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In this paper, we study twist deformed quantum field theories obtained by combining the Wightman
axiomatic approach with the idea of spacetime noncommutativity. We prove that the deformed fields with
deformation parameters of opposite sign satisfy the condition of mutual asymptotic commutativity, which
was used earlier in nonlocal quantum field theory as a substitute for relative locality. We also present an
improved proof of the wedge localization property discovered for the deformed fields by Grosse and
Lechner, and we show that the deformation leaves the asymptotic behavior of the vacuum expectation
values in spacelike directions substantially unchanged.
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I. INTRODUCTION

Models of quantum field theory on noncommutative
spacetime continue to attract attention because of their
relevance for understanding quantum gravity [1] and because
they can be obtained as a particular low-energy limit of string
theory [2]. Noncommutativity is usually introduced by
replacing the spacetime coordinates xμ with Hermitian
operators x̂μ satisfying commutation relations of the form

½xμ; xν� ¼ iθμν; (1)

where θμν is a real antisymmetric matrix, constant in the
simplest case. The relations (1) are translation invariant, but
not Lorentz covariant. The twist deformation was devised
[3,4] as a way to restore the spacetime symmetries broken
by noncommutativity. In its widest form [5], the twisting
principle implies that all symmetries and products of the
theory should be consistently deformed by properly applying
a twist operator. In particular, the tensor product f ⊗ g of
two functions on spacetime is deformed in the following
way: f ⊗ g → f ⊗θ g, where

ðf ⊗θ gÞðx; yÞ¼def exp
�
i
2
θμν

∂
∂xμ

∂
∂yμ

�
fðxÞgðyÞ; (2)

and the twist operator here is

T ¼ e
i
2
θμν∂μ⊗∂ν : (3)

(Hereafter, we use the usual summation convention for the
repeated indices.) From the standpoint of deformation
quantization, noncommutativity amounts to deforming the
ordinary pointwise product fðxÞgðxÞ to the Weyl-Moyal star
product f ⋆θ g which is obtained from f ⊗θ g by restricting
to the diagonal,

ðf ⋆θ gÞðxÞ ¼ ðf ⊗θ gÞðx; xÞ: (4)

For the coordinate functions, we have

½xμ; xν�⋆ ≡ xμ ⋆ xν − xν ⋆ xμ ¼ iθμν; (5)

which is related to (1) by the Weyl-Wigner correspondence.
The strategy of twisting also leads to deformed commutation
relations for the creation and annihilation operators of free
fields, see [5–10]. However, as shown in [8,10,11], some
combinations of twistings can cancel noncommutativity.
Then the S-matrix of twisted quantum field theory turns
out to be equivalent to that of its commutative counterpart,
and this issue does not seem completely resolved (compare,
e.g., [12] and [13]).
A new interesting line of research concerns the use of

noncommutative deformations of free field theories as a
means of constructing integrable models with a factorizable
S-matrix. Grosse and Lechner [14,15] studied a deforma-
tion of this type, generated by twisting the tensor algebra
of test functions in the Wightman framework [16], and
they discovered that the deformed fields can be localized
in wedge-shaped regions of Minkowski space. Grosse and
Lechner also showed that the deformation introduces a
nontrivial interaction and that this weak form of locality is
sufficient for computing two-particle S-matrix elements. A
more general deformation techniques have been developed
in an operator-algebraic setting [17,18] and then extended
to quantum field theory on a curved spacetime [19]. This
deformation method was also applied to a fermionic model
[20] and was used to construct wedge-local fields with
anyonic statistics [21].
In this paper, we consider the twisted quantum field

theory from a complementary point of view stated in
[22,23], with emphasis on the nonlocal aspects of the
deformation. The deformation procedure described below
in terms of the Wightman functions applies to interacting as
well as free fields. Our main observation is that the fields ϕθ*soloviev@lpi.ru
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and ϕ−θ with deformation parameters of opposite sign
satisfy the condition of mutual asymptotic commutativity,
which was used earlier in nonlocal quantum field theory
(see, e.g., [24] and references therein) as an analog of
relative locality. This result supplements the wedge locali-
zation property found in [14,15]. We also show that the
deformation does not spoil the asymptotic behavior of the
vacuum expectation values in spacelike directions, which
plays the major role in constructing the asymptotic scatter-
ing states in the deformed theory.
The paper is organized as follows. In Sec. II, we list basic

properties of the twisted tensor product ⊗θ and define the
corresponding deformation of Wightman functions. In
Sec. III, we present an improved proof of the wedge
locality property of the deformed fields. In Sec. IV, we
obtain a characterization of the asymptotic behavior of
the (anti)commutator ½ϕθðxÞ;ϕ−θðyÞ�ðþÞ

− of two fields with

deformation parameters of opposite sign. We show that this
commutator falls off rapidly at large spacelike separation
of x and y, and we estimate the fall-off rate. Particular
attention is given to the adequate choice of the test
functions that are required for this purpose. At this point,
we use a criterion [25] under which a test function space
has the structure of an algebra with respect to the Weyl-
Moyal star product. Our analysis shows, in particular, that
the commutator under study satisfies the asymptotic com-
mutativity condition proposed for nonlocal fields in [26].
In Sec. V, we prove that the deformation has little or no
effect on the asymptotic behavior of the vacuum expect-
ation values in spacelike directions. Section VI contains
concluding remarks.

