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We consider Dirac neutrinos interacting with background fermions in the frame of the standard
model. We demonstrate that a time-dependent effective potential is quite possible in a protoneutron star
(PNS) at certain stages of its evolution. For the first time, we formulate a nonperturbative treatment of
neutrino processes in a matter with arbitrary time-dependent effective potential. Using linearly growing
effective potential, we study the typical case of a slowly varying matter interaction potential. We
calculate differential mean numbers of νν̄ pairs created from the vacuum by this potential and find that
they crucially depend on the magnitude of masses of the lightest neutrino eigenstate. These distributions
uniformly span up to ∼10 eV energies for muon and tau neutrinos created in PNS core due to the
compression just before the hydrodynamic bounce and up to ∼0.1 eV energies for all three active
neutrino flavors created in the neutronization. Considering different stages of the PNS evolution, we
derive constraints on neutrino masses, mν ≲ ð10−8 − 10−7Þ eV, corresponding to the nonvanishing νν̄
pairs flux produced by this mechanism. We show that one can distinguish such coherent flux from
chaotic fluxes of any other origin. Part of these neutrinos, depending on the flavor and helicity, are
bounded in the PNS, while antineutrinos of any flavor escape the PNS. If the created pairs are νeν̄e,
then a part of the corresponding neutrinos also escape the PNS. The detection of ν and ν̄ with such low
energies is beyond current experimental techniques.
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I. INTRODUCTION

Particle creation from the vacuum by strong electromag-
netic, Yang Mills, and gravitational fields is a well-known
nonlinear quantum phenomenon which has many applica-
tions in modern high-energy physics. Its theoretical study
has a long story that is described in numerous works, see
for example Refs. [1–4]. Creation of charged particles from
the vacuum by strong electric-like fields needs superstrong
field magnitudes compared with Schwinger critical field
Ecr ¼ m2c3=eℏ≃ 1.3 × 1016 V · cm−1 [5]. Nevertheless,
recent progress in laser physics allows one to hope that
this effect will be experimentally observed in the near
future even in laboratory conditions, see Ref. [6] for the
review.1 The particle creation from the vacuum by external
electric and gravitational backgrounds plays also an
important role in cosmology and astrophysics [2].

It should be noted that not only electric and gravitational
macroscopic backgrounds may destabilize a quantum
field vacuum. As it was shown in Ref. [8], the vacuum
of neutrinos, possessing anomalous magnetic moments,
becomes unstable in a strong inhomogeneous magnetic
field such that the creation of neutrinos by the latter field
may take place. Estimates presented in Ref. [8] show that
this effect can be produced by strong magnetic fields of
magnetars and fields generated during a supernova explo-
sion and has to be taken into account in the astrophysics.
The instability of the neutrino vacuum exists also due to

the neutrino interaction with a background matter. It should
be noted that the neutrino-antineutrino (νν̄) pairs creation in
a dense matter of a neutron star was studied in Refs. [9–13].
In Refs. [9–11] the matter density was supposed to be time-
independent and the νν̄ pair creation was considered
empirically by using the analogy between a neutron star
potential and a potential well. In this case the production
rate of the νν̄ pair creation was evaluated semiclassically
borrowing the Schwinger’s result in QED for the proba-
bility for a vacuum to remain a vacuum [5]. The case of a
time-dependent density was studied nonperturbatively,
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using numerical calculations, for an oscillating density
of a neutron star, a supernova, and gamma ray bursts in
Ref. [12] and perturbatively in Ref. [13]. It should be noted
that the perturbation theory is valid only for nonrealistic
high frequency density variations. Realistic νν̄ pairs cre-
ation due to a slowly varying matter interaction potential
was not considered before.
In the present article we formulate a consistent non-

perturbative approach for calculating, in the framework of
QFT, the νν̄ pair production from the vacuum due to a
coherent neutrino interaction with a background matter, in
particular, a matter with arbitrary time-dependent effective
potential. We apply then this approach to calculate the
effect in some interesting cases of the medium evolution
and distribution.
The article is organized as follows. In the beginning we

describe a field theory model, which is used by us to treat
neutrinos interacting with a background matter. Then, in
the framework of the quantum version of the model, we
consider a case of a matter with time-dependent effective
potential. We show that such a background is quite possible
at certain stages of a protoneutron star (PNS) evolution.
For instance, one can discuss the matter compression in
the PNS core just before the hydrodynamic bounce
or the phase transition of a dense medium of PNS at the
neutronization stage. Then, using a nonperturbative
approach that is similar to the one developed in QED
with time-dependent external electromagnetic fields, see
Ref. [3], we formulate a calculation scheme for the neutrino
production in the case under consideration. This technique
is based on using complete sets of exact solutions of a
modified Dirac equation for neutrinos interacting with a
matter density. These solutions are used to quantize the
neutrino field and introduce the corresponding in- and
out- creation and annihilation operators. We represent the
mean numbers of νν̄ pairs created and probabilities of all
the transitions via coefficients of the corresponding
Bogolyubov transformations. In particular, we derive gen-
eral formulas that describe the νν̄ pair creation in the matter
with linearly growing in time effective potential and study
the typical case of a slowly varying matter interaction
potential.
As a main application of the developed approach, we

consider the νν̄ pair creation of Dirac neutrinos from the
vacuum due to the compression in the core of PNS before
the bounce and at the neutronization stage. We show that
the behavior of the effective number density at these stages
of the PNS evolution can be described by a slowly varying
in time homogeneous effective potential. Then we dem-
onstrate that the intensity of the neutrino creation crucially
depends on the magnitude of masses of the lightest neutrino
eigenstate. We also find that the momentum distribution of
νν̄ pairs is isotropic and uniform in the low-energy range
(up to ∼10 eV) dropping sharply for higher energies. We
find that if the mass of the lightest neutrino is small enough,

the flux of pairs of the lightest ν and ν̄, created from the
vacuum during the stages of PNS evolution, may exceed
the low-energy flux of any other origin. We derive con-
straints on neutrino masses corresponding to the non-
vanishing νν̄ pairs flux produced from the vacuum due
to the compression in the PNS before the bounce and at the
neutronization stage. Finally, we list all the obtained results.
Possible accompanying processes that might affect identi-
fication of this vacuum instability at the initial stages of the
PNS evolution are examined in Appendix A. Some
mathematical details are separated in Appendix B.

II. INTERACTION OF DIRAC NEUTRINOS
WITH BACKGROUND MATTER

Here we briefly consider the classical field theory
description of massive Dirac neutrinos interacting with
background fermionic matter.
The results of the recent experiments (see, e.g., Ref. [14])

explicitly demonstrate that neutrinos are massive particles
and there is a nonzero mixing between different mass
eigenstates. However, in some cases one can neglect the
mixing in the neutrino sector. For example, it is the case
when the corresponding transition probability of neutrino
oscillations is suppressed. In such cases we can consider
a single neutrino eigenstate having an effective mass m.
It should be noted that the question whether neutrinos
are Dirac or Majorana particles still remains open (see, e.g.,
Ref. [15]). In our constructions and further calculations we
work with Dirac neutrinos. We suppose that the gravita-
tional interaction of neutrinos is negligible and the effect of
possible matter rotation is small for quantum processes
under consideration.
The Lagrangian of a massive Dirac neutrino field

ψðXÞ interacting with a matter by an effective potential
gμðXÞ has the following form in the forward scattering
approximation,2

L ¼ ψ̄ðXÞðiγμ∂μ −mÞψðXÞ − gμðXÞψ̄ðXÞγμPLψðXÞ
(2.1)

(see Ref. [16]). Here ψðXÞ is a Dirac spinor, X ¼
ðx0 ¼ t; r ¼ ðx; y; zÞÞ, γμ ¼ ðγ0; γÞ are Dirac matrices,
γ5 ¼ iγ0γ1γ2γ3, and PL ¼ ð1 − γ5Þ=2 is the projector to
the left chiral states. In what follows, we use the Dirac
matrices in the standard representation,

γ0 ¼
�
1 0

0 −1
�
; γ¼

�
0 σ
−σ 0

�
; γ5 ¼

�
0 1

1 0

�
;

(2.2)

where σ are the Pauli matrices.

2Here we use the natural units in which ℏ ¼ c ¼ 1.
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The effective potential gμðXÞ that describes the matter
interaction with neutrinos is a linear combination of
the hydrodynamic currents jμf and polarizations λμf of
background fermions f,

gμðXÞ ¼
ffiffiffi
2

p
GF

X
f

ðqð1Þf jμf þ qð2Þf λμfÞ; (2.3)

where GF is the Fermi constant and coefficients qð1Þf and
qð2Þf depend on the types of a neutrino and background
fermions [17]. If we deal with electron neutrinos νe
propagating in the matter that is composed of electrons,
protons, and neutrons, these coefficients have the form

qð1Þf ¼ IðfÞL3 − 2Qfsin2θW þ δef; qð2Þf ¼ −IðfÞL3 − δef;

(2.4)

where IðfÞL3 is the third component of the weak isospin of the
type f fermions, Qf is their electric charge, θW is the
Weinberg angle, and δef ¼ 1 for electrons and vanishes
for protons and neutrons. To get the coefficients qð1;2Þf for
muon and tau neutrinos νμ;τ we should set δef to be zero
in Eq. (2.4).
Let us consider first an electroneutral matter which is

unpolarized and nonmoving. In this case the only zeroth
component gðXÞ≡ g0ðXÞ of gμðXÞ is nonzero. Using
Eq. (2.4), this component can be found in the following
form,

gðXÞ ¼
ffiffiffi
2

p
GFneff ; neff ¼

�
ne − 1

2
nn; for νe;

− 1
2
nn; for νμ;τ;

(2.5)

where ne and nn are the electron and neutron densities,
respectively. The difference in the effective potentials for νe
and νμ;τ in Eq. (2.5) is owing to the fact that, besides neutral
current interactions, νe is also involved in the charged
current interactions with the given matter.
The Lagrangian (2.1) implies the following equations of

motion,

ðiγμ∂μ −m − gðXÞγ0PLÞψðXÞ ¼ 0: (2.6)

In general the effective potential depends on all the space-
time coordinates X. In the following we shall restrict
ourselves to the case when gðXÞ is homogeneous and
depends only on the time t.
This model can be applied for the description of

neutrinos in realistic conditions like a dense matter
of PNS. Note that the matter of PNS with the high degree
of accuracy can be taken as spatially homogeneous [18]. At
certain stages of the supernova explosion the effective
potential can be regarded as a function of time only. For
example, just before the hydrodynamic bounce the matter
density in PNS core increases several orders of magnitude.
Another situation when the effective potential can be time

dependent happens outside the core at the neutronization
stage. Indeed, a typical PNS has nn ≈ ne ≈ np before the
neutronization. We can take that ne ¼ np ≈ 0 in some
regions outside the PNS core after the neutronization.
Therefore, using Eq. (2.5), we get that the value g varies
from the initial gðtinÞ to the final gðtoutÞ as

gðtoutÞ ¼
�
−2gðtinÞ for νe
þ2gðtinÞ for νμ;τ

. (2.7)

