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I. INTRODUCTION

The celebrated solution to the strong CP-problem is the
Peccei-Quinn (PQ) solution [1]. The essence of this
solution is to promote the θ parameter,

Lθ ¼ θF ~F; ð1Þ
into a dynamical field, a pseudo-Goldstone boson called
axion [2,3]. Here F denotes the gluon field strength matrix
and ~Fμν ¼ ϵμναβFαβ its dual. The index structure in (1) is
obvious and we do not display it explicitly. The essence of
this mechanism is as follows: The axion is sourced by F ~F
and its Lagrangian has the form

La ¼ ð∂μaÞ2 þ
a
fa

F ~F; ð2Þ

where fa is the axion decay constant.1 Thus, θ effectively
gets replaced by θ → a

fa
. The Lagrangian (2) guarantees that

the minimum of the axion potential is necessarily at hF ~Fi ¼
0 and therefore CP is unbroken. This also follows from the
fact [4] that the minimum of energy in QCD is at θ ¼ 0.
Different axion models only differ by the underlying

dynamics that yield the coupling a
fa
F ~F in (2). For example,

in the original PQ formulation, the axion is the phase of a
complex scalar field ϕ ¼ ρei

a
fa which spontaneously breaks

an anomalous Uð1ÞPQ symmetry

ϕ → ϕeiα; ð3Þ
through its vacuum expectation value hjϕji ¼ fa. The
axion a then becomes a (pseudo) Goldstone boson. The
coupling in (2) is generated through the chiral anomaly.
However, for the solution of the strong-CP problem, the

precise origin of the axion is unimportant. Any theory that

delivers the coupling in (2) will solve the strong-CP
problem. In this paper, therefore, we shall treat the axion
as an effective degree of freedom with Lagrangian (2) and
shall not be interested in its microscopic origin.
In this paper, we want to discuss a potential threat to the

axion solution and a particular way to protect it. The threat
appears in the form of an additional contribution VðaÞ to
the axion potential

La ¼ ð∂μaÞ2 þ
a
fa

F ~F − VðaÞ: ð4Þ

Such an additional potential can destabilize the solution.
Indeed, from the axion equation of motion,

□aþ dV
da

¼ 1

fa
F ~F; ð5Þ

it is clear that the vacuum is no longer necessarily
at hF ~Fi ¼ 0.
There are common beliefs that the source of such an

unacceptably large VðaÞ contribution arises from quantum
gravity corrections; see, e.g., [5]. We must stress, however,
that these arguments are mainly based on “folks theorem”
about the nonexistence of global symmetries in gravity.
The purpose of the present paper is not to contribute to

such a debate. Instead, following [6], wewould like to argue
that for the axion such dangerous contributions can be
limited to very well-defined effects. These can be consis-
tently parametrized even in the absence of the full knowl-
edge of gravity effects and a possible protection mechanism
can be identified as well. This is due to the power of gauge
invariance which allows us to understand the axion solution
in terms analogous to a Higgs (or Stückelberg) effect, but for
a three-form (instead of one-form) gauge field.
Before describing the details we would like to briefly

outline the main essence of our idea, which consists of the
two following points.2
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(1) The potential danger.
If one assumes that in the presence of gravity all global

symmetries are broken, this imperils the chiral solution of
the strong-CP problem provided by axions. However, in a
formulation of the theory where the axion field a is
replaced by a two-form Bμν, this gravitational breaking
comes only through the gravitational Chern-Simons term.
In the language of axions, this assumption means that all
gravitational corrections can be modeled by assuming that
the divergence of the PQ current gets modified to
∂μJ

μ
PQ ¼ F ~F þ R ~R. The presence of the R ~R term shifts

the axion mass and produces a nonzero θ angle in an
uncontrollable way.
(2) The neutrino solution.
If neutrinos are massless, there is a further chiral current

JμL which is conserved classically, but which has a
gravitational anomaly: ∂μJ

μ
L ¼ R ~R. Clearly, the divergence

of the current JμPQJ
μ
L has only the QCD anomaly. Thus, if

one couples axions to this current, all effects of gravitation
are absent and the strong-CP problem is solved in the
canonical way. Having a nonzero, but small, neutrino mass
disturbs this solution, but the effect is controlled by its
value, as we shall quantify.

