fA0 þ fB0 þ foffB

1

2
ðRBAðtÞ −RABðtÞÞ

¼ − foffB

2fA0

1

2c
ðdAB · ðvA þ vBÞÞ

¼ foffB

2fA0

1

2c

ffiffiffiffiffiffiffiffi
GM
a

r
d2AB
a

e sin βAB ¼ 1.45 pm · sinωGt:

(112)

Therefore, the contribution of the frequency offset to
the DOWR range is negligible, and thus, it may be
omitted.
Finally, after considering all the simplifying assumptions

above, the observational equation to process the DOWR
data with interferometric phase differences, Δφdowr

AB and
Δφdowr

AB , recorded at the GRACE-FO spacecraft, takes
the form

c
fA0 þ fB0 þ foffB

�
Δφdowr

AB ðτÞ
2π

þ Δφdowr
BA ðτÞ
2π

�
¼

Z
τ

τ0

_ρdowrBA ðtÞdτ; (113)

which is accurate to the order ofOð0.3 μmÞ. The intersatellite range ρdowrAB ðtÞ, as expressed via instantaneous quantities, was
obtained by substituting (111) into (110) and was found to have the form

ρdowrAB ðtÞ ¼ dAB − 1

2c
ðdAB · vABÞ þ

dAB
2c2

ððvA · vBÞ þ ðnAB · vAÞðnAB · vBÞÞ þ
2GME

c2
ln

�
rA þ rB þ dAB
rA þ rB − dAB

�

−
GME

3c2

��
nBϵ
r2B

− nAϵ
r2A

�
kλ þ

�
nBλ
r2B

− nAλ
r2A

�
kϵ − dAB

2

�
ðγϵλ þ 2kϵkλÞ

�
1

r3B
þ 1

r3A

�
þ 3nBϵnBλ

r3B
þ 3nAϵnAλ

r3A

��
JϵλE :

(114)

This expression is accurate to 0.5 nm, which is adequate for
DOWRmeasurements. The magnitudes of the terms in (114)
were estimated as follows: the ∼1=c term is 136.3 μm (in
part, because of the small eccentricity), the ∼1=c2 Sagnac
term is 175.6 μm, the Shapiro term is 376.5 μm, and the
entire quadrupole term contributes up to 0.3 μm. Note the
difference in this equation and its LRI counterpart, given by
(83), where one of the legs of the round-trip travel was
delayed by half of the round-trip light-travel time.

Similarly, at the appropriate level of accuracy, the
DOWR-enabled range-rate model for GRACE-FO will
have the form

c
fA0 þ fB0 þ foffB

�
dΔφdowr

AB ðτÞ
2πdτ

þ dΔφdowr
BA ðτÞ

2πdτ

�

¼ _ρdowrAB ðtÞ; (115)
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where, with an accuracy sufficient for GRACE-FO, the
model for the range rate, _ρdowrAB , is given as below:

_ρdowrAB ðtÞ ¼ ðnAB · vABÞ − 1

2c
ðv2AB þ ðaAB · dABÞÞ

þOð0.8 nm=s · sinωGtÞ: (116)

The second term on the right-hand side would contribute
only one-half of (99) or 0.153 μm=s · cosωGt.
Finally, we can develop the equation determining the

fluctuations in the phase rate. Similarly to (101), we
differentiate (115) with respect to proper time, to obtain

c
fA0 þ fB0 þ foffB

×

�
d2Δφdowr

AB ðτÞ
2πdτ2

�
dτB
dt

�
þ d2Δφdowr

BA ðτÞ
2πdτ2

�
dτA
dt

��

¼ ρ̈dowrAB ðtÞ; (117)

where the range acceleration ρ̈dowrAB ðtÞ may be computed
directly from (116) [which by itself came from the first two
terms in (114)] by differentiating it with respect to time t:

ρ̈dowrAB ðtÞ ¼ 1

dAB
ðv2AB − ðnAB · vABÞ2 þ ðdAB · aABÞÞ

−
1

2c
ð2ðvAB · aABÞ þ ð _aAB · dABÞ

þ ðaAB · vABÞÞ þOð0.7 pm=s2 · sinωGtÞ:
(118)

Although Eqs. (114) and (116) are consistent with the
results that we obtained for the GRAIL mission [6], they
are different from the LRI-enabled measurements of range
and range rate presented here in the form of Eqs. (90) and
(99). One clear difference between Eqs. (90) and (114) and
between Eqs. (99) and (116) is the factor 1

2
present in the

1=c terms for the DOWR-enabled measurements. This
difference is due to the fact that the LRI relies on a two-way
experimental configuration. The signal traverses the inter-
spacecraft distance twice before it is received by the
interferometer and compared against the onboard laser
oscillator. In contrast, the dual one-way DOWR-enabled
range and range-rate observables are formed using signals
that only traversed the interspacecraft distance once.
As GRACE-FO navigation and data analysis will

also rely on a KBR system (similar to [6,23]) for initial
estimation of the spacecraft’s orbital parameters and,
especially, for the interspacecraft separation vector, one
needs to make sure that the appropriate range and range-
rate models (LRI vs DOWR) are used for different types of
observables.
Concluding, we emphasize that, although there is a

possibility to digitally post-process the downlinked phase

differences recorded at each spacecraft in order to simulate
the conditions that may allow processing LRI data in a
manner similar to DOWR processing, technical details
of this procedure (i.e., details relevant to the onboard
instrumentation and data flow algorithms) and their imple-
mentation on GRACE-FO are still in development.
Nevertheless, we hope that the model we presented here
will be useful to develop these capabilities.