Thus the time-dependent effective potential is quite pos-
sible in PNS. As is demonstrated below, it is the time
dependence of g which stipulates the instability of the
neutrino vacuum and results in a coherent νν̄ pairs creation.
One can see that the inhomogeneity of PNS matter near

the star surface affects the neutrino motion in the PNS crust
and somehow influences the neutrino creation. This effect
requires a separate consideration. We shall briefly discuss it
in Appendix A.
Since g is uniform, we can choose the Dirac spinor in the

following form:

ψðXÞ ¼ exp

�
−
i
2

Z
t

t0

gðt0Þdt0
�
~ψðXÞ; (2.8)

where the spinor ~ψðXÞ satisfies the equation

i∂0 ~ψðXÞ ¼ HðtÞ ~ψðXÞ;

HðtÞ ¼ γ0ð−i∇γþmÞ − 1

2
gðtÞγ5: (2.9)

One can see that the time-dependent Hamiltonian HðtÞ
is the kinetic energy operator. Note that the Dirac
Hamiltonian that corresponds to the untransformed
Eq. (2.6) is HðtÞ þ gðtÞ=2. However, the Hamiltonian
HðtÞ plays an important role in the physical interpretation
of states vectors. It should be also noted that in our case
when ∇g ¼ 0, both the momentum operator −i∇ and the
helicity operator,

Ξ ¼ −i∇Σffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−i∇Þ2

p ; Σ ¼ γ5γ0γ ¼
�
σ 0

0 σ

�
; (2.10)

commute with HðtÞ.
Using Eq. (2.8) we can verify that the inner product of

arbitrary solutions ψ and ψ 0 is reduced to the inner product
of the corresponding solutions ~ψ and ~ψ 0,

ðψ ;ψ 0Þ ¼
Z

ψ†ðt; rÞψ 0ðt; rÞdr ¼ ð ~ψ ; ~ψ 0Þ; (2.11)

and is conserved.
In what follows, we assume that m ≠ 0. In this case γ5

does not commute with the Hamiltonian HðtÞ. Then, using
the representation
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~ψðXÞ ¼ ½i∂0 þHðtÞ�ϕðXÞ; (2.12)

we obtain the second-order differential equation for the
spinor ϕðXÞ,�

ð∂0Þ2 þ ½HðtÞ�2 þ i
2
γ5∂0gðtÞ

�
ϕðXÞ ¼ 0: (2.13)

In particular, this equation describes the influence of the
time dependence of gðtÞ on neutrino wave functions.
If m ¼ 0, the matrix γ5 commutes with HðtÞ and

Eq. (2.6) can be separated into two independent equations,

i∂0ψL;RðXÞ ¼
�
H0ðtÞ þ

1

2
ð1� 1ÞgðtÞ

�
ψL;RðXÞ;

H0ðtÞ ¼ γ0ð−i∇γþmÞ (2.14)

for the spinors ψL;RðXÞ ¼ 1
2
ð1∓γ5ÞψðXÞ. Equation (2.14)

is a first-order differential equation with respect of time.
The spinors ψRðXÞ and

exp

�
þi

Z
t

t0

gðt0Þdt0
�
ψLðXÞ (2.15)

describe free neutrinos and antineutrinos since the potential
gðtÞ is absent in equations for these quantities. Of course,
it is a consequence of our supposition that gðXÞ is uniform.
If, however, ∇gðXÞ ≠ 0, the left neutrinos are not free
anymore. Hence the scale of the possible matter inhomo-
geneity L has to be big enough, e.g., L ≫ 1=m.

III. QUANTIZATION IN TERMS OF ADEQUATE
PARTICLES AND ANTIPARTICLES

In this section we use results of the canonical quantiza-
tion of the Lagrangian in Eq. (2.1) described in Ref. [19].
We start with the constant and uniform effective potential.
Then we consider the matter with time-dependent effective
potential. Using the corresponding exact solutions of the
Dirac equation, we introduce creation and annihilation
operators which diagonalize the kinetic energy operator.
The latter operator has a positive spectrum either in the
initial or in the final time instants. We construct the initial
and final Fock spaces and physical quantities that will be
calculated in what follows.

A. Constant effective potential

We start with the case when g ¼ const ≠ 0. Here the
one-particle description is possible, such that one can speak
about one neutrino moving in a homogeneous matter with a
constant effective potential. Then the Hamiltonian HðtÞ ¼
H is time independent. The corresponding solutions of the
Dirac equation are plane waves ψðXÞ ∼ expð−ipμXμÞ.
Particles in such states have the following kinetic energies
E [20],

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

�
p − σ

g
2

�
2

s
; (3.1)

where p ¼ jpj, p is the neutrino momentum, and σ ¼ �1 is
the eigenvalue of the neutrino helicity operator given by
Eq. (2.10). The total energies pð�Þ

0 differ from the kinetic

energies by a constant value, pð�Þ
0 ¼ �E þ g=2, since the

density g is homogeneous.
We represent wave functions under consideration as

follows,

þψðt; rÞ ∼ uσðpÞ exp ½−ipðþÞ
0 tþ ipr�;

−ψðt; rÞ ∼ vσðpÞ exp ½−ipð−Þ
0 tþ ipr�; (3.2)

where the basis spinors uσðpÞ and vσðpÞ have the form

uσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ E
2E

r � wσ

σp−g=2
mþE wσ

�
;

vσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ E
2E

r �
− σp−g=2

mþE wσ

wσ

�
; (3.3)

and wσ ¼ wσðpÞ are the two-component helicity ampli-
tudes (see Ref. [21]). These spinors satisfy the following
orthonormality conditions and completeness relations:

u†σðpÞuσ0 ðpÞ¼δσσ0 ; v†σðpÞvσ0 ðpÞ¼δσσ0 ; u†σðpÞvσ0 ðpÞ¼0;X
σ

½uσðpÞ⊗u†σðpÞþvσðpÞ⊗v†σðpÞ�¼1: (3.4)

It is important to note that in the framework of the
quantum field theory, taking into account the fermion nature
of neutrinos, one can see that þψðt; rÞ describes neutrino

states with the kinetic energy pðþÞ
0 − g=2 ¼ E, while

−ψðt; rÞ describes antineutrino states with the kinetic energy
jpð−Þ

0 − g=2j ¼ E. One can also see that the corresponding
neutrinos and antineutrinos behave like free particles.

B. Time-dependent effective potential

In the case of a time-dependent effective potential gðtÞ,
the Hamiltonian HðtÞ is also time dependent, and HðtÞ and
Hðt0Þ do not commute if t ≠ t0. Using our experience in
QED with external time-dependent backgrounds, we
believe that the one-particle description is not applicable
in such a case. To consider nonperturbative effects, we have
to use the approach developed in QED and known as the
generalized Furry representation (see Refs. [3,4]). Below,
we show that the problem in question can be treated in the
similar manner.
After the quantization, ψðXÞ ¼ ψðt; rÞ turns out to be the

Heisenberg operator ΨðXÞ ¼ Ψðt; rÞ. This operator obeys
both the Dirac equation [Eq. (2.9)] and the standard equal
time anticommutation relations:
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½Ψðt; rÞ;Ψðt; r0Þ�þ ¼ ½Ψ†ðt; rÞ;Ψ†ðt; r0Þ�þ ¼ 0;

½Ψðt; rÞ;Ψ†ðt; r0Þ�þ ¼ δðr − r0Þ: (3.5)

The second quantized Hamiltonian Ĥ and the correspond-
ing momentum and helicity operators have the following
forms,

ĤðtÞ ¼
Z

Ψ†ðt; rÞHðtÞΨðt; rÞdrþH0ðtÞ; (3.6)

p̂ ¼ 1

2

Z
½Ψ†ðt; rÞ; ð−i∇ÞΨðt; rÞ�−dr;

Ξ̂ ¼ 1

2

Z
½Ψ†ðt; rÞ;ΞΨðt; rÞ�−dr; (3.7)

where the c number (generally infinite) term H0ðtÞ corre-
sponds to the energy of vacuum fluctuations. A definition
of the corresponding vacuum is discussed just below.
Let us suppose that the effective potential gðtÞ is constant

for t < t1 and for t > t2. Therefore initial (at t < t1) and
final (at t > t2) vacua are vacuum states of in- and out-
particles, which correspond to the constant effective poten-
tials gðt1Þ ¼ g1 and gðt2Þ ¼ g2, respectively. During the
time interval t2 − t1 ¼ T, the neutrino field interacts with
the time-dependent effective potential gðtÞ. The initial
and final vacua do not coincide because of the difference
in the initial and final constant values g1 and g2. Then we
construct independently both initial and final Fock spaces
in the Heisenberg representation. We introduce an initial set
of creation and annihilation operators a†nðinÞ, anðinÞ of in-
particles (neutrinos), and operators b†nðinÞ, bnðinÞ of in-
antiparticles (antineutrinos), the corresponding in-vacuum
being j0; ini, and a final set of creation and annihilation
operators a†nðoutÞ, anðoutÞ of out-neutrinos and operators
b†nðoutÞ, bnðoutÞ of out-antineutrinos, with the correspond-
ing out-vacuum being j0; outi.
Thus for any quantum number n, we have

anðinÞj0; ini ¼ bnðinÞj0; ini ¼ 0;

anðoutÞj0; outi ¼ bnðoutÞj0; outi ¼ 0: (3.8)

In both cases, by n ¼ ðp; σÞ we denote complete sets of
quantum numbers that describe both in- and out- particles
and antiparticles. The in-operators obey the canonical
anticommutation relations,

½anðinÞ; a†n0 ðinÞ�þ ¼ ½bnðinÞ; b†n0 ðinÞ�þ ¼ δn;n0 : (3.9)

All other anticommutators between the in-operators are
equal to zero. The out-operators obey similar anticommu-
tation relations,

½anðoutÞ; a†n0 ðoutÞ�þ ¼ ½bnðoutÞ; b†n0 ðoutÞ�þ ¼ δn;n0 ;

(3.10)

and all other anticommutators between the out-operators
also are equal to zero.
The above in- and out-operators are defined by two

decompositions of the quantum Dirac field ΨðXÞ in the
exact solutions of the Dirac equation,

ΨðXÞ ¼
X
n

½anðinÞþψnðXÞ þ b†nðinÞ−ψnðXÞ�

¼
X
n

½anðoutÞþψnðXÞ þ b†nðoutÞ−ψnðXÞ�: (3.11)

We see that the in-operators are associated with a complete
orthonormal set of solutions fζψnðXÞg (in the following we
shall call it the in-set) of Eq. (2.9) with the effective
potential gðtÞ, where ζ ¼ þ stays for neutrinos and ζ ¼ −
for antineutrinos. Their asymptotics at t < t1 are wave
functions of free particles in the presence of a constant
effective potential g1 and can be classified as neutrino and
antineutrino wave functions. The out-operators are asso-
ciated with another complete orthonormal out-set of sol-
utions fζψnðXÞg of Eq. (2.9). Their asymptotics at t > t2
are wave functions of free particles in the presence of a
constant effective potential g2 and can be classified as
neutrino and antineutrino wave functions. The functions