II. THREE-FORM HIGGS EFFECT

We shall adopt the formulation of [6] where it was shown
that the axion as well as the massless quark solutions to the
θ problem is fully equivalent to dynamically generating a
mass gap for the Chern-Simons three-form C of QCD

Cαβγ ≡ Tr
�
A½α∂βAγ� þ

2

3
A½αAβAγ�

�
; ð6Þ

where A is the gluon field matrix. It is straightforward to
check that under QCD gauge transformations C shifts as

Cαβγ → Cαβγ þ d½αΩβγ�; ð7Þ

where Ω is a two-form. Notice that F ~F ¼ dC≡ E.
Thus F ~F is a field strength for C. It is important to notice
that C is not just a formal notation, but it acquires the
meaning of a field in QCD.
In order to appreciate the role of C for the strong-CP

problem let us recall the following crucial fact: Physics is θ
dependent only if the topological susceptibility of the
vacuum is nonzero

hF ~F;F ~Fiq→0 ¼ const ≠ 0; ð8Þ

where q is the momentum. In particular, this is the case in
QCD with no massless quarks or axions. This common
knowledge will be our starting point.
Then, rewritten in terms of the Chern-Simons three-form

C, (8) implies

hC;Ciq→0 ¼
1

q2
: ð9Þ

Thus, the θ dependence of physics is directly related to the
mass of C.
Equations (8) and (9) illustrate two very important

things: Whenever physics is θ dependent, the three-
form C appears as a massless field in the effective theory,
i.e., the correlator hC;Ci has a massless pole at q2 ¼ 0.
Correspondingly, for a massive C the pole at q2 ¼ 0 is
removed and physics becomes θ independent.
The solution to the strong-CP problem is therefore

equivalent to the generation of a mass gap for C. This is
exactly what the axion and the massless quark solutions
accomplish. In both cases, the theory delivers a new
pseudoscalar degree of freedom that is eaten up by the
three-form C which subsequently becomes massive. In the
case of the axion solution the eaten-up pseudoscalar is
the axion and in the case of the massless quark solution it is
the η0 meson.
Following [7] we can formulate the mechanism for the

generation of a mass gap purely in the language of
topological quantities. The advantage of this language is
that it is very general and treats both the axion and the
massless quark solution on the same footing.
Let us first start with a theory in which physics is θ

dependent. Then, from (9) it follows that C is a massless
field in a low-energy theory. Thus its action has the form

L ¼ 1

Λ4
E2 þ � � � ; ð10Þ

where Λ is the QCD scale and “…” denotes terms that are
higher order in E and its derivatives. In the absence of new
light states, these terms are obtained by integrating out the
massive states of QCD and vanish in the q ¼ 0 limit.
Hence, they are unimportant for our discussion as they
cannot affect the existence of a massless pole for C. It is
obvious that the above effective Lagrangian demonstrates
the existence of such a pole, as it describes a theory of a
massless three-form field. Thus, thanks to the power of the
effective field theory and the topological description, we
can make a definite statement about the existence of the
mass gap without any need of knowing the structure of
higher order terms.
Let us now add a sector to the theory which introduces an

anomalous current Jμ with divergence

∂μJμ ¼ F ~F ¼ E: ð11Þ

We can then see that such a current automatically removes
the massless pole and generates a mass gap for C. Notice
that the anomaly generates a unique interaction between Jμ
and E [7]

GIA DVALI, SARAH FOLKERTS, AND ANDRE FRANCA PHYSICAL REVIEW D 89, 105025 (2014)

105025-2



E
∂μ

□
Jμ; ð12Þ

so that (10) becomes

L ¼ 1

Λ4
E2 þ E

Λ2

∂μ

□
Jμ: ð13Þ

(For simplicity, we set the anomaly coefficient equal to
one.) Performing the variation with respect to C, we get

∂νE ¼ −Λ2∂ν
∂μ

□
Jμ ð14Þ

and taking into account (11) we obtain (up to an irrelevant
constant)

□E ¼ −Λ2E: ð15Þ

It is clear that E now propagates a massive field and the
pole at q2 ¼ 0 is removed. Thus, physics becomes θ
independent. Notice that although the three-form C is
gauge dependent, its divergence is F ~F ¼ E which is gauge
invariant, and the generation of a mass gap for E is a gauge
invariant statement.
This result (15) can be understood in an effective chiral

Lagrangian approach, as discussed in [8]. In their approach,
besides the chiral field Σ, one must include also the effects
of the background field E as a dynamical parameter. To
lowest order in E, this Lagrangian includes a term linear in
E to account for the chiral anomaly plus a quadratic
term: ETrðlnΣ − lnΣ†Þ − E2

M2F2pi
.

