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The previous thermodynamic treatment for models with density and/or temperature dependent quark
masses is shown to be inconsistent with the requirement of fundamental thermodynamics. We therefore
study a fully self-consistent one according to the fundamental differential equation of thermodynamics.
After obtaining a new quark mass scaling with the inclusion of both confinement and leading-order
perturbative interactions, we investigate properties of strange quark matter in the fully consistent
thermodynamic treatment. It is found that the equation of state become stiffer, and accordingly, the
maximum mass of strange stars is as large as about 2 times the solar mass, if strange quark matter is
absolutely or metastable.
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I. INTRODUCTION

Since its possible absolute stability was conjectured
nearly thirty years ago [1], strange quark matter (SQM)
has been playing an important role in many interesting
fields, for example, the deconfinement phase transition
[2–7], the hot and dense matter in heavy ion collisions [8],
the structure of compact stars [9], etc. Lumps of SQM, the
so-called strangelets [10], or slets [11], may exist in cosmic
rays [12], and some of them might be on the way to our
Earth [13,14]. The neutron star could be converted to a
quark star or mixed star due to leptonic weak interactions,
or seeded with slets by the self-annihilating weakly
interacting massive particles [15]. The structure of a strange
quark star depends strongly on the stability of SQM which
is still under active investigations [16]. Presently, many
aspects on quark matter are still left open. Among them the
equation of state (EOS) is of special interest.
In principle, one has in hand the fundamental theory of

strong interactions, i.e., quantum chromodynamics (QCD).
Presently, however, no one can model quark matter exactly
in QCD because of the known difficulty in the non-
perturbative regime. The only case that can be exactly
solved is the noninteracting system whose thermodynamic
potential density Ω0ðT; fμig; fmigÞ as a function of the
temperature T, the chemical potentials fμig, and the
particle masses fmig can be found in many textbooks.
For a free system, the particle mass is a constant, and the
corresponding thermodynamic treatment is clearly known.
Nowadays, quark matter has been investigated with

various phenomenological models, e.g., the Richard poten-
tialmodel [17,18], theNambu and Jona-Lasinio (NJL)model
[19], the perturbationmodel [20], the field correlator method

[21], the quark-cluster model [22], and many other models
[23–28], etc. Thesemodels, to someextent, have a relation to,
or start from, the free-particle system. In the simplest version
of the bag model [1,10,29], for example, a constant B, the
so-called “bag constant,” is added to the thermodynamic
potential density of the free system to reflect the quark
confinement effect. This model has been applied in a vast
number of investigations on the properties of SQM [30–33].
It is well known, however, that particle masses vary with

medium. Such masses are usually called effective masses. In
principle, not only masses will change but also the coupling
constantwill run inamedium[20].Themodelswithchemical-
potential and/or temperature dependent particle masses
are known as quasiparticle models [34], which have been
explored in great detail over the past two decades [35–39]. A
recent example is the model without density or temperature
dependent infinity of the vacuum zero-point energy [40,41].
Another important case is to include strong interquark

interactions with density and/or temperature dependent
quarkmasses. The original idea is to use a density dependent
quark mass to express nonperturbative interaction effects
[42,43]. It was soon applied to study the equation of state
(EOS) [44–51], the viscosity of SQM and dissipation of
r-modes [52], the quark-diquark properties [53], and com-
pact stars [54], etc. Until now, these kinds of models have
been developed greatly [55–58].
The most disputable issue in these kinds of models is the

thermodynamic inconsistency problem [44–49]. Let us take
the zero-temperature case to explain the issue. Originally,
all the thermodynamic formulas are taken as the same of a
free system [44]. In this treatment (TD-1), the properties of
SQM are significantly different from these in the conven-
tional bag model. Subsequently, an additional term was
added to the pressure due to the density dependence of
quark masses, and simultaneously, the additional term was*gxpeng@ucas.ac.cn
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subtracted from the energy density [45]. In this second
treatment (TD-2), SQM can be self-bound. A serious
problem is that the pressure at the minimum of the energy
per baryon deviates obviously from zero. The third treat-
ment (TD-3) has the additional term in the pressure to
confine quarks, but it does not appear in the energy density
[46]. TD-3 successfully overcomes the inconsistency
between the zero pressure and energy minimum, and later
extended to finite temperature [47].
To study the deconfinement phase transition, one needs

to use true chemical potentials to maintain chemical
equilibrium. It was shown [2] that the quark chemical
potentials used in the original TD-3 are in fact effective
ones. The true chemical potential μi of the quark flavor i
differs from the corresponding effective chemical potential
μ�i by a common term for all quark flavors, and accordingly
satisfies the same weak equilibrium conditions. For SQM,
therefore, the effective chemical potentials act like the real
chemical potentials to give the same EOS.
Recently, another effort has been made to clear the

ambiguity in thermodynamic treatments, where the quark
mass was regarded as an intrinsic degree of freedom, and
an additional term was added to the fundamental thermo-
dynamic differential equation [48]. Assuming the effective
mass intrinsic while it depends completely on the state
variables (the density and/or temperature) is conceptually
self-contradictory, and inevitably leads to inconsistency. In
fact, with the additional term to the fundamental thermo-
dynamic differential equation, the original TD-1 treatment
was recovered. Because the pressure in this treatment is
always positive, which poses a problem related to the
stability of SQM, the authors finally had to consider the
vacuum contribution by adding a term to the thermody-
namic potential density, as had been done in a previous
reference [49], to which we refer as TD-4.
Another important aspect very relevant to thermody-

namic treatment is how the quark masses depend on the
density and/or temperature. Originally, the density depend-
ence of quark masses is parametrized as

mi ¼ mi0 þ
B
3nb

; (1)

which was first given for light quarks in Ref. [42] according
to bag model assumption, and extended to including
strange quarks in Ref. [44]. An alternative parametrization
of the density dependence is the cubic-root scaling,

mi ¼ mi0 þ
D

n1=3b

; (2)

derived from the linear confinement and leading-order
in-medium chiral condensate [50]. In Eqs. (1) and (2),
mi0 (i ¼ u, d, s) are the corresponding quark current mass,

nb is the baryon number density, B and D are constants
signifying the confinement strength.
The purposes of the present paper are twofold. First, in

the next section, we give the quantitative criteria for
thermodynamic consistency, and compare the above-
mentioned treatments. It is explicitly shown that TD-1
and TD-2 have unreasonable vacuum limits, and their
pressure at the minimum of energy (free energy at finite
temperature) per baryon deviates obviously from zero,
contradicting standard thermodynamics. The existence of
an additional term to the thermodynamic potential density
in TD-4 depends on whether the quark mass scaling
satisfies the Cauchy condition that ensures the integra-
bility of the relevant path integral. Unfortunately, how-
ever, neither Eq. (1) nor Eq. (2) meets the requirement.
Therefore, the added term in TD-4 for thermodynamic
consistency does not exist for the presently known quark
mass scaling, and consequently TD-4 itself violates
the Maxwell integrability condition. On the other hand,
TD-3 with effective chemical potential interpretation can
naturally give consistent vacuum limits, and the pressure
at the minimum energy (free energy at finite temperature)
is exactly zero. At the same time, all expressions in
TD-3 are given explicitly without any integral, and more
importantly, the Maxwell condition are fulfilled.
Recently, there is much progress in the measurement of

