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The closed-time-path (CTP) formalism is applied, in the framework of open quantum systems, to study
the time evolution of the expectation value of the energy-momentum tensor of a scalar field in the presence
of real materials. We analyze quantum (Casimir) fluctuations in a fully nonequilibrium scenario, when the
scalar field is interacting with the polarization degrees of freedom of matter, described as quantum
Brownian particles (harmonic oscillators coupled to a bath) at each point of space. A generalized analysis is
done for two types of couplings between the field and the polarization degrees of freedom. On the one hand,
we consider a bilinear coupling between the field and the polarization degrees of freedom, and on the other
hand, a (more realistic) current-type coupling as in the case of the electromagnetic field interacting
with matter. We successfully compute the CTP generating functional for the field through calculating
the corresponding influence functionals. We consider the high-temperature limit for the field, keeping
arbitrary temperatures for each part of the material’s volume elements. We obtain a closed form for the
Hadamard propagator, which allows us to study the dynamical evolution of the expectations values
of the energy-momentum tensor components from the initial time when the interactions are turned on. We
show that two contributions always take place in the transient evolution: one is associated with the material,
and the other is only associated with the field. Transient features are studied and the long-time limit is
derived in several cases. We prove that in the steady situation of a field in nþ 1 dimensions, the material
always contributes unless it is nondissipative. Conversely, the proper field contribution vanishes unless the
material is nondissipative or—at least for the 1þ 1 case—if there are regions without material. We finally
conclude that any steady quantization scheme in 1þ 1 dimensions must consider both contributions and,
on the other hand, we argue why these results are physically expected from a dynamical point of view, and
also could be valid for higher dimensions based on the expected continuity between the nondissipative
and real-material cases.

DOI: 10.1103/PhysRevD.89.105026 PACS numbers: 03.70.+k, 03.65.Yz, 42.50.-p

I. INTRODUCTION

The study of the Casimir forces in the framework of open
quantum systems holds the possibility of analyzing non-
equilibrium effects, such as the Casimir force between
objects at different temperatures [1], the power of heat
transfer between bodies [2], and the inclusion of time-
dependent evolutions until reaching a stationary situation.
Although the celebrated Lifshitz formula [3] describes the
forces between dielectrics in a steady situation in terms
of their macroscopic electromagnetic properties, it is not
derived from a first-principles quantum framework. The
original derivation of this very general formula is based
on a macroscopic approach, starting from stochastic
Maxwell equations and using thermodynamical properties
for the stochastic fields. As pointed out in several papers,
the connection between this approach and an approach
based on a fully quantized model is not completely clear.
Moreover, some doubts have been raised about the appli-
cability of the Lifshitz formula to lossy dielectrics [4–6].

Moreover, from a conceptual point of view, the theo-
retical calculations for mirrors with general electromagnetic
properties, including absorption, is not a completely settled
issue [4–6]. Since dissipative effects imply the possibility
of energy interchanges between different parts of the full
system (mirrors, vacuum field, and environment), the
theory of open quantum systems [7] is the natural approach
to clarify the role of dissipation in Casimir physics. Indeed,
in this framework dissipation and noise appear in the
effective theory of the relevant degrees of freedom (the
electromagnetic field) after integration of the matter and
other environmental degrees of freedom.
The quantization in the steady situation (steady quanti-

zation scheme) can be performed starting from the macro-
scopic Maxwell equations and by including noise terms to
account for absorption [8]. In this approach a canonical
quantization scheme is not possible unless one couples
the electromagnetic field to a reservoir (see Ref. [5]), follo-
wing the standard route to include dissipation in simple
quantum-mechanical systems. Another possibility is to
establish a first-principles model in which the slabs are
described through their microscopic degrees of freedom,
which are coupled to the electromagnetic field. In these
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kinds of models, losses are also incorporated by consid-
ering a thermal bath to allow for the possibility of
absorption of light. There is a large body of literature on
the quantization of the electromagnetic field in dielectrics.
Regarding microscopic models, the fully canonical quan-
tization of the electromagnetic field in dispersive and lossy
dielectrics has been performed by Huttner and Barnett (HB)
[9]. In the HB model, the electromagnetic field is coupled
to matter (the polarization field), and the matter is coupled
to a reservoir that is included in the model to describe
the losses. In the context of the theory of quantum open
systems, one can regard the HB model as a composite
system in which the relevant degrees of freedom belong to
two subsystems (the electromagnetic field and the matter),
and the matter degrees of freedom are in turn coupled to
an environment (the thermal reservoir). The indirect cou-
pling between the electromagnetic field and the thermal
reservoir is responsible for the losses. As we will comment
below, this will be our starting point to compute the Casimir
force between absorbing media.
In a previous work [10], we have followed a steady

canonical quantization program similar to that of Ref. [11],
generalizing it by considering a general and well-defined
open quantum system. In this work, we will work with two
simplified models analogous to that of HB, both of which
assume that the dielectric atoms in the slabs are quantum
Brownian particles, and that they are subjected to fluctua-
tions (noise) and dissipation due to the coupling to an
external thermal environment.Wewill use a general spectral
density to specify the bath to which the atoms are coupled.
In this way, we are generalizing the constant dissipation
model, as it was done in Ref. [10]. Indeed, after integration
of the environmental degrees of freedom, it will be possible
to obtain the dissipation and noise kernels that modify the
unitary equation of motion of the dielectric atoms.
The difference between both models lies in their cou-

plings to the field. On the one hand, the first model—which
we will call the bilinear coupling model—consists in a
direct coupling between the field and the atom’s polariza-
tion degree of freedom at each point of space. On the
other hand, the current-type coupling model consists in a
coupling between the field time derivative and the atom’s
polarization degree of freedom. The former model is more
suitable for the development of the calculations, while the
latter is more realistic in the sense that is closer to the
real coupling between the electromagnetic (EM) field and
the matter. However, both models are of interest and can
be studied together in a compact way to obtain general
conclusions about the nonequilibrium thermodynamics
and transient-time evolution of quantum fields in the
framework of open quantum systems.
With this aim, we use the Schwinger-Keldysh [or closed-

time-path (CTP), i.e., in-in] formalism to provide the
theoretical framework, which is based on the original
papers by Schwinger [12] and Keldysh [13] and is

particularly useful for nonequilibrium quantum field theory
(see also Refs. [14–16]). According to the CTP formalism,
the expectation value of an operator and its correlation
functions can be derived from an in-in generating func-
tional in a path integral representation [17], in a similar
way as it happens in the well-known in-out formalism [18]
but by doubling the fields and connecting them by a CTP
boundary condition, which ensures that the functional
derivatives of the generating functional give expectation
values of the field operator. In this scheme, the open
quantum systems framework is totally integrated through
the concept of the influence action [19], resulting from a
partial trace over the environment degrees of freedom,
which gives the effective dynamics for the system through a
coarse graining of the environments. Influence actions have
been calculated in different contexts in the literature; for
example, specific models assume that during cosmological
inflation the UV (or sub-Hubble) modes of a field, once
integrated out, decohere the IR (or super-Hubble) modes
because the former modes are observationally inaccessible.
In these models, the CTP formalism applied to cosmo-
logical perturbations aims to describing the transition
between the quantum nature of the initial density inhomo-
geneities as a consequence of inflation and the classical
stochastic behavior [20].
This paper is organized as follows. In the next section we

introduce the bilinear model. In Sec. III, we fully develop
the CTP formalism for the open quantum system to obtain
the generating functional for the field and the influence
actions that result after each functional integration, iden-
tifying the dissipation and noise kernels in each influence
action. In Sec. IV, we extend—via a few modifications—
the calculation of the generating functional done in Sec. III
to the current-type model, calculating the new dissipation
and noise kernels. In Sec. V, we derive a closed form for
the expectation values of the energy-momentum tensor
components in terms of the Hadamard propagators for
each coupling model. Then, in Sec. VI we study different
scenarios of interest where our general results give different
transient-time behaviors and different conclusions about
the steady situations in each coupling case. Finally, Sec. VII
summarizes our findings. The Appendix contains some
details of intermediate calculations.

II. BILINEAR COUPLING

In order to include the effects of dissipation and noise
(fluctuations) in the calculation of the energy density of the
electromagnetic field in interactions with real media, we
will develop a full CTP approach to the problem.
Therefore, we will consider a composite system con-

sisting of two parts: the field—which we will consider to be
a real massless scalar field—and the real media, which in
turn are modeled by continuous sets of quantum Brownian
particles localized in certain regions of space. With this, we
represent the polarization density degrees of freedom.
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These degrees of freedom are basically harmonic oscillators
coupled to the field at each point and that can be associated
with the material’s atoms. The composite system (field
and material atoms) is also coupled to an external bath of
harmonic oscillators through the interaction between the
atoms in the material and the thermal environment.
Then, the total action for the whole system is given by

S½ϕ; r; qn� ¼ S0½ϕ� þ S0½r� þ
X
n

S0½qn� þ Sint½ϕ; r�

þ
X
n

Sint½r; qn�; (1)

where each term is given by

S0½ϕ� ¼
Z

dx
Z

tf

t0

dτ
1

2
∂μϕ∂μϕ; (2)

S0½r� ¼
Z

dx
Z

tf

t0

dτ4πηxgðxÞ
mx

2
ð_r2xðτÞ − ω2

xr2xðτÞÞ; (3)

S0½qn� ¼
Z

dx
Z

tf

t0

dτ4πηxgðxÞ
mn;x

2

× ð _q2n;xðτÞ − ω2
n;xq2n;xðτÞÞ; (4)

Sint½ϕ; r� ¼
Z

dx
Z

tf

t0

dτ4πηxgðxÞλ0;xϕðx; τÞrxðτÞ; (5)

Sint½r;qn�¼
Z

dx
Z

tf

t0

dτ4πηxgðxÞ
λn;xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mn;xωn;x

p rxðτÞqn;xðτÞ;

(6)

where the subindex x denotes the fact that the oscillators
(and its properties) at each point of the space are indepen-
dent of one another. In other words, we have to regard the
set of oscillators r associated to the polarization density that

form the material as a continuum of independent quantum
degrees of freedom (with density ηx), where each polari-
zation degree of freedom has its own material properties
(massmx, frequencyωx, and coupling λ0;x), where x is only
a label when appearing as a subindex (we are assuming
that the material can be inhomogeneous). Analogously,
we consider the respective properties of each thermal
bath interacting with the polarization degrees of freedom
represented by the sets of oscillators fqn;xg at each
spatial point.
On the other hand, the matter distribution gðxÞ defines

the regions of material and is g ¼ 1 for these regions and
g ¼ 0 outside them.
It is also worth noting that the scalar field seems to be

one of the electromagnetic field components interacting
with matter. In this first model we consider, for simplicity,
a bilinear coupling between the field and the polarization
degree of freedom.
Finally, we will assume that the total system is initially

uncorrelated, and thus the initial density matrix is written
as a direct product of each part, which we also suppose to
be initially in thermal equilibrium at proper characteristic
temperatures (βϕ; βrx ; βB;x; the material can also be ther-
mally inhomogeneous),

ρ̂ðt0Þ ¼ ρ̂ϕðt0Þ ⊗ ρ̂rxðt0Þ ⊗ ρ̂fqn;xgðt0Þ: (7)

III. GENERATING AND INFLUENCE
FUNCTIONALS

Our goal in this section is to compute the expectation
value of the field quantum correlation function. We will
employ the in-in formalism by means of a CTP to write the
field’s generating functional, after integrating out the
environment by generalizing the procedure known from,
for example, Refs. [17,21],

Z½J; J0� ¼
Z

dϕf

Z
dϕ0dϕ0

0

Z
ϕðx;tf Þ¼ϕf ðxÞ

ϕðx;t0Þ¼ϕ0ðxÞ
Dϕ

Z
ϕ0ðx;tfÞ¼ϕfðxÞ

ϕ0ðx;t0Þ¼ϕ0
0
ðxÞ

Dϕ0ρϕðϕ0;ϕ0
0; t0ÞeiðS0½ϕ�−S0½ϕ

0�ÞF ½ϕ;ϕ0�

× e
i
R

dx
R

tf
t0

dτðJðx;τÞϕðx;τÞ−J0ðx;τÞϕ0ðx;τÞÞ
; (8)

where the field’s functional F is known as the influence functional [19], which is related to the field’s influence action
SIF½ϕ;ϕ0� generated by the material degrees of freedom (atoms plus baths).
Since the material is modeled as a continuum of spatially independent oscillators, each of which interacts with its own

bath, the influence functional clearly factorizes in the spatial label, which gives

F ½ϕ;ϕ0� ¼ eiSIF½ϕ;ϕ0� ¼
Y
x

Z
drf;x

Z
dr0;xdr00;x

Z
rxðtf Þ¼rf;x

rxðt0Þ¼r0;x

Drx

Z
r0xðtf Þ¼rf;x

r0xðt0Þ¼r0
0;x

Dr0xρrxðr0;x; r00;x; t0Þ

× eiðS0½rx�−S0½r0x�Þei4πηxgðxÞSQBM½rx;r0x�eiðSint½ϕ;rx�−Sint½ϕ0;r0x�Þ; (9)
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where SQBM½rx; r0x� ¼ R tf
t0 dτ

R tf
t0 dτ0ΔrxðτÞð−2DQBM;x×

ðτ − τ0ÞΣrxðτ0Þ þ i
2
NQBM;xðτ − τ0ÞΔrxðτ0ÞÞ is the well-

known influence action for the quantum Brownian motion
(QBM) theory [22,23], which represents the influence of a
bath at x (given by the set fqn;xg) over the polarization
degrees of freedom rx at the same spatial point. It is worth
noting that in this expression the scalar fields ϕ and ϕ0
appear as additional external sources just as J and J0 do for
the field. It is worth noting that we have set Δrx ¼ r0x − rx
and Σrx ¼ ðrx þ r0xÞ=2, and that the QBM’s influence
action is clearly the analogous result of the CTP expression
for the influence functional of the field of Eq. (9), where
the trace has been taken over the bath’s degree of freedom
fqn;xg and they are considered to be in a thermal state.
The kernels NQBM;x and DQBM;x in SQBM are nothing

more than the QBM noise and dissipation kernels,
respectively [17,23]. It is clear that the expression of the
influence action is quite general and applies to all types
of baths (characterized by the spectral density being
sub-Ohmic, Ohmic, or supra-Ohmic [7,23]) characterized

by a particular temperature. In the same way, it turns
out that the noise kernel NQBM;x corresponds to the sum
of the Hadamard propagators for the bath oscillators
at the point x, while the dissipation kernel DQBM;x
corresponds to the sum of the retarded propagators at
the same point, which clearly shows a causal behavior
[DQBM;xðτ; τ0Þ ∝ Θðτ − τ0Þ].