The two known solutions to the strong-CP problem act
in precisely this way and only differ by the particular form
of the current Jμ. For the PQ axion, the current is given by

Jμ ¼ fa∂μa; ð16Þ

whereas for the massless quark case it is

Jμ ¼ Q̄γμγ5Q; ð17Þ

where Q is the massless quark. Notice, in the latter case the
role of the axion is played by the η0 meson [6].

A. Goldstone-Higgs interpretation of the
mass-gap generation

Following [6,7], we would like to give a physical
interpretation to the mass-gap generation phenomenon that
we have just proven, in terms of the effect that is fully
analogous to the ordinary Higgs effect in spin-1 gauge
theory. There, as we know, a massless spin-1 field that
propagates 2 degrees of freedom eats up a pseudoscalar
with 1 propagating degree of freedom and forms a massive
spin-1 irreducible representation of the Poincaré group,
with 3 propagating degrees of freedom.

In (13), we are facing a fully analogous phenomenon, but
of a three-form. The would-be massless three-form field
that propagates zero degrees of freedom acquires 1 degree
of freedom and becomes a massive pseudoscalar. The
natural question to be asked is, where is this eaten-up
pseudoscalar coming from? In the axion and the massless
quark scenario the answer is clear. The eaten-up scalar is a
Goldstone boson of the spontaneously broken Chiral
symmetry corresponding to an anomalous current. The
corresponding Goldstone bosons are the axion and the η0
meson of QCD. In both cases, the theory accommodates the
existence of the Goldstone bosons by consistency. This is
ensured by the fact that symmetry corresponding to the
anomalous current is also spontaneously broken. For the
axion this is accomplished by the vacuum expectation value
of a Peccei-Quinn field ϕ, whereas for the η0 meson it is
achieved by the quark condensate of QCD. This is very
important for consistency as the new degree of freedom
must come from somewhere. The lesson that we are
drawing from here is therefore very important. What we
are finding is that whenever the anomalous current Jμ,
which contributes to the generation of the mass gap of the
three-form field, exists, the quantity ∂μ

□
Jμ must act as an

effective Goldstone degree of freedom by consistency. This
statement is general and depends neither on the micro-
scopic nature of the three-form nor on the origin of Jμ. The
power of it is that it just relies on gauge invariance and the
anomaly. Any theory that violates these conditions cannot
contribute to the generation of the mass gap.

III. THE ROLE OF GRAVITY

Now, we are fully equipped to monitor how gravity—or
any other physics—could ruin the axion solution. The
answer is simple: Gravity has to undo the generation of the
mass gap for the three-form and recreate a massless pole at
q2 ¼ 0. The only way to accomplish this is to create extra
terms in Eq. (11). For example, this could be an additional
potential term generated by gravity for the axion

□a ¼ 1

fa
E −

dV
da

: ð18Þ

In the PQ formulation of the problem, such a potential
term looks totally uncontrollable and could come from
arbitrary Uð1ÞPQ violating terms in the Lagrangian. This is
not true in a dual formulation of the theory in which the
scalar axion field a is replaced by a two-form field Bμν.
Because of the gauge invariance of Bμν, the terms generated
by gravity are extremely constrained.3

To see this, we shall perform a duality transformation of
the Lagrangian

3The UV completion of the theory above the scale fa can, in
principle, distinguish the two formulations. We shall not address
the issue of UV completion in this paper.
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L ¼ ð∂μaÞ2 þ
a
fa

Eþ 1

Λ4
E2 ð19Þ

by promoting ∂μa≡ Rμ into a one-form and imposing the
Bianchi identity ∂αϵ

αβγδRδ ¼ 0 via the Lagrange multiplier
Bμν. Equation (19) becomes

L ¼ RμRμ þ 1

fa
Rαϵ

αβγδCαβγ þ
1

fa
Bβγ∂αϵ

αβγδRδ þ
1

Λ4
E2:

ð20Þ

It follows from integrating out Rμ that the Lagrangian of the
two-form field B coupled to the three-form C is