ζψnðXÞ are eigenvectors of the one particle Dirac
Hamiltonian HðtÞ at t ¼ t1,

Hðt1Þζψnðt1;xÞ ¼ ζE1ζψnðt1;xÞ; (3.12)

where E1 are the kinetic energies of in-particles (neutrino or
antineutrino) in a state specified by a complete set of
quantum numbers n. The out-particles (neutrino or anti-
neutrino) are associated with a complete out-set of sol-
utions fζψnðXÞg of the Dirac equation with the asymptotics
ζψnðt2;xÞ at t2 being eigenvectors of the one particle Dirac
Hamiltonian at t2, namely,

Hðt2Þζψnðt2;xÞ ¼ ζE2
ζψnðt2;xÞ; (3.13)

where E2 are the kinetic energies of out-particles in a state
specified by a complete set of quantum numbers n.
One can find that for in- and out-sets, the following

dispersion relations and the orthonormality conditions
hold:

E1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

�
p − σ

g1;2
2

�
2

s
;

ðζψn;ζ0ψn0 Þ ¼ δζ;ζ0δσσ0δ
ð3Þðp − p0Þ;

ðζψn; ζ
0
ψn0 Þ ¼ δζ;ζ0δσσ0δ

ð3Þðp − p0Þ: (3.14)

It should be noted, that in the following we will use
the standard volume regularization: δðp − p0Þ → δp;p0 and
δn;n0 ¼ δσσ0δp;p0 . Accounting for the orthonormality rela-
tions in Eq. (3.14) and the completeness of the in- and
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out- sets, one can demonstrate that anticommutation
relations in Eqs. (3.9) and (3.10) for the introduced creation
and annihilation in- or out-operators match with equal time
anticommutation relations for the Heisenberg operators
in Eq. (3.5).
Being expressed in terms of the creation and annihilation

operators, the operators of physical quantities given by
Eqs. (3.6) and (3.7) take the form

Ĥðt1Þ ¼
X
n

E1½a†nðinÞanðinÞ þ b†nðinÞbnðinÞ�;

H0ðt1Þ ¼
X
n

E1;

Ĥðt2Þ ¼
X
n

E2½a†nðoutÞanðoutÞ þ b†nðoutÞbnðoutÞ�;

H0ðt2Þ ¼
X
n

E2;

p̂ ¼
X
n

p½a†nðinÞanðinÞ − b†nðinÞbnðinÞ�

¼
X
n

p½a†nðoutÞanðoutÞ − b†nðoutÞbnðoutÞ�;

Ξ̂ ¼
X
n

σ½a†nðinÞanðinÞ − b†nðinÞbnðinÞ�

¼
X
n

σ½a†nðoutÞanðoutÞ − b†nðoutÞbnðoutÞ�: (3.15)

We see that the creation and annihilation operators
diagonalize the kinetic energy operators Ĥðt1Þ and
Ĥðt2Þ, which are positive defined. It confirms the inter-
pretation of the operators a†nðinÞ, anðinÞ, a†nðoutÞ, and
anðoutÞ as well as b†nðinÞ, bnðinÞ, b†nðoutÞ, and bnðoutÞ
as describing a neutrino and an antineutrino at at t ¼ t1
and t ¼ t2.
As was already mentioned above, the operators p̂ and Ξ̂

are the integrals of motion and are diagonal in both in- and
out-particle operators. Using the representations in
Eq. (3.15), one can establish relations between quantum
numbers p, σ and corresponding physical quantities.
Namely, the physical momentum of in- and out- neutrino
is pph ¼ p and the physical helicity is σph ¼ σ, whereas
pph ¼ −p and σph ¼ −σ for in- and out- antineutrino. The
one-particle definition of the physical helicity operator is

Ξph
p ¼ pphΣ

pph
for states of both neutrinos and antineutrinos

with a given momenta. It is consistent with the above given
physical interpretation of the quantum numbers p and σ if
one takes into account that Ξph

p ¼ pΣ=p for neutrino,
whereas Ξph

p ¼ −pΣ=p for antineutrino.
Further, we will see that neutrinos and antineutrinos

created or annihilated from/to the vacuum have the same
quantum numbers p and σ due to conservation low. This
means that neutrinos and antineutrinos are produced or
annihilated with opposite physical momenta and helicities.
This matches with the interpretation given above in
Sec. III A.

in- and out-solutions with given quantum numbers n are
related by linear transformations of the form

ζψnðXÞ ¼ GðþjζÞþψnðXÞ þ Gð−jζÞ−ψnðXÞ;
ζψnðXÞ ¼ GðþjζÞþψnðXÞ þ Gð−jζÞ−ψnðXÞ; (3.16)

where coefficients G are defined via the inner products of
these sets,

ðζψn0 ; ζ
0
ψnÞ ¼ δn;n0Gðζjζ0 Þ; Gðζ0 jζÞ ¼Gðζjζ0 Þ�: (3.17)

These coefficients satisfy the unitarity relations

GðζjþÞGðþjζÞ þ Gðζj−ÞGð−jζÞ ¼ 1;

GðζjþÞGðþjζÞ þ Gðζj−ÞGð−jζÞ ¼ 1;

GðþjþÞGðþj−Þ þ Gðþj−ÞGð−j−Þ ¼ 0;

GðþjþÞGðþj−Þ þ Gðþj−ÞGð−j−Þ ¼ 0; (3.18)

which follow from the orthonormalization and complete-
ness relations for the corresponding solutions. It is known
that all the coefficients can be expressed in terms of two of
them, e.g., of GðþjþÞ and Gð−jþÞ. However, even these
coefficients are not completely independent,

jGð−jþÞj2 þ jGðþjþÞj2 ¼ 1: (3.19)

A linear canonical transformation (Bogolyubov trans-
formation) between in- and out- operators which can be
derived from Eq. (3.11) has the form

anðoutÞ ¼ GðþjþÞanðinÞ þ Gðþj−Þb†nðinÞ;
b†nðoutÞ ¼ Gð−jþÞanðinÞ þGð−j−Þb†nðinÞ: (3.20)

All the information about neutrino and antineutrino
creation, annihilation, and scattering in a background
matter can be extracted from the coefficients Gðζjζ0 Þ. For
example, using Eq. (3.20), we find the differential mean
number Nn of neutrino or antineutrino created (which are
also equal to the mean number of νν̄ pairs created) from the
in-vacuum with a given momentum p and spin projection σ
is

Nn ¼ h0; inja†nðoutÞanðoutÞj0; ini ¼ jGð−jþÞj2: (3.21)

The total number N σ of created νν̄ pairs with a given σ is
the sum over all the momenta,

N σ ¼
X
p

Nn ¼
V

ð2πÞ3
Z

Nndp: (3.22)

The probability of the neutrino scattering PðþjþÞn;n0
and the probability of a pair creation Pð−þ j0Þn;n0 are,
respectively,
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PðþjþÞn;n0 ¼ jh0; outjanðoutÞa†n0 ðinÞj0; inij2

¼ δn;n0
1

1 − Nn
Pv;

Pð−þ j0Þn;n0 ¼ jh0; outjbnðoutÞan0 ðoutÞj0; inij2

¼ δn;n0
Nn

1 − Nn
Pv: (3.23)

The probability for the neutrino vacuum to remain a
vacuum reads

Pv ¼ jh0; outj0; inij2 ¼ exp

�X
σ;p

ln ð1 − NnÞg: (3.24)

The probabilities for an antineutrino scattering and a νν̄ pair
annihilation are given by the same expressions PðþjþÞ and
Pð−þ j0Þ, respectively.
In the general case, states of the system under consid-

eration at the final time instant contain particles and
antiparticles due to the νν̄ pair creation from the vacuum
and due to the possible existence of some particles and
antiparticles (we call them initial in what follows) in the
initial state of the system. It was found in Ref. [4] that the
following relation holds true,

ℵðζÞ
n ðoutÞ ¼ ð1−NnÞℵðζÞ

m ðinÞþNn½1−ℵð−ζÞ
n ðinÞ�; (3.25)

where ℵðζÞ
n ðinÞ and ℵðζÞ

n ðoutÞ are initial and the final
differential mean numbers of particles (ζ ¼ þ) and anti-
particles (ζ ¼ −). Here Nn is given by Eq. (3.21). Thus,
if the initial state differs from the vacuum, the differ-
ential mean numbers of neutrinos or antineutrinos created
by the effective potential gðtÞ are given by the difference
ΔℵðζÞ

n ¼ ℵðζÞ
n ðoutÞ − ℵðζÞ

n ðinÞ.
Using Eq. (3.25), we obtain that

ΔℵðþÞ
n ¼ Δℵð−Þ

n ¼ Δℵn;

Δℵn ¼ Nn½1 − ðℵðþÞ
n ðinÞ þ ℵð−Þ

n ðinÞÞ�: (3.26)

Even if Nn ≠ 0, no creation of νν̄-pairs with quantum
numbers n occurs provided that NðþÞ

n ðinÞ þ Nð−Þ
n ðinÞ ¼ 1.

It happens because of the Pauli blocking when both particle
and antiparticle are involved. The νν̄ pairs creation takes
place if NðþÞ

n ðinÞ þ Nð−Þ
n ðinÞ < 1. The annihilation of νν̄

pairs is possible if NðþÞ
n ðinÞ þ Nð−Þ

n ðinÞ > 1.

IV. NEUTRINO CREATION BY A SLOWLY
VARYING EFFECTIVE POTENTIAL

In this section we study creation of νν̄ pairs of various
neutrino flavors by a background matter with a linearly
growing effective potential. We consider the so-called
strong field case, when the difference jgðtoutÞj − jgðtinÞj
between the initial and final potential is greater then the

neutrino massm. In this sense, one can say that an effective
potential gðtÞ is slowly varying.
To find all necessary ingredients for calculating the

particle-creation effect, we first represent solutions ~ψðXÞ
of Eq. (2.9) in the following form,

ψnðXÞ ¼ ½i∂0 þHðtÞ�φn;χðtÞeiprUσ;χ ; (4.1)

where φn;χðtÞ are time-dependent scalar functions that
satisfy the equation

�
d2

dt2
þ
�
σp −

gðtÞ
2

�
2

þ i
2
χ∂tgðtÞ þm2

�
φn;χðtÞ ¼ 0;

(4.2)

whereas constant spinors Uσ;χ satisfy the equations

pΣ
p

Uσ;χ ¼ σUσ;χ ; σ ¼�1; γ5Uσ;χ ¼ χUσ;χ ;χ ¼�1:

(4.3)

Note that γ5 does not commute with the projection
operator in the representation given in Eq. (4.1). Therefore
solutions ψnðXÞ that correspond to different spinors Uσ;þ1

and Uσ;−1 are linear dependent. Then one can choose, for
example, either χ ¼ þ1 or χ ¼ −1.
Using Eq. (4.1), we express the inner product (2.11) of

two arbitrary solutions ~ψnðXÞ and ~ψ 0
nðXÞ as follows,

ðψn;ψ 0
n0 Þ ¼ δn;n0VJ;

J¼U†
σ;χφ�

n;χðtÞð−i⃖∂0þ i∂0Þ

× ½i∂0þ χ

�
pσ−

gðtÞ
2

�
þmγ0�φ0

n;χðtÞUσ;χ : (4.4)