compact stars with mass about 2 times the solar mass
(2M⊙) [59,60]. It is shown that the reciprocity scaling in
Eq. (1) together with TD-2 generates more massive strange
stars than in the bag model [58]. However, the thermody-
namic treatment, TD-2 used there, suffers from thermody-
namic inconsistency, as the authors also noticed. On the
other hand, the thermodynamically consistent TD-3 with
the cubic-root scaling can describe stars with radii even
smaller than in the bag model [16], but the maximum mass
was normally much smaller than 2M⊙ [46]. This case is
mainly because the presently known quark mass scaling,
either the reciprocity scaling or the cubic-root scaling,
merely takes account of the confinement interaction, while
the important perturbative interactions are unable to be
included.
It is, therefore, our second purpose in the present paper to

look for a new quark mass scaling which considers both the
confinement and leading-order perturbative interactions.
We show that this new scaling with TD-3 can describe
quark stars with both low and high maximum masses,
depending on the confinement and perturbative strength
parameters. If SQM is absolutely stable, the maximum
mass is as large as 2 times the solar mass, consistent with
the recent measurements [59,60].
In Sec. II, we first compare the four thermodynamic

treatments. Then in Sec. III, we present a fully consistent
derivation of the thermodynamic treatment that will be used
in the present paper. After arriving at a new quark mass
scaling which includes both confinement and leading-order
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perturbative interactions in Sec. IV, the properties of SQM
and the mass radius relation of strange stars are calculated
in the new scaling in Secs. V and VI. A summary is given
in Sec. VII.

II. INCONSISTENCY OF THE RECENT
THERMODYNAMIC TREATMENT

For comparison purpose, let us start from the
fundamental differentiation equation of standard
thermodynamics,

dĒ ¼ TdS̄ − PdV þ
X
i

μidN̄i; (3)

where Ē is the internal energy, T the temperature, S̄ the
entropy, N̄i the particle number of particle type i, and μi the
corresponding chemical potential. The three terms on
the right are, respectively, the three ways of increasing
the system internal energy, i.e., heat transfer, doing work,
and particle exchange.
Defining the free energy

F̄≡ Ē − TS̄; (4)

Eq. (3) then becomes

dF̄ ¼ −S̄dT − PdV þ
X
i

μidN̄i: (5)

Similarly using the thermodynamic potential,

Ω̄≡ F̄ −
X
i

μiN̄i ¼ Ē − TS̄ −
X
i

μiN̄i; (6)

then Eq. (3) or Eq. (5) becomes

dΩ̄ ¼ −S̄dT − PdV −
X
i

N̄idμi: (7)

In Ref. [48], the quark mass was assumed to be an
intrinsic degree of freedom, and Eq. (7) was modified to

dΩ̄ ¼ −S̄dT − PdV − N̄dμþ Xdm�; (8)

when the system has only one type of particles and the
particle mass is density and/or temperature dependent, i.e.,

m� ¼ m�ðT; nbÞ: (9)

Equations (7) and (8) have significantly different thermo-
dynamic consequences. In the latter case, all the thermo-
dynamic formulas have the same form as these of a free
system, as in Eq. (45) of Ref. [48], i.e.,

S̄ ¼ −
�∂Ω̄
∂T

�
V;μ;m

; P ¼ −
�∂Ω̄
∂V

�
T;μ;m

;

N̄ ¼ −
�∂Ω̄
∂μ

�
T;V;m

; X ¼
�∂Ω̄
∂m

�
T;V;μ

:

In physics, the effective mass is a phenomenological
concept. It is usually introduced to meet some special
purposes. For example, in the relativistic mean-field theory,
an effective nucleon mass, M� ¼ MN − gϕ with g the
coupling and ϕ the scalar field, was introduced to make
the equation of motion become the Dirac equation [61]; in
the NJL model, the quark’s effective mass was introduced
as m�

q ¼ Mq −Ghq̄qi [62]; to avoid complexity of non-
locality in the many-body theory of the early stage, the
interacting nucleon was treated as a particle with kinetic
energy Ek ¼ p2=ð2M�Þ þ a where the effective mass
satisfies 1=M� ¼ 1=M þ 2b [63]; in quantum hadrondy-
namics, an effective mass of the nucleon was determined by
a self-consistent equation [64]; etc.
In the present case, the density and/or temperature

dependent quark mass is also conceptually effective. It is
logically contradictory to assume the quark mass intrinsic
while it is, in fact, dependent on, or determined by, the
medium state variables (the density and/or temperature).
The thermodynamic treatment derived from Eq. (8) is thus
inevitably inconsistent with the standard thermodynamics.
To explicitly show the inconsistency, we have proved a

necessary condition in the Appendix. At zero temperature,
the condition is

Δ ¼ P − n2b
d
dnb

�
E
nb

�
¼ 0; (10)

where P and E are the model-given thermodynamic exp-
ressions. Any consistent thermodynamic treatment must
ensure that Δ be zero at arbitrary density. Specifically, the
pressure at the minimum energy per baryon must be
zero.
In the upper panel of Fig. 1, we reproduce Fig. 1 of

Ref. [48], with the pressure added on the right axis. The
cases for the second and third treatments are also given,
respectively, in the middle and lowest panels for compari-
son. The minimum energy per baryon (Emin), its position
density, the pressure at the minimum, the position of zero
pressure (n0), and the energy per baryon at the zero
pressure (E0) are listed in Table 1. It is obviously seen
that the pressure at the energy minimum is nonzero for
TD-1 and TD-2, and they are exactly located at the same
density for TD-3.
In Fig. 2, we give the Δ as a function of density with the

same mass scaling and parameters [Eq. (1) with
mu0 ¼ md0 ¼ 0, ms0 ¼ 150 MeV, B1=4¼170MeVfm−3].
Again, we see that both TD-1 and TD-2 cannot give zeroΔ,
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while TD-3 naturally gives Δ ¼ 0 at the whole density
region.
Aside from the nonzero Δ at arbitrary density and the

nonzero pressure at the energy minimum, the vacua in
TD-1 and TD-2 are also contradictory themselves. Using
the reciprocity scaling in Eq. (1), one can easily obtain

lim
nb→0

E1 ¼ B; lim
nb→0

P1 ¼ 0: (11)

lim
nb→0

E2 ¼ 2B; lim
nb→0

P2 ¼ −B: (12)

lim
nb→0

E3 ¼ B; lim
nb→0

P3 ¼ −B; (13)

where Ei and Pi (i ¼ 1, 2, 3) are the corresponding energy
density and pressure in the three thermodynamic treat-
ments. The vacua in TD-1 and TD-2 violate the universal
energy conservation law.
Therefore, modifying the fundamental thermodynamic

equation causes unavoidable inconsistencies. In fact, one
should not modify the fundamental equation (7). Instead,
we should modify phenomenological models to meet its
requirements. In the next section, we will explain such a
scheme to make the previous thermodynamic treatment in
full consistency with the standard thermodynamics.
Because the pressure in TD-1 cannot be negative,

another treatment was recommended in Sec. V of
Ref. [48]. The recommended treatment follows that in
Ref. [49], where the total thermodynamic density was
written as