L ¼ 1

Λ4
E2 þ 1

f2a
ðC − dBÞ2; ð21Þ

where we have dropped the indices and used a coordinate-
free representation of the n-forms.
Notice that this system exhibits a gauge redundancy of

the form

C → Cþ dΩ; B → Bþ Ω; ð22Þ

where Ω is an arbitrary two-form.
We would like to stress that the possibility of rewriting

the QCD axion in a dual language of Bμν and coupling it to
a QCD Chern-Simons was already considered in [5], but
unfortunately was abandoned because the authors assumed
that the duality between a and Bμν does not hold for a
massive axion. This is not the case, since it is exclusively
the coupling to C that generates a mass for the axion in both
formulations.4

Equations (21) and (22) exhibit the limitations for the
possible gravitational damage in full glory. Since gravity
has to respect the gauge redundancy (22), the only
possibility to reestablish a massless pole is to provide
another would-be massless three-form CG in such a way
that a single axion is shared between C and CG [6].
In Einstein gravity, the unique candidate for CG is the

gravitational Chern-Simons term

CG ≡ ΓdΓ −
3

2
ΓΓΓ; ð23Þ

with

dCG ¼ R ~R≡ EG; ð24Þ
where R is the Riemann tensor and ~R is its dual. For gravity
thus to ruin the axion solution the following two conditions
must be satisfied:

(i) The correlator

hR ~R;R ~Riq→0 ¼ const ≠ 0 ð25Þ

in the absence of the axion.
(ii) The coupling aR ~R or equivalently CGdB must be

generated.
The above two quantities are parametrized by two

a priori independent parameters. The scale ΛG determines
the strength of the correlator hR ~R; R ~Riq→0, and will appear
as an effective cutoff scale in a low-energy theory of the
gravitational three-formCG. On the other hand, the strength
of coupling to axion, which we shall denote by αG, is
determined by the coefficient of the anomaly. Whenever
either of these two parameters is zero, gravity has no effect
on the axion mass.
The Lagrangian which renders the QCD θ-term physical

has the unique form

L ¼ 1

Λ4
E2 þ 1

Λ4
G
E2
G þ 1

f2a
ðαCþ αGCG − dBÞ2; ð26Þ

where as just explained α and αG are two dimensionless
parameters which determine the respective coupling
strengths. Normalizing the three-forms canonically, rescal-
ing B → B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2Λ4 þ α2GΛ

4
GÞ

p
, and introducing the mixing

angle, cosβ≡ αΛ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2Λ4þα2GΛ

4
G

p , we can rewrite

L ¼ E2 þ E2
G þm2ðC cos β þ CG sin β − dBÞ2; ð27Þ

where m2 ≡ ðα2Λ4 þ α2GΛ
4
GÞ=f2a. We see that, due to

mixing, only one combination of three-forms is becoming
massive, whereas the orthogonal one, C sin β − CG cos β, is
massless. The natural value of the QCD θ-term is measured
by the relative weight of the QCD three-form in this
combination

θQCD ¼ sin β≡ αGΛ2
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2Λ4 þ α2GΛ
4
G

p : ð28Þ

We shall assume that this value is unacceptably large and
look for possible solutions to comply with observations. An
obvious way out is suggested by (26). We need to keep the
gravitational three-form CG “busy” by coupling it to
another two-form B0

μν

L ¼ 1

Λ4
E2 þ 1

Λ4
G
E2
G þ 1

f2a
ðαCþ αGCG þ dBÞ2

þ 1

f02a
ðCG þ dB0Þ2; ð29Þ

where we have again restored the noncanonical normali-
zation. In the usual terms this means that we need a new

4The dual formulation of a massive Bμν in terms of massive
three-forms was studied in [9] up to quadratic order in fields. The
duality between the massive three-form and the massive axion for
an arbitrary form of the axion potential was proven in [7].
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chiral current J0μ which is anomalous with respect to
gravity.
We would like to argue that the Standard Model contains

a natural candidate for such a current in the form of the
neutrino lepton number. If this protection mechanism is to
work, one obtains an upper bound on the lightest neu-
trino mass.