A. The field’s influence functional

At this point, we have to compute the influence func-
tional for the field F of Eq. (9). For this purpose, we have
to evaluate each factor in the product. The result of this type
of CTP integral can be found in Ref. [21]. We present a
generalization and consider the degrees of freedom of the
polarization density, which is straightforward. [The polari-
zation or bath degrees of freedom must contain a dimen-
sional normalization factor 1

4πηx
(see Ref. [10]) and we also

have to take into account that the matter distribution
satisfies g2ðxÞ ¼ gðxÞ.] Therefore, we obtain

F ½ϕ;ϕ0� ¼
Y
x

he−i4πηxgðxÞλ0;x
R

tf
t0

dτΔϕðx;τÞR0;xðτÞir0;x;p0;x
e
−2πηxgðxÞ

R
tf
t0

dτ
R

tf
t0

dτ0Δϕðx;τÞN B;xðτ;τ0ÞΔϕðx;τ0Þ

× e
−i4πηxgðxÞ

R
tf
t0

dτ
R

tf
t0

dτ0Δϕðx;τÞ2Dxðτ;τ0ÞΣϕðx;τ0Þ; (10)

where Δϕ ¼ ϕ0 − ϕ, Σϕ ¼ ðϕþ ϕ0Þ=2, and Dxðτ; τ0Þ≡
Dxðτ − τ0Þ ¼ λ2

0;x

2
GRet;xðτ − τ0Þ is the dissipation kernel

over the field, where GRet;x is the retarded Green function
and R0;x is the solution with initial conditions fr0;x; p0;xg
associated with the semiclassical equation of motion, which
results from the homogeneous equation

δSCTP½rx; r0x�
δrx

����
rx¼r0x

¼ δSCTP½Δrx;Σrx�
δΔrx

����
Δrx¼0

¼ 0;

̈rx þ ω2
xrx −

2

mx

Z
t

t0

dτDQBM;xðt − τÞrxðτÞ ¼ 0; (11)

where SCTP½rx; r0x� ¼ S0½rx� − S0½r0x� þ SQBM½rx; r0x�, and

R0;xðτÞ ¼ r0;x _GRet;xðτ − t0Þ þ
p0;x

mx
GRet;xðτ − t0Þ: (12)

On the other hand, the kernelN B;x is the part of the noise
kernel associated to the baths that acts on the field [there is
another part associated to the first factor on the right-hand
side of Eq. (10)],

N B;xðτ; τ0Þ ¼ λ20;x

Z
tf

t0

ds
Z

tf

t0

ds0GRet;xðτ − sÞ

× NQBM;xðs − s0ÞGRet;xðτ0 − s0Þ: (13)

Finally, the first factor on the right-hand side of Eq. (10)
is given by (see Ref. [21])

he−i4πηxgðxÞλ0;x
R

tf
t0

dτΔϕðx;τÞR0;xðτÞir0;x;p0;x

¼
Z

dr0;x

Z
dp0;xe

−i4πηxgðxÞλ0;x
R

tf
t0

dτΔϕðx;τÞR0;xðτÞ

×Wrxðr0;x; p0;x; t0Þ; (14)

where Wrxðr0;x; p0;x; t0Þ is the Wigner functional associ-
ated to the density matrix of the polarization degrees of
freedom ρ̂rxðt0Þ. This functional can be written by general-
izing the expression found in Ref. [21],

Wrxðr0;x; p0;x; t0Þ

¼ 1

2π

Z þ∞

−∞
dΓei4πηxgðxÞp0;xΓρrx

�
r0;x −

Γ
2
; r0;x þ

Γ
2
; t0

�
:

(15)

Considering thermal initial states for each part of the
total composite system, we take the density matrices for
the polarization degrees of freedom to be Gaussian func-
tions. Therefore, Eq. (14) is also Gaussian since the Wigner
function is Gaussian in r0;x and p0;x. This way, by
considering Eq. (12), we can easily calculate the first
factor on the right-hand side of Eq. (10) as
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he−i4πηxgðxÞλ0;x
R

tf
t0

dτΔϕðx;τÞR0;xðτÞir0;x;p0;x
¼ 1

4πηxgðxÞ2 sinhðβrxωx

2
Þ
× e

−2πηxgðxÞ
R

tf
t0

dτ
R

tf
t0

dτ0Δϕðx;τÞN r;xðτ;τ0ÞΔϕðx;τ0Þ; (16)

with

N r;xðτ; τ0Þ ¼
λ20;x

2mxωx
coth

�
βrxωx

2

�
½ _GRet;xðτ − t0Þ _GRet;xðτ0 − t0Þ þ ω2

xGRet;xðτ − t0ÞGRet;xðτ0 − t0Þ�; (17)

which is the other part of the noise kernel that acts on the
field. This is associated to the influence generated by the
polarization degrees of freedom (it carries a global thermal
factor containing the temperature of the polarization
degrees of freedom βrx ).

Hence, after the normalization procedure of Z½J; J0�,
Eq. (10) finally reads

F ½ϕ;ϕ0� ¼ eiSIF½ϕ;ϕ0�; (18)

with

SIF½ϕ;ϕ0� ¼
Z

dx
Z

tf

t0

dτ
Z

tf

t0

dτ04πηxgðxÞΔϕðx; τÞ
�
−2Dxðτ − τ0ÞΣϕðx; τ0Þ þ i

2
N xðτ; τ0ÞΔϕðx; τ0Þ

�

¼
Z

d4x
Z

d4x0ΔϕðxÞ
�
−2Dðx; x0ÞΣϕðx0Þ þ i

2
N ðx; x0ÞΔϕðx0Þ

�
; (19)

where in the last line Dðx; x0Þ≡ 4πηxgðxÞδðx − x0ÞDxðτ − τ0Þ and N ðx; x0Þ≡ 4πηxgðxÞδðx − x0ÞN xðτ; τ0Þ [with
N xðτ; τ0Þ ¼ N r;xðτ; τ0Þ þN B;xðτ; τ0Þ] for the dissipation and noise kernels, respectively. The four-dimensional transla-
tional symmetry is broken by the spatial coordinates, because the nþ 1 field is interacting with 0þ 1 fields, i.e., the
polarization degrees of freedom. This means that the temporal and spatial coordinates are not on equal footing.
As expected for linear couplings, the influence action for the field has the same form as SQBM obtained after the bath’s

integration but for a field in four dimensions over all space. (This is not only true for bilinear couplings between the
coordinates; it is also true for bilinear couplings between a coordinate and a momenta, but logically the kernels change, as
we will see in next sections).

B. CTP generating functional

We have achieved an exact result for the influence functional and, consequently, for the influence action. Thus, going
back to Eq. (8) we can note that these CTP integrals are of the form of Eq. (10), where the degree of freedom is replaced by a
scalar field. Generalizing the result found in Ref. [21] for fields, we get

Z½J; J0� ¼ he−i
R

d4xJΔðxÞΦ0ðxÞiϕ0ðxÞ;Π0ðxÞe
−1
2

R
d4x

R
d4x0

R
d4y0

R
d4yJΔðxÞGRetðx;x0ÞN ðx0;y0ÞGRetðy;y0ÞJΔðyÞ × e−i

R
d4x

R
d4yJΔðxÞGRetðx;yÞJΣðyÞ;

(20)

where ϕ0ðxÞ ¼ ϕðx; t0Þ and Π0ðxÞ ¼ _ϕðx; t0Þ are the initial conditions for the field, while JΔ ¼ J0 − J
and JΣ ¼ ðJ þ J0Þ=2.
Analogously to the integration performed in the last section, GRet is a retarded Green function, this time associated to the

field’s semiclassical equation that results from the homogeneous equation of motion for the CTP effective action for the
field: SCTP½ϕ;ϕ0� ¼ S0½ϕ� − S0½ϕ0� þ SIF½ϕ;ϕ0�,

δSCTP½ϕ;ϕ0�
δϕ

����
ϕ¼ϕ0

¼ δSCTP½Δϕ;Σϕ�
δΔϕ

����
Δϕ¼0

¼ 0;

∂μ∂μϕ − 2

Z
d4x0Dðx; x0Þϕðx0Þ ¼ 0: (21)

In the same way, Φ0ðxÞ is the solution of the last equation that satisfies the initial condition fϕ0ðxÞ;Π0ðxÞg, i.e.,

Φ0ðxÞ ¼
Z

dx0 _GRetðx;x0; t − t0Þϕ0ðx0Þ þ
Z

dx0GRetðx;x0; t − t0ÞΠ0ðx0Þ: (22)

To calculate the first factor involving the average over the initial conditions, we use
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he−i
R

d4xJΔðxÞΦ0ðxÞiϕ0ðxÞ;Π0ðxÞ ¼
Z

Dϕ0ðx0Þ
Z

DΠ0ðx0ÞWϕ½ϕ0ðx0Þ;Π0ðx0Þ; t0�

× e−i
R

dx0
R

d4xJΔðxÞ½ _GRetðx;x0;τ−t0Þϕ0ðx0ÞþGRetðx;x0;τ−t0ÞΠ0ðx0Þ�; (23)

where Wϕ½ϕ0ðx0Þ;Π0ðx0Þ; t0� plays the same role as the Wigner function in Ref. [24].

1. Initial-state contribution of the field

Once we have calculated the Wigner functional for the field in a thermal state [Eq. (A11)], we can go back to Eq. (23) to
finally calculate the first factor on the right-hand side of Eq. (20).
For an arbitrary value for the field’s temperature, the factor—which in principle is a functional integral over the field

ϕ0ðxÞ and its associated momentum Π0ðxÞ—splits in each functional integration because the exponent is also separated in
each of the variables; therefore,

he−i
R

d4xJΔðxÞΦ0ðxÞiϕ0ðxÞ;Π0ðxÞ ¼
Z

Dϕ0ðxÞe−
βϕ
2

R
dx
R

dx0Δβϕ
ðx−x0Þ∇ϕ0ðxÞ·∇ϕ0ðx0Þeβϕ

R
dxJ ϕðxÞϕ0ðxÞ

×
Z

DΠ0ðxÞe−
βϕ
2

R
dx
R

dx0Δβϕ
ðx−x0ÞΠ0ðxÞΠ0ðx0Þeβϕ

R
dxJ ΠðxÞΠ0ðxÞ; (24)

where

J ϕðxÞ≡ −
i
βϕ

Z
d4x0JΔðx0Þ _GRetðx0;x; t0 − t0Þ; (25)

J ΠðxÞ≡ −
i
βϕ

Z
d4x0JΔðx0ÞGRetðx0;x; t0 − t0Þ: (26)

Both functional integrals will define the contribution of
the first factor to the generating functional of Eq. (A11). In
fact, it will define the contribution of the initial state of the
field to the dynamical evolution, relaxation, and steady
situation of the system.

2. High-temperature limit

First of all, to continue the calculation we can explore the
high-temperature limit for the field, which seems to be the
easier case in which to solve the functional integrals in
Eq. (24). The high-temperature approximation is given by
βϕjpj
2

≪ 1 on the thermal weight in momentum space

[Eq. (A10)]. Then, tanhðβϕjpj
2
Þ ≈ βϕjpj

2
, and the thermal

weight in momentum space is approximately 1. Thus, in
coordinate space

Δβϕðx0 − x00Þ ≈
Z

dp
ð2πÞ3 e

−ip·ðx0−x00Þ ≡ δðx0 − x00Þ: (27)

In this approximation, Eq. (24) simplifies because one
integral in the exponents is straightforwardly evaluated. In
this limit, both functional integrals are easily calculated,
and in fact the integration over the momentum Π0ðxÞ is
simply a Gaussian,

Z
DΠ0ðxÞe−

βϕ
2

R
dxΠ0ðxÞΠ0ðxÞeβϕ

R
dxJ ΠðxÞΠ0ðxÞ

¼ e
− 1
2βϕ

R
d4y

R
d4y0JΔðyÞ½

R
dxGRetðy;x;τ−t0ÞGRetðy0;x;τ0−t0Þ�JΔðy0Þ;

(28)

where in this notation y ¼ ðτ; yÞ; y0 ¼ ðτ0; y0Þ and we are
discarding any normalization constant that will eventually
go away in the normalization of the generating functional.
At this point, it is interesting that the high-temperature

approximation seems to suggest that the result does not
depend on the number of spatial dimensions. This can be
noted by the fact that in this limit the thermal weight turns
out to be the Dirac delta function in all the coordinates in
question—independently of the spatial dimensionality—
and thus all the possible differences due to the different
functional forms of the thermal weight on a given number
of dimensions seem to disappear. However, the dimension-
ality again appears to create differences when the functional
integral over ϕ0ðxÞ has to be solved. That integral is a
Gaussian functional integral as well. Then, we can proceed
by integrating by parts the exponent involving gradients
and discard terms involving the vanishing asymptotic decay
of the field at infinity [ϕ0ðxi ¼ �∞Þ → 0]. Therefore, the
functional integral over ϕ0ðxÞ in the high-temperature limit
is a simple Gaussian functional integral,
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Z
Dϕ0ðxÞe−

βϕ
2

R
dx∇ϕ0ðxÞ·∇ϕ0ðxÞeβϕ

R
dxJ ϕðxÞϕ0ðxÞ ∝ e

1
2

R
dx
R

dx0β2ϕJ ϕðx0ÞKðx;x0ÞJ ϕðx0Þ

¼ e−
1
2

R
d4y

R
d4y0JΔðyÞ½

R
dx
R

dx0 _GRetðy;x;τ−t0ÞKðx−x0Þ _GRetðy0;x0;τ0−t0Þ�JΔðy0Þ; (29)

where Kðx;x0Þ ¼ ð−βϕ∇2Þ−1 is the inverse of the Laplace
operator, i.e., the Green function defined by