V. CONCLUSIONS AND RECOMMENDATIONS

We studied, in the post-Newtonian approximation of the
general theory of relativity, the propagation of a plane
electromagnetic wave traveling through the gravitational
field in the vicinity of an extended body. An arbitrarily
shaped and rotating distribution of matter is represented by
an arbitrary energy-momentum tensor. We derived a
compact closed form general relativistic solution describing
the phase of a plane wave that accounts for contributions of
all the mass and current multipoles of the body itself
[Eqs. (18) and (22)], as well as the contribution due to the
tidal gravity field [given by Eq. (24)] produced by the
external bodies forming a system of N astronomical bodies.
As such, the solution that we obtained significantly extends
previous similar derivations found in the literature.
We evaluated a solution for relativistic phase (26),

which, in addition to the usual Shapiro term, accounts
for the quadrupole term of the Earth’s mass distribution, the
Earth’s spin, and the tidal gravity introduced by the
potentials of external bodies in the GCRS. At the level
of accuracy anticipated from GRACE-FO, the recom-
mended solution for the relativistic phase is given by
(35). This formulation allows one to achieve a self-
consistent analytical result that can be evaluated for the
GRACE-FO LRI experiment. All the necessary informa-
tion regarding the geometry of the experiment and the
background gravitational field is captured in the total signal
path R, a quantity we introduced in Sec. II D.
Based on the established solution, we presented a new

formulation for the relativistic phase transformation that
describes a coherent signal transmission between the two
spacecraft of the GRACE-FO constellation. We developed
LRI observables for GRACE-FO including both the phase
and phase rate of the signal received at the master space-
craft, including relativistic treatment of the transponder
offset frequency. Equation (79), together with the relativ-
istic range model (90), provides a high-precision formu-
lation for the LRI phase observable onboard GRACE-FO.
Similarly, Eq. (100) provides a high-precision model for the
phase rate observable onboard GRACE-FO. These results
will allow GRACE-FO to reach the desired resolution of
1 nm in range and 1 nm/s in range rate.
Our formulation justifies the basic assumptions behind

the design of the GRACE-FO mission. In particular, our
analysis demonstrates the importance of achieving nearly
circular and nearly identical orbits (with eccentricity of
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e ∼ 0.001) for the twin GRACE-FO spacecraft. If these
requirements are satisfied, the observables can be repre-
sented by a set of very simple models, allowing the project
to streamline data conditioning and ultimately science data
analysis. Conversely, should the orbital parameters be less
ideal than assumed (as presented in Table I; see also
Appendix D), the range and range-rate models would have
to be updated to include terms that we were able to omit, as
their magnitudes were sufficiently small for the planned,
ideal orbits. Of particular concern are several omitted terms
in the range-rate model (99), namely, the 1=c2 Sagnac term
given by (95), the Shapiro term discussed in (96), and the
quadrupole term evaluated in (97). If needed, the omitted
terms can be easily identified and reinstated by retracing the
computational steps presented in this paper.
The analysis of relativistic effects presented here dealt

mainly with the magnitudes of the largest terms of these
contributions. These are either constant or vary at the
orbital frequency (i.e., 1/rev). Our analysis can be used to
validate the choices made in mission design, including
decisions concerning terms that are assumed to be remov-
able in the form of an empirically introduced bias.
Moreover, our results may be easily extended to analyze
the contributions of other periodic terms that come at twice
the orbital frequency, i.e., 2/rev, and higher. The analytical
models that we present for the range and range rate are,
therefore, also applicable in situations that take the mission
outside the empirical domain, for instance, when optimal
orbital parameters are not achieved and the aforementioned
empirical bias can no longer be reliably used.
In addition to developing a model for relativistic con-

tributions to the two-way GRACE-FO LRI observable, we
also considered the possibility that the laser-ranging instru-
ment will be used in a DOWR configuration. In this
operating mode, the transmitters on the two spacecraft
are no longer operating in coherent mode, and the quality of
the observable relies on the frequency stability of the two
independent laser oscillators onboard the twin spacecraft.
As part of our analysis, we identified an intriguing

possibility that may lead to an improvement in the accuracy
of the Eddington parameter γ. As we discussed in Sec. II C,
if the GRACE-FO laser interferometer instrument achieves
a 1 nm range resolution, this experiment could improve the
accuracy of the estimate of Eddington’s relativistic param-
eter γ to 5.3 × 10−6, which exceeds by a factor of 5 or more
the accuracy of the current best estimate for γ, provided by
the Cassini mission to Saturn [17]. This possibility is truly
remarkable; it is indicative of the high level of accuracy
achieved by modern geodesy when an engineering team
needs to account for a number of general relativistic ef-
fects in order to reach the stated science objectives of an
Earth-orbiting mission.
The analysis presented in this paper was conducted using