II. TWIST DEFORMATION OF
WIGHTMAN FUNCTIONS

In order that the twisted tensor product (2) and Weyl-
Moyal star product (4) be well defined, the functions
involved must satisfy certain conditions. In quantum field
theory formalism, it is a standard practice to use the
Schwartz space S of smooth functions decreasing faster
than any inverse power of their arguments, and this space is,
as well known, an algebra under the star multiplication. But
it should be kept in mind that the expansions of both these
products in powers of the noncommutative parameter θ
are in general divergent for functions in S. A preferable
definition of these products is by using the Fourier trans-
formation, which converts the twist operator (3) to the
multiplication by the function

ηðp; qÞ ¼ e−
i
2
pθq; where pθq¼defpμθ

μνqν: (6)

The function η is a multiplier of the Schwartz space anddf ⊗θ g may be written as

ð df ⊗θ gÞðp; qÞ ¼ e−
i
2
pθqf̂ðpÞĝðqÞ: (7)

This definition extends to the case of several variables in
the following way

ð dfðmÞ ⊗θ gðnÞÞðp1;…pm; q1;…; qnÞ

¼
Ym
j¼1

Yn
k¼1

e−
i
2
pjθqk f̂ðmÞðp1;…pmÞĝðnÞðq1;…; qnÞ; (8)

where fm and gn are assumed to be elements of SðR4mÞ
and SðR4nÞ, respectively. It is easy to see that the bilinear
map ðf; gÞ → f ⊗θ g is continuous in the topology of the
Schwartz space and satisfies the associativity condition
f ⊗θ ðg ⊗θ hÞ ¼ ðf ⊗θ gÞ ⊗θ h, which really determines
the form of the multiplier in (8).
We now turn to the noncommutative deformation

[14,15,22] of quantum field theories that can be associated
with the twisted tensor product. Let fϕιgι∈I be a finite
system of quantum fields transforming according to irre-
ducible finite-dimensional representations of the proper
Lorentz group L↑

þ or its covering group SLð2;CÞ. Their
components are labelled by an additional index l, but for
brevity we let ι denote the pair ðι; lÞ. We suppose that all the
assumptions of the Wightman formulation [16] of local
quantum field theory are satisfied and ϕι are defined as
operator-valued distributions with a common dense invari-
ant domain in a Hilbert spaceH. As usual, we denote by Ω
the vacuum state, by wι1…ιn the vacuum expectation value
of a product of n fields, and identify it with a tempered
distribution on R4n,

hΩ;ϕι1ðf1Þ � � �ϕιnðfnÞΩi ¼ wι1…ιnðf1 ⊗ � � � ⊗ fnÞ;
wι1…ιn ∈ S0ðR4nÞ:

(9)

The deformed Wightman functions wθ
ð…Þ are defined by

wθ
ι1…ιnðf1 ⊗ � � � ⊗ fnÞ ¼defwι1…ιnðf1 ⊗θ � � � ⊗θ fnÞ;

fj ∈ SðR4Þ;
(10)

or equivalently by

ŵθ
ι1…ιn ¼

Y
1≤j<k≤n

e−
i
2
pjθpkŵι1…ιn : (11)

The set of deformed distributions wθ
ð…Þ satisfies the

positive-definiteness condition (see [22]). Furthermore,
as shown below in Sec. V, the deformation (10) does
not spoil the cluster decomposition property, and so if a
is a spacelike vector, then for any f ∈ SðR4mÞ and
g ∈ SðR4ðn−mÞÞ, the following relation holds:

wθ
ι1…ιnðf ⊗ gðλaÞÞ → wθ

ι1…ιmðfÞwθ
ιmþ1…ιnðgÞ as λ → ∞;

(12)

where by gðλaÞ we mean the shifted function, i.e.,
gðλaÞðxmþ1;…; xnÞ ¼ gðxmþ1 − λa;…; xn − λaÞ. Therefore,
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by the Wightman reconstruction theorem [16], this set of
distributions determines a field theory uniquely, up to
unitary equivalence. It is easy to construct explicitly
quantum fields ϕθ

ι having such expectation values. As
shown in [16], the Schwartz kernel theorem gives a precise
meaning to vectors of the form

Φι1…ιnðgÞ ¼
Z

dx1…dxngðx1;…; xnÞϕι1ðx1Þ � � �ϕιnðxnÞΩ;

(13)

where g ∈ SðR4nÞ; and the linear subspaceD spanned by all
these vectors and Ω can be taken as a common domain of
the initial fields ϕι. For each f ∈ SðR4Þ, we define ϕθ

ι ðfÞ by

ϕθ
ι ðfÞΩ ¼ ϕιðfÞΩ;

ϕθ
ι ðfÞΦι1…ιnðgÞ ¼ Φιι1…ιnðf ⊗θ gÞ; n ≥ 1; (14)

extended by linearity.
It is easy to verify that the fields ϕθ

ι ðfÞ are well defined
as operator-valued tempered distributions with the same
common domain D ⊂ H, and it is clear that

hΩ;ϕθ
ι1ðf1Þ � � �ϕθ

ι1ðfnÞΩi ¼ wθ
ι1…ιnðf1 ⊗ � � � ⊗ fnÞ:

We also note that the linear span of all vectors of the
form analogous to (13) but with ϕθ

ιj in place of ϕιj coincides

with D, because the multiplier
Q

j<ke
−i
2
pjθpk maps SðR4nÞ

isomorphically onto itself.
The basic properties of the deformed Wightman func-

tions and fields are described in [14,15] and in [22,23] for
the case of a single neutral scalar field. The deformation
does not change the support properties of the vacuum
expectation values in the momentum space, and therefore
the distributions wθ