−βϕ∇2Kðx;x0Þ ¼ δðx − x0Þ: (30)

It is clear that the kernel has to depend on x − x0.
Since the equation is analogous to the one for the Green

function of a point charge in free space (although the
thermal factor appears as a constant permittivity), we can
solve the equation by taking the Fourier transform,

Kðx − x0Þ ¼
Z

dp
ð2πÞ3 e

−ip·ðx−x0ÞK̄ðpÞ; (31)

where

K̄ðpÞ ¼ 1

βϕjpj2
: (32)

It is worth noting that the kernel Kðx − x0Þ strongly
depends on the dimensionality of the problem, so the
number of dimensions in the problem could modify the
final results.
Finally, the first factor in the generating functional in the

high-temperature limit is

he−i
R

d4xJΔðxÞΦ0ðxÞiϕ0ðxÞ;Π0ðxÞ

¼ e−
1
2

R
d4y

R
d4y0JΔðyÞ½Aðy;y0ÞþBðy;y0Þ�JΔðy0Þ; (33)

where the kernels are

Aðy; y0Þ≡ 1

βϕ

Z
dxGRetðy;x; τ − t0ÞGRetðy0;x; τ0 − t0Þ;

(34)

Bðy; y0Þ≡
Z

dx
Z

dx0 _GRetðy;x; τ − t0ÞKðx − x0Þ

× _GRetðy0;x0; τ0 − t0Þ: (35)

The result is symmetric, i.e., Aðy; y0Þ ¼ Aðy0; yÞ and
Bðy; y0Þ ¼ Bðy0; yÞ, and we can clearly note that both
kernels depend linearly on the field’s initial temperature,
as we expected from the high-temperature approximation.
The presence of the kernels Aðy; y0Þ and Bðy; y0Þ is one of
the main results of this article. We will remark on their role
in the Casimir energy density and their contribution to the
energy in the long-time regime.
All in all, we now can finally write the normalized

generating functional for the field in the high-temperature
limit by inserting Eq. (33) into Eq. (20),

Z½J; J0� ¼ e−
1
2

R
d4y

R
d4y0JΔðyÞ½Aðy;y0ÞþBðy;y0Þþ

R
d4x

R
d4x0GRetðy;xÞN ðx;x0ÞGRetðy0;x0Þ�JΔðy0Þ × e−i

R
d4y

R
d4y0JΔðyÞGRetðy;y0ÞJΣðy0Þ; (36)

where it is worth noting that the first factor on the right-
hand side is accompanied by two JΔ’s, whereas the second
factor is accompanied by one JΔ and one JΣ. This differ-
ence means that the first and third exponents will contribute
to the energy while the second one will not.
Finally, we have calculated the field generating func-

tional in a fully dynamical scenario in the high-temperature
limit for the field. This was done by keeping the polari-
zation degrees of freedom volume elements and its baths,
which retain their own properties and temperatures.
However, the model contains a bilinear interaction between
the matter and the field. In the next section, we will see how
to straightforwardly obtain the generating functional for
the case of a more realistic model, i.e., a current-type
interaction.

IV. CURRENT-TYPE COUPLING

At this point, we have calculated the generating func-
tional for a massless scalar field interacting with matter
modeled as Brownian particles. It is clear that in the
calculation done in the previous sections, the field and
the polarization degrees of freedom are coupled linearly,
i.e., the coupling is directly to the quantum degrees of
freedom. Therefore, that model is not a scalar version of
one of the electromagnetic field components interacting
with matter, since the interaction is not a current-
type interaction. Therefore, in this section we will show
how to extend the calculation to the case of a current-
type interaction between the matter and the field, which is
closer to a realistic electromagnetic model.
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We have to start by replacing the interaction action
Sint½ϕ; r� between the field and the matter in Eq. (5) by a
current-type interaction term,

~Sint½ϕ; r� ¼
Z

dx
Z

tf

t0

dτ4πηxgðxÞλ0;x _ϕðx; τÞrxðτÞ

≡ Sint½ _ϕ; r�; (37)

where λ0;x effectively plays the role of the electric charge
in the electromagnetic model. It is also worth noting that

we write the time derivative as acting on the polarization
degree of freedom instead of on the field. Both choices
lead to the same equations of motion for the composite
system so they are physically equivalent. In fact, all the
calculations of the last section (devoted to calculating the
field influence action) are formally the same, and we can
obtain them in principle by simply replacing ϕ by _ϕ.
Therefore, the influence action on the field in this
case reads

~SIF½ϕ;ϕ0�≡ SIF½ _ϕ; _ϕ0� ¼
Z

dx
Z

tf

t0

dτ
Z

tf

t0

dτ04πηxgðxÞΔ _ϕðx; τÞ
�
−2Dxðτ − τ0ÞΣ _ϕðx; τ0Þ þ i

2
N xðτ; τ0ÞΔ _ϕðx; τ0Þ

�

¼
Z

d4x
Z

d4x0Δ _ϕðxÞ
�
−2Dðx; x0ÞΣ _ϕðx0Þ þ i

2
N ðx; x0ÞΔ _ϕðx0Þ

�
: (38)

Now, to continue the calculation as in the last section, and to identify the noise and dissipation kernels of the present
model, we integrate by parts in both time variables to obtain an influence action that depends on the sum and difference
of the fields instead of their time derivatives. Therefore, as in Ref. [25], we obtain

~SIF½ϕ;ϕ0� ¼
Z

dx
Z

tf

t0

dτ
Z

tf

t0

dτ04πηxgðxÞΔϕðx; τÞ
�
−2∂2

ττ0Dxðτ − τ0ÞΣϕðx; τ0Þ þ i
2
∂2
ττ0N xðτ; τ0ÞΔϕðx; τ0Þ

�
: (39)

Since the dissipation kernel D involves the product of
two distributions [because Dðτ − τ0Þ contains Θðτ − τ0Þ
times an accompanying function of the time difference]
the kernel is not well defined [25]. By differentiating the
kernel twice—first with respect to τ0 and second with
respect to τ—gives us

∂2
ττ0Dxðτ− τ0Þ ¼−δðτ− τ0Þ _Dxðτ− τ0Þ− D̈xðτ− τ0Þ; (40)

where dots over the kernels represent time derivatives
involving differentiation over the accompanying function
of the time difference, which avoids the differentiation of
the Heaviside function contained in the kernel. Without

confusion, it is remarkable that in the first term the Dirac
delta function comes from the differentiation of the
Heaviside function, but the actual notation means that
the Heaviside function contained in _Dx is superfluous and
meaningless. On the other hand, we shall also note that
we have exploited the fact that the dissipation kernel D
depends on the time difference τ − τ0, which gives
∂τ0D ¼ −∂τD ¼ − _D. However, this is unnecessary for
the kernel N x.
By inserting Eq. (40) into the influence action Eq. (39),

and considering that from its definition _Dxð0þÞ ¼ λ20;x=2
for the first term of Eq. (40), we clearly obtain

~SIF½ϕ;ϕ0� ¼
Z

dx
Z

tf

t0

dτ4πηxλ20;xgðxÞΔϕðx; τÞΣϕðx; τÞ

þ
Z

dx
Z

tf

t0

dτ
Z

tf

t0

dτ04πηxgðxÞΔϕðx; τÞ
�
2D̈xðτ − τ0ÞΣϕðx; τ0Þ þ i

2
∂2
ττ0N xðτ; τ0ÞΔϕðx; τ0Þ

�
; (41)

where the first term is a finite renormalization position-
dependent mass term for the scalar field which will be
meaningless in the determination of the Green function, as
will see in the following sections. These renormalization
mass terms also appear in the QBM theory, but in general
they are divergent due to the fact that the bath is a set of
infinite harmonic oscillators, each one contributing to the
mass renormalization. In our case, the field is coupled at

each spacial point x to a unique harmonic oscillator
represented by the polarization degree of freedom located
at x, so the renormalization term is only 1, and therefore
finite.
It is worth noting that from the second term we have

what we shall call the current-dissipation kernel and the
current-noise kernel; these are the derivatives of the
dissipation and noise kernels of the bilinear model,
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respectively, i.e., the current-dissipation kernel is −D̈x,
while the current-noise kernel is ∂2

ττ0N x. To avoid con-
fusion, henceforth we shall use the prefix “current” for the
kernels when referring to the current-type model, keeping
the terms “dissipation kernel” and “noise kernel” for Dx
and N x, respectively.
All in all, and having written the influence action of

Eq. (41) formally as a renormalization mass term plus a
nonlocal term [identical to Eq. (19) but with different
kernels], we can continue with the procedure done for the
bilinear coupling in the last section.
Despite the renormalization mass term, the CTP

functional integral over the field variables can be done
as in the last section. Therefore, the generating func-
tional is formally identical to Eq. (36). However, in the
present case the current-noise and current-dissipation
kernels are different, so the first one will define the
contribution due to the matter fluctuations, while the
second one will contribute to the definition of the retarded
Green function by appearing in the field’s semiclassical
equation obtained from the CTP effective action for the
current-type model. This equation can be derived similarly
to Eq. (21),

∂μ∂μϕþ 4πηxλ
2
0;xgðxÞϕðx; tÞ

þ 8πηxgðxÞ
Z

t

t0

dτD̈xðt − τÞϕðx; τÞ ¼ 0; (42)

where the scalar field has a well-defined (positive) position-
dependent mass 2

ffiffiffiffiffiffiffiffi
πηx

p jλ0;xj at every point x where there
is material [so gðxÞ ¼ 1], while it is massless in the free
regions. This last equation is in agreement with the one
obtained from a canonical quantization scheme (see for
example Ref. [10]) and it is in fact its generalization.

V. ENERGY-MOMENTUM TENSOR
AND FIELD CORRELATION

At this point, we have obtained the field CTP gene-
rating functional for both coupling models after tracing
out all the material degrees of freedom (polarization
plus thermal baths). Now we are interested in evaluating
the expectation value of the symmetric energy-momentum
tensor operator hT̂μνi, which gives the energy density
and radiation pressure associated to the field. It is defined
by [18,26]

T̂μνðx1Þ≡ −ημν
1

2
∂γϕ̂ðx1Þ∂γϕ̂ðx1Þ þ ∂μϕ̂ðx1Þ∂νϕ̂ðx1Þ;

(43)

where ημν is the Minkowski metric (η00 ¼ −ηii ¼ 1 for the
nonvanishing elements).

We can proceed with the point-splitting technique,
employing the field correlation function as

hT̂μνðx1Þi ¼ lim
x2→x1

�
−ημν

1

2
∂γ1∂γ2 þ ∂μ1∂ν2

�
hϕ̂ðx1Þϕ̂ðx2Þi;

(44)

where the notation implies ∂γ1∂γ2 ≡ ∂t1∂t2 −∇1 · ∇2 and
so on for ∂μ1∂ν2.
Therefore, we need the field correlation function to know

the expectation value of every energy-momentum tensor
component. In fact, we need the correlation to be finite, so
we have to insert a regularized expression for the corre-
lation function. From the generating functional in Eq. (36),
this is straightforward [17]. We will evaluate the field
correlation at two different points x1 and x2 (where there
is no specific relation between the points because they
are in different branches of the CTP). Then, we have four
alternatives depending on the relation between x1 and x2;
however, in the coincidence limit this is not relevant,

hϕ̂ðx1Þϕ̂ðx2Þi ¼
δ2Z

δJ0ðx1ÞδJðx2Þ
����
J¼J0¼0

: (45)

Because the generating functional has a simple form
in Eq. (36) we can easily compute its functional derivatives
by taking advantage of the symmetry kernel’s properties,

hϕ̂ðx1Þϕ̂ðx2Þi

¼ Aðx1; x2Þ þ Bðx1; x2Þ þ
Z

d4x
Z

d4x0GRetðx1; xÞ

×N ðx; x0ÞGRetðx2; x0Þ þ
1

2
GJordanðx1; x2Þ; (46)

where GJordanðx1; x2Þ≡ iðGRetðx2; x1Þ − GRetðx1; x2ÞÞ is the
Jordan propagator [17]. Then, the kernels are the ones in
Eqs. (19), (34), and (35) for the case of the bilinear model,
where the retarded Green function is defined from the
semiclassical equation of motion in Eq. (21). On the other
hand, to obtain the result for the current-type model we
have to take into account that the retarded Green function
is defined from the corresponding semiclassical equation
of motion for the field in this model [given by Eq. (42)],
but the formal expressions for the kernels A and B are
unchanged. To finish, we have to replace the noise kernel
N in Eq. (46) by the current-noise kernel ∂2

ττ0N associated
to the field’s influence action for this model [Eq. (41)].
All in all, a smart and compact notation can be achieved
by including a parameter α encompassing both models;
therefore, we can write the generalized noise kernel as
∂2α
ττ0N , with α ¼ 0, 1 for the bilinear and current-type

models, respectively.
It is worth noting that the correlation function in Eq. (46)

corresponds to the Wightman function for the field in this
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open system. In fact, considering that GRet is real, it is clear
that the correlation is a complex quantity, and its imaginary
part is given by GJordan, whereas the real part consists of the

other three terms. If we want to match the Wightman
propagator with the typical relations for propagators, the
Hadamard propagator is given by

GHðx1; x2Þ≡ 2

�
Aðx1; x2Þ þ Bðx1; x2Þ þ

Z
d4x

Z
d4x0GRetðx1; xÞ∂2α

ττ0 ½N ðx; x0Þ�GRetðx2; x0Þ
�
. (47)

On the other hand, we want to calculate energy-momen-
tum tensor expectation values, so the result must be real.
This is apparently not the case because the correlation
function is complex and its imaginary part is given by
GJordan. However, to compute the expectation values we will
have to proceed in a symmetric way in both coordinates x1;2
and then we will have to calculate the coincidence limit
when x2 → x1. Due to the definition of the Jordan propa-
gator, this operation (symmetric derivation plus the coinci-
dence limit) makes the contribution vanish. Therefore, the
expectation values effectively turn out to be real numbers,
as is expected.
Finally, the expectation value of the energy-momentum

tensor can be written as

hT̂μνðx1Þi ¼
1

2
lim
x2→x1

�
−ημν

1

2
∂γ1∂γ2 þ ∂μ1∂ν2

�
GHðx1; x2Þ;

(48)

where the Hadamard propagator must be a well-defined
(nondivergent) propagator.
It is important to note that the full nonequilibrium

dynamics—both time evolution and thermodynamical
nonequilibrium—is contained in this result.
Due to the structure of the noise kernel ∂2α

ττ0N for each
model, this term accounts for the influence generated by the
material (polarization degrees of freedom plus thermal
baths) from the initial time when the interaction with the
field is turned on, which describes the relaxation process of
the material forming the contours. Both parts—the polari-
zation degrees of freedom and the thermal baths—can have
different initial temperatures, implying thermal nonequili-
brium. In fact, each volume element in the material can
have its own properties.
On the other hand, there are two terms that are propor-

tional to the field’s initial temperature, namely, the kernels
A and B (and their derivatives in the contribution of the
expectation values). These terms account for the dynamical
evolution and change of the field in the presence of the
material contours when the interaction is turned on.
Therefore, these terms must be entirely related to the
modified normal modes that appear in a (steady
situation) canonical quantization scheme as a vacuum
contribution [10,11].