an idealized set of conditions without considering noise. It
can nonetheless be used to study the propagation of various

forms of noise through the GRACE-FO architecture and
investigate the impact of various noise sources on future
science investigations with GRACE-FO. The formulation
for the GRACE-FO LRI observables presented here allows
for the direct introduction of noise terms (such as the
frequency stability of the onboard laser oscillator or the
accuracy of orbit determination), as part of an investigation
of the noise contribution to the ultimate accuracy of the
experiment.
One of the principal objectives of GRACE-FO is to

monitor seasonal changes in the Earth’s gravitational field
using long-duration data spans. In this analysis, the differ-
ence between the orbital frequency and the frequency of
thermal noise due to solar heating can be significant, as it
can introduce an unmodeled annual term that can mask or
enhance estimates of annual variability. Therefore, it is
important to model the corresponding effects correctly and
disentangle relativistic, thermal, and instrumental effects.
Concluding, we emphasize that the eikonal-based

approach and the corresponding solution for the phase
of a plane electromagnetic wave developed in Sec. II
provide an efficient way to account for general relativistic
effects on the propagation of light in the Solar System, as
needed, for instance, for the high-precision astrometric
campaign recently initiated by ESA’s Gaia mission [14,15]
(see details at http://sci.esa.int/gaia/; while the results are
equivalent, our method may offer a simpler way to compute
the light deflection by just taking the derivative of the
relativistic delay, which is calculated more easily with
respect to the electromagnetic wave vector). Also, the
new approach we presented in Sec. III makes it possible
to develop a highly accurate description of signal (re)
transmission in the post-Newtonian approximation of a
gravitational theory. This approach is based on the gen-
erally covariant notion of the phase of a plane wave and
allows one to formulate observables in the proper reference
frames of the transmitting and receiving spacecraft. The
results are applicable to other past and planned missions
with similar observables, notably to GRACE and GRAIL
missions [6,23] and new space gravimetry missions like the
Satellite-to-Satellite Interferometry mission [24] that is
currently being studied. Furthermore, our approach can
be readily applied in other contexts, including experiments
conducted away from the Earth, that involve high-precision
measurements between multiple spacecraft relying on
precision phase measurements done with microwave
signals [25] or laser ranging interferometry (or both):
for instance, the formulation of the TDIR observables
for the LISA mission [21,22]. Such possibilities will be
investigated, and the results will be reported elsewhere.

ACKNOWLEDGMENTS

We thank William F. Folkner, Gerhard L. Kruizinga,
Robert E. Spero, Michael M. Watkins, and Dah-Ning Yuan
of JPL for their interest and many useful comments

GENERAL RELATIVISTIC LASER INTERFEROMETRIC … PHYSICAL REVIEW D 89, 105029 (2014)

105029-23

http://sci.esa.int/gaia/
http://sci.esa.int/gaia/
http://sci.esa.int/gaia/


provided during the work and preparation of this manu-
script. This work was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

APPENDIX A: THE POST-NEWTONIAN
APPROXIMATION OF GENERAL RELATIVITY

General relativity represents gravitation as a tensor field
with universal coupling to the particles and fields of the
Standard Model. It describes gravity as a universal defor-
mation of the flat spacetime Minkowski metric γmn:

gmnðxkÞ ¼ γmn þ hmnðxkÞ: (A1)

The theory can be defined by postulating the action
describing the gravitational field and its coupling to matter
fields. The propagation and self-interaction of the gravita-
tional field are described by the action

SG½gmn� ¼
c4

16πG

Z
d4x

ffiffiffiffiffiffi−gp
R; (A2)

where G is Newton’s gravitational constant, gmn is
the inverse of gmn, g ¼ det gmn, and R is the trace of the
Ricci tensor.
The universal, minimal coupling of gmn to all matter

fields of the Standard Model of particle physics is
accomplished by using it to replace the Minkowski
metric everywhere [18]. By varying the total action
Stot½ψ ; Am;H; gmn� ¼ SG½gmn� þ SSM½ψ ; Am;H; gmn�, with
respect to gmn, one obtains Einstein’s gravitational field
equations:

Rmn ¼ 8πG
c4

�
Tmn − 1

2
gmnT

�
: (A3)

Equation (A3) connects the geometry of a four-dimen-
sional Riemannian manifold (spacetime), represented here
by the Ricci tensor Rmn, to the matter content of that
spacetime, represented by a symmetric and conserved
energy-momentum tensor, Tmn ¼ ð2= ffiffiffiffiffiffi−gp ÞδLSM=δgmn,
which obeys the covariant conservation equation

∇kð
ffiffiffiffiffiffi−gp

TmkÞ ¼ 0: (A4)