ð…Þ satisfy the spectrum condition. The

translation invariance is also preserved. The vacuum Ω is a
cyclic vector for the deformed fields ϕθ

ι . Moreover, as
pointed out in [15], they have the Reeh-Schlieder property,
i.e., for each nonempty open set O ⊂ R4, the linear span of
vectors of the form

Q
n
j¼1 ϕ

θ
ιjðfjÞΩ with supp fj ⊂ O is

dense in H. If a field ϕι is Hermitian, then so is ϕθ
ι . The

derivation of these properties uses in an essential way the
identity

wð…Þðf ⊗θ gÞ ¼ wð…Þðf ⊗ gÞ; (15)

which holds for every n-point Wightman function and for
any test functions f ∈ SðR4mÞ and g ∈ SðR4ðn−mÞÞ, where
1 < m < n. The identity (15) follows directly from (8) and
the translation invariance of the distributions wð…Þ, because
the matrix θμν is antisymmetric. In the case of a free neutral
scalar field ϕ, its creation and annihilation operators are
deformed as follows:

aθðpÞ ¼ e
i
2
pθPaðpÞ; a�θðpÞ ¼ e−

i
2
pθPa�ðpÞ;

where P is the energy-momentum operator. The operators
aθðpÞ and a�θðpÞ satisfy the deformed canonical commu-
tation relations discussed in [5–10]. As already noted, the
deformation (10) preserves the translation invariance, but it
violates the Lorentz covariance and the fields ϕθ

ι transform
covariantly only under those Lorentz transformations that
leave the matrix θμν unaltered. This deformation also leads
to a strong violation of locality, and the fields ϕθ

ι do not
satisfy the microcausality condition. This is easily seen by
considering matrix elements of the deformed field com-
mutator in the simplest case of a free scalar field. Theorem
3 of [22] shows that if θμν ≠ 0, then the matrix elements of
the form hΩ; ½ϕθðxÞ;ϕθðyÞ�Φi, where Φ is a normalized
two-particle state, are nonzero everywhere; i.e., their
supports coincide with R4 × R4. It should be noted that
this is also true for the case of so-called space-space
noncommutativity, where θ0ν ¼ 0 for all ν. Therefore,
the deformed fields ϕθ

ι do not satisfy even the relaxed
local commutativity condition [13,27,28] adapted to this
case and obtained by replacing the light cone with the light
wedge. Nevertheless, the fields ϕθ

ι are not completely
delocalized, and because the issues of locality and causality
are crucial for the physical interpretation, the remainder of
the paper is devoted to a precise description of the extent
to which the noncommutative deformation violates locality
and local commutativity.

III. WEDGE LOCALITY

From the definition (8) of the deformed tensor product,
it directly follows that, for any f1; f2 ∈ SðR4Þ and
g ∈ SðR4nÞ, the following identity holds:

ðf1 ⊗θ ðf2 ⊗−θ gÞÞðx1; x2; yÞ
¼ ðf2 ⊗−θ ðf1 ⊗θ gÞÞðx2; x1; yÞ; (16)

where y ¼ ðy1;…ynÞ. Indeed, let p1, p2, and qj be the
variables conjugate respectively to x1, x2, and yj, and
let Q ¼ P

n
j¼1 qj. The Fourier transform of the left-hand

side of (16) is ðf̂1 ⊗ f̂2 ⊗ ĝÞðp1; p2; qÞ multiplied by
expf− i

2
ðp1 · θp2 þ p1 · θQ − p2 · θQÞg, and that of the

right-hand side is obtained by multiplication with
expf− i

2
ð−p2 · θp1 − p2 · θQþ p1 · θQÞg. Clearly, these

two multipliers coincide because the matrix θμν is
antisymmetric.
We will also use the following fact. If f ∈ SðR4Þ,

g ∈ SðR4nÞ, and f has compact support, then we have
the inclusions1

1The definition of the Fourier transform used here is the same
as in [29] and differs from that in [15] by a sign in exponent,
and in consequence the signs in (17) differ from those in
Eq. (3.12) of [15].
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suppðf ⊗θ gÞ ⊂
�
suppf −

1

2
θUĝ

�
×R4n;

suppðg ⊗θ fÞ ⊂ R4n ×

�
suppf þ 1

2
θUĝ

�
;

(17)

where Uĝ is the closure of the set fQ ∈ R4∶Q ¼P
n
j¼1 qj; ðq1;…; qnÞ ∈ suppĝg. Indeed, (8) implies that

ðf ⊗θ gÞðx; yÞ ¼ ð2πÞ−4ðnþ1Þ
Z

f̂ðpÞĝðqÞ

× e−ip·x−i
P

n
j¼1

qj·yj−i
2
p·θQdpdq1…dqn

¼ ð2πÞ−4n
Z

f

�
xþ 1

2
θQ

�
ĝðqÞ

× e−i
P

n
j¼1

qj·yjdq1…dqn: (18)

This integral is nonzero only if xþ 1
2
θ
P

n
j¼1 qj belongs

to supp f for some ðq1;…; qnÞ ∈ supp ĝ; hence, x ∈
supp f − 1

2
θUĝ. The latter set is closed because the support

of f is assumed to be compact. The second inclusion
in (17) is proved analogously. Now let f1; f2 ∈ SðR4Þ,
g ∈ SðR4nÞ, h ∈ SðR4mÞ, and let f1 and f2 be of compact
support. Then it follows from (17) that

suppðh ⊗θ f1Þ ⊗ ðf2 ⊗−θ gÞ

⊂ R4m ×

�
supp f1 þ

1

2
θUĥ

�

×

�
supp f2 þ

1

2
θUĝ

�
×R4n: (19)