Ω ¼ Ω0ðT; fμig; fmigÞ þΩaðnbÞ: (14)

The functional form of Ω0 is the same as a free-particle
system.
Adding a new term to the thermodynamic potential

density is a good idea because the thermodynamic potential
density changes when interactions set in. In the quasiparticle
model, the added term can be self-consistently obtained
when the particle mass depends solely on temperature [35],
or on respective chemical potentials [m�

i ¼ m�
i ðμiÞ when the

chemical potentials are not coupled] [36], or even the finite
size effects are considered [65].
In the case of density and/or temperature dependent

masses, however, chemical potentials are surely coupled.
We therefore need to check if the added term really exists
for the presently known quark mass scaling.

TABLE I. Pressure at the minimum of energy per baryon
calculated by the different thermodynamic treatment approaches
TD-1 [44,48], TD-2 [45], and TD-3.

Emin Density Pressure n0 E0

(MeV) (fm−3) (MeV fm−3) (fm−3) (MeV)

TD-1 906.3 0.433 90.7 0 ∞
TD-2 1041.8 0.692 113.2 0.433 1116.2
TD-3 906.3 0.433 0 0.433 906.3

FIG. 1. Comparison of the thermodynamic treatments TD-1
(upper panel), TD-2 (middle panel), and TD-3 (lowest panel).
The quark mass scaling parameters are the same as in Ref. [48]
for Figs. 1 and 2 there. The energy per baryon and pressure are,
respectively, on the left and right axis. The pressure is obviously
nonzero at the minimum energy per baryon for TD-1 and TD-2,
and exactly zero for TD-3.

FIG. 2. The Δ as a function of density at zero temperature. The
solid, dashed, and dotted lines are, respectively for the thermo-
dynamic treatments TD-1, TD-2, and TD-3.
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Let us first see how the added term is determined in the
literature [48,49]. Similarly as in the quasiparticle model,
the extra term was chosen to be determined by

dΩa

dnb
¼ −

X
i

∂Ω0

∂mi

dmi

dnb
(15)

so that the particle number density was still given by

ni ¼ −
∂Ω0

∂μi ¼ gi
6π2

ðμ2i −m2
i Þ3=2: (16)

Then from Eq. (15) the added term was obtained as

ΩaðnbÞ ¼ −
Z

nb

ρc

X
i

∂Ω0

∂mi

dmi

dnb
dnb þ ΩaðρcÞ; (17)

where ρc is an integral constant.
In the integrand of Eq. (17), there is not only the argument

nb, but also the chemical potentials μi (i ¼ u, d, s). Because
these chemical potentials are not constants [otherwise one
can inverse Eq. (17) to go back to the bag model], they must
be determined as functions of the density:

μi ¼ μiðnbÞ: (18)

In Refs. [48,49], the functions μiðnbÞ were chosen by
solving Eqs. (69)–(71). Because the thermodynamic poten-
tial density is a state quantity, however, the integration
should be independent of the special path. In the
following, we show that only when the Cauchy condition
is satisfied, can one obtain the additional term by choosing
a special path.
In fact, to eliminate the extra term in the expression of

particle numbers due to the density dependence of quark
masses, one must require

∂Ωa

∂μi ¼ −
X
k

∂Ω0

∂mk

dmk

dnb

∂nb
∂μi : (19)

Namely, the additional term should be given by a path
integral as

Ωa ¼ −
Z

μ

μ0

X
i

∂Ωa

∂μi dμi

¼ −
Z

μ

μ0

�X
k

∂Ω0

∂mk

dmk

dnb

�X
i

∂nb
∂μi dμi: (20)

When one chooses a special path such as that in Eq. (18),
Eq. (20) leads to Eq. (17). Because Ωa is a state function of
the independent state quantities μi (i ¼ u, d, and s), the
path integral on the right-hand side of Eq. (20) should be
path independent. For this the famous Cauchy theorem
must be satisfied:

∂2Ωa

∂μj∂μi ¼
∂2Ωa

∂μi∂μj : (21)

Substituting the right-hand side of Eq. (19) then gives

P
k

∂2Ω0∂μi∂mk

dmk
dnb

∂nb=∂μi ¼
P

k
∂2Ω0∂μj∂mk

dmk
dnb

∂nb=∂μj : (22)

On application of Eq. (16), one has

∂nb
∂μi ¼

μi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −m2

i

p
6π2

g þP
kmk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2k −m2

k

q
dmk
dnb

: (23)

Then one can obtain

mu

μu

dmu

dnb
¼ md

μd

dmd

dnb
¼ ms

μs

dms

dnb
: (24)

Unfortunately, however, neither the reciprocity scaling
[42] nor the cubic-root scaling satisfies the Cauchy
condition (24). An even more general form of mi ¼ mi0 þ
mIðnbÞ cannot do so. Therefore, the additional term Ωa
does not exist for the presently known density and/or
temperature dependent quark mass scaling. We should
therefore look for another more convenient treatment
that is in agreement with the fundamental Eq. (7), or
equivalently, Eq. (5).