Then, we obtain the quantity J in the following form:

J¼δn;n0φ
�
n;χðtÞð−i⃖∂0þ i∂0Þ

�
i∂0þχ

�
pσ−

gðtÞ
2

��
φ0
n;χðtÞ.
(4.5)

Setting t ¼ t1 and t ¼ t2 in Eqs. (3.12), (3.13), and
(4.4), one gets that particle and antiparticle degrees of
freedom are simultaneously orthogonal: ðþψn; −ψn0 Þ ¼
ðþψn; −ψn0 Þ ¼ 0. We see that here it is enough to know
only scalar functions in Eq. (4.1). The same holds true for
the calculation of all other necessary quantities.
Now we consider the case of a slowly varying effec-

tive potential supposing that gðtÞ is a linear function in a
rather big time interval T ¼ t2 − t1. Namely, we are going
to consider the following time dependence of effective
potential,
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gðtÞ ¼
8<
:

g1; t < t1;

b − at; t1 ≤ t ≤ t2;

g2; t > t2;

(4.6)

where gðt1Þ ¼ g1 and gðt2Þ ¼ g2 are constant values and

a ¼ −
g2 − g1
t2 − t1

≠ 0; b ¼ g1t2 − g2t1
t2 − t1

: (4.7)

We shall study the νν̄ pairs creation due to the compression
before the hydrodynamic bounce which happens during
0.10 s≲ t≲ 0.11 s (t ¼ 0 corresponds to the beginning of
the collapse) and during the neutronization of PNS which
occurs during 0.11 s≲ t≲ 0.12 s (for the details see
Ref. [25] and Sec. V). If we study the pairs creation due
to the matter compression in the PNS core, using Eqs. (2.5)
and (2.7), we obtain, for example, that g1 ¼ gðtinÞ ≈ 0 for
all the neutrino flavors, whereas g2 ¼ gðtoutÞ ¼ 0 for νe and
g2 ¼ gðtoutÞ < 0 for νμ;τ. If we examine the vacuum
instability in the neutronization of PNS that occurs outside
the core, then g2 ¼ gðtoutÞ < 0 for all the neutrino flavors.
However g1 ¼ gðtinÞ > 0 for νe and g1 ¼ gðtinÞ < 0 for νμ
and ντ. We can always choose t1;2 to have b ¼ 0 in
Eq. (4.7). The model with the external field gðtÞ given
by Eq. (4.6) is technically similar to the QED model with
the T-constant external electric field studied in Ref. [22]
and can be treated similarly.
First of all, we consider solutions in Eq. (4.1) at t < t1

and t > t2 corresponding to the constant effective potential
g1 or g2, respectively. We present such solutions in the
following normalized form,

ζψnðXÞ¼ ½i∂0þHðtÞ�ζζφn;χðtÞeiprUσ;χ ;

ζφn;χðtÞ¼Cζ
1exp½−iζE1ðt− t1Þ�; t< t1;

ζψnðXÞ¼ ½i∂0þHðtÞ�ζφn;χðtÞeiprUσ;χ ;

ζφn;χðtÞ¼Cζ
2exp½−iζE2ðt− t2Þ�; t> t2;

Cζ
1;2¼ð2VE1;2Þ−1=2

����E1;2−ζχ

�
g1;2
2

−σp

�����−1=2; (4.8)

where neutrino and antineutrino states are identified
according to the kinetic energy signs in Eqs. (3.12)
and (3.13). Normalization factors Cζ

1;2 are calculated in
accordance with Eqs. (4.4) and (4.5).
Using representations in Eq. (4.8), we can reproduce

solutions of the Dirac equation obtained in Sec. III A.
Indeed, let us write

φn;χ ∼ exp ð∓iE1;2tþ iprÞ; Uσ;χ ∼
�

wσ

χwσ

�
: (4.9)

Using the explicit form of γ matrices in Eq. (2.2) one can
verify that Eq. (4.3) holds true. Then we see that, for
χ ¼ þ1, the corresponding neutrino wave functions

ψnðXÞ exp ð−itg1;2=2Þ coincide with the function given
by Eqs. (3.2) and (3.3) up to constant factors. Thus,
neutrino wave functions considered in Sec. III A are
consistent with wave functions that are obtained for
time-dependent effective potentials (see also Ref. [20]).
Now, we consider solutions (4.1) at t1 ≤ t ≤ t2. In this

time region, the functions φn;χðtÞ satisfy the following
equation,

�
d2

dξ2
þ ξ2 − iχsgnðaÞ þ λ

�
φn;χðtÞ ¼ 0; (4.10)

where λ ¼ 2m2=jaj and

ξ ¼
ffiffiffiffiffiffi
2

jaj

s �
a
2
t −

b
2
þ σp

�
sgnðaÞ: (4.11)

For χsgnðaÞ ¼ þ1, one can see that two indepen-
dent solutions of Eq. (4.10) are Dρ½ð1 − iÞξ� and
D−1−ρ½ð1þ iÞξ�, where DρðξÞ is Weber parabolic cylinder
function (WPCF) and ρ ¼ iλ=2. It is known that these
solutions form a complete set. Some useful properties of
these solutions are summarized in Appendix B and will be
used in what follows.
To obtain the coefficient Gð−jþÞ, corresponding to the

time-dependent effective potential in Eq. (4.6), we use
Eq. (4.5). Since the inner product in Eq. (4.4) is time
independent we can use any convenient time instant for it
calculation. Let us set t ¼ t0 < t1 in Eq. (4.5). Then we
have to use the corresponding functions −φn;χðtÞ from
Eq. (4.8). According to Eq. (3.16) the function þφn;χðtÞ for
any time instant can be presented in the form

þφn;χðtÞ

¼

8>><
>>:
GðþjþÞþφn;χðtÞþGð−jþÞ−φn;χðtÞ; t< t1;

Cþ
2 ðd1Dρ½ð1− iÞξ�þd2D−1−ρ½ð1þ iÞξ�Þ; t1≤ t≤ t2;

Cþ
2 exp½−iE2ðt− t2Þ�; t> t2:

(4.12)

The coefficients d1;2 will be specified below. The functionsþφn;χðtÞ and their derivatives ∂t
þφn;χðtÞ satisfy the follow-

ing gluing conditions:

þφn;χðtk − 0Þ ¼ þφn;χðtÞðtk þ 0Þ;
∂tþφn;χðtk − 0Þ ¼ ∂t

þφn;χðtÞðtk þ 0Þ; k ¼ 1; 2: (4.13)

Let us choose, for example, χsgnðaÞ ¼ þ1. Then, at t ¼ t2,
it follows from Eq. (4.13) that

d1;2 ¼ ∓ E2ffiffiffi
a

p
exp½ðλ − iÞπ=4� f1;2ðt2Þ; (4.14)
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where

f1ðtÞ ¼
�
1 −

iffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ λ

p d
dξ

�
D−1−iλ=2½ð1þ iÞξ�;

f2ðtÞ ¼
�
1 −

iffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ λ

p d
dξ

�
Diλ=2½ð1 − iÞξ�: (4.15)

Finally, applying Eq. (4.13) at t ¼ t1, we get Gð−jþÞ in the
following form:

Gð−jþÞ ¼ exp½−ðλ − iÞπ=4�AB;
B ¼ ½f1ðt1Þf2ðt2Þ − f2ðt1Þf1ðt2Þ�;

A ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ21 þ λ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ22 þ λ
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ λ

p
− ξ1Þ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 þ λ

p
þ ξ2

�1=2
; (4.16)

where

ξ1;2 ¼ ξjt¼t1;2 ¼
ffiffiffiffiffiffi
2

jaj

s �
σp −

g1;2
2

�
sgnðaÞ: (4.17)

According to Eq. (3.21), the differential mean numbers
of the νν̄ pairs created by the effective potential Eq. (4.6)
are

Nn ¼ jGð−jþÞj2 ¼ e−πλ=2A2jBj2: (4.18)

They depend only on the values ξ1;2 for a given λ. Similar
expressions were obtained in Ref. [22] in the problem of
particle creation by a quasiconstant uniform electric field.
We are interested in the case of a slowly varying strong

effective potential gðtÞ, that satisfies the condition

jg2 − g1jjaj−1=2 ¼ ½jg2 − g1jðt2 − t1Þ�1=2 ≫ K ≫maxf1; λg;
(4.19)

where K is a given number. The case when both jξ1j and
jξ2j are sufficiently large,

jξ1;2j ≥ K ≫ max f1; λg; (4.20)

is only possible when signs of ξ1 and ξ2 are opposite. In this
case, using asymptotic expansions of WPCF, we obtain
(see details in Appendix B) that

Nn ¼ e−πλ½1þOðjξ1j−3Þ þOðjξ2j−3Þ�: (4.21)

Consequently, the quantity (4.21) is almost constant over
the wide range of momenta if Eq. (4.20) holds true. For the
case of sufficiently big momenta, when ξ1 ≈ ξ2, we find
that the quantity Nn is very small,

Nn ∼max fjξ1j−6; jξ2j−6g if min fjξ1j; jξ2jg ≥ K:

(4.22)

In the intermediate region the values of jξ1j and jξ2j are
quite different. For example, when jξ2j ≥ K then jξ1j < K
and vice versa. Thus, here, we cannot use any asymptotic
expansion of WPCFs to analyze the ξ1-dependence of Nn.
However, one can make some conclusions about the
contribution of this region to the integral over the momenta
in Eqs. (3.22). Taking into account that Nn is always
smaller than one for fermions, one can get a rough
estimationZ

jξ1j<K
Nndp

<
Z
jξ1j<K

dp ∼ Vmax f
ffiffiffiffiffiffi
jaj

p
Kjg1j2; ð

ffiffiffiffiffiffi
jaj

p
KÞ3g:

A more accurate estimations can be made numerically.
We assume that ξ2 ≥ K and jξ1j < K. Using the only
asymptotics with respect to ξ2 given by Eq. (B4) and
the exact form of f1ðt1Þ given by Eq. (4.15), we find
that

Nn ¼
1

4
e−πλ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ λ

q � ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ λ

q
− ξ1

�
jf1ðt1Þj2; (4.23)

exactly in ξ1. The dependence on ξ1 of Nn given by
Eq. (4.23) is made numerically for different λ and is
presented on Fig. 1. Thus, we find that the contribution
from the intermediate region to the integral in Eq. (3.22)
is much less than that given by a rough estimate. In
particular, we show that the value K ¼ 3 is sufficiently
large for the problem in question.
Thus, the parameter K plays the role of a sharp cutoff in

the integral in Eq. (3.22). Finally we find that the differ-
ential mean numbers of neutrinos or antineutrinos can be
written as

Nn ¼
�
e−πλ; p ∈ Dσ;
0; p ∉ Dσ;

(4.24)

where

Dσ∶jξ1;2j ≥ K ≫ max f1; λg; sgnðξ1Þ ¼ −sgnðξ2Þ:
(4.25)