The theory is invariant under arbitrary coordinate trans-
formations: x0m ¼ fmðxnÞ. This freedom to choose coor-
dinates allows for the introduction of gauge conditions that
may offer some technical convenience in solving the field
equations (A3). For instance, in analogy with the Lorenz
gauge of electromagnetism, the harmonic gauge [8] is often
used. It corresponds to imposing the condition

∂nð
ffiffiffiffiffiffi−gp

gmnÞ ¼ 0: (A5)

To solve the equations of the general theory of relativity,
one assumes that the spacetime is asymptotically flat and
there is no gravitational radiation coming from outside the
body. In terms of perturbations of the Minkowski metric
hmn introduced in Eq. (A1), this amounts to introducing the
following two boundary conditions [8]:

lim
r → ∞

tþ r=c ¼ const

hmn ¼ 0 and

lim
r → ∞

tþ r=c ¼ const

½ðrhmnÞ;r þ ðrhmnÞ;0� ¼ 0; (A6)

where r represents the spatial distance, and t the time
relative to the origin of a coordinate system.
In the weak gravitational field limit, these solutions can

be expressed as perturbations of the flat spacetime
Minkowski metric in the post-Newtonian approximation.
The solution to Einstein’s field equations in the post-
Newtonian approximation that is sufficient to describe
the gravitational field in the Solar System has the form
(see also [4] and references therein)

g00 ¼ 1 − 2w
c2

þ 2w2

c4
þOðc−6Þ;

g0α ¼ −γαλ 4w
λ

c3
þOðc−5Þ;

gαβ ¼ γαβ þ γαβ
2w
c2

þOðc−4Þ; (A7)

where the scalar and vector gravitational potentials w and
wα are determined from the following harmonic equations:

□w ¼ 4πGσ þOðc−4Þ; Δwα ¼ 4πGσα þOðc−2Þ;
(A8)

where we have introduced the scalar σ and vector σα

densities connected to the energy-momentum tensor:

σ ¼ c−2ðT00 − γμλTμλÞ þOðc−4Þ;
σα ¼ c−1T0α þOðc−3Þ: (A9)

The energy-momentum conservation ∇kð ffiffiffiffiffiffi−gp
TmkÞ ¼ 0,

together with the harmonic gauge conditions (A5), leads
to the existence of the Newtonian continuity equations, first
for the matter densities c∂0σ þ ∂ϵσ

ϵ ¼ Oðc−2Þ and then for
the gravitational potentials c∂0wþ ∂ϵwϵ ¼ Oðc−2Þ; see
details in [4].
A general solution for w and wα of Eq. (A8) satisfy-

ing the asymptotic flatness condition (A6) can be written
in terms of advanced and retarded potentials. The
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recommended solution [7], half advanced and half
retarded, reads

wðt;xÞ ¼ w0ðt;xÞ þ G
Z

σðt;x0Þd3x0
jx − x0j

þ 1

2c2
G

∂2

∂t2
Z

d3x0σðt;x0Þjx − x0j þOðc−3Þ;
(A10)

wαðt;xÞ ¼ wα
0ðt;xÞ þ G

Z
σαðt;x0Þd3x0
jx − x0j þOðc−2Þ; (A11)

where w0 and wα
0 are the solutions of the homogeneous

equations: □w0 ¼ Oðc−3Þ and Δwα
0 ¼ Oðc−2Þ.

Equations (A7) and (A10)–(A11) represent a well-
known solution to the gravitational field equations of the
general theory of relativity in the post-Newtonian approxi-
mation [4,7,16,18,26]. We use these expressions to study
light propagation in the vicinity of an extended gravitat-
ing body.

APPENDIX B: INSTANTANEOUS DISTANCES
BETWEEN THE SPACECRAFT

In Sec. III A we obtained the light-cone equations that
depend on two instants of time—the time of a signal’s
emission and the time of its reception. Clearly, one may use
either one of the two instants, as the second one is
determined by the light cone. In particular, we observe that
Eq. (40) can be used to express either t1 as a function of t2 or
vice versa. Similar to KBR observables that are time stamped

using the time of reception (that is, t2), a one-way LRI
observable would be formed at the time of signal reception
(in this case, on spacecraft B). To reflect this fact, the
Euclidean range, RABðxAðt1Þ;xBðt2ÞÞ ¼ jxBðt2Þ − xAðt1Þj,
gets modified by Sagnac correction terms (as observed in
Ref. [27] and also developed in Ref. [6]) consistently to the
order 1=c3:

RABðxAðt1ðt2ÞÞ;xBðt2ÞÞ

¼ dAB þ 1

c
ðdAB · vAÞ þ

dAB
2c2

ðv2A þ ðnAB · vAÞ2

− ðdAB · aAÞÞ þOðc−3Þ; (B1)

where dAB ¼ xBðt2Þ − xAðt2Þ is the “instantaneous”
Euclidean coordinate distance between A and B at the
instant of reception at B (we have dAB ¼ jdABj and
nAB ¼ dAB=dAB), where vA ¼ vAðt2Þ and aA ¼ aAðt2Þ
denote the coordinate velocity and acceleration of spacecraft
A correspondingly, both taken at t2. With the help of
Eq. (40), we determine the following expression for the
instantaneous delay between the two spacecraft measured at
time t2:

t2 − t1 ¼ c−1RABðxAðt1ðt2ÞÞ;xBðt2ÞÞ≡ c−1RABðt2Þ;
(B2)

with the instantaneous light-travel distance RABðt2Þ
expressed as his amounts to introducing the following
two