III. SELF-CONSISTENT THERMODYNAMICS
WITH DENSITY AND/OR TEMPERATURE

DEPENDENT PARTICLE MASSES

Because the system we are studying has density and/or
temperature dependent masses, it is naturally convenient to
choose the temperature T, the densities ni, and the volume
V as the independent state variables. Therefore, we rewrite
the fundamental Eq. (5) as

dF ¼ −SdT þ
�
−P − F þ

X
i

μini

�
dV
V

þ
X
i

μidni;

(25)

where F≡ F̄=V, S≡ S̄=V, ni ≡ N̄i=V are, respectively,
the free-energy density, the entropy density, and the particle
number densities.
For an infinitely large system such as quark matter, the

free-energy density has nothing to do with the volume. In
this case, we have

P ¼ −F þ
X
i

μini (26)

and
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dF ¼ −SdT þ
X
i

μidni: (27)

Now we try to establish a thermodynamic treatment in
full agreement with this fundamental equation. Because
both TD-1 and TD-2 do not give zero pressure at the energy
minimum, they should naturally be discarded. The model
we are trying to build resembles, in many aspects, the third
treatment TD-3.
At zero temperature, the energy density of a free quark

system is

E0 ¼
X
i

gi

Z
νi

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q p2dp
2π2

; (28)

where νi is the particle type i’s Fermi momentum which is
connected to the corresponding particle number density by

ni ¼ gi

Z
νi

0

p2dp
2π2

¼ giν3i
6π2

: (29)

When the quarks interact with each other, we want to
include the interaction effect with a density dependent mass
as

mi ¼ mi0 þmI; (30)

where mI is a density dependent quantity. We demand that
the system energy density still has the same form as in
Eq. (28), i.e., E ¼ E0, which is also the original idea in
Ref. [42]. This is possible because E0 is an increasing
function of the particle masses. To distinguish with other
mass concepts, we call such a mass an equivalent mass
[66]. With the equivalent mass, both the energy density and
particle number densities have the same form as a free
particle system while only the particle number densities
keep unchanged in the quasiparticle model. We call such a
model an equiparticle model. The corresponding pressure
in the equiparticle model can then be easily deduced
according to the fundamental thermodynamics, as in
Sec. II of Ref. [2]. Here we do not repeat the derivation.
The key point is that the Fermi momentum νi is not directly
linked to the chemical potential μi by νi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −m2

i

p
;

instead, it is connected to an effective chemical potential μ�i
by νi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�i

2 −m2
i

p
, while the relation between the effec-

tive and real chemical potentials are determined by the
fundamental differential equation (27), and, consequently,
the pressure, as well as the thermodynamic potential
density have an additional term due to the density depend-
ence of quark masses.
At finite temperature, the concept of the Fermi momentum

is not as useful as in the case of zero temperature. We should
directly use the concept of effective chemical potentials.
Also the characteristic function should be changed from the
energy to the free energy. Therefore, wewrite the free-energy

density of the system as the same form of a free system with
equivalent particle mass miðT; nbÞ and effective chemical
potentials μ�i at temperature T, i.e.,

F ¼ Ω0ðT; fμ�i g; fmigÞ þ
X
i

μ�i ni: (31)

Please note the arguments in Ω0: the position of free
particle’s chemical potentials have been replaced with the
effective chemical potentials μ�i , i.e.,

Ω0 ¼ Ω0ðT; fμ�i g; fmigÞ (32)

is the thermodynamic potential density of a free system with
the particle masses miðT; nbÞ and chemical potentials μ�i .
Because the independent state variables are (T, V, fnig), not
including μ�i , we should also choose how to connect μ�i to the
independent variables. Here we choose to connect the
effective chemical potentials to particle number densities by

ni ¼ −
∂
∂μ�i Ω0ðT; fμ�i g; fmigÞ; (33)

which are also the choice of many previous thermodynamic
treatments, but the real chemical potentials have been
replaced with effective ones here to ensure the thermody-
namic consistency.
To derive other thermodynamic quantities, let us differ-

entiate Eq. (31) to give

dF ¼ dΩ0 þ
X
i

nidμ�i þ
X
i

μ�i dni; (34)

where

dΩ0 ¼
∂Ω0

∂T dT þ
X
i

∂Ω0

∂μ�i dμ
�
i þ

X
i

∂Ω0

∂mi
dmi (35)

with

dmi ¼
∂mi

∂T dT þ
X
j

∂mi

∂nj dnj: (36)

On application of Eqs. (33), (35), and (36), Eq. (34)
becomes

dF ¼
�∂Ω0

∂T þ
X
i

∂Ω0

∂mi

∂mi

∂T
�
dT

þ
X
i

�
μ�i þ

X
j

∂Ω0

∂mj

∂mj

∂ni
�
dni: (37)

Comparing this equation with Eq. (27), we immediately
have the entropy density
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S ¼ −
∂Ω0

∂T −
X
i

∂Ω0

∂mi

∂mi

∂T (38)

and the true chemical potential

μi ¼ μ�i þ
X
j

∂Ω0

∂mj

∂mj

∂ni ≡ μ�i − μI: (39)

The pressure can be obtained by substituting Eq. (31)
into Eq. (26), giving P ¼ −Ω0 þ

P
iðμi − μ�i Þni, i.e.,

P ¼ −Ω0 þ
X
i;j

∂Ω0

∂mj
ni
∂mj

∂ni : (40)

The energy density is obtained by substituting Eqs. (31)
and (38) into E ¼ F þ TS as

E ¼ Ω0 −
X
i

μ�i
∂Ω0

∂μ�i − T
∂Ω0

∂T − T
X
i

∂Ω0

∂mi

∂mi

∂T ; (41)

while the real thermodynamic potential density is

Ω ¼ F −
X
i

μini ¼ Ω0 −
X
i;j

∂Ω0

∂mj
ni
∂mj

∂ni : (42)

For a given set of the independent state variables T and
ni, the effective chemical potential μ�i is obtained by
solving the equation(s) in Eq. (33). Then other thermody-
namic quantities can be calculated, respectively, by
Eqs. (38)–(42) if the temperature and density dependence
of the quark masses is known.
From Eqs. (40) and (42), one finds that the normal

relation P ¼ −Ω still holds. In fact, all the basic relations of
standard thermodynamics are maintained in the present
treatment. The Ω0, as seen from the derivation process,
serves merely as an intermediate quantity, while other
thermodynamic quantities are derived and expressed in its
functional form. In the following, for example, we list
formulas for the two specially important cases at zero
temperature.

A. Color-flavor locking with density-dependent
particle masses

The color-flavor locked phase is believed to exist at
extremely high density [67,68]. In the MIT bag model, one
has known how to construct the thermodynamic density
long ago [69,70,80]. To consider the medium effect with
density-dependent quark masses, one can similarly con-
struct the thermodynamics density [71,72].

The free particle contribution is

Ω0 ¼
X
q

3

π2

Z
ν

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
− μ�q

�
p2dp

þ 3Δ2

π2
μ̄2 þ B; (43)

where the chemical potentials have been replaced with the
effective ones to consider medium effect with density
dependent particle masses, the second term is the paring
contribution with μ̄ ¼ ðμ�u þ μ�d þ μ�sÞ=3, and the last term
is added if one would also like to include the vacuum
contribution. The common Fermi momentum in the first
term is obtained by minimizing Ω0 at fixed μ�q, i.e.,
∂Ω0=∂ν ¼ 0 which gives

X
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þm2

q

q
¼ 3μ̄: (44)

All other thermodynamic quantities can now be directly
obtained from the above formulas. They are the same as in
Ref. [71], and including finite-size effects in Ref. [72], with
the emphasis that the chemical potentials there be regarded
as effective ones according to the above consistent thermo-
dynamic derivations.