We see that in the range Dσ the distribution Nn is uniform
and rotationally invariant and is completely determined by
the value of λ.
We can conditionally consider λ≲ 1 as a characteristic of

the strong-field case, and λ ≫ 1 as a characteristic of the
weak-field case. The effect of particle creation is negligible
small in the latter case. Here we have similar situation with
the charged particle creation by an electric field E from the
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vacuum, where there exists similar parameter m2=eE and
its characteristic value m2=eE ¼ 1 defines the Schwinger’s
critical field Ecr ¼ m2=e.
In the following we assume that in our problem λ≲ 1

and define the critical neutrino mass mðcrÞ from the
condition λ ¼ 1. Obviously, the effect of neutrino creation
can be in principle observed if there exists a kind of
neutrinos with masses that are less or comparable with such
a critical mass. For the further estimations, it is convenient,
using the definition of a in Eq. (4.7), to express λ as
follows,

λ ¼ 2m2ðt2 − t1Þ
jg2 − g1j

: (4.26)

The total number N σ of neutrino or antineutrino with a
given σ created from vacuum is proportional to the total
number of states Δσ with the neutrino momenta that belong
to the range Dσ. Thus, we have

N σ ¼ e−πλΔσ; Δσ ¼
V

ð2πÞ3
Z
Dσ

dp: (4.27)

The logarithm of the probability for the neutrino vacuum
to remain a vacuum given by Eq. (3.24) is also proportional
to Δσ,

lnPv ¼ ln ð1 − e−πλÞðΔþ1 þ Δ−1Þ: (4.28)

Note that if e−πλ ≪ 1 then lnPv ≈ −ðN þ1 þN −1Þ.
The energy density of created neutrino or antineutrino

with a given σ has the form

wσ ¼
e−πλ

ð2πÞ3
Z
Dσ

E2dp; (4.29)

where E2 is defined by Eq. (3.14). In the strong-field case
defined just above, the dependence on the cutoff K can be
ignored in Eqs. (4.27)–(4.29).
Considering other models with slowly varying effective

potentials that correspond to the strong field case,
cf. Ref. [22], one can verify that effects of switching on
and off do not change essentially the form of the distri-
bution (4.24) if some conditions similar to the one (4.19)
are fulfilled.
As was mentioned in Sec. II, we suppose that transitions

between eigenstates that correspond to different neutrino
flavors are suppressed. In such a case, we suppose that there
exist three effective massesmνe ,mνμ , andmντ of three active
neutrino flavors νe, νμ, and ντ. Of course, all the results
obtained above for a single mass m hold true for each mass
m ¼ mα, where α ¼ νe;μ;τ. Since the problem of the
neutrino masses hierarchy is still an open question [23],
any one of these masses can be critical. That is why we
have to consider all the possibilities. We denote the
parameters (4.26) by λe, λμ, and λτ for mνe, mνμ , and
mντ , respectively.
The difference in the effective potentials for νe and νμ;τ in

Eq. (2.5) implies the difference in the momentum ranges of
the corresponding neutrinos created at the neutronization
stage. We assume that a > 0. Then, e.g., it results from
Eq. (2.7) that g1 ¼ gðtinÞ > 0 and g2 ¼ gðtoutÞ ¼ −2gðtinÞ
for νe. Using Eq. (4.25), we find that the maximal range of
νe momenta is

De
−1∶ p ≤

jg2j
2

−
ffiffiffi
a
2

r
K if σ ¼ −1;

De
þ1∶ p ≤

g1
2
−

ffiffiffi
a
2

r
K if σ ¼ þ1: (4.30)

We see that it depends on the neutrino helicity.
The total number of states Δe

σ in the range given by
Eq. (4.25) can be considered as the function of the interval
T ¼ t2 − t1 of the effective potential variation. Note that
one can take any value of g1 ≥ gðtinÞ as initial and g2 ≤
gðtoutÞ as final unless the condition (4.19) is fulfilled for
these quantities. Then specific intervals of a pair formation
can be determined. In particular, one can find ranges of the
momenta for the νe created before the value gðtÞ decreases
to zero at some time t0 (gðtÞ > 0 part) and after that
(gðtÞ < 0 part). In the first situation, one has g1 ¼ gðtinÞ
and g2 ¼ 0, while in the second, g1 ¼ 0 and g2 ¼ gðtoutÞ.
Then not empty ranges are

FIG. 1. The dependence of the number of Nn in Eq. (4.23)
versus ξ1 for different λ. The panel (a) corresponds to λ ¼ 2, the
panel (b) – to λ ¼ 1, the panel (c) – to λ ¼ 0.2, and the panel (d) –
to λ ¼ 0.02.
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De
−1ðgðtÞ < 0Þ∶

ffiffiffi
a
2

r
K ≤ p ≤

jg2j
2

−
ffiffiffi
a
2

r
K;

for gðtÞ < 0; if σ ¼ −1;

De
þ1ðgðtÞÞ > 0Þ∶

ffiffiffi
a
2

r
K ≤ p ≤

g1
2
−

ffiffiffi
a
2

r
K;

for gðtÞ > 0; if σ ¼ þ1: (4.31)

We see that the νeν̄e pairs with σ ¼ −1 are mainly created
when the potential gðtÞ becomes negative, in contrast to the
νeν̄e pairs with σ ¼ þ1 that are created earlier. Using
Eqs. (4.30) and (4.31), we find that the maximal kinetic
energy of created electron neutrino or antineutrino at final
time instant of the neutronization t ¼ tout reads

max E2ðtoutÞ ≈
8<
:

1
2
jgðtoutÞj; if σ ¼ −1;

3
4
jgðtoutÞj; if σ ¼ þ1.

However, during the stage of νeν̄e pair creationwith σ ¼ þ1,
t < t0, when g2 ¼ gðtÞ > 0, the maximal kinetic energy of
created electron neutrino or antineutrino increases as
max E2ðtÞ ≈ 1

2
½gðtinÞ − gðtÞ� and reaches its maximal value

max E2ðt0Þ ≈ 1
2
gðtinÞ ¼ 1

4
jgðtoutÞj at the end of this stage.

This value of the maximal kinetic energy is consistent with
the fact that the rest 1

2
jgðtoutÞj of the final kinetic energy

max E2ðtoutÞ of this neutrino is gained due to the acceleration
of already existing particle after the time instant t0.
Thus, total numbers of states Δe

σ of the electron neutrino
with a fixed helicity in the momentum range given by
Eqs. (4.30) or (4.31) are

Δe
−1 ¼

VjgðtoutÞj3
3ð4πÞ2

�
1þO

� ffiffiffi
a

p
K

jgðtoutÞj
��

;

Δe
þ1 ¼

V½gðtinÞ�3
3ð4πÞ2

�
1þO

� ffiffiffi
a

p
K

gðtinÞ
��

: (4.32)

We see that Δe
−1 ¼ 8Δe

þ1. Using Eq. (4.29) and (4.32), we
find the energy density of created neutrinos or antineutrinos
with a given helicity,

we
−1 ¼hEe

−1ie−πλeΔe
−1=V; hEe

−1i¼
1

8
jgðtoutÞj; if σ¼−1;

we
þ1 ¼hEe

þ1ie−πλeΔe
þ1=V; hEe

þ1i¼
11

16
jgðtoutÞj; if σ¼þ1;

(4.33)

where hEe
σi is the mean energy per an electron neutrino or

an antineutrino created. We see that the mean energy hEe
−1i

is much less than hEe
þ1i, though the energy densities of

created electron neutrinos with the opposite helicity are of
the same order, we

þ1 ¼ 11
16
we
−1.

For νμ;τ it follows from Eq. (2.7) that g1 ¼ gðtinÞ < 0 and
g2 ¼ gðtoutÞ ¼ þ2gðtinÞ. Using Eq. (4.25), we find that in
the momentum range,

Dμ;τ
−1∶

jg1j
2

þ
ffiffiffi
a
2

r
K ≤ p ≤

jg2j
2

−
ffiffiffi
a
2

r
K; (4.34)

the only νμ;τν̄μ;τ pairs with σ ¼ −1 are created. The
maximal kinetic energy of νμ;τ or ν̄μ;τ neutrinos created
at final time instant t ¼ tout follows from Eq. (4.34) to be
max E2ðtoutÞ ≈ 1

4
jgðtoutÞj. In the same range, the total

number of νμ;τ neutrino states with σ ¼ −1 has the form

Δμ;τ
−1 ¼

�
VfjgðtoutÞj3 − jgðtinÞj3g

3ð4πÞ2
��

1þO

� ffiffiffi
a

p
K

gðtinÞ
��

:

(4.35)

The energy density and the mean energy per a particle for
created νμ;τν̄μ;τ are, respectively,

wμ;τ
−1 ¼hEμ;τ

−1ie−πλμ;τΔμ;τ
−1=V; hEμ;τ

−1i¼
11

112
jgðtoutÞj: (4.36)

The effective potential for νe does not change at the
compression stage then there is no νeν̄e creation. Just as the
initial g1 ¼ gðtinÞ ≈ 0 and the final g2 ¼ gðtoutÞ < 0 for νμ;τ
at this stage. Using Eq. (4.25), we find that the only νμ;τν̄μ;τ
pairs with σ ¼ −1 are created due to the compression and
the range of momenta of these pairs is

Dμ;τ
−1ðcÞ∶

ffiffiffi
a
2

r
K ≤ p ≤

jg2j
2

−
ffiffiffi
a
2

r
K: (4.37)

The maximal kinetic energy of created particles at final
time instant is max E2ðtoutÞ ≈ 1

2
jgðtoutÞj and the total

number of states that belong to the range (4.37) is

Δμ;τ
−1ðcÞ ¼

VjgðtoutÞj3
3ð4πÞ2

�
1þO

� ffiffiffi
a

p
K

jgðtoutÞj
��

: (4.38)

Then the energy density and the mean energy per a particle
for created νμ;τν̄μ;τ at final time of the compression are,
respectively,

wμ;τ
−1ðcÞ ¼ hEμ;τ

−1ðcÞie−πλμ;τΔμ;τ
−1ðcÞ=V;

hEμ;τ
−1ðcÞi ¼

1

8
jgðtoutÞj: (4.39)

Assuming that g2 ¼ gðtÞ changes from gðtinÞ to gðtoutÞ,
one can obtain time dependence of all the physical
quantities during the neutronization. Note that the numbers
of states Δσ given by Eqs. (4.32), (4.35), and (4.38) are
nonlinear functions of the time instants tout and tin.
Therefore the total particle production rate is not a con-
served physical quantity in this case.
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V. NEUTRINO CREATION IN REALISTIC
ASTROPHYSICAL MEDIA