Following [14,15], we introduce the reference matrix

θ1 ¼

0
BBB@

0 ϑe 0 0

−ϑe 0 0 0

0 0 0 ϑm

0 0 −ϑm 0

1
CCCA; (20)

where ϑe ≥ 0 and ϑm ≠ 0, and we let W1 denote the right-
hand wedge in Minkowski space, defined by

W1 ¼ fx ∈ R4∶x1 > jx0jg: (21)

As shown in [14], the stabilizer subgroup of the matrix θ1
with respect to the action θ → ΛθΛT of the proper
orthochronous Lorentz group L↑

þ coincides with that of
the wedge W1 with respect to the action W → ΛW,
and there is therefore a one-to-one correspondence
between the orbits of θ1 and W1. It is easy to see that if
a matrix θ belongs to the orbit of θ1 and Wθ is its
corresponding wedge, then −θ also belongs to this orbit
and W−θ ¼ −Wθ.

Theorem 1: (cf. Theorem 4.5 in [15]) Suppose that ϕι

and ϕι0 belong to a set of Wightman fields with the common
domain of definitionD spanned by vectors of the form (13).
Let θ ¼ Λθ1ΛT and Wθ ¼ ΛW1, where Λ ∈ L↑

þ and where
θ1 and W1 are defined, respectively, by (20) and (21). If ϕι

and ϕι0 (anti)commute at spacelike separation,2 then the
deformed fields ϕθ

ι and ϕθ
ι0 satisfy the (anti)commutation

relation

½ϕθ
ι ðf1Þ;ϕ−θ

ι0 ðf2Þ�ðþÞ
− Φ ¼ 0 (22)

for all Φ ∈ D and for any f1; f2 ∈ SðR4Þ such that
supp f1 ⊂ Wθ and supp f2 ⊂ −Wθ.
Proof.— We consider the case when ϕι and ϕι0 commute

at spacelike separation. Let Φι1…ιnðgÞ be a vector of the
form (13), where g ∈ SðR4nÞ, and let ΦðmÞðhÞ be a vector of
an analogous form defined by a system of fields ϕι0

1
;…;ϕι0m

and a function h ∈ SðR4mÞ. By the cyclicity of the vacuum,
it suffices to show that the assumptions on the supports of
f1 and f2 imply that

hΦðmÞðhÞ; ½ϕθ
ι ðf1Þ;ϕ−θ

ι0 ðf2Þ�Φι1…ιnðgÞi ¼ 0: (23)

Furthermore, because this matrix element is continuous in
f1 and f2 and smooth functions of compact support are
dense in S, we can assume without loss of generality that
supp f1 and supp f2 are compact. Using the identity (16),
this matrix element can be written as

hΦðmÞðhÞ; ½ϕθ
ι ðf1Þ;ϕ−θ

ι0 ðf2Þ�Φι1…ιnðgÞi
¼ ðw − wπ; h� ⊗ ðf1 ⊗θ ðf2 ⊗−θ gÞÞÞ; (24)

where wπ is obtained from w by the transposition of the
operators ϕιðx1Þ and ϕι0 ðx2Þ, and where h�ðz1;…; zmÞ ¼
hðzm;…; z1Þ. Using (15) and the associativity of ⊗θ, we
obtain

ðw − wπ; h� ⊗ ðf1 ⊗θ ðf2 ⊗−θ gÞÞÞ
¼ ðw − wπ; h� ⊗θ ðf1 ⊗θ ðf2 ⊗−θ gÞÞÞ
¼ ðw − wπ; ðh� ⊗θ f1Þ ⊗ ðf2 ⊗−θ gÞÞ:

Let k ¼ ðk1;…; kmÞ, p ¼ ðp1; p2Þ, and q ¼ ðq1;…; qnÞ be
the momentum variables conjugate to the coordinates on
R4m ×R4·2 × R4n. It follows from the spectrum condition
that

2As usual, we assume that the type of commutation relation is
the same for all components of a field.
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suppðŵ − ŵπÞ ⊂
�
ðk; p; qÞ ∈ R4ðmþ2þnÞ∶

Xm
j¼1

kj

∈ V̄þ;
Xn
j¼1

qj ∈ V̄−
�
: (25)

We let V̄þ
ε denote the ε-neighborhood of the closed forward

light cone V̄þ and χε denote a smoothed characteristic
function of V̄þ with the following properties: χε is identi-
cally 1 on V̄þ

ε=2, vanishes outside V̄
þ
ε , and is a multiplier of

SðR4Þ. Because ðu;fÞ¼ð2πÞ−dðû;f̂ð−·ÞÞ for any u∈S0ðRdÞ
and f ∈ SðRdÞ, it follows from (25) that the matrix element
(24) is unchanged on replacing h and gwith functions hε and
gε such that ĥ�εðk1;…; kmÞ ¼ χεð−

P
jkjÞĥ�ðk1;…; kmÞ and

ĝεðq1;…; qnÞ ¼ χεð
P

jqjÞĝðq1;…; qnÞ. From (19) we have

suppðh�ε ⊗θ f1Þ ⊗ ðf2 ⊗−θ gεÞ

⊂ R4m ×

�
supp f1 þ

1

2
θV̄−

ε

�

×

�
supp f2 þ

1

2
θV̄þ

ε

�
×R4n:

The inclusion θ1V− ⊂ W1 implies that 1
2
θV− ⊂ Wθ and

1
2
θVþ ⊂ −Wθ. Therefore, if the supports of f1 and f2 are

compact and contained, respectively, in Wθ and −Wθ, and if
ε is sufficiently small, then supp f1 þ 1