B. The unpaired case at zero temperature

For the unpaired SQM at finite temperature, we have the
same formulas as in Ref. [2], or including finite-size effects
in Ref. [47]. At zero temperature, the formulas are still the
same as those in Ref. [46]. Again, the chemical potentials
there should be regarded as effective ones.
For the convenience of getting a new quark mass scaling

in the next section, we give the free unpaired particle
contribution:

Ω0 ¼ −
X
i

gi
24π2

�
μ�i νi

�
ν2i −

3

2
m2

i

�
þ 3

2
m4

i ln
μ�i þ νi
mi

�
:

(45)

Correspondingly, we have the particle number density

ni ¼
gi
6π2

ðμ�i 2 −m2
i Þ3=2 ¼

giν3i
6π2

; (46)

the relation between the real and effective chemical
potentials

μi ¼ μ�i þ
1

3

∂mI

∂nb
∂Ω0

∂mI
≡ μ�i − μI; (47)

and the pressure

THERMODYNAMIC CONSISTENCY, QUARK MASS … PHYSICAL REVIEW D 89, 105027 (2014)

105027-7



P ¼ −Ω0 þ nb
∂mI

∂nb
∂Ω0

∂mI
¼ −Ω0 − 3nbμI: (48)

In Eqs. (45)–(48),

νi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�i

2 −m2
i

q
(49)

is theFermimomentumof particle type i, while thederivative
of Ω0 with respect to the interacting quark mass is

∂Ω0

∂mI
¼

X
i

gimi

4π2

�
μ�i νi −m2

i ln
μ�i þ νi
mi

�
: (50)

For future convenience, we define a holistic Fermi
momentum as

ν≡
�

1

Nf

X
q
ν3q

�
1=3

; (51)

where the summation index q goes over all quark flavors
involved, and Nf is the quark flavor number. Equation (51)
means ν is the subtriplicate of the averaged cubic Fermi
momentum. With a view to Eq. (46) and the definition of
the baryon number density nb ¼

P
qnq=3, Eq. (51) can

naturally be linked to density by

ν ¼
�
3π2

Nf
nb

�
1=3

; nb ¼
Nf

3π2
ν3: (52)

Obviously, ν has the dimension of energy. It can therefore
be used as an energy scale of cold quark matter. For the
color-flavor locked case, it equals to the common fermi
momentum.

IV. QUARK MASS SCALING WITH LINEAR
CONFINEMENT AND LEADING-ORDER

PERTURBATIVE INTERACTIONS

In order to get an appropriate equivalent mass, we carry
out the similar procedure as was done in Ref. [73], namely
we expand the equivalent mass to a Laurant series of the
holistic Fermi momentum ν, and take the leading term in
both directions:

mI ¼
a−1
ν

þ a1ν: (53)

We will soon see that the first term corresponds to the
linear confinement, while the second term is responsible for
the leading-order perturbative interactions.
At lower density, the first term becomes infinitely large

when the holistic Fermi momentum, or the density,
approaches to zero. Therefore, Eq. (53) becomes mI ¼
a−1=ν at lower density. On the other hand, we have already
known that the lower density behavior ismI ¼ D=n1=3b with

the confinement parameter D connected to the string
tension σ0, the chiral restoration density ρ�, and the sum
of the vacuum chiral condensates

P
qhq̄qi0 by

D ∼
3ð2=πÞ1=3σ0ρ�
−
P

qhq̄qi0
: (54)

Although we cannot use this formula to exactly calculate
the D value due to the uncertainties in relevant quantities,
we do know that D is a low energy parameter, and that

ffiffiffiffi
D

p
approximately is in the range of (147, 270) MeV [47].
Equating a−1=ν and D=n1=3b , we immediately find

a−1 ¼ D

�
3π2

Nf

�
1=3

: (55)

At higher density, the second term in Eq. (53) dominates.
A little later, we show that the coefficient a1 runs with the
strong coupling constant α≡ αs=π ¼ g2=4π2 according to
the equation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a21

q �
1þ a21

2

�
−
a41
2
ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a21

p
a1

¼ ð1 − 2αÞ−1=3:
(56)

In fact, we can prove Eq. (56) by comparing the present
model at higher density with the perturbation results.
There are several expressions for the pressure of a cold

quark plasma, e.g., those from the hard-thermal-loop
perturbation theory [74] and from the weak-coupling
expansion [75–77]. Although they are different in higher
orders, the leading term is identical, i.e.,

P ¼ Nfμ
4

4π2
ð1 − 2αÞ; (57)

nb ¼
Nfμ

3

3π2
ð1 − 2αÞ: (58)

At high density, because of theweak chemical equilibrium
condition μu þ μe ¼ μd ¼ μs and the quark current masses
being unimportant, we consider the flavor-symmetric
case in the present model when mu0 ¼ md0 ¼ ms0 ¼ 0,
μu ¼ μd ¼ μs ≡ μ, νu ¼ νd ¼ νs ¼ ν, and mi ¼ mI. At
high density, the second term on the right-hand side of
Eq. (53) gives mI ¼ a1ν. Accordingly, we have μ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2þm2

I

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa21

p
ν, and dmI=dν¼ a1þ νda1=dν≈a1.

(The second term is of higher order in the coupling, and can
thus be ignored.) On application of these facts, Eq. (47) gives
the relation between the actual and effective chemical
potentials as

μ� ¼ μ

�
1þ a21

2
−

a41
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a21

p ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a21

p
a1

�−1

; (59)
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and the Fermi momentum is then

ν ¼ μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a21

q �
1þ a21

2

�
−
a41
2
ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a21

p
a1

�−1
:

(60)

Substituting Eq. (60) into the second equality of Eq. (52)
and then comparing with Eq. (58), or, equivalently,
comparing Eq. (48) with Eq. (57) after using Eqs. (59)
and (60) etc., we immediately obtain Eq. (56).
Equation (56) determines a1 as a function of the strong

coupling α. Although the numerical calculation of the
function is easy, an explicit expression of the functional
form may be helpful. For this we can ignore the logarithmic
term that is of the fourth order in a1, giving

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 27

p
3
p

3
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 27

p
3
p �2

− 1

vuut
(61)

with a ¼ 27ð1 − 2αÞ−1=3. Or, for simplicity, we just keep
the leading term as

a1 ¼
ffiffiffiffiffiffi
2

3
α

r
: (62)