RABðt2Þ ¼ dAB þ 1

c
ðdAB · vAÞ þ

dAB
2c2

ðv2A þ ðnAB · vAÞ2 − ðdAB · aAÞÞ

þ 2GME

c2

�
ln

�
rA þ rB þ dAB
rA þ rB − dAB

�
1þ 2

c
ðdAB · vAÞ
ðrA þ rBÞ

��

−
1

6

�ðnBϵ þ kϵÞðnBλ þ kλÞ
ðrB þ k · rBÞ2

þ 1

rB

γϵλ þ nBϵnBλ
ðrB þ k · rBÞ

− ðnAϵ þ kϵÞðnAλ þ kλÞ
ðrA þ k · rAÞ2

− 1

rA

γϵλ þ nAϵnAλ
ðrA þ k · rAÞ

�
JϵλE

�
; (B3)

where all quantities here are taken at the instant of reception
tB. The second term in Eq. (B3) represents the Sagnac term
of order 1=c. Taking dAB ¼ 270 km (which yields
dAB=c ∼ 900.6 μs) and using Eq. (D19), it was estimated
to be 6.89 m (or ∼22.97 ns). The third Sagnac term,
of order 1=c2, is 175.5 μm (or ∼0.59 ps), comparable
to the Earth’s Shapiro delay term, which is 351.3 μm
(or ∼1.17 ps). The Sagnac-type contribution term in the
Shapiro delay ∼ ln½1þ 2ðdAB · vAÞ=cðrA þ rBÞ� contrib-
utes 8.96 nm (or ∼0.0298 fs) and must be kept in the
model. Furthermore, the quadrupole term was evaluated,
with the help of Eq. (33), to be 167 nm (or ∼0.557 fs).

Similarly, for the return leg in the case of a two-way
transmission, we can express RBA in (43) as a function of
the coordinate time of reception t3. Thus, for a signal
emitted at spacecraft B at time t2 and received at spacecraft
A at t3, we can write (44) as given below:

t3 − t2 ¼ c−1RBAðxBðt2ðt3ÞÞ;xAðt3ÞÞ≡ c−1RBAðt3Þ;
(B4)

where the instantaneous one-way light-travel distance
RBAðt3Þ is given as
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RBAðt3Þ ¼ dAB − 1

c
ðdAB · vBÞ þ

dAB
2c2

ðv2B þ ðnAB · vBÞ2 þ ðdAB · aBÞÞ þ
2GME

c2

�
ln

�
rA þ rB þ dAB
rA þ rB − dAB

�
1 − 2

c
ðdAB · vBÞ
ðrA þ rBÞ

��

−
1

6

�ðnAϵ − kϵÞðnAλ − kλÞ
ðrA − k · rAÞ2

þ 1

rA

γϵλ þ nAϵnAλ
ðrA − k · rAÞ

− ðnBϵ − kϵÞðnBλ − kλÞ
ðrB − k · rBÞ2

− 1

rB

γϵλ þ nBϵnBλ
ðrB − k · rBÞ

�
JϵλE

�
: (B5)

In addition, we may need an expression for the instantaneous light-travel distance RABðt2Þ expressed as a function of t3
as RABðt2Þ≡RABðt2ðt3ÞÞ. Using (B4) and (B5), from (B3) we obtain

RABðt2Þ≡RABðt3 − c−1RBAðt3ÞÞ ¼ RABðt3Þ − 1

c
ðdAB · vABÞ þ

dAB
2c2

ðv2AB þ ðdAB · aABÞ
− 2ðvAB · vAÞ − 2ðdAB · aAÞ þ ðnAB · vABÞ2 þ 2ðnAB · vABÞðnAB · vAÞÞ þOðc−3Þ; (B6)

where all quantities here are taken at the instant of
the reception time t3. Note that this expression would
formally have a kinematic Sagnac-type contribution in
the Shapiro delay that comes from transforming t2 into t3
via (B4),

2GME

c2
ln

�
1 − 2

c
ðdAB · vABÞ
ðrA þ rBÞ

�

≈
2GME

c3

ffiffiffiffiffiffiffiffiffiffiffi
GME

a

r
d2AB
a2

e ¼ 3.5 × 10−13 m · sinωGt;

(B7)

where we used (D15). Clearly, this term is too small for our
purposes, and thus, it was omitted.