2
θV̄−

ε ⊂ Wθ and
supp f2 þ 1

2
θV̄þ

ε ⊂ −Wθ. Because ðx1 − x2Þ2 < 0 for any
x1 ∈ Wθ and x2 ∈ −Wθ, we conclude that the equality (23)
follows from the locality of the undeformed fields which
means, in terms of Wightman functions, that w − wπ

vanishes for ðx1 − x2Þ2 < 0. For the case of anticommuting
fields, the reasoning is the same but with obvious changes
of signs.
Because the deformation preserves the translation invari-

ance, (22) also clearly holds if there exists a translation a
such that

supp f1 þ a ⊂ Wθ; supp f2 þ a ⊂ −Wθ:

Remark 1: The derivation of Theorem 4.5 in [15]
relies on the assertion that the Fourier transform of the
distribution defined by hΨ; ½ϕθ

ι ðf1Þ;ϕ−θ
ι0 ðf2Þ�Φι1…ιnðgÞi,

where Ψ ∈ H, has support in the ðnþ 2Þ-fold product
of the forward light cone V̄þ. This contradicts (22) because
then this distribution would be the boundary value of an
analytic function and hence could not vanish identically
on a non-empty open set. Nevertheless, as shown above,
the theorem’s conclusion holds. Another proof of the
wedge-local (anti)commutation relations for the deformed
fields is given by Lechner [18] in an operator-algebraic
setting.

IV. ASYMPTOTIC COMMUTATIVITY

Theorem 1 says that the field (anti)commutator
½ϕθ

ι ðx1Þ;ϕ−θ
ι0 ðx2Þ�ðþÞ

− vanishes identically on Wθ ×W−θ.

In this section, we show that it also has a rapid decrease
(in the sense of generalized functions) in the whole
spacelike region ðx1 − x2Þ2 < 0. As before, we restrict
our consideration to the case of commutator. Let Ψ be
an arbitrary vector in H, let Φ belong to D, and let

uΨ;Φðf1; f2Þ ¼ hΨ; ½ϕθ
ι ðf1Þ;ϕ−θ

ι0 ðf2Þ�Φi: (26)

By the Schwartz kernel theorem, the bilinear functional
(26) is identified with a distribution in S0ðR4 × R4Þ. A
simple way of describing the behavior of a distribution at
infinity is by examining its convolution with test functions
decreasing sufficiently fast. Therefore, we should consider
the asymptotic behavior of the convolution uΨ;Φ � f with
adequately chosen functions f. This convolution may be
written symbolically in the form

ðuΨ;Φ � fÞðx1; x2Þ ¼
Z

hΨ; ½ϕθ
ι ðξ1Þ;ϕ−θ

ι0 ðξ2Þ�Φi

× fðx1 − ξ1; x2 − ξ2Þdξ1dξ2: (27)

We will use the Gelfand-Shilov test function spaces Sβα
which are contained in S. If β < 1, the definition of these
spaces can be formulated in terms of complex variables,
which considerably simplifies the estimates of Theorem 2
below. As shown in [30], the elements of SβαðRdÞ, where
β < 1, can be continued analytically into Cd, and Sβα is
isomorphic to the space of entire functions Wσ

ρ, where
ρ ¼ 1=α and σ ¼ 1=ð1 − βÞ > 1. The functions belonging
to Wσ

ρ satisfy the inequality

jfðxþ iyÞj ≤ C
Yd
j¼1

e−ajxjjρþbjyjjσ (28)

with some positive constants a, b, and C depending on f.
The norm corresponding to (28) is given by

∥f∥a;b ¼ sup
z¼xþiy

jfðzÞj
Yd
j¼1

eajxjjρ−bjyjjσ ; (29)

and we let Wσ;b
ρ;a denote the space of entire functions such

that ∥f∥ā;b̄ < ∞ for all positive ā < a and b̄ > b. Clearly,

Wρ
γ ¼ ⋃

a→0;b→∞
Wρ;b

γ;a:

If σ > ρ, then the spaceWσ;b
ρ;a is nontrivial for any a > 0 and

b > 0, but if σ ¼ ρ, Wσ;b
ρ;a is nontrivial only under the

condition a ≥ b. Indeed, if a < b, then (28) implies that
fðzÞ · fðizÞ tends to zero as jzj → ∞ and is hence iden-
tically zero by the Liouville theorem. The same argument
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shows that Wσ
ρ is trivial for σ < ρ. Under the condition

ρ > 1, the Fourier transformation is an isomorphism of
Wσ;b

ρ;a onto Wρ0;a0
σ0;b0 , where the primed indices are defined by

the duality relations

1

ρ0
þ 1

ρ
¼ 1; ðρ0a0ÞρðρaÞρ0 ¼ 1; (30)

and by analogous relations for σ0, b0. We will also use the
spaces Wσ;b defined by

jfðzÞj ≤ CN;b̄ð1þ jxjÞ−N
Yd
j¼1

eb̄jyjjσ ;

b̄ > b; N ¼ 0; 1; 2…;

(31)

and the spaces Wσ ¼ ⋃b→∞W
σ;b, which are isomorphic to

the Gelfand-Shilov spaces Sβ with β ¼ 1 − 1=σ. The
Fourier transformation maps Wσ onto the space Wσ0 ¼
S1=σ0 andWσ;b onto the spaceWσ0;b0 of smooth functions on
Rd with the norms