VI. NONEQUILIBRIUM BEHAVIOR FOR
DIFFERENT CONFIGURATIONS OF THE

COMPOSITE SYSTEM

A. 0þ 1 field

As a first example, we consider the case of a scalar field
in 0þ 1 dimensions, i.e., we take the field ϕ as a quantum
harmonic oscillator degree of freedom of unit mass.
Therefore, to adapt our results to this situation a few
changes are needed. In this case the spatial notion is erased,
and the volume element concept is meaningless, so the
composite system is a harmonic oscillator (0þ 1 field)
coupled to another one (polarization degree of freedom)
which is also coupled to a set of harmonic oscillators
(thermal bath).
The spatial label x will be unnecessary and the quantum

degree of freedom will be characterized by a frequency Ω
(which plays the role of the effect that the spatial derivative
has on the field in nþ 1 dimensions, with n > 0). The
initial action for the field [Eq. (2)] must be replaced by the
straightforward expression

S0½ϕ� ¼
Z

dx
Z

tf

t0

dτ
1

2
∂μϕ∂μϕ

⟶

Z
tf

t0

dτ
1

2

��
dϕ
dτ

�
2

−Ω2ϕðτÞ
�
: (49)

Equations (3)–(6) can also be simply adapted by dis-
carding the spatial integrals, the labels, the density η
(together with the factor 4π), and the distribution function
g in all the actions. All the integrations and traces can be
performed in the same way without further modifications
until the functional integration over the field. The influence
action in Eq. (19) is still valid. In this way, the generating
functional from Eq. (8) to Eq. (20) is formally the same.
However, in this case the calculation of the first factor—
which involves the initial state of the 0þ 1 field ϕðtÞ—
implies aWigner function and not a functional, so the factor
results from the same formal calculation done for the
polarization degree of freedom r in Eq. (16), but the kernel
obtained is clearly different. Therefore, we have for both
models (α ¼ 0, 1)
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Z½J; J0� ¼ e
−1
2

R
tf
t0

dτ
R

tf
t0

dsJΔðτÞ½Aðτ;sÞþBðτ;sÞ�JΔðsÞe
−1
2

R
tf
t0

dτ
R

tf
t0

dτ0
R

tf
t0

ds0
R

tf
t0

dsJΔðτÞGΩ
Retðτ;τ0Þ∂2ατ0s0 ½N ðτ0;s0Þ�GΩ

Retðs;s0ÞJΔðsÞ

× e
−i
R

tf
t0

dτ
R

tf
t0

dsJΔðτÞGΩ
Retðτ;sÞJΣðsÞ; (50)

where the sum of the kernelsA and B results from the ordinary integration over the initial values of the field ϕ0 ≡ ϕðt0Þ and
Π0 ≡ Πðt0Þ, and it has the same form as Eq. (17) [indeed, the high-temperature limit of this expression has exactly the form
as Eq. (17) if we discard its spatial features],

Aðτ; sÞ þ Bðτ; sÞ≡ 1

2Ω
coth

�
βϕΩ
2

�
½Ω2GΩ

Retðτ − t0ÞGΩ
Retðs − t0Þ þ _GΩ

Retðτ − t0Þ _GΩ
Retðs − t0Þ�; (51)

where GΩ
Ret is the retarded Green function [which is a function of the time difference, i.e., GΩ

Retðt; sÞ≡ GΩ
Retðt − sÞ, as we can

infer from its equation of motion] associated to Eqs. (21) and (42) for each model, respectively, in the 0þ 1 case. These can
be combined to give

d2ϕ
dt2

þ ðΩ2 þ αλ20ÞϕðtÞ − ð−1Þα2
Z

t

t0

dτ∂2α
tt ½Dðt − τÞ�ϕðτÞ ¼ 0; (52)

where in this case the (finite) mass term appears as a frequency renormalization term, and ∂2α
tt ½Dðt − τÞ� is the generalized

dissipation kernel.
Therefore, the 0þ 1 counterpart of the Hadamard propagator of Eq. (47) is

GΩ
Hðt1; t2Þ≡ 1

Ω
coth

�
βϕΩ
2

�
½Ω2GΩ

Retðt1 − t0ÞGΩ
Retðt2 − t0Þ þ _GΩ

Retðt1 − t0Þ _GΩ
Retðt2 − t0Þ�

þ 2

Z
tf

t0

dτ
Z

tf

t0

dτ0GΩ
Retðt1 − τÞ∂2α

ττ0 ½N ðτ; τ0Þ�GΩ
Retðt2 − τ0Þ; (53)

where the noise kernel consists of two contributions
N ðτ; τ0Þ ¼ N Bðτ; τ0Þ þN rðτ; τ0Þ, each of which is char-
acterized by its own temperature βr;B given in Eqs. (13)
and (17), respectively. In fact, we can relate the temperature
value associated to the term to the contribution of that part
of the total system, i.e., the terms carrying the field’s
temperature βϕ are associated to the proper (influenced)
system contribution, while each part of the noise kernel N
has one term associated to the polarization degree of
freedom (denoted by containing the temperature βr) and
another term associated to the bath (denoted by containing
the temperature βB).
It is clear now that the energy-momentum tensor is

simply the energy of the 0þ 1 field, where the evolution of
the expectation value can be easily written in terms of the
Hadamard propagator [as in Eq. (48)],

hEðt1Þi≡ 1

2
lim
t2→t1

� ∂
∂t1

∂
∂t2 þ Ω2

�
GΩ
Hðt1; t2Þ: (54)

Finally, we have written the mean value of the energy as
a function of time from the initial conditions for the
composite system. It is clear that the dynamics depends
on the retarded Green functions GΩ

Ret; GRet [where GRet is
contained in the field’s noise kernels for each model

through Eqs. (13) and (17)] from each part of the system
and the QBM noise kernel NQBM (which depends on the
type of bath we are considering) after tracing out the
degrees of freedom that influence its dynamics. Since we
are interested in the field dynamics, the traces are per-
formed by taking the field ϕ as the system and doing them
in sequential steps, namely, the partial traces over each part
of the complex environment formed by the polarization
degree of freedom r and the bath fqng [19].
Therefore, the transient-time behavior of the energy

expectation value and its relaxation to a steady state will
depend on the fluctuations of each part of the environment
through the noise kernels, and how the system evolves to
the steady situation depends on its own Green function
GΩ
Ret, as is clear from Eq. (60).
Then, for the long-time limit (t0 → −∞) we need to

know the long-time behavior of each retarded Green
function GΩ

Ret, GRet. Thus, we must focus on the specific
Green functions that we have in our system, which are
determined by each equation of motion we have obtained at
each stage of the tracing.
The retarded Green function for the polarization degree

of freedom r is determined by the equation of motion of the
polarization degree of freedom [Eq. (11)]. The associated
equation for the Green function GRet can be solved by
Laplace transforming the equation subject to the initial
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conditions GRetð0Þ ¼ 0, _GRetð0Þ ¼ 1 (see Ref. [7]). It is
straightforward to prove that, for every type of bath,
the Laplace transform of the retarded Green function is
given by

~GRetðzÞ ¼
1

ðz2 þ ω2 − 2 ~DQBMðzÞÞ
; (55)

where ~DQBM is the Laplace transform of the QBM’s
dissipation kernel contained in SQBM [22,23].
The analyticity properties of the Laplace transform ~GRet

and the location of its poles define the time evolution and
the asymptotic behavior of the Green function GRet. In this
way, causality implies—by Cauchy’s theorem—that the
poles of ~GRet should be located in the left half of the
complex z plane, i.e., the poles’ real parts must be negative
or zero. Assuming that ω ≠ 0 and that the modeled bath
includes a cutoff function in frequencies (see Ref. [7]),
the discussion given in Ref. [10] implies that all the poles
are simple and have negative real parts. Using Mellin’s
formula and the residue theorem to retransform to the time-
dependent function [27], we easily obtain that the Green
function formally reads

GRetðtÞ ¼ ΘðtÞ
X
j

Res½ ~GRetðzÞ; zj�ezjt: (56)

Since Re½zj� < 0, it is clear that in the long-time limit,
when t0 → −∞, we have GRetðt − t0Þ → 0, and similarly
for its time derivatives.
Indeed, this asymptotic behavior defines the long-time

contribution of the polarization degree of freedom to the
field’s energy density at the steady situation. Since the
Green function goes to zero, we have also that the part of
the field’s noise kernels directly associated to the polari-
zation degree of freedom N r goes to zero. This means that
the polarization degree of freedom does not contribute
through its thermal state to the energy at the steady situation
in either of the two coupling models. Although the
dependence on the temperature βr is erased in the long-
time regime [due to the asymptotic decay of the retarded
Green function GRetðt − t0Þ], this function also appears in
the bath’s contribution N B. This term is characterized, of
course, by the bath’s temperature βB.
All in all, in the long-time limit (t0 → −∞) we have that

the (generalized) noise kernel contribution (polarization
degree of freedom plus bath) in Eq. (60) is

Z
tf

t0

dτ
Z

tf

t0

dτ0GΩ
Retðt1 − τÞ∂2α

ττ0 ½N ðτ; τ0Þ�GΩ
Retðt2 − τ0Þ

⟶

Z
tf

−∞
dτ

Z
tf

−∞
dτ0GΩ

Retðt1 − τÞ

× ∂2α
ττ0 ½N Bðτ; τ0Þ�GΩ

Retðt2 − τ0Þ; (57)

where the QBM noise kernel does not depend on t0, and
thus the bath contribution does not vanish in the steady
situation.
Finally, we have to analyze the behavior of the con-

tribution associated to the proper field system. Thus we
have to study the retarded Green function GΩ

Ret. We then
proceed as in the case of the polarization degree of freedom
to study GRet by considering the same initial conditions
[GΩ

Retð0Þ ¼ 0, _GΩ
Retð0Þ ¼ −1]. From the equation of motion

for the Green function GΩ
Ret associated to the field in both

models [Eq. (52)], we can easily obtain an expression
analogous to that in the first case for the Laplace transform,

~GΩ
RetðzÞ ¼

−1
ðz2 þΩ2 − λ20ð−z2Þα ~GRetðzÞÞ

; (58)

where it is worth noting that this compact expression is due
to the fact that the renormalization (mass) frequency term
cancels out with a term coming from the derivative of the
dissipation kernel D at the initial time.
Analyticity properties of this Laplace transform define

the asymptotic behavior of the proper contribution of
the field. For λ0, Ω, ω ≠ 0 and an Ohmic bath, it is easy
to show that the Laplace transform for both models has four
simple poles with negative real parts, verifying the causality
requirement. We assume that the general case gives the
same features and that the poles are simple and have
negative real parts. From this, in the time domain it
follows that

GΩ
RetðtÞ ¼ ΘðtÞ

X
l

Res½ ~GΩ
RetðzÞ; zl�ezlt: (59)

Therefore, since Re½zl� < 0 we clearly have in the long-
time limit (t0 → −∞) that GΩ

Retðt − t0Þ → 0, and similarly
for its time derivatives.
The long-time limit of the Hadamard propagator GΩ

H is
given only by the bath’s long-time contribution,

GΩ
Hðt1; t2Þ → 2

Z
tf

−∞
dτ

Z
tf

−∞
dτ0GΩ

Retðt1 − τÞ

×N Bðτ; τ0ÞGΩ
Retðt2 − τ0Þ; (60)

corresponding to the steady situation with the bath’s
fluctuation at temperature βB, as the fluctuation-dissipation
theorem asserts.
Finally, to summarize this section, for a 0þ 1 field in

both types of coupling models, the energy density at the
steady situation only has contributions from the bath, while
the polarization degree of freedom and the proper field
contributions go to zero through the time evolution.
Now, let us see how these calculations apply for the case

of a field in nþ 1 dimensions with a homogeneous material
over all space.
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B. Field in infinite material

Let us now consider a scalar field in nþ 1 dimensions
(with n ≠ 0) with no boundaries, i.e., this is the case of a
homogeneous material that appears over all space at the
initial time t0. In this situation, gðxÞ≡ 1 for every x and we
have to eliminate the spatial label due to the homogeneity
of the problem. Then, Eqs. (21) and (42) can be written
together through their generalized form as

∂μ∂μϕþ 4πηλ20αϕ − ð−1Þα8πη

×
Z

t

t0

dτ∂2α
tt ½Dðt − τÞ�ϕðx; τÞ ¼ 0; (61)

which is basically a wave-type equation for the field in a
dissipative medium.
Therefore, the associated equation for the retarded Green

function GRet is straightforward and it is subjected to the
typical wave-equation initial conditions,

GRetðx;x0; 0Þ ¼ 0; _GRetðx;x0; 0Þ ¼ −δðx − x0Þ: (62)

Due to the translational symmetry of the problem,
GRetðx;x0; tÞ ¼ GRetðx − x0; tÞ, the Fourier transform
satisfies

∂2
ttḠRetðk; tÞ þ ðk2 þ 4πηλ20αÞḠRetðk; tÞ − ð−1Þα8πη

×
Z

t

0

dτ∂2α
tt ½Dðt − τÞ�ḠRetðk; τÞ ¼ 0; (63)

where, as in the last section, Dðt − τÞ ¼ λ20GRetðt − τÞ,
k≡ jkj, and the initial conditions are