APPENDIX C: CONTRIBUTION OF
THE EARTH’S RELATIVISTIC

QUADRUPOLE MOMENT

GRACE-FO will rely on three standard coordinate
systems: the GCRS, which is centered at the Earth’s
center of mass and is used to track orbits in the vicinity
of the Earth (discussed in Sec. II A); the Topocentric
Coordinate Reference System (TCRS), which is used to
provide the positions of objects on the surface of the
Earth, such as ground stations of the Deep Space
Network (DSN); and the Satellite Coordinate Reference
System (SCRS), which is needed for proper-to-coordinate
time transformations. The definition and properties of
TCRS, together with useful details on relativistic time-
keeping in the Solar System, are given in [19]. The
SCRS was discussed in [19] in the context of the GRAIL
mission. Here we investigate the need for an update for
the standard general relativistic models for spacetime
coordinates and equations of motion [28].
References [4,19] show that transformations between

the harmonic coordinates of the SCRS, introduced on
spacecraft A and denoted here by fymAg ¼ fcτAyg,
and coordinates of GCRS fxmg ¼ fct;xg, to sufficient
accuracy, are given by

τA ¼ t − c−2
�Z

t

t0

�
1

2
þUE þ utidalE

�
dt0 þ ðvA · rAÞg

þOðc−4Þ; (C1)

yA ¼ rA þ c−2
�
1

2
vAðvA · rAÞ þ rAUE þ rAðrA · aAÞ

− 1

2
aAr2A

�
þOðc−4Þ; (C2)

where rA ¼ x − xA0. The quantity UE in (C1)–(C2) is the
Newtonian gravitational potential of the Earth (3), evalu-
ated at the location of the spacecraft. vA and aA are the
velocity and Newtonian acceleration of spacecraft A in
GCRS. Contribution of the tidal potential, utidalE , is at most
4 × 10−20 and is negligible. The c−4 terms in Eq. (C1) are
of order ∼v4=c4 ≃ 10−19 and also negligible for GRACE-
FO. The first two of the 1=c2 terms in (C2) produce a
correction ∼9.8 × 10−10 · rA, which, at jraj ¼ dAB,
amounts to 265 μm. The acceleration-dependent terms at
dAB amount to a correction on the order of 6 μm. Thus, the
terms in (C2) are very small and are rarely used in a mission
analysis; we present them here only for completeness. For a
complete post-Newtonian form of these transformations,
including the terms c−4, and their explicit derivation,
consult Ref. [4].
Equation (C1) yields the differential equation (58) that

relates the rate of the spacecraft proper τA time, as
measured by an onboard clock in Earth’s orbit, to the time
in GCRS, t. Substituting in Eq. (58) potential UE from (3),
we have

dτA
dt

¼ 1 − 1

c2

�
v2A
2
þ GME

rA

�
1 −X∞

l¼2

�
RE

rA

�
l
JlPl0ðcos θÞ

−X∞
l¼2

Xþl

k¼1

�
RE

r

�
l
Plkðcos θÞðCE

lk cos kϕ

þ SElk sin kϕÞÞ
�
; (C3)
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where Jl are the zonal harmonics coefficients of the
Earth’s mass distribution. Their contribution to (C3) is
expected to be the largest among all of the terms in the
expression above. Taking the values for these coeffi-
cients to be J2 ¼ 1.08264 × 10−3, J3 ¼ −2.5326 × 10−6,
J4 ¼ −1.61998 × 10−6, J5 ¼ 2.1025 × 10−7, and J6 ¼
5.406878 × 10−7, we can estimate their contributions
to (C3). The anticipated range precision of Δd ¼ 1 nm
implies a timing precision of the order of Δd=dAB ¼
3.7 × 10−15. We will use this number to evaluate the
terms in (C3). The largest contribution to dτA=dt, of
course, comes from the velocity and mass monopole
terms, which are estimated to produce an effect of
the order of c−2ð1

2
v2A þ GME=rAÞ ∼ 9.80 × 10−10. The

quadrupole term produces a contribution of the order of
c−2GME=rAðRE=rAÞ2J2 ∼ 6.14 × 10−13, which is large
enough to be included in the model. Contributions of other
zonal harmonics range from ∼1.33 × 10−15 (from J3)
to ∼2.33 × 10−16 (from J6). Although their individual

contributions are quite small to warrant their place in the
model, their cumulative effect may be noticeable; this
possibility will be further investigated. Therefore, for
GRACE-FO in (C3) we must keep only the quadrupole
term:

dτA
dt

¼ 1 − 1

c2

�
v2A
2
þ GME

rA

�
1þ nAϵnAλ

2r3A
JϵλE

��

þOð1.33 × 10−15Þ; (C4)

where the three-dimensional tensor of the quadrupole
moment, JϵλE , was introduced in (20).
To determine the orbits of the spacecraft, one must also

describe the propagation of electromagnetic signals
between any two points in space. The light-time equation
corresponding to the metric tensors (1)–(5) and written to
an accuracy sufficient for GRACE-FO has the form given
by (41) with R from (40):