∥g∥N;b̄0 ¼ max
jκj<N

sup
p

Yd
j¼1

eb̄
0jpjjσ0 j∂κgðpÞj;

b̄0 < b0; N ¼ 0; 1; 2;…:

The choice of norm j · j onRd is inessential to the definition
(31), but when working with functions in Wσ

ρ, it is
convenient to use the norm

jxj ¼
�X

j
jxjjρ

�
1=ρ

: (32)

We need two auxiliary lemmas.
Lemma 1: Let u be a distribution on Rd with support

in a closed cone V ≠ Rd, and let G be a closed cone such
that G∩V ¼ f0g. If f ∈ Wρ;a, then for some N and for any
¯̄a < ā < a, the convolution ðu � fÞðxÞ satisfies the estimate

jðu � fÞðxÞj ≤ CG;ā; ¯̄a∥f∥N;āe−
¯̄ajdG;Vxjρ ; x ∈ G; (33)

where the norm j · j on Rd is given by (32) and
dG;V ¼ infx∈G;jxj¼1infξ∈V jx − ξj.
Proof.— For simplicity we assume that the set V is

regular.3 Then there exist a constantC > 0 and an integerN
(both depending on u) such that

jðu; fÞj ≤ Cmax
jκj≤N

sup
ξ∈V

ð1þ jξjÞN j∂κfðξÞj (34)

for all f ∈ SðRdÞ: If the regularity condition is not satisfied,
then V in (34) should be replaced by its ε-neighborhood.
This slightly complicates the analysis, but does not change
the result. By the definition of norms in Wρ;a, we have
j∂κfðξÞj ≤ ∥f∥jκj;āe−ājξj

ρ
for any κ and ā < a. Replacing

the function fðξÞ by fðx − ξÞ and using (34), we obtain

jðu � fÞðxÞj ≤ C∥f∥N;āsup
ξ∈V

ð1þ jξjÞNe−ājx−ξjρ

≤ C∥f∥N;āð1þ jxjÞNsup
ξ∈V

ð1þ jx− ξjÞNe−ājx−ξjρ

≤ Cā1∥f∥N;āð1þ jxjÞNe−ā1jdVðxÞjρ ; (35)

where ā1 < ā and can be chosen arbitrarily close to ā, and
dVðxÞ ¼ infξ∈V jx − ξj. Because the cone V is invariant
under dilations, we have

dVðxÞ ¼ jxjinfξ∈V jx=jxj − ξj ¼ jxjdVðx=jxjÞ:

It follows from the above condition G∩V¼f0g that
dG;V¼ infx∈G;jxj¼1dVðxÞ>0. Therefore, the factor ð1þjxjÞN
can be omitted from the last row in (35), slightly decreasing
ā1, and we arrive to (33). Lemma 1 is proved.
Remark 2: We consider below a special case, where

d ¼ d1 þ d2 and supp u ⊂ V ×Rd2 , with V a cone in Rd1 .
Then an estimate analogous to (33) holds in any closed
cone G ⊂ Rd1 such that G∩V ¼ f0g and even under a
weaker assumption on the behavior of f with respect to the
second group of variables. In particular, those functions are
admissible that satisfy the conditions

max
jκj≤N

j∂κfðx; x0Þj ≤ Cf;N;āe−ājxj
ρð1þ jx0jÞ−N;

N ¼ 0; 1; 2;…:

(36)

From (36), we obtain an estimate of type (33) for
ðu � fÞðx; 0Þ, but with ∥f∥N;ā replaced by Cf;N;ā. The
function space defined by (36) is the completed tensor
product Wρ;aðRd1Þ⊗̂SðRd2Þ.
Lemma 2: If σ0 > ρ ¼ ρ0=ðρ0 − 1Þ, then for every

quadratic form QðpÞ with real coefficients, the function
eiQðpÞ is a multiplier of Wρ0;a

σ0;b for any a > 0, b > 0.
Proof.— We need to estimate the function jeiQðpþisÞj ¼

e−ImQðpþisÞ. Let Qjk be the matrix of the quadratic form Q
and let jQj ¼ maxj;kjQjkj. Young’s inequality for products
states that if r and t are nonnegative real numbers and ρ and
ρ0 are positive numbers satisfying the first of duality
relations (30), then rt ≤ rρ=ρþ tρ

0
=ρ0. Using this inequal-

ity with r ¼ jpjj=ε and t ¼ εjskj, where ε > 0, we obtain���ImX
j;k

ðpj þ isjÞQjkðpk þ iskÞ
��� ≤ 2jQj

X
j:k

jpjskj

≤ 2djQj
X
j

�
1

ρ

���pj

ε

���ρ þ 1

ρ0
jεsjjρ0

�
: (37)3See definition in [29], Supplement A.2. The closed light cone

is a regular set.
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The condition ρ < σ0 implies that for arbitrarily small ε,
there is a constant Cε > 0 such that

jpj=εjρ ≤ Cε þ εjpjjσ0 : (38)

In line with (29), the norms in Wρ0
σ0 are defined by

∥g∥a;b ¼ supp;sjgðpþ isÞjQd
j¼1 e

ajpjjσ0−bjsjjρ0 . Substituting
(38) into (37), we conclude that for any ā1 < ā < a and
b̄1 > b̄ > b, there exists a constant Cā1;b̄1 such that

∥geiQ∥ā1;b̄1 ≤ Cā1;b̄1∥g∥ā;b̄ for all g ∈ Wρ0;a
σ0;b;

which completes the proof.
Remark 3: If σ0 ¼ ρ, then eiQðpÞ is a multiplier ofWρ0