ḠRetðk; 0Þ ¼ 0; _̄GRetðk; 0Þ ¼ −1: (64)

Equations (63) and (64) are equivalent to the field
equation and initial conditions for the retarded Green
function for the 0þ 1 field, i.e., each field mode behaves
as a 0þ 1 field of natural frequency k and the dynamics
are equivalent. Then, the Fourier transform of the retarded
Green function is closely related to the retarded Green
function in the last section; in fact, we have

ḠRetðk; tÞ≡ Ḡk
RetðtÞ; (65)

where Gk
Ret is the retarded function of a 0þ 1 field of

frequency k.
We can write

GRetðx − x0; tÞ ¼
Z

dk
ð2πÞ3 e

−ik·ðx−x0ÞGk
RetðtÞ: (66)

In order to study the behavior of the contributions to
the expectation value of the energy-momentum tensor hT̂μνi
in Eq. (48), let us first consider the contributions of
the polarization degrees of freedom and the thermal baths
at each point x in the last term of Eq. (47). As we are
considering a homogeneous material where all the
polarization degrees of freedom have the same temperature
βr, then all the baths at each point have the same
temperature βB (note that this does not imply thermal
equilibrium because each part of the material can
have a different temperature, i.e., we can still have the
situation in which βr ≠ βB). In the present case
N ðx; x0Þ ¼ 4πηδðx − x0ÞN ðτ; τ0Þ.
If we use the Fourier representation of GRet to write the

last term of Eq. (47), it is straightforward that

Z
d4x

Z
d4x0GRetðx1; xÞ∂2α

ττ0 ½N ðx; x0Þ�GRetðx2; x0Þ

¼ 4πη

Z
dk

ð2πÞ3 e
−ik·ðx1−x2Þ

Z
tf

t0

dτ
Z

tf

t0

dτ0Ḡk
Retðt1 − τÞ∂2α

ττ0 ½N ðτ; τ0Þ�Ḡk
Retðt2 − τ0Þ; (67)

where it is remarkable that both integrals over τ and τ0 and the integrand are exactly one half of the last term in Eq. (60) (the
contribution of the polarization degree of freedom and the bath in the last section, i.e., for the 0þ 1 field of frequency Ω).
This is clear because, as we have inferred from the equation for the Fourier-transformed Green function, each field k mode
is matched to a 0þ 1 field of frequency k ¼ jkj.
Then, we have for each field mode the same time evolution as for a 0þ 1 field of natural frequency k in any coupling

model. Considering the analysis done in the last section regarding the Green function GRet, we can easily conclude that the
long-time regime (t0 → −∞) of this contribution is given byZ

d4x
Z

d4x0GRetðx1; xÞ∂2α
ττ0 ½N ðx; x0Þ�GRetðx2; x0Þ

⟶ 4πη

Z
dk

ð2πÞ3 e
−ik·ðx1−x2Þ

Z
tf

−∞
dτ

Z
tf

−∞
dτ0Ḡk

Retðt1 − τÞ∂2α
ττ0 ½N Bðτ; τ0Þ�Ḡk

Retðt2 − τ0Þ; (68)

where, as in the last section, we have that the polarization degrees of freedom do not contribute to the steady situation of the
nþ 1 field in a homogeneous material.
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On the other hand, for the proper contribution of the field—contained in the kernels A and B of Eqs. (34) and (35)—we
can again exploit the Fourier representation,

Aðx1; x2Þ þ Bðx1; x2Þ ¼
Z

dk
ð2πÞ3 e

−ik·ðx1−x2Þ
�
1

βϕ
Ḡk
Retðt1 − t0ÞḠk

Retðt2 − t0Þ þ K̄ðkÞ _̄Gk
Retðt1 − t0Þ _̄Gk

Retðt2 − t0Þ
�
: (69)

Therefore, considering the analysis done in the last section regarding the retarded Green function GΩ
Ret, in the long-time

limit (t0 → −∞) the Fourier transform of the retarded Green function vanishes, i.e., Ḡk
Retðt − t0Þ → 0; this also causes the

proper contribution to vanish at the steady situation.
All in all, as in the 0þ 1 field, the long-time regime is defined by the bath contribution to the Hadamard propagator, and it

is expected to satisfy the fluctuation-dissipation theorem in the steady situation in either coupling model,

GHðx1; x2Þ → 8πη

Z
dk

ð2πÞ3 e
−ik·ðx1−x2Þ

Z
tf

−∞
dτ

Z
tf

−∞
dτ0Ḡk

Retðt1 − τÞ∂2α
ττ0 ½N Bðτ; τ0Þ�Ḡk

Retðt2 − τ0Þ: (70)

Finally, the energy density at the steady situation will
also depend only on the baths’ fluctuations in the long-time
regime for either of the coupling models. This conclusion is
not necessarily true if the material is not homogeneous or
if there are temperature gradients, whether between the
polarization degrees of freedom or between the baths. In
fact, in the next sections we will show that the conclusion
could be different if, on the one hand, we consider non-
dissipative (constant-permittivity) media or, on the other
hand, there are regions where the field fluctuates freely, i.e.,
regions where there is no material [gðxÞ ¼ 0] and the field
is subjected to the presence of boundaries.

C. Constant dielectric permittivity limit

In previous sections we have analyzed two situations (a
field in 0þ 1 dimensions and a field in nþ 1 dimensions in
the presence if an infinite material) where we have shown
that—beyond the transient-time evolution of the system—
the steady regime is described only by the fluctuations of
the thermal baths which are in contact with the polarization
degrees of freedom of the material, as is expected from a
formalism based only on the fluctuation-dissipation theo-
rem. This result can be seen from the final temperature
dependence of the Hadamard propagator, which in the
analyzed cases was βB. On the other hand, we have shown
that the kernels A and B—associated to the proper
contribution of the field—and the contribution from the
polarization degrees of freedom vanish at the steady
situation (due to the dissipative dynamics of the field at
every point of the space and of the polarization degrees of
freedom modeled as Brownian particles).
It is clear that these conclusions are due physically to the

dissipative dynamics of the field in contact with reservoirs
comprising the real material, which generates the damping
and the absorption dominating the steady situation through
its fluctuations.
We will now assume that the material is a nondissipative

dielectric, i.e., a constant-permittivity material which

presents no absorption and that is not dispersive because
the permittivity function in the complex-frequency domain
is real and it is not a smooth function over the imaginary
frequency axis. It is worth noting that this verifies the
Kramers-Kronig relations for the complex permittivity
function in the frequency domain even though the function
is real. In fact, the Kramers-Kronig relations are not
satisfied by dispersive and real permittivity functions on
the imaginary frequency axis. Therefore, our calculations
must include this scenario as a limiting case.
As a first step, if we clearly turn off the dissipation

provided by the baths in each point of the material, we have
to set DQBM ≡ 0. From the fluctuation-dissipation theorem
it is straightforward that NQBM ≡ 0. Therefore, this directly
implies that the noise kernel also vanishes, i.e., N B;x ≡ 0.
In this way the bath contribution is erased from the result.
However, this is not enough because it leaves a material

formed by harmonic oscillators without damping, i.e., which
do not relax to a steady situation. This can be seen from the
Laplace transform of the retarded Green function of the
polarization degrees of freedom, which, through Eq. (55),
turns out to be ~GRet;xðzÞ ¼ 1=ðz2 þ ω2

xÞ, which presents
purely imaginary poles at z ¼ �iωx, so the retarded Green
function in the time domain will be comprised sinusoidal
functions. This means in principle that the contribution
coming from the polarization degrees of freedom does not
vanish, i.e., N r;x does not necessarily vanish.
Nevertheless, since the dissipation kernel is

Dx ¼ λ2
0;x

2
GRet;x, the generalized dissipation kernel

∂2α
tt ½Dxðt − τÞ� that acts over the field and forms the

dielectric function through its Laplace transform will give
a dispersive and real permittivity function for purely
imaginary frequencies. Thus, it does not verify the
Kramers-Kronig relations. Then, a vanishing bath dissipa-
tion is not enough to achieve the constant dielectric limit
and, in fact, it is a nonphysical model.
To get a clue about how this limit can be taken, we can

use the equation of motion for the field for arbitrary shapes
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of material boundaries, which in both coupling models can
be written as

∂μ∂μϕþ 4πηxλ
2
0;xgðxÞαϕ − ð−1Þα8πηxgðxÞ

×
Z

t

t0

dτ∂2α
tt ½Dxðt − τÞ�ϕðx; τÞ ¼ 0: (71)

Going to the complex-frequency domain, we Laplace
transform the associated equation for the Green function,
imposing the same initial conditions as in the last section,

∇2 ~GRet − z2
�
1 − ð−1Þα4πηxλ20;xgðxÞ

z2ðα−1Þ

ðz2 þ ω2
xÞ
�
~GRet

¼ δðx − x0Þ: (72)

If we now consider the equation of motion of the retarded
Green function corresponding to a field subjected to the
same initial conditions and with boundaries of constant
dielectric permittivity ϵðxÞ from the very beginning, we
will obtain

∇2 ~GRet − z2ϵðxÞ ~GRet ¼ δðx − x0Þ; (73)

which is analogous to what is found from a steady
canonical quantization scheme of a field with constant-
permittivity dielectric boundaries [28].
Comparing the equations, it is clear that in our case the

permittivity function given by the expression in brackets
should not depend on z, i.e., we have to replace it by a
constant. So, we can try replacing it by its zeroth-order
approximation. On the one hand, this is not possible in a
simple way for the bilinear model (α ¼ 0) because it
diverges for z ¼ 0. On the other hand, the current-type
model (α ¼ 1) gives a finite zeroth-order approximation,
allowing us to find a feasible replacement,

∇2 ~GRet − z2
�
1þ 4πηxλ

2
0;x

ω2
x

gðxÞ
�
~GRet ¼ δðx − x0Þ; (74)

where it is clear that the permittivity function is

ϵðxÞ≡ 1þ 4πηxλ
2
0;x

ω2
x

gðxÞ, which correctly satisfies the

Kramers-Kronig relations and is constant in time.
In fact, when this replacement is used from the very

beginning, we remove all the dynamics of the polarization
degrees of freedom and set them equal to the steady
situation in the scenario including dissipation by the
evaluation at z ¼ 0. We clearly have that GRet ≡ 0. All
in all, it gives that the terms corresponding to the con-
tribution of the material (polarization degrees of freedom
and baths) vanishes since N ≡ 0.
Therefore, the Hadamard propagator in Eq. (47) depends

on the kernels A and B, which in this case clearly do not
vanish. In fact, as long as there is a Casimir force between

constant dielectric boundaries due to the modification of
the vacuum modes, these kernels should not vanish at the
steady situation. This is in complete agreement with many
results that have been found for nondissipative media
boundaries obtained from a steady canonical quantization
scheme (see, for example, Ref. [28]), where quantization is
carried out by only considering a Hilbert space associated
to the field and developing the Heisenberg canonical
operator method in terms of creation and annihilation field
mode operators. Thus, we can write the long-time limit
(t0 → −∞) as

GHðx1; x2Þ⟶ 2ðAðx1; x2Þ þ Bðx1; x2ÞÞ: (75)

It is worth noting that—as it follows from steady
canonical quantization schemes—the field’s state must
be taken as a thermal one, as this an additional requirement
of consistency that results in the correct thermal global
factors for the correlation and Green functions in the steady
situation. However, our approach naturally gives the
correct thermal dependence at least when an initial high-
temperature state is considered for the field, which is in
agreement with the high-temperature limit of the canonical
quantization or in-out formalism schemes [10].
Finally, we have shown a first and simplest example

where the kernels A and B do not vanish at the steady
situation, and in fact they define the long-time regime in
this case. However, this is not totally new because we
clearly know that a Casimir force exists between constant
dielectric boundaries due to the modified vacuum modes.
Anyway, we have just proven that our approach correctly
reproduce this situation as a limiting case. In the next
section, we will study another situation where these terms
do not vanish, but neither of them completely define the
long-time regime.

D. Field and material boundaries

In this section we study a particular situation concerning
the presence of boundaries. At this point, we have already
seen that for the case of a 0þ 1-dimension field of
frequency Ω, the long-time regime is defined by the bath’s
contribution, while the polarization degree of freedom and
the proper field contributions vanish at the steady situation.
We have also seen that a nþ 1-dimension scalar field
interacting with homogeneous material over all space can
be reduced to an infinite set of 0þ 1 fields with frequency
k, representing the field modes that evolve in time due
to the sudden appearance of the material. We have shown
that in the long-time limit, as in the 0þ 1 case, the only
contribution to the energy-momentum tensor that survives
is also the one associated to the baths. The polarization
degrees of freedom and the field have vanishing contribu-
tions at the steady situation.
Although we were tempted to assume that the result of

the last two sections is quite general and always valid, we
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have presented a limiting case where the reverse is true and
the removal of the dissipation causes the kernelsA and B to
be responsible for the Casimir force between nondissipative
boundaries in the long-time regime.
As we pointed out before, this is not the only case where

these kernels contribute to the steady situation. If the
material is inhomogeneous or there exist regions without
material (i.e., vacuum regions that define material bounda-
ries) the same could be true. Therefore, this section gives
a simple example of the presence of boundaries and the
analysis of the steady situation.