IV. NEUTRINO PROTECTION FOR THE AXION

We will consider the Standard Model coupled to gravity.
Our only assumption is that, in the absence of other chiral
currents, gravity disturbs the axion solution. As discussed
above, this implies that in the absence of the axion both
correlators (9) and (25) are nonzero. Equivalently, in the
absence of any anomalous currents physics would depend
on two θ angles θQCD and θG. In this case, the low-energy
theory contains two massless three-forms, C and CG,

L ¼ 1

Λ4
E2 þ 1

Λ4
G
E2
G: ð30Þ

Notice, below we shall work with a noncanonical normali-
zation of the three-forms, but shall also translate the results
for the canonical normalization case.
If gravity is to interfere with the axion solution, another

necessary condition is that the axial current Jμ ¼ fa∂μa is
anomalous with respect to both QCD and gravity, i.e.,

∂μJμ ¼ αEþ αGEG; ð31Þ

where αG is associated with the gravitational breaking of
the chiral symmetry.
Since we are working at the level of effective low-energy

theory, we have no precise information about αG, which
depends on the UV structure of the theory, such as, e.g., the
anomaly coefficients of the integrated-out heavy fermions.
Therefore, we shall simply parametrize our ignorance and
treat it as a free parameter. Of course, as explained above,
our efforts for protecting the axion are required only if αG is
nonzero, which we shall assume in the following. It is
apparent from (31) that for αG ≠ 0 only one combination,
namely,

αEþ αGEG; ð32Þ
becomes massive. Indeed, the anomaly-generated effective
Lagrangian

L ¼ 1

Λ4
E2 þ 1

Λ4
G
E2
G þ α

f2a
E
∂μ

□
Jμ þ αG

f2a
EG

∂μ

□
Jμ ð33Þ

implies the equations of motion

∂ν
E
Λ4

¼ −∂ν

�
α

f2a

∂μ

□
Jμ
�

∂ν
EG

Λ4
G
¼ −∂ν

�
αG
f2a

∂μ

□
Jμ
�
; ð34Þ

which, after taking into account (31), can be rewritten as,

□ðαEþ αGEGÞ ¼ −m2ðαEþ αGEGÞ

□

�
αG

E
Λ4

− α
EG

Λ4
G

�
¼ 0; ð35Þ

where m2 is defined below Eq. (27). It is obvious
that canonically normalized massive and massless combi-
nations are given by the orthogonal superpositions deter-
mined by the same angle β as defined before Eq. (27).
In particular, the massless pole at q2 ¼ 0 persists for
αG

E
Λ4 − α EG

Λ4
G
, which in the language of canonically normal-

ized three-forms is

sin βE − cos βEG: ð36Þ

The non-fine-tuned value for θQCD is then given by (28),
which can be unacceptably large.
However, the Standard Model contains other anomalous

currents, such as the neutrino lepton-number current. The
existence of this current and the fact that it is anomalous
under gravity changes the story and offers a protection
mechanism.
For definiteness, we consider a single massless neutrino

species of left chirality νL. The chiral symmetry

νL → eiϕνL ð37Þ

is anomalous with respect to gravity and the corresponding
current

JLμ ¼ ν̄LγμνL ð38Þ

has an anomalous divergence [10]

∂μJLμ ¼ R ~R ¼ EG; ð39Þ

where we have set the known anomaly coefficient to one. It
is now obvious that the massless pole is no longer there for
E and EG. Indeed from the effective Lagrangian

L ¼ 1

Λ4
E2 þ 1

Λ4
G
E2
G þ α

f2a
E
∂μ

□
Jμ þ αG

f2a
EG

∂μ

□
Jμ

þ 1

f2ν
EG

∂μ

□
JLμ ð40Þ

(where fν ∼ ΛG is a scale that sets the strength of anomaly-
induced coupling to neutrino current) one can obtain the
equations of motion forC and CG which, together with (11)
and (39), show that there are no massless modes in E
and EG. Thus, massless neutrino protects the axion
solution to the strong-CP problem. In the next section
we shall take into the account a possible effect of the small
neutrino mass.
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A. Neutrino masses

Observations of neutrino oscillations [11] have estab-
lished that there is an upper bound on neutrino massesP

mν ≲ 0.3 eV [12], where the sum is over all neutrino
flavors. Therefore, neutrinos are interesting candidates
for protecting the axion. Below we shall explore such a
scenario.
We therefore parametrize the mass of the lightest

neutrino by mν. In case mν is nonzero, the neutrino lepton
number is explicitly broken. This introduces an additional
factor to the divergence of the current (38)

∂μJ
μ
νL ¼ R ~Rþmνν̄γ

5ν: ð41Þ

We shall not be concerned with the microscopic origin of
this mass and shall treat it as a parameter. As we have
shown before, the generation of the mass gap for CG
automatically implies that, in full analogy with (16) and
(17), this current must be identified with a pseudoscalar
degree of freedom. We shall denote it by ην in analogy with
the η0 meson of QCD.
Notice, that we are not making any extra assumptions.