σ0 ,
but not ofWρ0;a

σ0;b. The condition σ
0 ≥ ρ for the spaces of type

W is equivalent to the condition α ≥ β for Sβα. As shown in
[25], only under this condition Sβα is an algebra with respect
to the Weyl-Moyal product (4).
We now turn to describing the asymptotic behavior of

distribution (26) at large spacelike separations. The corre-
sponding theorem is accompanied below by a simple but
explanatory example. We let V denote the cone in R4·2 ¼
R4 ×R4 consisting of the pairs ðx1; x2Þ such that x1 − x2
belongs to the closed light cone,

V ¼ fðx1; x2Þ ∈ R4·2∶ðx1 − x2Þ2 ≥ 0g:

Theorem 2: Let ΦðgÞ be a vector of the form (13)
with g ∈ WσðR4nÞ, let Ψ be an arbitrary vector in H, and
let G be a closed cone in R4·2 such that G∩V ¼ f0g.
If f ∈ Wσ

ρðR4·2Þ, where ρ<σ0¼σ=ðσ−1Þ and ∥f∥a;b < ∞,
then for any ā < a, the function (27) satisfies the
estimate

jðuΨ;Φ �fÞðx1;x2Þj
≤CG;āΨ;Φ∥f∥a;b expf−ādρG;Vðjx1jρþjx2jρÞg; ðx1;x2Þ∈G;

(39)

where the angular distance dG;V is defined in Lemma 1.
Proof.— Let uΨ be the distribution defined on R4ð2þnÞ

by the three-linear functional hΨ; ½ϕιðf1Þ;ϕι0 ðf2Þ�ΦðgÞi. By
locality of the undeformed fields, its support lies in the cone
V ×R4n, and (16) implies that

ðuΨ;Φ; f1 ⊗ f2Þ ¼ ðuΨ; f1 ⊗θ ðf2 ⊗−θ gÞÞ
for all f1; f2 ∈ SðR4Þ and g ∈ SðR4nÞ:

(40)

By the definition of the product⊗θ, the Fourier transform of
f1⊗θ ðf2⊗−θ gÞ has the form η · ðf̂1 ⊗ f̂2 ⊗ ĝÞ, where

ηðp1; p2; qÞ ¼ e−
i
2
ðp1θp2þðp1−p2Þθ

P
n
j¼1

qjÞ: (41)

Since SðR4Þ ⊗ SðR4Þ is dense in SðR4·2Þ, it follows from
(40) that for any f ∈ SðR4·2Þ,

ðuΨ;Φ; fÞ ¼ ðuΨ; hfÞ;

where

ĥf ¼def η · ðf̂ ⊗ ĝÞ ∈ SðR4ð2þnÞÞ:
Therefore,

ðuΨ;Φ � fÞðx1; x2Þ ¼ ðuΨ � hfÞðx1; x2; 0Þ: (42)

If f ∈ Wσ
ρðR4·2Þ and g ∈ Wσ

ρðR4nÞ, then ∥f ⊗ g∥a;b ¼
∥f∥a;b∥g∥a;b by the definition (29). The Fourier trans-
formation, as already said, is an isomorphism of Wσ;b

ρ;a onto

Wρ0;a0
σ0;b0 , and by Lemma 2 the function η is a multiplier of

Wρ0;a0
σ0;b0×ðR4ðnþ2ÞÞ under the condition ρ<σ0. Hence the

correspondence f→hf is continuous from Wσ;b
ρ;aðR4·2Þ to

Wσ;b
ρ;a×ðR4ðnþ2ÞÞ, and for any ā1 < ā < a and b̄1 > b̄ > b,

we have

∥hf∥ā1;b̄1 ≤ Cā1;b̄1∥f∥ā;b̄ ≤ Cā1;b̄1∥f∥a;b: (43)

The operation of differentiation is continuous inWσ;b
ρ;a, as can

easily be seen by usingCauchy’s formula. Therefore,Wρ;a is

continuously embedded in Wσ;b
ρ;a, and

∥hf∥N;ā2 ≤ Cκ;ā2∥hf∥ā1;b̄1 for any N and ā2 < ā1:

(44)

Applying Lemma 1 to the right-hand side of (42) and using
(43) and (44), we arrive at (39). Now let g ∈ Wσ;B.
Performing the Fourier transformation, using the condition
ρ < σ0, and making the inverse transformation, we obtain

jhfðxþ iy; x0 þ iy0Þj ≤ Cg;ā;b̄;B̄∥f∥a;be−ājxj
ρð1þ jx0jÞ−N

×
Y
j;μ

eb̄jy
μ
j jσþB̄jy0μj jσ ;

where x denotes the pair ðx1; x2Þ and x0 denotes the variables
of g. Hence hfðx; x0Þ satisfies inequalities of type (36) with a
constant Cf;N;ā proportional to ∥f∥a;b. Invoking Remark 2,
we arrive again at (39), which completes the proof.
Remark 4: The condition G∩V ¼ f0g implies that G

is contained in a wedge of the form fðx1;x2Þ∶x1−x2∈Gg,
where G is a closed cone in R4 having only the origin in
common with the closed light cone V̄. The norm (32)
dominates the Euclidean norm ∥ · ∥ and using the paral-
lelogram identity, we see that for all x1 − x2 ∈ G, the
following inequality holds,

jðuΨ;Φ � fÞðx1; x2Þj ≤ CG;Ψ;Φ∥f∥a;b

× exp
n
−
a
2
δG;V̄∥x1 − x2∥ρ

o
;