In this section, in the framework of the above developed
technique we study νν̄ pair creation in realistic astrophysi-
cal media. In particular, we consider this effect at the
compression stage before the hydrodynamic bounce and at
the neutronization of PNS. In both cases we derive the
upper limit on neutrino masses that corresponds to the
nonvanishing probability of νν̄ pairs creation. Then we
discuss the evolution of the created neutrinos.
It is commonly believed that a star having (10–25) solar

masses, ends its evolution as a neutron star through a core-
collapsing supernova stage with the emission of 99% of the
initial gravitational energy in the form of neutrinos [24].
According to the modern simulations (see, e.g., Ref. [25])

the density in the central part on PNS reaches ∼1012 g ·
cm−3 at ∼100 s after the beginning of the collapse. High-
energy (E ≥ 10 MeV) neutrinos, which are created in the
core of PNS, cannot escape since their mean free path is
much less than the core radius. During the next Tν ≈ 10 ms
the central density increases to ≳2 × 1014 g · cm−3. At this
stage the compression of matter in PNS core stops and the
hydrodynamic bounce happens.
The bounce is typically followed by the neutroniza-

tion of PNS matter. The neutronization is characterized
by the change of Ye from 0.5 to practically zero
value. This process occurs outside the PNS core at
10 km≲ r≲ 100 km, begins at t ≈ 0.11 s, and lasts
Tν ∼ 10−2 s (see, e.g., Ref. [25]). The liberated lepton
number is carried away by νe produced in the reaction
e− þ p → nþ νe and having the energy ∼10 MeV.
First let us we discuss the creation of νν̄ pairs due to the

matter compression using our formalism during Tν ¼ 10 ms
just before the bounce. We should mention that one can
neglect the radial hydrodynamic currents directed towards
the center of PNS [see Eq. (2.3)] in the effective potential of
the neutrino interaction with background fermions. Such a
contribution is inevitable since the central density is increas-
ing. Supposing that all background fermions have approx-
imately equal radial velocities vr and using Eq. (2.3) we get
that gr=g ¼ vr. As found in Ref. [26], vr ≲ 0.1 inside the
PNS core, r≲ 10 km, within the considered time of the PNS
evolution. Thus gr is much less than g.
Since the matter density increases two orders of magni-

tude, we can take that gðtinÞ ≈ 0. The electron fraction Ye ¼
ne=ðnn þ npÞ changes from ∼0.5 to ∼0.3 [26], which
corresponds to nnðtoutÞ ≈ 2neðtoutÞ. Therefore, using
Eq. (2.5) we get that gðtoutÞ ≈ 0 for νe. Thus the creation
of νeν̄e pairs is suppressed at this stage of the PNS
evolution.
Again using Eq. (2.5) we get that for νμ;τ,

g1 ¼ gðtinÞ ¼ 0; g2 ¼ gðtoutÞ ¼ −GFnnðtoutÞ=
ffiffiffi
2

p
:

(5.1)

Therefore Δgνμ;τ ¼ jg1 − g2j ≠ 0 and the creation of νμ;τν̄μ;τ
pairs is possible. We shall roughly assume that the effective
potential changes linearly from zero to g2. Thus the results
of Sec. IV are valid.
It results from Eqs. (4.24) and (4.26) that the flux of low-

energy νμ;τν̄μ;τ pairs is sizable if λνμ;τ ¼ 2m2
νμ;τTν=Δgνμ;τ ≲ 1.

Assuming that Ye ≈ 1=3, ρ ¼ 2 × 1014 g · cm−3, and
Tν ¼ 10−2 s, we get that Δgνμ;τ ≈ 5 eV, where we use value

of the Fermi constant GFðℏcÞ−3 ≈ 1.17 × 10−5 GeV−2.
Finally we obtain the constraint on the electron neutrino
mass,

mνμ;τ ≲mðcrÞ
νμ;τ ¼ 4.1 × 10−7 eV: (5.2)

Note that, if the constraint in Eq. (5.2) is fulfilled, the flux of
νμ;τν̄μ;τ pairs is nonvanishing.
It is interesting to mention that, in the considered time

interval just before the bounce, high-energy neutrinos are
produced in the PNS core. However these neutrinos are
trapped inside the core due to elastic and quasielastic
neutrino scattering off background fermions. We predict a
nonzero flux of νμ;τν̄μ;τ pairs having very small energy
< 10 eV. These neutrinos are not trapped inside the core.
Indeed, using the neutrino scattering cross sections given in
Ref. [27], one finds that the mean free path of these
particles in background matter with the density 2 × 1014 g ·
cm−3 is about 1010 km. Therefore one can consider these
neutrinos as precursors of neutronization neutrino burst.
Now let us consider the νν̄ pairs creation during the

neutronization of PNS. Since the number densities of
various background fermions change, with the total mass
density of PNS matter being constant, the effective poten-
tial in Eq. (2.5) also changes [see, e.g., Eq. (2.7)] and we
may expect that an additional flux of low-energy νν̄ pairs
can be emitted at the neutronization of PNS. Again we shall
assume that the effective potential changes linearly.
(i) First we suppose that the electron neutrino massmνe is

the smallest among the all neutrino masses.
Since Ye changes from 0.5 to 0 in the neutronization of

PNS, the number densities before and after the neutroniza-
tion satisfy, neðtinÞ ≈ nnðtinÞ and nnðtoutÞ ¼ nnðtinÞ þ
neðtinÞ ≈ 2nnðtinÞ Therefore, using Eq. (2.5), we obtain

g1 ¼ gðtinÞ ¼ GFnnðtoutÞ=ð2
ffiffiffi
2

p
Þ;

g2 ¼ gðtoutÞ ¼ −GFnnðtoutÞ=
ffiffiffi
2

p
; (5.3)

such that for the electron neutrino we have Δgνe ¼jg2 − g1j ¼ 3
2
jgðtoutÞj.

Requiring the nonvanishing flux of νeν̄e pairs by
imposing λνe ¼ 2m2

νeTν=Δge ≲ 1 [see Eqs. (4.24) and
(4.26)], we get the constraint on the electron neutrino mass,

mνe ≲mðcrÞ
νe ¼ 5.6 × 10−8 eV: (5.4)
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To derive Eq. (5.4) we assume that Tν ¼ 10−2 s and
nnðtoutÞ ∼ 1036 cm−3 then gðtoutÞ ≈ 0.064 eV. The latter
quantity corresponds to the mass density ≲1012 g · cm−3.
(ii) Now we suppose that the smallest among the all

neutrino masses is either mνμ or mντ.
The treatment of both muon and tau neutrinos is the

same. For νμ and ντ we get from Eq. (2.7) that unlike the
case (i) the initial and final effective potentials are

g1 ¼ gðtinÞ ¼ −GFnnðtoutÞ=ð2
ffiffiffi
2

p
Þ;

g2 ¼ gðtoutÞ ¼ þ2gðtinÞ: (5.5)

Therefore Δgνμ;τ ¼ jg2 − g1j ¼ 1
2
jgðtoutÞj. The flux of

the low-energy νμ;τν̄μ;τ pairs is big enough if λμ;τ ¼
2m2

νμ;τTν=Δgμ;τ ≲ 1. Thus, we obtain the constraint on
the appropriate muon and tau neutrino masses:

mνμ;τ ≲mðcrÞ
νμ;τ ¼ 1.9 × 10−8 eV: (5.6)

It should be also noted that the energy of these νν̄ pairs
does not exceed 0.1 eV for all three active neutrino flavors.
The dimensionless parameters in Eq. (4.19) are quite
large for the cases (i) and (ii) at the neutronization,
ðjg2 − g1jTνÞ1=2 ∼ 106, and for the compression, ∼107.
Then this condition is well satisfied for the subcritical
masses given by Eqs. (5.2), (5.4), and (5.6).
In Appendix Awe analyzed the influence of other factors

which can diminish the flux of created νν̄ pairs or distort
their distribution. Among them we considered the possible
Pauli blocking of the creation process, the gravitational
interaction of the low-energy neutrinos, the influence of the
PNS rotation on the pairs propagation, and low-energy pair
production by nucleon-nucleon bremsstrahlung. We found
that all these processes do not significantly influence the
evolution of νν̄ pairs created if the mass of the neutrino is
small enough. The only factor which essentially influences
the evolution of νν̄ pairs created is the difference between
the effective density in the region of the creation and in the
point outside this region. The high-density region is a
potential well for either neutrino or antineutrino depending
on the sign of the effective potential. Then part of these
particles, depending on the flavor and helicity, are bounded
in the PNS while the antineutrinos of any flavor escape the
PNS. If the created pairs are νeν̄e then part of these
neutrinos also escape the PNS. A part of escaped neutrinos
that have the negative helicity can interact directly with the
matter of electrons and baryons. All the escaped antineu-
trinos have the negative helicity and do not interact directly
with the uniform part of the matter consisting of electrons
and baryons. Nevertheless, an effective potential barrier of
a neutron star can affect them, causing refraction and
reflection, and, in particular, change their helicity in course
of a reflection.

Additionally, we evaluated the typical flux of neutrino/
antineutrino, created in frames of our formalism, from a
possible supernova in our Galaxy, which can reach the
Earth. We considered pairs emitted during the core com-
pression stage which have gðtoutÞ ∼ 10 eV and the numbers
of occupied statesΔμ;τ

−1ðcÞ given by Eq. (4.38) is of the order
of VjgðtoutÞj3

3ð4πÞ2 ∼ 1033 for Rc ∼ 10 km. Supposing that the

distance to a supernova ∼1 kpc and a potential detector
has the effective area 1 km2, we get that about 10 particles
could interact with such a detector. In this case the counting
rate is ∼106 s−1. And the typical flux created at the
neutronization stage is 103 times smaller. The obtained
quantity is much smaller than an expected counting rate of
high-energy neutrinos from our Galaxy supernova.
The estimates of the neutrino masses given in Eqs. (5.2),

(5.4), and (5.6) does not contradict the modern constraints
on the neutrino masses (see, e.g., Ref. [28]). Of course,
direct detecting such low-energy neutrinos or antineutrinos
is beyond any existing experimental possibilities. The total
energy radiated of these neutrino is about 1022 erg. This is a
completely negligible amount of energy compared to other
scales in the supernova problem or in relation to the energy
scales in the outer layers of the star. Hence, this flux of
created νν̄ pairs cannot affect the evolution of the star and
shows its presence by such a way. Since the flux of low-
energy νν̄ pairs from a supernova has not been detected yet,
our constraints on neutrino masses should be regarded as a
condition for the creation of a nonvanishing flux of neutrino
pairs in matter with the time-dependent effective potential.
Note that the νν̄ pair creation from the vacuum consid-

ered in the present work is the result of a unitary evolution.
As a consequence, low-energy particles are coherently
emitted in a macroscopic region. The flux of low-energy
neutrinos predicted in our work will be accompanied by the
radiation of high-energy neutrinos. However, the spectra of
highly energetic νe;μ;τ and ν̄e;μ;τ emitted at the neutroniza-
tion stage of PNS are pinched at low and high-energy parts
relative to the mean energy ∼10 MeV (see details in
Appendix A). That is, the very rare ν and ν̄ of such origin
can lose enough part of their energy during neutronization
to get the considered low-energy range and these particles,
produced independently in the reaction between several
particles, are statistically independent. It means that, in
principle, particles emitted coherently are statistically
distinguishable from the latter. The length scale, associated
with Tν is ∼108 cm, which is much bigger than both the
PNS core radius Rc ∼ 10 km and the radius of the sphere
where the neutronization happens Rn ∼ 100 km. Thus,
PNS will be a coherent source of low-energy νν̄ pairs.
These low-energy neutrinos may be involved in some
interference effects, e.g., in their lensing by the effective
potential barriers of neutron stars and gravity. If we
hypothesize that the detection of low-energy neutrinos is
possible due to yet unknown mechanism for resonance
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amplification of the signal, these effects can help one to
separate such coherent fluxes from chaotic fluxes of other
origin. Currently detecting such low-energy ν and ν̄ seems
to be impossible despite the recent theoretical proposals of
corresponding experiments of the meV energy scale, see,
for example Ref. [29,30].