1. The retarded Green function

Returning to the field equation for general boundaries
given in Eq. (71) for both coupling models, we can again
Laplace transform the associated equation for the retarded
Green function with appropriate initial conditions to obtain

∇2 ~GRet − z2½1 − ð−1Þα4πηxλ20;xgðxÞz2ðα−1Þ ~GRet;xðzÞ� ~GRet

¼ δðx − x0Þ; (76)

where ~GRet is the inverse of the differential operator
∇2 − z2½1 − ð−1Þα4πηxλ20;xgðxÞz2ðα−1Þ ~GRet;xðzÞ�, i.e., it is
the Green function associated to this operator.
We will consider a single homogeneous Dirac delta plate

located at x⊥ ¼ 0 (x⊥, x∥ are the orthogonal and parallel
coordinates, respectively, to the plate of a given space
point x), which is described by the material distribution
gðxÞ≡ δðx⊥Þ. Thus, Eq. (76) gives

∇2 ~GRet − z2½1 − ð−1Þα4πηλ20δðx⊥Þz2ðα−1Þ ~GRetðzÞ� ~GRet

¼ δðx − x0Þ: (77)

It is clear that the last equation imposes translational
invariance on the parallel coordinates x∥, so the Green
function must depend on x∥ − x0

∥. Then,

∂2 ~GRet

∂x2⊥ − ðz2 þ k2∥Þ ~GRet þ ð−1Þα4πηλ20δðx⊥Þz2α ~GRetðzÞ ~GRet

¼ δðx⊥ − x0⊥Þ; (78)

where k∥ ¼ jk∥j and ~GRet ≡ ~GRetðx⊥; x0⊥; k∥; zÞ.
It is worth noting that the last equation turns out to be a

Sturn-Liouville equation for the Green function, so it can be
calculated by the technique described in Ref. [29], where it
was constructed as

~GRetðx⊥; x0⊥; k∥; zÞ ¼
ΦðLÞðx<ÞΦðRÞðx>Þ

Wðx0⊥Þ
; (79)

where x< (x>) is the smaller (bigger) of x⊥ and x0⊥,WðxÞ ¼
ΦðLÞðxÞ dΦðRÞ

dx − dΦðLÞ
dx ΦðRÞðxÞ is the Wronskian (which has to

be a constant function) of the solutions fΦðLÞ;ΦðRÞg, which

are two homogeneous solutions ΦðL;RÞ that satisfy the
associated homogeneous equation

∂2Φ
∂x2⊥ − ðz2 þ k2∥ÞΦþ ð−1Þα4πηλ20δðx⊥Þz2α ~GRetðzÞΦ ¼ 0;

(80)

and the boundary condition at one of the two range
endpoints, i.e., ΦL (ΦR) satisfies the boundary condition
at the left (right) endpoint of the interval. In our case, this
boundary condition requires outgoing waves in the corre-
sponding region including the respective endpoint.
The presence of a Dirac delta function in one of the terms

of the equation means that we will obtain the solution in
two regions with positive and negative coordinates x⊥,
respectively; on the other hand, it gives a boundary
condition that gives a jolt to the derivative, which can
be obtained from the equation itself by integrating over an
interval containing the root of the delta function and then
taking its length to zero around the root, clearly obtaining

∂Φ
∂x⊥

����
x⊥¼0þ

−
∂Φ
∂x⊥

����
x⊥¼0−

¼ ð−1Þα4πηλ20z2α ~GRetðzÞΦð0Þ;

(81)

which goes together with the continuity of the solution.
Therefore, in each region the solutions are plane waves;

therefore, after imposing the boundary conditions, both
solutions are

ΦðLÞðx⊥Þ ¼
8<
:

te
ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ for x⊥ < 0;

e
ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ þ re−

ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ for 0 < x⊥;

(82)

ΦðRÞðx⊥Þ ¼
8<
:

e−
ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ þ re

ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ for x⊥ < 0;

te−
ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ for 0 < x⊥;

(83)

where r and t are the reflection and transmission coef-
ficients for one plate, respectively, and are given by

r ¼ −ð−1Þα2πηλ20
z2αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k2∥

q ~GRetðzÞt;

t ¼ 1

ð1þ ð−1Þα2πηλ20 z2αffiffiffiffiffiffiffiffiffi
z2þk2∥

p ~GRetðzÞÞ
; (84)

where it is clear that t ¼ 1þ r.
Then, the Laplace-Fourier transform of the retarded

Green function for a field point x⊥ < 0 is
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~GRetðx⊥; x0⊥; k∥; zÞ ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k2∥

q

8>>>>><
>>>>>:

e
ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x0⊥ðe−

ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ þ re

ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥Þ for x0⊥ < x⊥ < 0;

ðe−
ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x0⊥ þ re

ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x0⊥Þe

ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
x⊥ for x⊥ < x0⊥ < 0;

te
ffiffiffiffiffiffiffiffiffi
z2þk2∥

p
ðx⊥−x0⊥Þ for x⊥ < 0 < x0⊥:

(85)

To simplify the calculations, we continue with the one-
dimensional version of the problem, i.e., the case of a 1þ 1
field where the only dimension of interest clearly is the one
associated to the perpendicular coordinate x⊥, which we now
call x. Therefore, to obtain the results for this case we also
have to discard everything related to the parallel dimensions.
We can do this simply by setting k∥ equal to 0 in all the
results. This simplifies all the expressions, and the Laplace
transform of the retarded Green function in Eq. (85) is

~GRetðx; x0; zÞ ¼ −
1

2z

8>><
>>:

ezx
0 ðe−zx þ rezxÞ for x0 < x < 0;

ðe−zx0 þ rezx
0 Þezx for x < x0 < 0;

tezðx−x0Þ for x < 0 < x0;

(86)

where the reflection and transmission coefficients are now
given by

r ¼ −ð−1Þα2πηλ20z2α−1 ~GRetðzÞt; t ¼ 1

ð1þ ð−1Þα2πηλ20z2α−1 ~GRetðzÞÞ
: (87)

We can Laplace transform back using Mellin’s formula
and the residue theorem [27], assuming that the poles of the
Laplace transform of the retarded Green function have
nonpositive real parts. It is important to remark that
(following the discussion in Ref. [10]) for both coupling
models this can always be ensured by introducing an
appropriate cutoff function in the Laplace transform of
the dissipation kernel ~DQBM (in fact, any spectral density
that characterizes the environment has a physical cutoff
function). Moreover, assuming that the dissipation

(represented by DQBM), the frequency ω, and coupling
constant λ0 are not zero, the only pole with a vanishing real
part is the one at z ¼ 0, which appears (for each coupling
case) in different terms of the Laplace transform of the
retarded Green function, resulting in different behaviors of
the retarded Green function. This can be seen by working
out the last expression of the reflection coefficient r in each
model. However, this pole does not change the conclusions
of the present section, so we will continue the analysis
without losing generality.

Therefore, the Green function can be formally written as

GRetðx; x0; tÞ ¼ −
1

2

8>>>>>>>><
>>>>>>>>:

Θðx0 − xþ tÞ þ Θðxþ x0 þ tÞ
�
α − 1þP

zj

Rjezjðxþx0þtÞ
�

for x0 < x < 0;

Θðx − x0 þ tÞ þ Θðxþ x0 þ tÞ
�
α − 1þP

zj

Rjezjðxþx0þtÞ
�

for x < x0 < 0;

Θðx − x0 þ tÞ
�
αþP

zj

Rjezjðx−x
0þtÞ

�
for x < 0 < x0;

(88)

where zj are all the poles of r with negative real parts, i.e., the pole at z ¼ 0 is calculated explicitly in each model. For the
others poles we have Rj ≡ Res½rz ; zj� ¼ Res½tz ; zj�. Given that the retarded Green function must be real, its poles must come
in pairs (i.e., if zj is a pole then its conjugate z�j is a pole too) unless zj is real.
This expression, however, can be worked out by rearranging the terms and combining their Heaviside functions to obtain

a suitable closed form for the retarded Green function in each model for a field point x < 0,
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GRetðx; x0; tÞ ¼ G0
Retðx; x0; tÞ þ

ð1 − αÞ
2

Θð−xÞΘðxþ x0 þ tÞΘðx − x0 þ tÞ

−
Θð−xÞ

2

X
zj

RjezjðxþtÞ½ezjx0Θð−x0ÞΘðxþ x0 þ tÞ þ e−zjx
0Θðx0ÞΘðx − x0 þ tÞ�; (89)

where G0
Retðx; x0; tÞ≡ − Θð−xÞ

2
Θðx0 − xþ tÞΘðx − x0 þ tÞ is

the retarded Green function in free space for a field
point x < 0.
It is worth noting that the second term is an extra term

only for the bilinear model due to the presence of the plate,
but it is independent of the material properties. On the other
hand, the third term is directly and entirely related to the
presence of the plate and it contains all the information

about the material contribution to the transient evolution
(i.e., relaxation) and the new steady situation that the field
will achieve. It is clear that it implicitly depends on the
coupling model because the poles zj depend on it.
From Eq. (89) it can be easily proven—by looking

carefully at the products of distributions—that the time
derivative of the retarded Green function has a simple form
given by

_GRetðx; x0; tÞ ¼ _G0
Retðx; x0; tÞ −

Θð−xÞ
2

X
zj

zjRjezjðxþtÞ½ezjx0Θð−x0ÞΘðxþ x0 þ tÞ þ e−zjx
0Θðx0ÞΘðx − x0 þ tÞ�; (90)

where in this expression the only difference between the coupling models relies on the poles zj.

2. The long-time regime

Using the retarded Green function for the present
problem, we can proceed to study some dynamical aspects
and features of the steady situation.
As we just found in previous sections, our interest is the

Hadamard propagator given in Eq. (47), which we can use
to calculate the expectation value of the energy-momentum
components through Eq. (48). As is shown by Eq. (47), the
Hadamard propagator has several contributions that can be
divided into two parts: one comes from the field generated
by all the components of the material (polarization degrees
of freedom and baths), which is represented by the noise
kernel N , and the other comes from the field generated by
the vacuum fluctuations subjected to the actual boundary
conditions, which is represented by the kernels A and B
and will imply a modification of the field modes through a
transient evolution from the initial free field to the new
steady field.
Let us study firstly the material contribution. As we have

proven in Sec. VI B, when the material is modeled as
Brownian particles interacting with the field using both
coupling models, the material contribution at the steady
situation only consists of contributions coming from the
baths, while the particles merely act as a bridge connecting
the field with the baths and no contribution in the long-time
regime due to their dissipative Brownian dynamics. This
was basically contained in the fact that in the long-time
limit (t0 → −∞) we clearly have that N → N B. In the
present case, although there are regions without material,
the result is still valid. It is clear that in this case the Green

function is given by Eq. (89) but the formal expression is
the same. In fact, it is also worth noting that the material
distribution gwill define the range of integration, which has
no contribution from the points outside the material.
On the other hand, we have the contribution to the field

generated by the vacuum fluctuations represented byA and
B. We are tempted to assume that, as in Sec. VI B, these
contributions vanish at the steady situation, giving only a
transient behavior. However (as we just pointed out at the
end of that section) this could not be true when there are
vacuum regions where the field fluctuates freely.
Therefore, considering the kernel A in Eq. (34) and the

expression for the retarded Green function given in
Eq. (89), it is clear that the product GRetðx1; x; t1 − t0Þ
GRetðx2; x; t2 − t0Þ will have at most nine terms (depending
on which coupling model we are considering) due to all
of the possible combinations of the three separated terms,
which then have to be integrated over x. Using the
symmetry of the kernel, the number of integrals to calculate
is six at most. The complication in the full calculation is due
to the fact that each integral involves products of distribu-
tions that contain the integration variable and both field
points ðx1; t1Þ and ðx2; t2Þ; results will depend on multiple
relations between the coordinates of the field points.
On the other hand, the full calculation of kernel B is as

complicated as that for the previous kernel. In the one-
dimensional case, it is easy to calculate the kernel K in
Eq. (31) through the residue theorem, which gives
Kðx − x0Þ ¼ − jx−x0j

2βϕ
, which can be written as two terms.

Then, kernel B involves a double integration (over x and x0)
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of the triple product _GRetðx1; x; t1 − t0ÞKðx − x0Þ
_GRetðx2; x0; t2 − t0Þ. From Eq. (90) it is clear that the
derivative of the retarded Green function has two terms,
so to obtain B the number of integrals to perform is in
principle eight. Due to the symmetry, the final number of
double integrals decreases to six for this kernel too.
As we are interested in general features about the

transient-time evolution and the steady situation, we will
not proceed to a complete calculation of the terms, but we
will show that there are steady terms associated to the
contribution of these kernels.
We should note that the terms in the kernels A

and B associated to the products of the free-field
retarded Green function G0

Ret and its derivative [i.e., the
terms G0

Retðx1; x; t1 − t0ÞG0
Retðx2; x; t2 − t0Þ in A and

_G0
Retðx1; x; t1 − t0ÞKðx − x0Þ _G0

Retðx2; x0; t2 − t0Þ in B] are
the ones that will be removed by the Casimir prescription

(subtraction with the free-field case), so we do not have to
calculate them.
We should also note that the crossed terms (i.e., terms

combining different terms of the Green function) will be
transient terms, since these integrations will generate
constant terms that will vanish in the derivatives and
through the limit needed to calculate the expectation values
of the energy-momentum tensor, terms that will exponen-
tially decay in the long-time limit, or divergent terms that
must be subtracted to define a correct (nondivergent)
Hadamard propagator. As we are interested now in the
steady situation, we will not calculate them.
Independently of which model we are considering, to

study the long-time regime the products involving
two sums over poles will be the ones that result in
steady contributions. As a first case, we consider the
corresponding term found in the kernel A for a field point
x1;2 < 0,

Aðx1; x2; t1; t2Þ ¼ ðfree-field termsÞ þ ðcrossed termsÞ þ Θð−x1ÞΘð−x2Þ
4βϕ

X
j;l

RjRlezjðx1þt1−t0Þezlðx2þt2−t0Þ

×
Z þ∞

−∞
dx½ezjxΘð−xÞΘðx1 þ xþ t1 − t0Þ þ e−zjxΘðxÞΘðx1 − xþ t1 − t0Þ�

× ½ezlxΘð−xÞΘðx2 þ xþ t2 − t0Þ þ e−zlxΘðxÞΘðx2 − xþ t2 − t0Þ�: (91)

Considering that ΘðxÞΘð−xÞ≡ 0 and Θð�xÞΘð�xÞ≡ Θð�xÞ, there are vanishing integrals in the expression. Then,
making a substitution x → −x in one of the two resulting terms, all of the integrals are the same,

Aðx1; x2; t1; t2Þ ¼ ðfree-field termsÞ þ ðcrossed termsÞ þ Θð−x1ÞΘð−x2Þ
2βϕ

X
j;l

RjRlezjðx1þt1−t0Þezlðx2þt2−t0Þ

×
Z þ∞

−∞
dxeðzjþzlÞxΘð−xÞΘðx1 þ xþ t1 − t0ÞΘðx2 þ xþ t2 − t0Þ: (92)

Considering that Θðx1þ xþ t1 − t0ÞΘðx2þ xþ t2 − t0Þ ¼Θðx1− x2þ t1− t2ÞΘðx2þ xþ t2− t0ÞþΘðx2− x1þ t2− t1Þ
Θðx1þ xþ t1− t0Þ, the last integral can be easily calculated,