t2 − t1 ¼
1

c
jxðt2Þ − xðt1Þj þ ð1þ γÞ

X
b

GMb

c3
ln

�
rb1 þ rb2 þ rb12
rb1 þ rb2 − rb12

�

−
GME

3c2

�ðn2ϵ þ kϵÞðn2λ þ kλÞ
ðr2 þ k · x2Þ2

þ 1

r2

γϵλ þ n2ϵn2λ
ðr2 þ k · x2Þ

− ðn1ϵ þ kϵÞðn1λ þ kλÞ
ðr1 þ k · x1Þ2

− 1

r1

γϵλ þ n1ϵn1λ
ðr1 þ k · x1Þ

�
JϵλE ; (C5)

where t1 refers to the time instant of signal transmission and
t2 refers to the reception time, while xðt1Þ and xðt2Þ are the
geocentric positions of the transmitter and receiver. Also,
rb1;2 are the distances of the transmitter and receiver from
the body b and rb12 is their spatial separation. The
logarithmic contribution in (C5) is the Shapiro gravitational
time delay that, in the case of GRACE-FO, is mostly due to
the Earth, the Moon, and the Sun. The last term is due to the
Earth’s quadrupole whose presence extends the standard
formulation given, for instance, in [29,30].
Finally, the relativistic geocentric equations of motion of a

satellite that are recommended by the International Earth
Rotation andReferenceSystemsService (IERS) [28]must be
updated to include the contribution from the relativistic
quadrupole moment of the Earth at the 1=c2 order. It is
estimated that the corresponding JϵλE term in the equations of
motion produces a contribution of the order of ∼21 pm=s2,
whichmay still be noticeable in the orbits of theGRACE-FO
spacecraft. However, the differential nature of the GRACE-
FO architecture will further reduce the GRACE-FO sensi-
tivity to such small accelerations by a factor ofdAB=a ≈ 0.04,
thereby reducing the differential acceleration to less than
0.8 pm=s2. Nevertheless, as there is still a controversy on the
explicit form of the contribution of the Earth’s oblateness to
the 1=c2 terms in the relativistic equations of motion of an
Earth-orbiting satellite, some additional work to unambig-
uously identify this form is required.

APPENDIX D: USEFUL RELATIONS FOR
NEARLY IDENTICAL KEPLERIAN ORBITS

In this Appendix we introduce several useful relations
that help us evaluate the magnitudes of various expres-
sions that involve combinations of orbital quantities of
the GRACE-FO spacecraft. We assume that both space-
craft orbit the Earth in the same planar orbit with an
identical semimajor axis a and eccentricity e but different
eccentric anomalies EA and EB, correspondingly. Clearly,
analysis of real mission will involve navigational solu-
tions based on the use of relativistic equations of motion
for both spacecraft that are perturbed by the presence of
nongravitational forces acting on them, which will result
in slightly different orbits. Nevertheless, expressions
below are useful for estimation purposes and, as such,
they are used throughout the paper. Under these assump-
tions, expressions for the position vector rA, velocity
vA ¼ _rA, and acceleration aA ¼ ̈rA of spacecraft A, for
example, are given as

rA ¼ aðcos EA − e;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin EAÞ;

rA ¼ að1 − e cos EAÞ;

nA ¼
�

cos EA − e
1 − e cos EA

;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin EA

1 − e cos EA

�
; (D1)
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vA ¼
ffiffiffiffiffiffiffiffiffiffiffi
GMa

p

rA
ð− sin EA;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos EAÞ;

aA ¼ −GM
r2A

�
cos EA − e
1 − e cos EA

;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin EA

1 − e cos EA

�
; (D2)

where the eccentric anomaly EA is connected with the
mean anomaly MA, as usual:

EAðtÞ− e sinEAðtÞ ¼MAðtÞ ¼MA0 þ nðt− t0Þ; with

n¼
ffiffiffiffiffiffiffiffi
GM
a3

r
and a _EA ¼

ffiffiffiffiffiffiffiffiffiffiffi
GMa

p

rA
:

(D3)

Similar expressions for spacecraft B may be obtained
simply by changing A to B in Eqs. (D1)–(D3).
Using Eqs. (D1)–(D3) we develop a set of useful

relations that will help determine the magnitudes of various
effects in the range and range-rate observables of GRACE-
FO, namely,

ðrA · vAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
GMa

p
e sin EA;

ðnA · vAÞ ¼
ffiffiffiffiffiffiffiffi
GM
a

r
e sin EA

1 − e cos EA
; (D4)

ðrA · aAÞ ¼ −
GM
rA

; ðnA · aAÞ ¼ −GM
r2A

;

ðvA · aAÞ ¼ −GM
r2A

ffiffiffiffiffiffiffiffiffiffiffi
GMa

p

rA
e sin EA: (D5)

We also have the following two relations:

d
dt

�
v2A
2

�
¼ d

dt

�
GM
rA

�
¼ −GM

a2

ffiffiffiffiffiffiffiffi
GM
a

r
e sin EA

ð1 − e cos EAÞ3
:

(D6)

Further, using expressions (D1)–(D3) we determine the
vector between the two spacecraft, rAB ¼ rB − rA, as

rAB ¼ 2a sin αAB
�
− sin βAB;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos βAB