VI. SUMMARY

In this summary we briefly list the main new results
obtained in the present work and organize them condition-
ally into the following three blocks:
(i) We have considered the Dirac neutrino interacting

with background fermions in the frame of the standard
model. We demonstrate that a time-dependent effective
potential is quite possible in a protoneutron star (PNS) at
the compression stage just before the hydrodynamic
bounce and during PNS neutronization. Such an interaction
is intense and must be treated nonperturbatively.
For the first time, we have formulated in the framework

of the quantum field theory a corresponding nonperturba-
tive treatment of neutrino processes in a matter with
arbitrary time-dependent effective potential. This allowed
us to study analytically a realistic case of slowly varying
effective potential. Using complete sets of exact solutions
of the Dirac equation in the time-dependent effective
potential, we have constructed the initial and final Fock
spaces and Bogolyubov transformations between the cor-
responding creation and annihilation operators. We have
expressed mean numbers of νν̄ pairs created from the
vacuum and the probabilities of all the transition processes
via coefficients in the Bogolyubov transformations.
(ii) A model with linearly and slowly growing effective

potential that has a large difference of its initial and final
values compared with the neutrino mass was studied in
detail. It was shown that results obtained for this model are
representative for a large class of slowly varying potentials.
We have calculated differential mean numbers of νν̄ pair
created from the vacuum and have found that they crucially
depend on the effective mass of a lightest neutrino. These
distributions uniformly span from ∼10−6 eV to ∼10 eV
energies for νμ;τν̄μ;τ created due to the compression and
from ∼10−6 eV to ∼0.1 eV energies for all three active
neutrino flavors created due to the neutronization dropping
sharply beyond this interval. We have obtained the total
number and the energy density of created νν̄ pairs
and examined peculiarities in the production of different
neutrino flavors and helicities.
(iii) We have studied νν̄ pair production from vacuum in

a PNS core at the compression stage just before the
hydrodynamic bounce and during the PNS neutronization.
It was shown that the creation of pairs of low-energy
neutrinos up to ∼10 eV is possible in these cases. These
low-energy pairs are coherently emitted from a macro-
scopic region during the considered stages of the PNS
evolution. Part of these particles, depending on the flavor

and helicity, are bounded in the PNS while the antineu-
trinos of any flavor escape the PNS. If the created pairs are
νeν̄e then part of these neutrinos also escape the PNS. Only
a part of these escaped neutrinos interacts directly with the
uniform matter of electrons and baryons. In general, an
effective potential barrier of a neutron star can affect such
low-energy neutrinos and antineutrinos, causing refraction
and reflection, and, in particular, change their helicity in
course of a reflection. Thus, accounting for the character-
istic isotropic uniform distribution of νν̄ pairs created in the
low-energy range and specific properties dependent on the
neutrino flavors, we have shown that one can distinguish
such coherent flux from chaotic fluxes of any other origin.
We have derived constraints on the neutrino masses:
mνμ;τ ≲ 4.1 × 10−7 eV, for particles created in the core
compression before the bounce, as well as mνe ≲ 5.6 ×
10−8 eV and mνμ;τ ≲ 1.9 × 10−8 eV for the pairs emission
at the neutronization, corresponding to the nonvanishing νν̄
pairs flux produced by this mechanism. We have examined
other processes which might affect detection of this vacuum
instability in the PNS and found that they are negligible if
the mass of the neutrino is small enough. The energies of
created neutrinos are less than 10 eV, for particles emitted
before the bounce, and less than 0.1 eV, for the emission at
the PNS neutronization. We should mention that ν̄μ;τ of the
pairs created before the bounce freely escape the dense core
unlike their high-energy counterparts. Thus these particles
can be regarded as precursors of the neutronization neutrino
burst. Unfortunately, current experimental techniques do
not allow one to detect neutrinos with such low energies.
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APPENDIX A: ACCOMPANYING PROCESES

In this Appendix we consider possible processes which
might affect either the creation of the neutrino pairs or their
subsequent propagation at the initial stages of the PNS
evolution. The creation of νμ;τν̄μ;τ pairs due to the matter
compression and their propagation occur before the neu-
tronization. Thus the accompanying processes which can
infuence these two phenomena do not overlap.
Concerning νν̄ pairs created at the neutronization, we can

conclude the following. We obtain from Eq. (3.26) that a
filled neutrino and/or antineutrino initial state blocks the
neutrino creation with the corresponding quantum number.
However, we see no reason to expect that the occupation

numbers of the initial distributionℵðζÞ
n ðinÞ in the range of low

energies being uniformly great immediately after the start of a
neutronization stage. As found in Ref. [31], the spectra of
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highly energetic νe;μ;τ and corresponding antiparticles emit-
ted at the neutronization stage of PNS are not Fermi-Dirac
ones. In particular these spectra are pinched at low- and high-
energy parts relative to the mean energy ∼10 MeV. For νe
and ν̄e the relaxation time to reach the thermal distribution is
longer than Tν [26,31]. It was revealed in Ref. [32] that for
other neutrino species the relaxation time also exceeds Tν.
Therefore we get that the creation of low-energy νν̄ pairs by
ourmechanismcannot be suppressed by the Pauli factor since
the lowest energy states are unoccupied.
It should be noted that besides the νν̄ pair creation by the

spatially homogeneous effective potential gðtÞ at the
neutronization stage, we can expect that the inhomogeneity
of the PNS matter will affect the propagation of low-energy
neutrinos escaping the PNS. Let us examine this effect.
For the case of the matter compression, we may roughly

assume that the core of PNS has an approximately constant
density with nn ∼ 1038 cm−3. The PNS core density
decreases several orders of magnitude in the spherical
PNS crust which has the thickness ΔRc ∼ 1 km [33].
Taking into account the range of neutrino momenta under
consideration given in Eq. (4.37), we see that all low-
energy neutrinos and antineutrinos are ultrarelativistic
particles. It takes ∼10−6 s for such particles to pass through
the PNS crust. The PNS density of the spherical shell of the
neutronization, 10 km≲ r≲ 100 km, is of the order of
nn ∼ 1036 cm−3. One can assume that the density of this
shell decreases significantly at a distance of ∼10 km near
the outer boundary, ΔRn ∼ 10 km. The neutrino and
antineutrino created due to neutronization are ultrarelativ-
istic particles as well. It takes ∼10−5 s for such particles to
escape through the 10 km thickness of the outer shell
of significant gradient. Both time scales are much shorter
than Tν. Therefore we can consider process of the inho-
mogeneity region crossing as independent one.
To analyze this process we can assume that the effective

matter density gint ¼ gðtÞ in the shells of significant
gradient varies adiabatically from gðtinÞ to gðtoutÞ and
the corresponding gradient of the effective matter density
varies smoothly. It is worth mentioning that the size of the
wave packet of the low-energy neutrinos under consider-
ation is in the range ∼ð10−5–102Þ cm, which is much
smaller than the scale of the matter inhomogeneity.
One can accordingly describe the macroscopic part of

these shells using the time-independent one dimensional
effective matter density gðrÞ that depends only on a radial
coordinate r orthogonal to the border and represents a kind
of potential step. We assume that the density gðrÞ varies
smoothly from the value gint in the core to gext ¼ 0 in the
space outside the shell under consideration with a constant
gradient a0 ¼ −gint=ΔR.
Thus one can treat the effect of the border using the Dirac

equation (2.6) with the matter density gðXÞ ¼ gðrÞ. Such an
equation is quite similar to theDirac equation for the electron
in an electric field given by scalar step potential, where

gðrÞ=2 and a0=2 play roles of these potential and constant
electric field, respectively. The gradient ja0j is considerably
larger than above mentioned jaj ∼ ðmðcrÞ

νe;μ;τÞ2 during the
compression stage, ja0j ∼ 104jaj, and during the neutroniza-
tion, ja0j ∼ 102jaj. Hence such a field is very strong for the

both subcritical masses given by Eq. (5.2), ðmðcrÞ
νμ;τ Þ2 ≪ ja0j,

and Eqs. (5.4) and (5.6), ðmðcrÞ
νe;μ;τÞ2 ≪ ja0j, respectively.

The similar problem of the νν̄ pairs creation from vacuum
in cold neutron stars was considered in Refs. [9,10] and the
production rate of νν̄ pairs is evaluated following an analogy
with Schwinger’s result for eþe− creation by a constant
uniform electric field [5]. This approach is not applicable for
our problem since it does not allows us to estimate the mean
number of particles created within a finite time T on a finite
length ΔR. In our case a more detailed analysis is required,
analogous to that made in Refs. [34–36] where the eþe− pair
creation by a constant uniform electric field given by scalar
potential was studied.
The differential mean number of neutrino or antineutrino

created from vacuum by the inhomogeneous matter can be
evaluated in analogy with the case of the electric field,
yielding

Ngr
n ≈ exp ½−2πðm2 þ p2⊥Þ=ja0j�; (A1)

where m is the corresponding neutrino mass, n ¼
ðp0;p⊥; sÞ is the complete set of quantum numbers, p0

is the total energy, p⊥ is transversal momentum that is
orthogonal to the gradient direction, and s is a given spin
polarization. Note that the distribution Ngr

n decreases very
rapidly with increasing transversal momentum.
It can be shown that the expression given by Eq. (A1) is

valid in the range of the energy jp0j < jgintj=2 and the value
of Ngr

n is negligible outside this range. The accurate
nonperturbative treatment of νν̄ pairs creation due to the
inhomogeneity of the matter density can be performed
using the formalism recently developed in Ref. [8]. The
appropriate general QFT formalism is developed in
Ref. [37]. Note that the value given by Eq. (A1) saturates
for low values of p2⊥, N

gr
n ≃ 1 for the subcritical masses,

m≲mðcrÞ
νe;μ;τ .The total number of particles created by this

mechanism can be found as

N gr ≈
TνSR
ð2πÞ3

X
s¼�1

Z
Ngr

n dp0dp⊥; (A2)

where SR is the area of the corresponding outer surface of
the PNS shell of significant gradient.
To get an estimate we write down that

N gr ≈
TνSRjgintjja0j

2ð2πÞ3 : (A3)

The ratio of this value and the total numbers N σ given by
Eqs. (4.27), (4.32), (4.35), and (4.38) is
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N gr=N σ ∼ eπλTνðRΔRjgintjÞ−1