Aðx1; x2; t1; t2Þ ¼ ðfree-field termsÞþ ðcrossed termsÞþΘð−x1ÞΘð−x2Þ
2βϕ

X
j;l

RjRl

ðzjþ zlÞ
× ½ðΘðx1− x2þ t1− t2ÞΘðx2þ t2− t0Þ

þΘðx2− x1þ t2− t1ÞΘðx1þ t1− t0ÞÞezjðx1þt1−t0Þezlðx2þt2−t0Þ − Θðx1− x2þ t1− t2Þ
×Θðx2þ t2− t0Þezjðx1−x2þt1−t2Þ−Θðx2 − x1þ t2 − t1ÞΘðx1þ t1− t0Þezlðx2−x1þt2−t1Þ�: (93)

On the other hand, the kernel B presents a more complicated structure because it involves two integrations
(one over x and another over x0) and an extra kernel Kðx − x0Þ which couples both integrations, preventing a separate
calculation. Following the same train of thought, we focus on the terms involving two sums over poles. Therefore,
kernel B reads
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Bðx1; x2; t1; t2Þ ¼ ðfree-field termsÞ þ ðcrossed termsÞ − Θð−x1ÞΘð−x2Þ
8βϕ

X
j;l

zjzlRjRlezjðx1þt1−t0Þezlðx2þt2−t0Þ

×
Z þ∞

−∞
dx

Z þ∞

−∞
dx0jx − x0j½ezjxΘð−xÞΘðx1 þ xþ t1 − t0Þ þ e−zjxΘðxÞΘðx1 − xþ t1 − t0Þ�

× ½ezlx0Θð−x0ÞΘðx2 þ x0 þ t2 − t0Þ þ e−zlx
0Θðx0ÞΘðx2 − x0 þ t2 − t0Þ�: (94)

The integration over x0 can be done first by writing jx − x0j ¼ Θðx − x0Þðx − x0Þ þ Θðx0 − xÞðx0 − xÞ. Working out the
integral, we obtain that the result can be separated again into terms that will be part of the transient evolution and will vanish
in the long-time regime and terms that will give steady results. In fact, the integral can be written as

Z þ∞

−∞
dx0jx − x0j½ezlx0Θð−x0ÞΘðx2 þ x0 þ t2 − t0Þ þ e−zlx

0Θðx0ÞΘðx2 − x0 þ t2 − t0Þ�

¼ 2

z2l
½Θð−xÞΘðx2 þ xþ t2 − t0Þezlx þ ΘðxÞΘðx2 − xþ t2 − t0Þe−zlx� þ ðtransient termsÞ: (95)

Thus, kernel B reads

Bðx1; x2; t1; t2Þ ¼ ðfree-field termsÞ þ ðcrossed termsÞ þ ðtransient termsÞ − Θð−x1ÞΘð−x2Þ
4βϕ

X
j;l

zj
zl
RjRl

× ezjðx1þt1−t0Þezlðx2þt2−t0Þ
Z þ∞

−∞
dx½ezjxΘð−xÞΘðx1 þ xþ t1 − t0Þ þ e−zjxΘðxÞΘðx1 − xþ t1 − t0Þ�

× ½Θð−xÞΘðx2 þ xþ t2 − t0Þezlx þ ΘðxÞΘðx2 − xþ t2 − t0Þe−zlx�; (96)

where it is worth noting that the resulting integral is the same as the one in kernel A in Eq. (91).
Then, the result is the same and the kernel can be written as

Bðx1; x2; t1; t2Þ ¼ ðfree-field termsÞ þ ðcrossed termsÞ þ ðtransient termsÞ −Θð−x1ÞΘð−x2Þ
2βϕ

X
j;l

zj
zl

RjRl

ðzj þ zlÞ
× ½ðΘðx1 − x2 þ t1 − t2ÞΘðx2 þ t2 − t0Þ þΘðx2 − x1 þ t2 − t1ÞΘðx1 þ t1 − t0ÞÞezjðx1þt1−t0Þezlðx2þt2−t0Þ

−Θðx1 − x2 þ t1 − t2ÞΘðx2 þ t2 − t0Þezjðx1−x2þt1−t2Þ −Θðx2 − x1 þ t2 − t1ÞΘðx1 þ t1 − t0Þezlðx2−x1þt2−t1Þ�:
(97)

By considering this last equation and Eq. (94), it is now straightforward that the proper field contribution, given by the
sum of kernels A and B, can be written as

Aðx1; x2; t1; t2Þ þ Bðx1; x2; t1; t2Þ

¼ ðfree-field termsÞ þ ðcrossed termsÞ þ ðtransient termsÞ þ Θð−x1ÞΘð−x2Þ
2βϕ

X
j;l

�
1 −

zj
zl

�
RjRl

ðzj þ zlÞ
× ½ðΘðx1 − x2 þ t1 − t2ÞΘðx2 þ t2 − t0Þ þ Θðx2 − x1 þ t2 − t1ÞΘðx1 þ t1 − t0ÞÞezjðx1þt1−t0Þezlðx2þt2−t0Þ

− Θðx1 − x2 þ t1 − t2ÞΘðx2 þ t2 − t0Þezjðx1−x2þt1−t2Þ − Θðx2 − x1 þ t2 − t1ÞΘðx1 þ t1 − t0Þezlðx2−x1þt2−t1Þ�: (98)

The last two terms in the brackets contain exponentials whose exponents do not depend on the initial time t0. Therefore
those terms will not vanish in the long-time limit (t0 → −∞). This shows that a part of the proper field contribution has not
only transient but also steady terms that contribute to the long-time regime. We note that, in fact, these terms in the
Hadamard propagator will be constant terms in the expectation values of the energy-momentum tensor components of
Eq. (48) after differentiating and calculating the coincidence limit.
Moreover, we can work out these terms and write them in a more familiar way to connect them with previous works.

It should be noted that in the first term (associated to ezjðx1−x2þt1−t2Þ) the sum over l can be worked out through the residue
theorem, while in the second term (associated to ezlðx2−x1þt2−t1Þ) the sum over j can be done.
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Then, let us first take this last sum over j. Considering
that all the poles are simple and Rj ≡ Res½rz ; zj�, we can
write

X
j

ðzl − zjÞ
ðzj þ zlÞ

Rj ¼
X
j

Res

�ðzl − zÞ
ðzþ zlÞ

r
z
; zj

�
: (99)

From Eq. (87) and given that ReðzlÞ < 0 for every pole zl
(so zl þ zj ≠ 0), we can show that the complex function
ðzl−zÞ
ðzþzlÞ

r
z goes to 0 when jzj → þ∞, independently of the

direction in the complex plane, and that its set of poles is
given by all the poles zj, the pole −zl (which depends on
the term in the sum over l that we are considering), and the
pole 0 only in the bilinear coupling model. Therefore,
through the residue theorem, for a circle CþR of radius R
in the complex plane that contains all the poles, when
R → þ∞ we can write

0 ¼
Z
C∞

dz
2πi

ðzl − zÞ
ðzþ zlÞ

r
z
¼

X
j

Res

�ðzl − zÞ
ðzþ zlÞ

r
z
; zj

�

− 2rð−zlÞ þ α − 1; (100)

where the last two terms are the result of calculating
explicitly the poles at −zl and at 0.
Therefore, the whole term associated to ezlðx2−x1þt2−t1Þ

reads

X
j;l

�
1 −

zj
zl

�
RjRl

ðzj þ zlÞ
ezlðx2−x1þt2−t1Þ

¼
X
l

Rl

zl
ð2rð−zlÞ þ 1 − αÞezlðx2−x1þt2−t1Þ: (101)

Analogously, we can proceed for the other term, asso-
ciated to ezjðx1−x2þt1−t2Þ, by starting with the sum over l. The
calculation is the same except that it is over the complex
function ðz−zjÞ

ðzþzjÞ
r
z2 and the pole at z ¼ 0 is simple for the

current-type model, while it is of second order in the
bilinear model. Then we finally have

X
j;l

�
1 −

zj
zl

�
RjRl

ðzj þ zlÞ
ezjðx1−x2þt1−t2Þ

¼
X
j

Rj

�
2
rð−zjÞ
zj

þ 2πηλ20
ω2

αþ ð1 − αÞ ω2

2πηλ20

�

× ezjðx1−x2þt1−t2Þ; (102)

where the difference in units between the last two terms in
the brackets is due to the fact that the coupling constant λ0
change its units depending on the coupling model.
The last terms involve differences between both coupling

models in Eqs. (101) and (102). It can be shown that they
are divergent terms in the coincidence limit, so we discard
them by regularizing the expression. This way, we can
write the proper field contribution as

Aðx1; x2; t1; t2Þ þ Bðx1; x2; t1; t2Þ ¼ ðfree-field termsÞ þ ðcrossed termsÞ þ ðtransient termsÞ

−
Θð−x1ÞΘð−x2Þ

βϕ

X
j

Rj
rð−zjÞ
zj

½Θðx1 − x2 þ t1 − t2ÞΘðx2 þ t2 − t0Þezjðx1−x2þt1−t2Þ

þ Θðx2 − x1 þ t2 − t1ÞΘðx1 þ t1 − t0Þe−zjðx1−x2þt1−t2Þ�: (103)

At this point, we can exploit the residue theorem one
more time to obtain a final closed form for these terms. It is
straightforward to show that the sum over j (as we did for
the others sums and taking into account the convergence
requirements) can be written as an integral in the complex
plane over a curve Cþ ¼ CþL ⋃R

þ, where CþL is a half-infinite
circle enclosing the left half of the complex plane and Rþ
is a straight path over the imaginary axis from the bottom
to the top. Therefore, since the integrand function
rðzÞrð−zÞ
ð−z2Þ ezðx1−x2þt1−t2Þ vanishes for jzj → ∞ with

ReðzÞ < 0, the integral over CþL is null and the integral

is directly over the imaginary axis, which can be para-
metrized as z ¼ −iΩ. Finally, we obtain

−
X
j

Rj
rð−zjÞ
zj

ezjðx1−x2þt1−t2Þ

¼
Z
Cþ

dz
2πi

rðzÞrð−zÞ
ð−z2Þ ezðx1−x2þt1−t2Þ

¼
Z þ∞

−∞

dΩ
2π

jrð−iΩÞj2
ðΩ2Þ e−iΩðx1−x2þt1−t2Þ; (104)

where we have used that rðiΩÞ ¼ r�ð−iΩÞ for real Ω.
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Finally, the proper field contribution reads

Aðx1; x2; t1; t2ÞþBðx1; x2; t1; t2Þ ¼ ðfree-field termsÞþ ðcrossed termsÞþ ðtransient termsÞ

þΘð−x1ÞΘð−x2Þ
βϕ

Z þ∞

−∞

dΩ
2π

jrð−iΩÞj2
Ω2

½Θðx1− x2þ t1− t2ÞΘðx2þ t2− t0Þe−iΩðx1−x2þt1−t2Þ

þΘðx2− x1þ t2− t1ÞΘðx1þ t1− t0ÞeiΩðx1−x2þt1−t2Þ�; (105)

where it is remarkable that this expression has the form
as the long-time contributions considered without demon-
stration in Refs. [10,11] for the proper field contribution
in a steady canonical quantization scheme in the case of
the force between two plates, i.e., the Casimir-Lifshitz
problem.
All in all, we have shown that the long-time limit of a

Dirac delta plate of real material has contributions from
both the bath and the field by itself. The result can also be
extended to other configurations in one dimension (1þ 1),
but the calculations are more complicated. The conclusion
seems to be general, i.e., we have shown that a situation
including boundaries or, analogously, including vacuum
regions will present not only the contributions from the
baths, but also the proper field contribution in the long-time
regime. Therefore, this situation shows a new type of
scenario where the long-time regime is steady but it has
contributions from two parts of the composite system. Note
that the behavior and the steady situation in the case with
vacuum regions is radically different from the case of a
material over all space. However, the material contribution
(considered separately) behaves in the same way, i.e., the
contribution associated to the polarization degrees of
freedom is transient and vanishes at the steady situation,
while the baths’ contribution survives and is part of the
long-time regime. The great advantage of including boun-
daries is that it is not the only one that survives. This is due
to the fact that while the field tends to vanish inside the
material due to dissipation, outside it is fluctuating freely
without damping. This means that the fluctuations outside
propagate inside the material and finally reach a steady
situation in the long-time regime when the material has
relaxed and the dynamics are reduced to the steady ones.
This allows us to describe the proper contribution effec-
tively by modified vacuum modes, as was done in
Refs. [10,11] for the Casimir problem.
Therefore, any quantization procedure in the long-

time regime, i.e., any quantization scheme at the steady
situation—at least for models in 1þ 1—must consider this
contribution to obtain the correct results.
Following this train of thought, as a final comment we

should note that we have proven this fact in the one-
dimensional (1þ 1) case, but the conclusion for higher
dimensions could change. Although we have not preformed
the calculation for the nþ 1 case in this scenario including

vacuum regions, from the comparison between the reflec-
tion and transmission coefficients in Eqs. (84) and (87) and
the Laplace transform of the retarded Green functions in
Eqs. (85) and (86) for both cases, we can note that for the
higher-dimensional problem we have two branch cutsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k∥

q
involving the parallel momentum k∥ instead of

a simple z. Therefore, the analytical properties of the
Laplace transform are different and the time behavior of
the retarded Green function will change critically. It could
happen that the proper field contribution vanishes for this
higher-dimensional case, but the continuity between the
actual case of a real material and the result obtained in the
nþ 1 case for a constant dielectric and arbitrary boundaries
in Sec. VI C suggest that the result of this section is quite
general even for the higher-dimensional case.