The necessity of a physical ην degree of freedom follows
from the matching of high-energy and low-energy theories
[6,7]. From the high-energy point of view, the axion is
protected because the would-be gravitational θ-term is
rendered unphysical by a chiral neutrino rotation. In order
to match this effect in low-energy description, the correlator
(25) must be screened. By gauge symmetry, this is only
possible if there is a corresponding Goldstone-type degree
of freedom that plays the role of the Stückelberg field for
the gravitational three-form (23). In other words, the same
physics that provides the correlator (25), by consistency,
must also provide the physical degree of freedom ην
necessary for the generation of the mass gap in the presence
of the anomaly.
We can think of ην as a pseudo-Goldstone boson of the

spontaneously broken lepton-number symmetry (37) by
nonperturbative gravity. In a sense, ην can be thought of as a
low-energy limit of the neutrino bilinear operator,

ην →
1

Λ2
G
ν̄γ5ν and JμνL → ΛG∂μην; ð42Þ

in a way similar to the relation of η0 of QCD in terms of a
quark bilinear operator. With this connection, the effect of a
small neutrino mass on ην is similar to the effect of a small
quark mass on η0. Namely, to the leading order in mν

ΛG
such a

deformation of the theory should result in a small explicit
mass of ην in an effective low-energy Lagrangian. Because
physics must be periodic in the Goldstone field, this mass
term should be thought of as the leading order term in an
expansion of the periodic function. The higher order terms
in this expansion cannot affect the mechanism of mass
generation and are unimportant for the present discussion.

Thus, the dynamics of the theory is now governed by the
Lagrangian (40) with an additional mass term mνΛGη

2
ν

appearing from the explicit symmetry breaking by the
neutrino mass. Replacing the currents with their corre-
sponding pseudo-Goldstone bosons (16) and (42) yields

L ¼ 1

Λ4
E2 þ 1

Λ4
G
E2
G −

a
fa

E − αG
a
fa

EG −
ην
ΛG

EG

þ ∂μa∂μaþ ∂μην∂μην −mνΛGη
2
ν: ð43Þ

Here we have absorbed α into the definition of fa and have
set the decay constant of ην to be equal to ΛG.

5 Ignoring
numerical factors, the equations of motion for C and G are

d
�
E − Λ4

a
fa

�
¼ 0

d
�
EG − αGΛ4

G
a
fa

− Λ3
Gην

�
¼ 0; ð44Þ

and the ones for a and ην read

fa□a ¼ −αGEG − E

ð□þmνΛGÞην ¼ −
EG

ΛG
: ð45Þ

It is already clear from the last two equations that small
enough neutrino mass will continue to keep the θ-term of
QCD under control. Indeed, these two equations imply that
in the vacuum (that is, for ην ¼ a ¼ constant) the value of
the QCD electric four-form is E ¼ mναGΛ2

Gην. Since, the
vacuum expectation value of ην cannot exceed its decay
constant ΛG, the corresponding maximal possible value of
the θQCD is

θmax ¼
Emax

Λ4
¼ mναGΛ3

G

Λ4
; ð46Þ

which vanishes for mν → 0.
Indeed, the vacuum solutions of (44) and (45) are given

by the following expressions:

E ¼ αGΛ4
mνΛ4

GðαGβ2 − β1Þ
Λ4
Gmνα

2
G þ Λ4ðΛG þmνÞ

EG ¼ Λ4
G

mνΛ4ðβ1 − αGβ2Þ
Λ4
Gmνα

2
G þ Λ4ðΛG þmνÞ

; ð47Þ

where β1 and β2 are dimensionless integration constants of
(44), i.e., E¼Λ4 a

fa
þΛ4β2 and EG¼Λ4

GαG
a
fa
þΛ3

Gην þ
β1Λ4

G. Since the maximal values of the two electric fields

5In the absence of other scales in the problem, this is the only
natural possibility, in full analogy to the decay constant of η0
meson being set by the QCD scale. The possible difference
between fν and ΛG can easily be taken into the account and
changes nothing in our analysis.
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are bounded by the scales Λ4 and Λ4
G, the maximal values

of the corresponding integration constants can be order one.
Let us parametrize this result by the ratio of the neutrino

mass to the gravitational scale by defining ϵ≡ mν
mνþΛG

. The
maximal value for the quantity αGβ2 − β1 is either order
one or αG depending whether αG is less or larger than one.
For definiteness, we shall assume αG > 1. The maximal
value for the QCD electric four-form field EG then depends
on ϵ as follows6:

E ¼ Λ4
ϵα2G

ϵα2G þ Λ4

Λ4
G

: ð48Þ

The limit of massless neutrinos ϵ → 0 leads to
E ¼ EG ¼ 0. Thus, in this limit we recover the result of
Sec. IV. In other words, massless neutrino fully protects the
axion from gravity.
Considering the value of the neutrino mass mν is much

smaller than the gravitational scale ΛG, mν ≪ ΛG, we get
ϵ≃ mν

ΛG
. Then, the value of E in the QCD vacuum is instead

E ¼ Λ4
α2GmνΛ3

G

Λ4 þ α2GmνΛ3
G
: ð49Þ

In terms of θ this gives

θ ¼ α2GmνΛ3
G

Λ4 þ α2GmνΛ3
G
: ð50Þ

In order to be compatible with observations (cf. the
electric dipole moment [13,14]), θ must satisfy the bound
θ < 10−9.
It is instructive to look at the values of E for different

choices of parameters. If the denominator in (50) is
dominated by α2GmνΛ3

G, there is essentially no screening
of the four-form electric field, E ∼ Λ4, and correspondingly
the un-fine-tuned value is θ ∼ 1. In this case, the axion
solution of the strong-CP problem is ruined. On the other
hand, if Λ4 ≫ α2GmνΛ3

G, then the requirement of the
protection of the successful axion mechanism translates
into the following bound on the lightest neutrino mass:

mν ≲ 10−9
Λ4

α2GΛ
3
G
: ð51Þ

In turn, the experimental measurement of the neutrino mass
would introduce an upper bound on the nonperturbative
gravitational scale of the anomaly ΛG.
The experimental searches [15,16] currently focus on

the mass range 0.2 eV < mν < 2 eV. A detection of the

lightest neutrino mass in this window would give the
bound

ffiffiffiffiffiffi
α2G

3
p

ΛG ≲ 0.2 GeV.

V. CONCLUSIONS

In this work we have put forward yet another example of
the highly profound connection between particle physics
and nonperturbative quantum gravity. The main players in
this connection are the axion and the neutrino.
Quantumgravity is believed to violate global symmetries,

and among other things, ruin the axion solution of the
strong-CP problem. Usually, this impact is parametrized by
introducing all possible higher-dimensional operators sup-
pressed by the Planck scale in the effective Peccei-Quinn
Lagrangian [17]. In such a picture, the impact is devastating.
However, a closer look at the axion solution of the strong-CP
problem reveals that it can be understood as a gauge-Higgs
effect in the QCD Chern-Simons three-form language. In
this formulation of the theory, because of the power of gauge
redundancy and the anomaly, it is possible to uniquely single
out and fully parametrize the potentially dangerous gravi-
tational physics [6,7]. As we have seen, such physics can
only come in the form of a gravitational Chern-Simons
correlator or, equivalently, an effective gravitational three-
form field that could eat up the axion.
By identifying the source of the danger, we were able to

see the possible protection mechanism against it. This
mechanism is built-in in the Standard Model in the form of
light neutrinos. What we have shown is that, due to the
lepton-number anomaly, the neutrino can sacrifice itself
instead of the axion to a gravitational three-form and
neutralize its impact on the solution of the strong-CP
problem. This mechanism gives a phenomenological bound
on the neutrino mass. The precise measurement of this mass
would reveal a bound on the nonperturbative gravity scale.
Ideas displayed in this paper can be applied to other

global approximate symmetries of the standard model,
such as combinations of baryon and lepton numbers along
the lines of [6]. In particular, would be interesting to
explore the consequences of the electroweak analog of the
θ-term, which must become physical after the neutrino
lepton number is broken by nonperturbative gravity and ην
becomes massive.
Finally, one of the consequences of the neutrino pro-

tection scenario is the existence of a new effective
low-energy pseudoscalar degree of freedom ην that plays
the role analogous to the η0 meson of QCD. It would be
interesting to explore its possible phenomenological and
cosmological consequences.
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