∼
�

10−7eπλ for compression

10−6eπλ for neutronization
; (A4)

where we use that RΔR ¼ RcΔRc ¼ 10 km2 for the
compression and RΔR ¼ RnΔRn ¼ 103 km2 for the neu-
tronization. Thus, despite the fact that the vacuum insta-
bility effects caused by the PNS shells of density gradient
are very pronounced for the neutrinos with the subcritical
masses (in this case λ≲ 1), they are negligible during the
initial stages of the PNS evolution and cannot block the νν̄
pair creation due to the time-dependent effective potential.
We note, however, that the ratio in Eq. (A4) is very sensitive
to the neutrino mass. If the mass of the lightest neutrino is
sufficiently greater than the critical values given by
Eqs. (5.2), (5.4), and (5.6), λ ≫ 1, so that the ratio (A4)
is not small, N crust=N σ ≳ 1, then the effects caused by the
density gradients must be taken into account. Thus, our
mechanism of the νν̄ pair creation is valid if λ≲ 1.
The nonzero difference between the effective density gint

in the region of creation and gext ≈ 0 in the space outside
this region affects the results of the νν̄ pair creation due to
the time-dependent effective potential for a distant
observer. To see that we consider the radial motion of
neutrinos and antineutrinos through the PNS shells of
density gradient, assuming that p⊥ ≈ 0. Using the Dirac
equation (2.6) with the matter density gðrÞ, we see that, in
general, the helicity is not conserved when a neutrino
moves in the inhomogeneous matter. However, if p⊥ ≈ 0
the projection of the spin on the radial direction is
conserved. Note that this projection is not related to the
direction of the momentum vector then the helicity is not
necessary conserved anyway. The total energy of particles
and antiparticles pð�Þ

0 is conserved. Using Eq. (2.6), one
can elaborate the following asymptotic dispersion relations
for a given value of pð�Þ

0 ∶

pð�Þ
0 ¼ gint

2
� Eint;

Eint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

int

q
in the region of creation;

pð�Þ
0 ¼ �Eext;

Eext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

ext

q
outside the region of creation: (A5)

Here Eint, Eext are the corresponding asymptotic values of
the particle kinetic energy and pint, pext are the magnitudes
of the corresponding radial momenta pint ¼ jpintj,
pext ¼ jpextj, respectively.
Assuming that gint ¼ gðtÞ in the region of creation varies

adiabatically from gðtinÞ to gðtoutÞ, we consider the case
when Eint is the energy of neutrino or antineutrino with a
given σ created from vacuum by the neutronization until the
time t, Eint ¼ E2, where E2 is given by Eq. (3.14) at

g2 ¼ gint. Then pint ¼ jp − σgint=2j and the ranges of
momentum are given by Eqs. (4.31) and (4.34) at
g2 ¼ gint. Taking into account the fact that the main fraction
of the νν̄-pairs with σ ¼ −1 for all flavors are created due to
the neutronization at the time t when

gint < 0; jgintj >
ffiffiffiffiffiffi
2a

p
K for νeν̄e;

jgintj > jgðtinÞj þ
ffiffiffiffiffiffi
2a

p
K for νμ;τν̄μ;τ;

we find from Eq. (A5) that all of these neutrinos are
bounded in the PNS while all of these antineutrinos gain
additional kinetic energy ∼jgintj=2 and escape the PNS
with the energy Eext≈ jgintj − p. It is consistent with the
general conclusion obtained earlier for neutron stars in
Refs. [9–11]. For all νμ;τν̄μ;τ pairs created due the com-
pression we have σ ¼ −1 and gint < 0. Note that the
projection of the kinetic momentum on the direction of
the momentum of this antineutrino, p − jgintj < 0, then its
physical helicity outside the region of creation is negative.
Such kind of antineutrino does not substantially interact
with the matter of electrons and baryons, unless it interacts
with a potential barrier, then it is considered undetectable.
The final effective density gint ¼ gðtoutÞ retains its value
during the entire period of the existence of a neutron star then
these neutrinos are the trapped forever. Thus, we estimate the
time-depending range of the antineutrino kinetic energy
outside the PNS during the neutronization as follows,

jgintj
2

< E < jgintj for ν̄e;

1

2
ðjgðtinÞj þ jgintjÞ < E < jgintj for ν̄μ;τ: (A6)

The range of the ν̄μ;τ kinetic energy outside the PNS during
the compression is

jgintj
2

< E < jgintj: (A7)

When the neutronization stage ended, the spherical layer of
ultrarelativistic antineutrinos with the kinetic energies in
the range

ffiffiffiffiffiffiffiffi
a=2

p
K < E < jgðtoutÞj for ν̄e;

jgðtinÞj þ
ffiffiffiffiffiffiffiffi
a=2

p
K < E < jgðtoutÞj for ν̄μ;τ (A8)

is formed outside the PNS and then expands at a speed
close to the speed of light. When the compression stage
ended, the spherical layer of ν̄μ;τ with the kinetic energies in
the range

ffiffiffiffiffiffiffiffi
a=2

p
K < E < jgðtoutÞj (A9)

is formed outside the PNS and then expands.
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We point out first that for the part of the νeν̄e pairs
created with the helicity quantum number σ ¼ þ1 due to
the neutronization, the effect of the PNS border is com-
pletely different. It was shown in Eq. (4.31) that such
particles are created before the effective density gðtÞ > 0
passes through zero at some time t0 and have the maximal
kinetic energy per particle ∼ 1

2
gðtinÞ at t0. Therefore, the

positive value gint ¼ gðtÞ varies from gðtinÞ to zero, mean-
while the maximal kinetic energy of created νe or ν̄e
increases from zero to 1

2
gðtinÞ. If p > gint=2, then both νe

and ν̄e escape the PNS and the time-depending range of the
kinetic energy outside the PNS during the neutronization is

ffiffiffiffiffiffiffiffi
a=2

p
K < E < gðtinÞ=2 for νe;

0 < E < gðtinÞ=2 − gint for ν̄e: (A10)

Their helicity quantum number outside the crust is con-
served. Such a fraction of the νeν̄e is considered undetect-
able directly.
If p < gint=2 and gint >

ffiffiffiffiffiffiffiffi
a=2

p
K, then these ν̄e are

bounded in the PNS until the time when gint will be small
enough and then escape with helicity conserved. All of
these νe gain additional kinetic energy ∼gint=2 and escape
the PNS with the energy Eext ≈ gint − p. The projection of
the kinetic momentum on the direction of the momentum of
this νe, p − gint < 0, then its physical helicity outside the
PNS is negative. Such neutrinos interact with the matter of
electrons and baryons and are detectable in principle.
We estimate the time-depending range of the neutrino
kinetic energy outside the region of creation during the
neutronization as

gint=2 < E < gint −
ffiffiffiffiffiffiffiffi
a=2

p
K: (A11)

This range shrinks to the point when time t tend to t0. As a
result, when the neutronization stage ended, the spherical
layer of such ultrarelativistic neutrinos with the kinetic
energies in the range

0 < E < gðtinÞ −
ffiffiffiffiffiffiffiffi
a=2

p
K (A12)

is formed outside the PNS and then expands at a speed
close to the speed of light.
Thus, only electron neutrinos of all νν̄ pairs created

during the neutronization stage can be in principle detected
directly by a distant observer. However, note that the
effective potential of a neutron star is repulsive for the
low-energy antineutrinos escaped the PNS. Then these
antineutrinos can change their helicity if reflected of a
neutron star. In general, the effective potential of a neutron
star can considerably refracts such low-energy ν and ν̄.
From the beginning we have neglected the influence of

gravity and rotation. However, PNS can have rather strong
gravitational field and rotate rapidly. In principle these
effects can influence the creation of νν̄ pairs and their

subsequent evolution especially since energies of particles
are small. For example, as was found in Ref. [38], very low-
energy antineutrinos can be captured inside a rotating PNS.
The characteristic length scale associated with gravity or
rotation of PNS is in the km range. Indeed, it can be a
gravitational radius which is several km for a PNS with the
mass in the solar range. The energy corresponding to such a
length scale is ∼ð10−10–10−9Þ eV. In our situations the
typical energies of νν̄ pairs are up to several eV or up to
0.1 eV. Thus gravity and rotation can affect only very
narrow part near the bottom of the spectrum of νν̄ pairs
created. Nevertheless gravity can influence the propagation
of created neutrino beam while it propagates further in
space. By the same reason a cosmic neutrino background,
expected at 1.95 K ∼ 0.17 meV, is irrelevant for the case
under consideration.
The coherent νν̄ pairs creation discussed in our work is

not influenced by the pairs creation by nucleon-nucleon
bremsstrahlung. Indeed, using the results of Ref. [39]
one gets that νν̄ pairs created in nucleon-nucleon brems-
strahlung have energy ∼1 MeV in nuclear matter with
temperature T ∼ 109 K, which is typical for a core col-
lapsing supernova. Thus this process does not overlap with
the pairs creation by our mechanism.

APPENDIX B: SOME PROPERTIES OF WEBER
PARABOLIC CYLINDER FUNCTIONS

In this appendix we list some properties of the WPCFs
which are used in the present work and where already used
by us studying particle creation from the vacuum by a
quasiconstant uniform electric field, see Ref. [22].
The solution of the ordinary differential equation

�
d2

dz2
þ ρþ 1

2
−
z2

4

�
φðzÞ ¼ 0; (B1)

can be expressed as a linear combination of any of
two functions from the following set: DρðzÞ, Dρð−zÞ,
D−ρ−1ðizÞ, and D−ρ−1ð−izÞ. If we change the variable z ¼
ð1 − iÞξ in Eq. (4.10), we can represent it in the form of
Eq. (B1) with ρ ¼ iλ=2þ ½χsgnðaÞ − 1�=2. Then assuming
that χsgnðaÞ ¼ þ1, we obtain linear independent solutions
of Eq. (4.10) used in Sec. IV. Note that a more detailed
description of the properties of the WPCFs can be found,
e.g., in Ref. [40].
The asymptotic expansions of WPCF, used in Sec. IV,

corresponding to the great absolute values of the argument
jξj, have the following form,

Dρ½ð1� iÞξ� ¼ e∓iξ2=2ð
ffiffiffi
2

p
e�iπ=4ξÞρ

�
1∓i

ρð1 − ρÞ
4ξ2

þ � � �
�

if ξ ≥ K; (B2)

where K ≫ max f1; λg. If ξ < 0 one gets that
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Dρ½ð1 − iÞξ� ¼ eiπρDρ½ð1 − iÞjξj�

þ i

ffiffiffiffiffiffi
2π

p

Γð−ρÞ e
iπρ=2D−ρ−1½ð1þ iÞjξj�;

D−ρ−1½ð1þ iÞξ� ¼ eiπðρþ1ÞD−ρ−1½ð1þ iÞjξj�

− i

ffiffiffiffiffiffi
2π

p

Γðρþ 1Þ e
iπðρþ1Þ=2Dρ½ð1 − iÞjξj�;

(B3)

where ΓðzÞ is the Euler gamma function.

Using Eqs. (B2) and (B3), we get the expansions
of the coefficients fkðtlÞ, k; l ¼ 1; 2, which are re-
quired for the calculation of the expression B given by
Eq. (4.16),

f1ðtÞ ≈ Oðξ−3Þ;
f2ðtÞ ≈ eiξ

2=2ð
ffiffiffi
2

p
e−iπ=4ξÞρ½2þOðξ−2Þ� if ξ ≥ K;

f1ðtÞ ≈ eiπðρþ1Þe−iξ2=2ð
ffiffiffi
2

p
eiπ=4jξjÞ−ρ−1½2þOðjξj−2Þ�;

f2ðtÞ ≈ Oðjξj−1Þ if ξ < 0; jξj ≥ K: (B4)
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