The functions a1ðαÞ from Eqs. (56), (61), and (62) are
given, respectively, by solid, dotted, and dashed curves
in Fig. 3.
Now let us rewrite the quark equivalent mass as

mi ¼ mi0 þ
D

n1=3b

þ C1a1n
1=3
b ; (63)

which is obtained by substituting Eqs. (52) and (55) into
Eq. (53). The factor ð3π2=NfÞ1=3 ≡ C1max in the term
proportional to the cubic-root density has been replaced
with a parameter C1. This is because we have ignored the
quark current masses in the derivation of the mass scaling.
If the finite current quark masses were included, one
would find that the factor is smaller. Also, other appro-
aches might give different C1 values, for example, when
one considers the one-gluon-exchange interaction [56],
or the isospin interaction [57]. Therefore, we choose C1

as a phenomenological model parameter in the range
of jC1j < π2=3 ≈ 2.145.
We have already known that the a1 in Eq. (63) depends

on the running coupling α, i.e., a1 ¼ a1ðαÞ. Now we have
to discuss how the strong coupling is running.
The running coupling satisfies the renormalization-group

equation:

dα
d ln u2

¼ βðαÞ ¼
X
i

βiα
iþ2; (64)

where the beta functions, βi, depend generally on which
renormalization scheme is used. In the minimum subtrac-
tion scheme [78], they are known to the fourth order [79].
The first two beta functions, β0 and β1, are independent
of renormalization schemes, i.e., β0¼11=4−Nf=6 and
β1 ¼ 51=8 − 19Nf=24.
Simply truncating the right-hand side of Eq. (64) to the

first order in α, one can easily find an inversely logarithmic
solution. It is well known, however, this simple solution
has an obviously too-large deviation from higher-order
solutions. Recently, a fast convergent expression has been
obtained by resummation over an infinite number of
known terms into a compact form [80], and the leading
contribution is

α ¼ β0
β20 lnðu2=Λ2Þ þ β1 ln lnðu2=Λ2Þ ; (65)

where Λ is a QCD scale parameter, and we take
Λ ¼ 325 MeV as determined in Ref. [80].
Another method is to use the analytic coupling constant

in the one-loop approximation [81]

α ¼ 1

β0

�
1

ln ðu2=Λ2Þ þ
1

1 − u2=Λ2

�
: (66)

Both Eqs. (65) and (66) indicate that the coupling runs
logarithmically. The running rate is thus much slower.

FIG. 3. Variation of the perturbation parameter a1 with the
strong coupling α ¼ αs=π. The solid curve is solved from
Eq. (56), the dotted curve is calculated by Eq. (61) which ignores
the logarithmic term in Eq. (56), and the dashed line is the leading
contribution given by Eq. (62).
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Therefore, we can use an averaged constant coupling to
rewrite Eq. (63) as

mi ¼ mi0 þ
D

n1=3b

þ Cn1=3b ; (67)

where C1a1 has been grouped to be replaced with an
averaged constant C.
From Eq. (66), it is easy to show that the maximum α

value is 1=β0. Thus the maximum value of a1 is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð3β0Þ

p
according to Eq. (62). Consequently, we have

C <

�
3π2

Nf

�
1=3

ffiffiffiffiffiffiffi
2

3β0

s
≈ 1.1676: (68)

In Fig. 4, we show the different regions of the parameters
C and D when taking mu0 ¼ 5 MeV, md0 ¼ 10 MeV, and
ms0 ¼ 100 MeV. The lower-left region is forbidden where
two-flavor quark matter is stable, while in the upper-right
region SQM is unstable. Only in the shaded region, SQM is
absolute or metastable. In the following calculations with
Eq. (67), we will take the typical sets of ðC; ffiffiffiffi

D
p Þ pairs

where C is dimensionless and
ffiffiffiffi
D

p
is in MeV: (0.7,129),

(0.6,135), (0.4,140), (0,156), (0.6,156). These parameter
pairs are indicated in Fig. 4 with solid dots.
Wewould like to emphasize that the equivalent mass is in

principle connected to the in-medium chiral condensates
[66,73,82], and is thus different from various effective
masses. In a NJL-type (or Schwinger-Dyson, relativistic-
mean-field, …) description of interacting quarks, one has
contributions that affect the mass via scalar densities and
the chemical potential through vector densities. In the
present approach, an equivalent mass includes contribu-
tions from both the scalar and vector fields. It was explicitly
shown in Ref. [66], in the context of symmetric nuclear
matter and to leading order in quantum hadrondynamics,

that the nucleon’s effective mass involves only the scalar
field σ, while its equivalent mass is linked to both the scalar
σ field and the Lorentz vector field ω.

V. PROPERTIES OF STRANGE QUARK MATTER

As usually done, we assume SQM to be composed of up
(u), down (d), and strange (s) quarks with charge neutrality
maintained by the inclusion of electrons (e) [10]. Due to the
weak interactions such as d, s↔uþ eþ ν̄e, sþ u↔uþ d,
etc., the chemical potentials μi (i ¼ u, d, s, e) satisfy the
weak equilibrium conditions (neutrinos enter and leave the
system freely, and the corresponding chemical potential has
been taken to be zero):

μu þ μe ¼ μd ¼ μs: (69)

The charge neutrality condition reads

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0; (70)

with the baryon number conservation

1

3
ðnu þ nd þ nsÞ ¼ nb: (71)

In the present thermodynamic treatment, the particle
number densities ni (i ¼ u, d, s, e) in Eqs. (70) and (71) are
connected, by Eq. (46), to the effective chemical potentials
μ�i which is linked to the real chemical potentials μi by
Eq. (47). Therefore, Eqs. (69)–(71) are four equations about
the four chemical potentials μi which can be solved out at
given density.
According to Eq. (47), the true and effective chemical

potentials for each flavor of quarks differ merely by a
common quantity μI. Thus the effective chemical potentials
also satisfy the similar weak equilibrium conditions:

μ�u þ μe ¼ μ�d ¼ μ�s : (72)

Because electrons donot participate in strong interactions, the
corresponding mass is constant. Consequently, the effective
and true chemical potentials of electrons are the same.
We can also directly solve for the effective chemical

potentials from Eqs. (70)–(72), and then calculate all other
thermodynamic quantities from the derived expressions.
To calculate the corresponding thermodynamic quan-

tities such as the true chemical potentials and the pressure
etc., we need to provide the derivative of the quark mass
with respect to the density. For Eq. (67), it is simply

dmi

dnb
¼ −

D

3n4=3b

þ C

3n2=3b

: (73)

With the quark mass scaling in Eq. (67) and the
corresponding derivative in Eq. (73), we plot the equation

FIG. 4. Different range of the parameters D and C. Within the
shaded region, SQM is stable. In the upper-right region, SQM
is unstable, while the lower-left is the forbidden region where
two-flavor quark matter is stable.
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of state (EOS) of SQM in Fig. 5 for the parameters ðC; ffiffiffiffi
D

p Þ
indicated by solid dots in Fig. 4. From Fig. 5 we have two
observations: (1) For parameters within the stable region,
the EOS is stiffer than those out of the region; (2) within
the region, the stiffness increases with increasing C and
decreasing D.
For the running coupling case of Eq. (63), we have

dmi

dnb
¼ −

D

3n4=3b

þ C1

3n2=3b

�
a1 þ ν

da1
dα

dα
du

du
dν

�
: (74)