	
; (D7)

where we introduced two angles, αAB and βAB, defined as

αAB ¼ 1

2
ðEB − EAÞ; βAB ¼ 1

2
ðEB þ EAÞ or

EA ¼ βAB − αAB; EB ¼ αAB þ βAB: (D8)

Using Eqs. (D7)–(D8), we develop the following
expressions:

rAB¼2asinαAB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e2cos2βAB

q
and

nAB¼
rAB
rAB

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e2cos2βAB

p �
−sinβAB;

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
cosβAB

	
:

(D9)

The equation for rAB in Eq. (D9) allows us to establish the
exact expression for sinαAB:

sin αAB ¼ rAB
2a

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2 cos2 βAB

p : (D10)

Given the configuration of GRACE-FO, the angle αAB is
small and is related to the orbital parameters of GRACE-FO
as

αAB ¼ dAB
2a

þOðd3AB; e2Þ ≈ 0.0198: (D11)

Such a small value would allow us to make simplifying
approximations for various observable quantities on
GRACE-FO. To estimate the numerical value for angle
βAB, from Eq. (D8) we will use the following expression:

βAB ¼ ωGtþOðdAB; eÞ; (D12)

where ωG ¼ 1
2
ðωA þ ωBÞ þOðeÞ≡ ðGM=a3Þ12 þOðeÞ is

the mean orbital frequency of the GRACE-FO
constellation.
Similarly to rAB, we determine the velocity vector

between the two spacecraft, vAB ¼ vB − vA, as

vAB ¼ −
ffiffiffiffiffiffiffiffi
GM
a

r
2 sin αAB

ð1 − e cos EAÞð1 − e cos EBÞ
ðcos βAB − e cos αAB; sin βABÞ ≈ 303 m=s: (D13)

Expressions (D9)–(D13) allow us to compute the following dot product:

ðnAB · vABÞ ¼ −
ffiffiffiffiffiffiffiffi
GM
a

r
2 sin αAB

�
e cos αAB sin βAB þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p − 1Þ sin βAB cos βAB
ð1 − e cos EAÞð1 − e cos EBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2cos2βAB

p
�
≈ 30.3 cm=s; (D14)

and also
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ðrAB · vABÞ ¼ −
ffiffiffiffiffiffiffiffi
GM
a

r
4a sin2 αAB

�
e cos αAB sin βAB þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p − 1Þ sin βAB cos βAB
ð1 − e cos EAÞð1 − e cos EBÞ

�
: (D15)

Similarly, relying on the expressions derived above, we establish the following useful exact relations:

ðvA · vABÞ ¼ − 2GM
a

sin αAB

�
sin αAB þ e cos αAB sin EA þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p − 1Þ sin βAB cos EA

ð1 − e cos EAÞ2ð1 − e cos EBÞ
�
; (D16)

ðaA · vABÞ ¼
2GM
a2

ffiffiffiffiffiffiffiffi
GM
a

r
sin αAB

ð1 − e cos EAÞ4ð1 − e cos EBÞ
ðcos αABð1þ e2Þ

− eðcos βAB sin EA þ cos αAB cos EAÞ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
− 1Þ sin βAB sin EAÞ; (D17)

ðrA · nABÞ ¼ −a
sin αABð1 − e2 cos2 βABÞ − e sin βABð1 − e cos αAB cos βABÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2 cos2 βAB
p ; (D18)

ðvA · nABÞ ¼
ffiffiffiffiffiffiffiffi
GM
a

r
cos αAB − e2 cos βAB cos EA

ð1 − e cos EAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2 cos2 βAB

p ; (D19)

ðaA · nABÞ ¼
GM
a2

�
sin αABð1 − e2 cos2 βABÞ − e sin βABð1 − e cos αAB cos βABÞ

ð1 − e cos EAÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2 cos2 βAB

p
�
; (D20)

ðaA · rABÞ ¼
2GM
a

sin αAB

�
sin αABð1 − e2 cos2 βABÞ − e sin βABð1 − e cos αAB cos βABÞ

ð1 − e cos EAÞ3
�
: (D21)

We also derive the expression for a relative acceleration between the two spacecraft, aAB ¼ aB − aA:

aAB ¼ −GM
a2

�
cos EB − e

ð1 − e cos EBÞ3
− cos EA − e
ð1 − e cos EAÞ3

;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin EB

ð1 − e cos EBÞ3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin EA

ð1 − e cos EAÞ3
�

≈
GM
a2

2 sin αABðsin βAB;− cos βABÞ þOðeÞ ≈ GM
a2

dAB
a

ðsinωGt;− cosωGtÞ þOðeÞ: (D22)

Note that with the orbital eccentricity of e ¼ 0.001, both GRACE-FO spacecraft will have nearly circular orbits around
the Earth. The form of the expressions above easily yields a series of expansion with respect to e [as in Eq. (D22)], which, in
addition to the smallness of αAB ≈ 0.0198, as demonstrated by (D11), will be useful to establish magnitudes of various
effects contributing to the range and range-rate observables of the GRACE-FO mission.
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