VII. FINAL REMARKS

In this article we have extensively used the CTP
approach to calculate a general expression for the time
evolution of the expectation value of the energy-momentum
tensor components, in a completely general nonequilibrium
scenario, for a scalar field in the presence of real materials.
The interaction is turned on at an initial time t0, coupling
the field to the polarization degrees of freedom of a volume
element of the material, which is also linearly coupled to
thermal baths at each point of the space. Throughout the
work, we studied two coupling models between the field
and the polarization degrees of freedom. One is the bilinear
model, analogous to the one considered in the QBM theory
[7,22,23], and the other is (a more realistic) current-type
model, where the polarization degrees of freedom couple
to the field’s time derivative (as in the EM case interacting
with matter).
It is remarkable that the material is free to be inhomo-

geneous, i.e., its properties (density ηx, coupling constant to
the field λ0;x, mass mx, and frequency ωx of the polari-
zation degrees of freedom volume elements) can change
with the position. The baths’ properties (coupling constant
to the polarization degrees of freedom λn;x, mass mn;x, and
frequency ωn;x of each bath oscillator) can also change with
position, resulting in effective position-dependent proper-
ties over the volume elements of the material, which are
represented by the dissipation and noise kernels DQBM;x
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and NQBM;x after the first integration over the baths’
degrees of freedom.
On the other hand, thermodynamical nonequilibrium is

included by letting both the volume element and the
thermal bath have their own temperatures (βrx ; βB;x), which
is accomplished by choosing the initial density operators of
each part to be thermal states. The field also has its own
temperature βϕ, which analogously comes from the field’s
initial state, but for simplicity in the calculations we have
taken the high-temperature approximation, except for the
0þ 1 field case in Sec. VI A, where the calculation can be
done for arbitrary temperatures of the field.
It is worth noting that the approach also considers the

fact that the material bodies can be of finite extent and have
arbitrary shape, i.e., vacuum regions were the field is free
are included. All these features are concentrated in the
matter distribution function gðxÞ, which takes binary values
of 1 or 0 depending on whether there is material at x or not.
In the field’s high-temperature limit, the expectation

values of the energy-momentum tensor components are
given by Eq. (48), where the Hadamard propagator is
defined in Eq. (47). That equation contains the full
dynamics of the field correlation, with one contribution
clearly associated to the material, which is contained in the
third term of Eq. (47); the other is clearly associated to the
field by itself, which is contained in the first two terms.
All in all, the third term is directly associated to the

material (polarization degrees of freedom plus thermal
baths), represented by the field’s noise kernel, which is
also separated into two contributions, N ðx; x0Þ ¼
4πηxgðxÞδðx − x0Þ½N r;xðτ; τ0Þ þN B;xðτ; τ0Þ�. One contri-
bution is associated to the polarization degrees of freedom
that define the material and has an effective dissipative
(damping) dynamics due to the interaction with the baths
(QBM), and the other is associated to the baths’ fluctua-
tions that [thanks to its (nondamping) dynamics] acts like a
source of constant temperatures at each point of space and
results in an influence over the field; although they do not
interact directly, the polarization degrees act as a bridge and
connect them in an indirect interaction. Both contributions
define the field’s transient dynamics, while the steady
situation seems to be determined only by the baths, which
have nondamping dynamics. The relaxation dynamics of
the polarization degrees of freedom ensures that they will
not contribute to the long-time regime.
We have shown that the polarization degrees of freedom

never contribute to the steady situation, while the bath
always does, independently of the situation considered.
However, there is a case (Sec. VI C) where both contribu-
tions are absent, namely, the constant dielectric case, where
it is trivially expected that there is no contribution because
the material dynamics is suppressed.
On the other hand, the first two terms of Eq. (47) are

directly associated to the field’s initial state. Since we have
considered the high-temperature limit, both terms are linear

in the field’s initial temperature βϕ, as is expected. These
terms give the transient field evolution from the initial free
field over the whole space to the field interacting with the
polarization degrees of freedom of the material in certain
regions defined by the distribution function gðxÞ. This
evolution involves two dynamical aspects. One is related to
the fact that the properties of the boundaries are time
dependent. This adds extra dynamical features associated
to the relaxation process of the material, which enter the
field dynamics via the field’s dissipation kernel ∂2α

tt D for
each coupling model that defines the form of the field’s
retarded Green function GRet through Eq. (71). In Sec. VI C,
this aspect was turned off by suppressing the material’s
relaxation.
The other dynamical aspect is the adaptation of the free

field to the condition of being bounded by the sudden
appearance of boundaries. We have shown that this clearly
takes place in two scenarios: one was studied in Sec. VI D
when the distribution function gðxÞ has null values for
some space point x (i.e., when there are vacuum regions in
the particular problem), while the other is the aforemen-
tioned lossless case (Sec. VI C). In both cases, the effect is
basically the conversion of the field modes from free field
modes to interacting (modified) field modes.
This is completely related to the long-time regime of

these terms and it is not so easy to analyze. As we found in
Secs. VI A and VI B, the proper field contribution vanishes
for both coupling models, so there is no interacting
(modified) field modes associated to the field’s initial state.
Although it is tempting to assume that this result applies to
all cases involving material boundaries, in Secs. VI C and
VI D we have shown that the proper field contribution does
not vanish in the long-time regime. The result is trivially
expected for the case of constant dielectric permittivity, as
there exists a steady Casimir force between bodies of
constant dielectric permittivity (see Refs. [10,28]) involv-
ing a nþ 1 field. Therefore, since this case and the real
material including losses and absorption are expected to be
continuously connected [as we saw in Sec. VI D for the
one-dimensional (1þ 1) case], it is suggested that the result
found in the 1þ 1 case is quite general and holds for the
nþ 1 case with material boundaries (with n > 1).
Physically, for the case without boundaries, the dissipa-

tive (damping) dynamics of the field vanishes at the steady
situation, as in the QBM case.
For the case with vacuum regions, the field inside the

material tends to behave as a damped field, but in the
vacuum regions the field fluctuates without damping. So
there is a competition between the behavior in both regions
which will make the field evolve to a steady field with
modified modes in the long-time regime, beyond the
material relaxation, analogously to the case of the steady
situation with constant dielectric properties but with
frequency-dependent effective properties. The free fluctua-
tions propagate inside the material regions and keep the
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field in a continuous situation that survives to the long-time
regime. In other words, the transient dynamics of these
terms will be different from the constant-dielectric case.
The steady situation will also be different due to the
frequency dependence of the properties. However, taking
into account the considerations made above, the formal
expression must be the same as the constant-dielectric case
by replacing it with the corresponding actual frequency-
dependent permittivity (as it happens for the Casimir force
for a 1þ 1 field in absorbing media [10]).
Therefore, at least in the 1þ 1 case, any quantization

scheme for these models in a steady scenario (despite
involving thermodynamical nonequilibrium) must take into
account the proper field contribution in addition to the
expected baths’ contribution.
All in all, this is in fact a natural physical conclusion: all

the parts of the system that do not have damping dynamics
contribute to the long-time regime. Following this train of
thought, it is naturally expected that the bath contributes
and—since there are regions where the field has no
damping dynamics—modified field modes appear in the
long-time proper field contribution.

As a future work, and for completeness, it should be
possible to extend the calculation to the case of arbitrary
field temperatures without many complications. More
interesting would be to investigate the implications of this
analysis on the vacuum fluctuations in the real Casimir
problem, extending the complete study in a 1þ 1 scalar
field to the 3þ 1 EM field. Finally, it would also be
interesting to study the heat transfer and other thermody-
namical features in situations where the material is ther-
mally inhomogeneous.
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APPENDIX: THE FIELD WIGNER FUNCTIONAL

The Wigner functional for a quantum field can be
defined as in Ref. [24],

Wϕ½ϕ0ðxÞ;Π0ðxÞ; t0� ¼
Z

DφðxÞe−i
R

dxΠ0ðxÞφðxÞ
�
ϕ0ðxÞ þ

1

2
φðxÞ

���ρ̂ϕðt0Þ
���ϕ0ðxÞ −

1

2
φðxÞ

�
: (A1)

It is worth noting that it sometimes seems easier to compute the Wigner functional in momentum space. However, this
is not so easy. Even though the field ϕðxÞ is real, its Fourier transform ϕðpÞ is complex and its real and imaginary parts are
not independent, because to have a real field ϕð−pÞ ¼ ϕ�ðpÞ. As in Ref. [24], for the Fourier transform we will treat the real
and imaginary parts of ϕðpÞ as independent variables, but we consider pi ∈ ð0;þ∞Þ for each momentum component
instead of pi ∈ ð−∞;þ∞Þ. This way, the Wigner functional in momentum space can be defined as

~Wϕ½ϕ0ðpÞ;Π0ðpÞ; t0� ¼
Z

DφðpÞe−i
R þ∞
0

dp½Π�
0
ðpÞφðpÞþΠ0ðpÞφ�ðpÞ�

�
ϕ0ðpÞ þ

1

2
φðpÞ

���ρ̂ϕðt0Þ
���ϕ0ðpÞ −

1

2
φðpÞ

�
; (A2)

with the functional integrations running over real and
imaginary components of ϕðpÞ [24]. Going from

Eq. (A1) to (A2) implies a nontrivial Jacobian det½δφðxÞδφðpÞ�,
which does not depend on the fields because the Fourier
transformation is a linear mapping; consequently, it appears
merely as a new normalization factor of the Wigner
functional.

Now, we consider the scalar field initially in thermody-
namical equilibrium. Then, the density matrix operator
ρ̂ϕðt0Þ is given by

ρ̂ϕðt0Þ ¼
1

Z
e−βϕĤ0 ; (A3)

where Z is the partition function associated to the initial
field’s Hamiltonian Ĥ0, which can be written as

Ĥ0 ¼
Z þ∞

0

dpðΠ̂†ðpÞΠ̂ðpÞ þ p2Φ̂†ðpÞΦ̂ðpÞÞ: (A4)

This Hamiltonian is a sum of two harmonic oscillator
Hamiltonians for each component at fixed p. Thus, taking
p as a label for each pair of oscillators, we can intro-
duce a complete set of energy eigenstates of the two-
dimensional (isotropic) oscillator jn1; n2i. We can then
write Eq. (A2) as

~Wϕ½ϕ0ðpÞ;Π0ðpÞ;t0�

¼
X
n1;n2

Z
DφðpÞe−

R þ∞
0

dp½iðΠ�
0
ðpÞφðpÞþΠ0ðpÞφ�ðpÞÞþβϕjpj�

×

�
ϕ0ðpÞþ

1

2
φðpÞjn1;n2ihn2;n1jϕ0ðpÞ−

1

2
φðpÞ

�
: (A5)
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The eigenfunctions for the two-dimensional (isotropic) harmonic oscillator are given by

hΦR;ΦIjn1; n2i ¼
�

α2

π2n1n1!2n2n2!

�
1=2

Hn1ðαΦRÞHn2ðαΦIÞe−α2

2
ðΦ2

RþΦ2
I Þ; (A6)

where ΦR;I is the real or imaginary part of the field, respectively, Hn are the Hermite polynomials, and α≡ ðjpj
2
Þ1=2.

Inserting this into the last expression for the Wigner functional in momentum space and using the identity for the Hermite
polynomials,

X∞
n

an

n!
HnðxÞHnðyÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4a2

p e
4axy−4a2ðx2þy2Þ

1−4a2 ; (A7)

which holds for a < 1=2 (a condition which is satisfied in our case because a ¼ e−βϕjpj=2), one finds that

~Wϕ½ϕ0ðpÞ;Π0ðpÞ; t0� ¼
Z

DφðpÞe−i
R þ∞
0

dpðΠ�
0
ðpÞφðpÞþΠ0ðpÞφ�ðpÞ−iα2

4
φ�ðpÞφðpÞ−iα2ϕ�

0
ðpÞϕ0ðpÞ−iβϕjpjÞ

×
Y
p

α2

πð1 − e−2βϕjpjÞ e
α2e

−βϕ jpj

2ð1−e−2βϕ jpjÞ
½4ð1−e−βϕ jpjÞϕ�

0
ðpÞϕ0ðpÞ−ð1þe−βϕ jpjÞφ�ðpÞφðpÞ�

¼ Ce
R þ∞
0

dpα2 tanhðβϕ jpj
2

Þϕ�
0
ðpÞϕ0ðpÞ

Z
DφðpÞe−i

R þ∞
0

dpðΠ�
0
ðpÞφðpÞþΠ0ðpÞφ�ðpÞÞe

R þ∞
0

dpα2

4
cothðβϕ jpj

2
Þφ�ðpÞφðpÞ; (A8)

where in the coefficient C we have included all the terms which are not functionals of the fields and momenta.

Integrating trivially over the real and imaginary compo-
nents of φðpÞ, we arrive at the three-dimensional gener-
alization of the Wigner functional in momentum space
found in Ref. [24] for the one-dimensional case,

~Wϕ½ϕ0ðpÞ;Π0ðpÞ; t0�

¼ Ce−
βϕ
2

R
dp ~Δβϕ

ðjpjÞ½Π�
0
ðpÞΠ0ðpÞþjpj2ϕ�

0
ðpÞϕ0ðpÞ�; (A9)

where the thermal weight factor is given by

~ΔβϕðjpjÞ ¼
2

βϕjpj
tanh

�
βϕjpj
2

�
: (A10)

This is an even function of the momentum’s absolute value,
so in Eq. (A9) the integrals over the momentum compo-
nents were extended to all the real values.
Finally, knowing the Wigner functional in momentum

space allows on to easily find the Wigner functional in
coordinate space by writing all of the momentum’s func-
tions as Fourier transforms of the function in coordinate
space. This way, we can write an extension of the result
found in Ref. [24],

Wϕ½ϕ0ðxÞ;Π0ðxÞ; t0� ¼ C0e−β
R

dx
R

dx0Hðx;x0Þ; (A11)

where C0 is the normalization constant in coordinate space
and the integrand H is given by

Hðx;x0Þ≡1

2
Δβϕðx−x0Þ½Π0ðxÞΠ0ðx0Þþ∇ϕ0ðxÞ ·∇ϕ0ðx0Þ�;

(A12)

where the thermal weight factor in coordinate space is
given by

Δβϕðx − x0Þ ¼
Z

dp
ð2πÞ3 e

−ip·ðx−x0Þ ~ΔβϕðjpjÞ: (A13)

It is worth noting that, due to the interchange symmetry
of the integrand, the thermal weight factor in coordinate
space must be symmetric, i.e., Δβϕðx0 − xÞ ¼ Δβϕðx − x0Þ.
It is remarkable that although the expression for the

thermal weight factor in momentum space does not change
formally with the number of dimensions we are consider-
ing, the thermal factor in coordinate space clearly does.
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