The derivative da1=dα can easily be obtained by differ-
entiating Eq. (56), giving

da1
dα

¼ 4ð1 − 2αÞ−4=3

3a1ð 4þa2
1ffiffiffiffiffiffiffiffi

1þa2
1

p þ 8a21 ln
1þ

ffiffiffiffiffiffiffiffi
1þa2

1

p
a1

Þ
: (75)

Simply with the leading expression in Eq. (62) we have

da1
dα

¼ 1ffiffiffiffiffiffi
6α

p : (76)

Because we are trying to include first-order pertur-
bative interaction, we use the leading expression in
Eqs. (62) and (76) in the numerical calculations of the
present paper.
The derivative dα=du in Eq. (74) should not be replaced

with the right-hand side of Eq. (64). Instead, the expression
is usable depending on which equation, Eq. (65) or
Eq. (66), is used. In the former case we have

dα
du

¼ −
α2

u

�
2β0 þ

β1
β0 lnðu=ΛÞ

�
: (77)

Otherwise, if the latter is used, one then has

dα
du

¼ 1

β0u

�
2

ðu=Λ − Λ=uÞ2 −
1

2ln2ðu=ΛÞ
�
: (78)

Finally, we discuss the relation between the holistic
Fermi momentum ν and the renormalization subtraction
point u. In principle, the exact relation is not available
presently. Phenomenologically we also expand it according
to the Fermi momentum ν and take to the first order as

u ¼ c0 þ c1ν: (79)

To use Eq. (65), we have to choose a comparatively large
value for c0 because it should map the u value into a
reasonable perturbative range. We take c0 ¼ MN ¼
938.926 MeV. For analytic Eq. (66), however, one does
not need to take care of this, and a smaller one, e.g.,
c0 ¼ Λ, can be taken.
As for the c1 value, it is generally between 2 and 3, and

we take a modest value as c1 ¼ 2.5.
In Fig. 5, the dash-dot-dotted curve is for C1 ¼ 2.145

and
ffiffiffiffi
D

p ¼ 135 MeV with the running coupling Eq. (65).
Based on the results in Fig. 5, we can obtain the velocity

of sound for SQM using the formula

v ¼
ffiffiffiffiffiffi
dP
dE

r
(80)

with the results given in Fig. 6. As the baryon number
density increases, the velocity of sound also increases. At
higher densities, the curve corresponding to a larger C

FIG. 5. Energy per baryon as functions of the baryon number
density for the mass scaling in Eq. (67) at mu0 ¼ 5 MeV,
md0 ¼ 10 MeV, ms0 ¼ 100 MeV, with different D and C values
indicated in the legend. FIG. 6. The velocity of sound in SQM.
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value approaches to the ultrarelativistic case (1=
ffiffiffi
3

p
) more

slowly. This is understandable since there are still pertur-
bative interactions at higher densities.

VI. PROPERTIES OF STRANGE STARS

The quark star has been an interesting subject in nuclear
physics, astrophysics, as well as in some other important
fields. Pioneer works were done with the earlier version of
the bag model [1,83–85]. Many further investigations have
appeared in the past two decades, such as in Refs. [86,87].
Models other than the bag one have also been applied, e.g.
the SU(3) parity doublet model [88], the NJL model [89],
the Komathiraj-Mahara method [90,91], etc.
Recently, the stellar properties were studied with the

reciprocity scaling in Eq. (1) and the thermodynamic
treatment TD-2 [58]. It is found that the maximum mass
exceeds 2M⊙ for all the model parameters in the whole
stability window. Therefore, this model can describe
massive quark stars, but fails to accommodate stars with
low radii. As also noted by the authors, the treatment
suffers from thermodynamic inconsistency.
With the consistent thermodynamic treatment TD-3, the

mass-radius relation was previously calculated with the
cubic-root scaling [46]. It was found that the maximum
mass is normally much smaller than 2M⊙ [46]. Using TD-3
with the reciprocity, the case is also similar, though it can
describe stars with low radii [16]. Even when one changes
the confinement exponent, which is unity in Eq. (1) and a
third in Eq. (2), to other values, or considering isospin
interactions [57], the case is still similar [92].
In the preceding sections, we have obtained a new quark

mass scaling which includes both the confinement and the
leading-order perturbative interactions. On application of
the scaling and the fully consistent thermodynamic treat-
ment, we obtain the new EOS in Fig. 5. Let us now apply it
to solve the Tolman-Oppenheimer-Volkov equation

dP
dr

¼ −
GmE
r2

ð1þ P=EÞð1þ 4πr3P=mÞ
1 − 2Gm=r

(81)

with the subsidiary condition

m ¼
Z

r

0

4πEr2dr: (82)

For a concise description of the solving process, one can
refer to Ref. [46]. The results are given in Fig. 7 where the
maximum mass is marked with full dots. Obviously the
maximum mass can be as large as 2M⊙.
Generally, the maximum star mass increases with

increasing perturbative strength parameter C, but decreases
with increasing the confinement strength parameter D.
Therefore, going toward the lower-right direction of the
stability region (shaded in Fig. 4) increases to as large as
2M⊙, while going in the upper-right direction, it decreases

to give stars with small radii, and the maximummass is also
small, much less than 2M⊙.
It should be noted that when a comparatively large C

value is used to produce a large maximummass, the density
at the surface of the star becomes very small, even below
the normal nuclear saturation density. To show this explic-
itly, we draw the density profiles as a function of the radius
with four sets of the parameter pair ðC; ffiffiffiffi

D
p Þ. The panel

(a) is for the parameter pair ðC; ffiffiffiffi
D

p Þ ¼ ð0; 156 MeVÞ. In
this case, the maximum star mass is smaller (∼1.6M⊙), and
the surface density is comparatively higher (0.24 fm−3).
The panels (b), (c), and (d) are, respectively, for (0.4,
140 MeV), (0.6, 135 MeV), (0.7, 129 MeV). In these cases,
the maximum star mass becomes larger, but the surface
density gets low, even lower than the normal nuclear matter
one. This is clearly a signal for the phase transition to
nuclear matter. Therefore, further investigations on the
QCD phase diagram [2] are necessary in future works with
the new quark mass scaling.
Now we discuss a little about how to ensure the

asymptotic freedom at extremely high density. As one
can see, the perturbative term in the new quark mass scaling
does not obviously decrease with increasing density. This
problem is not presently serious because, on one hand, the
decreasingly running factor C ensures that the increasing
velocity is slow, and on the other hand, quarks become
asymptotically free rather slowly [93]. Also, if necessary,
one can use a damping form factor, to obviously ensure it,
as done in Refs. [56,57] for considering the isospin or one-
gluon-exchange interactions.
Furthermore, the color superconductivity [67] and the

strong magnetic field [94,95], which possibly play impor-
tant roles at extremely high density, have not been
considered. The influence of these factors to the EOS of

FIG. 7. Mass-radius relation of strange stars for various
parameter sets.
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SQM, and accordingly to the structure of compact stars,
should be considered in future papers.

VII. SUMMARY

We have clarified the inconsistency issues in the previous
thermodynamic treatments on SQM with density and/or
temperature dependent particle masses. We find that the
fundamental differential equation of standard thermody-
namics dose not need to be modified. Instead, the previous
treatments with nonzero pressure at the energy minimum
should be discarded, while calculations in TD-3 are still
correct, and for a full thermodynamic consistency, one
just needs to regard the original chemical potentials as
effective ones.
By expanding the equivalent mass to a Laurant series and

taking the leading terms in both directions, we arrive at a
new quark mass scaling with linear confinement and
leading-order perturbative interactions. With the new quark
mass scaling and the present thermodynamic treatment, we
have studied the EOS of SQM with both constant and
running strong coupling. It is found that the new model,
which can be called an equiparticle model, gives the EOS
which can describe massive quark stars with gravitation
mass as large as 2 times the solar mass. At the same time, it
can also describe stars with low radii, depending on the

comparative strength of the confinement and leading
perturbative interactions.
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APPENDIX: NECESSARY CONDITIONS FOR
THE FULLY CONSISTENT THERMODYNAMICS

OF STRANGE QUARK MATTER

Strange quark matter is usually composed of up, down,
and strange quarks and electrons. Due to weak reactions,
the chemical potentials μi (i ¼ u, d, s, e) satisfy the weak
equilibrium condition, the charge neutrality, and the baryon
number density conservation, as in Eqs. (69)–(71). To solve
out the chemical potentials μi (i ¼ u, d, s, e) from these
equations for a given baryon number density n, one should
know the relation between the chemical potentials μi and
particle number densities ni. Furthermore, one should
know how to calculate the system energy density (the free
energy at finite temperature), the pressure, and other
thermodynamic quantities that belong to thermodynamic

FIG. 8. Density profiles for different values of the parameters C and
ffiffiffiffi
D

p
. The uppermost curve on each panel is for the largest

acceptable central density, while the horizontal line corresponds to the surface density of the star.
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treatments. Here we derive model-independent relations
any fully consistent thermodynamic treatment for SQM
must satisfy.
Let us start from the fundamental thermodynamic differ-

ential equation by using the free energy F̄ ¼ Ē − TS̄ as

dF̄ ¼ −S̄dT − PdV þ
X
i

μidN̄i: (A1)

For an isotropic system with homogeneously distributed
particles, it is convenient to define the corresponding
intensive quantities: the energy density E≡ Ē=V, the
free-energy density F≡ F̄=V, the entropy density
S≡ S̄=V, and the particle number densities ni ≡ N̄i=V.
Equation (A1) then becomes

dF ¼ −SdT þ
X
i

μidni

þ
�
−P − F þ

X
i

μini

�
dV
V

: (A2)

Equation (A2) indicates that one should use T, fnig, and V
as the independent state variables if the free-energy density
F is chosen as the characteristic quantity. If F as a function
of the independent state variables is known, all other
thermodynamic quantities can be calculated from it by

S ¼ dF
dT

����
fnkg

; (A3)

μi ¼
dF
dni

����
T;fnk≠ig

; (A4)

P ¼ −F þ
X
i

μini: (A5)

In general e.g. for strangelets, F is a function of T, fnig,
and V. In this case, a term like V∂F=∂V should be added
to the right-hand side of Eq. (A5). In the present case,
however, we are considering strange quark matter whose
finite size effect is not significant. The free-energy density
F does not depend on the volume, and Eq. (A2) accord-
ingly becomes

dF ¼ −SdT þ
X
i

μidni: (A6)

Because all the second-order mixed partial derivatives
of an arbitrary analytic function are equal to each other
mathematically, we can easily obtain, from Eqs. (A3) and
(A4), the relations

Δi ≡ dS
dni

����
T;fnk≠ig

−
dμi
dT

����
T;fnkg

¼ 0 (A7)

and

Δij ≡ dμi
dnj

����
T;fnk≠jg

−
dμj
dni

����
T;fnk≠ig

¼ 0; (A8)

where i, j ¼ u, d, s quarks. Equations (A7) and (A8) are
nothing but the Cauchy conditions for the right-hand side
of Eq. (A6) to be integrable when the free energy is chosen
as the characteristic function.
When additional conditions are provided, e.g. these in

Eqs. (69)–(71), the free-energy density F is determined as a
function of the temperature and the density n≡P

qnq=3.
At a given T, Eq. (A6) gives

dF
dn

¼
X
i

μi
dni
dn

: (A9)

Therefore, we have

n
dF
dn

¼ n

�X
q

μq
dnq
dn

þ μe
dne
dn

�

¼ n

�
μ
X
q

dnq
dn

− μe
dnu
dn

þ μe
dne
dn

�

¼ n

�
μ
d
dn

�X
q

nq

�
− μe

d
dn

ðnu − neÞ
�

¼ nð3μ − μeÞ ¼ μ
X
q

nq − μen

¼
X
q

μqnq þ μenu − μen

¼
X
i

μini − μene þ μenu − μen

¼
X
i

μini þ μeðnu − ne − nÞ

¼
X
i

μini; (A10)

where the summation on the index i goes over u; d; s; e,
while that on q goes over u; d; s. We have used the chemical
equilibrium μu þ μe ¼ μd ¼ μs ≡ μ and the relation
nu − ne ¼ n obtained by combining Eqs. (70) and (71).
Considering Eq. (A5), we thus have

P ¼ n2
d
dn

�
F
n

�
T
; (A11)

i.e.,

Δ≡ P − n2
d
dn

�
F
n

�
T
¼ 0: (A12)

Equation (A12) means that the pressure at the
free-energy minimum (the energy minimum at zero
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temperature) is exactly zero. In other words, the (free-)
energy minimum is a mechanically stable state.
Equations (A7) and (A8) are the Cauchy conditions which
ensure the existence of the system. Therefore, Eqs. (A12),
(A7), and (A8) are the necessary conditions for any
consistent thermodynamics of strange quark matter. One

can use the pressure, (free-)energy density, chemical
potentials, and entropy density given by a phenomeno-
logical model to calculate the Δ’s defined in Eqs. (A7),
(A8), and (A12). Any obvious difference from zero
indicates the inconsistence degree of the corresponding
thermodynamic treatment.
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