where the distance δG;V̄ is defined by the Euclidean norm.
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As an explanatory example, consider the matrix element

ug1;g2ðf1; f2Þ ¼ hφðg1ÞΩ; ½φθðf1Þ;φ−θðf2Þ�φðg2ÞΩi; (45)

where φ is a free massive neutral scalar field. Expressing
the four-point vacuum expectation value in terms of two-
point ones and passing to the momentum representation,
(45) can be written as

ug1;g2ðf1; f2Þ ¼
i

ð2πÞ8
Z

dkdp1dp2dqδðkþ qÞδðp1 þ p2Þ

× Δ̂þðkÞΔ̂ðp1Þe−i
2
ðp1θp2þp1θq−p2θqÞĝ1ðkÞ

× f̂1ð−p1Þf̂2ð−p2Þĝ2ð−qÞ

¼ i
ð2πÞ8

Z
dkdpΔ̂þðkÞΔ̂ðpÞeipθkĝ1ðkÞ

× f̂1ð−pÞf̂2ðpÞĝ2ðkÞ;

where Δ̂ðpÞ ¼ −2πiϵðp0Þδðp2 −m2Þ is the Fourier trans-
form of the Pauli-Jordan function, and Δ̂þ is its positive-
frequency part. Letting f̂ðpÞ ¼ f̂1ðpÞf̂2ð−pÞ and ĝðkÞ ¼
ĝ1ð−kÞĝ2ð−kÞ and turning back to the coordinate repre-
sentation, we obtain

ug1;g2ðf1; f2Þ ¼ iðΔþ ⊗2θ Δ; g ⊗ fÞ
¼ iðΔþ ⊗ Δ; g ⊗2θ fÞ: (46)

If supp f1 ⊂ Wθ and supp f2 ⊂ W−θ, then f, being the
convolution product of f1ðξÞ and f2ð−ξÞ, is supported in
Wθ. Taking into consideration the support properties of Δ̂þ,
we conclude, as in Sec. III, that suppðg ⊗2θ fÞ ⊂
Wθ þ θV− ⊂ Wθ, and hence ug1;g2ðf1; f2Þ vanishes for
such test functions. To test the behavior of (45) for arbitrary
spacelike separations, we use the shifted test functions
f1ðx1 − ξÞ and f2ðx2 − ξÞ, where ðx1 − x2Þ2 < 0. Then
fðξÞ is replaced by fðx1 − x2 − ξÞ and g ⊗2θ f is shifted
away from the support of Δþ ⊗ Δ. Therefore,
ug1;g2ðf1ðx1 − ·Þ; f2ðx2 − ·ÞÞ inherits the fall-off properties
of g ⊗2θ f. It is clear from (18) that the rate of decrease of
g ⊗2θ f in the x variable is the same as that of f, if the latter
decreases slower than ĝ does. In technical terms, if ĝ2ðkÞ,
and hence ĝðkÞ, belongs toWσ0 ¼ bWσ and falls off as e−jkjσ

0
,

we take f1;2 in Wρ with ρ < σ0 and conclude that
ug1;g2ðf1ðx1 − ·Þ; f2ðx2 − ·ÞÞ decreases with a rate charac-
terized by Lemma 1. In the case of interacting fields, the
occurrence of the term− i

2
p1θp2 in (41) forces us to take f1

and f2 in Wρ∩Wσ ¼ Wσ
ρ. With such a choice, the function

(27) falls off in the same manner in all spacelike directions.
It should be pointed out that the linear subspace spanned

by the vacuum Ω and all vectors of the form (13) with g ∈
Wσ is dense in H, because Wσ is dense in S. Any Wσ

contains W1 whose Fourier transform is nothing but the
space C∞

0 of all infinitely differentiable functions of compact

support, andC∞
0 is just the function space that is employed in

the Haag-Ruelle scattering theory. The condition ρ < σ0,
together with the condition ρ ≤ σ of non-triviality of Wσ

ρ,
implies that ρ < 2, because minðσ; σ0Þ ≤ 2. Since ρ can be
chosen arbitrarily close to 2, Theorem 2 merely says that the
commutator ½ϕθ

ι ðx1Þ;ϕ−θ
ι0 ðx2Þ� decreases approximately as a

Gaussian at large spacelike separation of x1 and x2. The
borderline case ρ ¼ σ, i.e., the case of test functions in
Wσ

σ ¼ Sβ1−β, where β ¼ 1 − 1=σ ¼ 1=σ0, is of particular
interest.4 Theorem 3 of [26] shows, that in this case, (39)
amounts to the condition that the distribution uΨ;Φ has a
continuous extension to the space SβðVÞ ¼ WσðVÞ of entire
functions satisfying the inequalities

jfðxþ iyÞj ≤ CNð1þ jxjÞ−N exp fbdσUðxÞ þ bjyjσg;
N ¼ 0; 1; 2;…;

(47)

where U is an open cone, depending on f, such that
V∖f0g ⊂ U, and where CN and b are positive constants,
also depending on f. Conditions of this kind were earlier
used in nonlocal quantum field theory, where the framework
of tempered distributions appears to be too restrictive and the
adequate choice of test function space takes on great
significance. In particular, the spaces SβðVÞ with β < 1,
consisting of analytic functions, were used in formulating an
asymptotic commutativity principle replacing local commu-
tativity for nonlocal fields. In [26], nonlocal fields ϕι and ϕι0

defined as operator-valued generalized functions on SβðR4Þ
are referred to as asymptotically (anti)commuting, if the
matrix element hΨ; ½ϕιðx1Þ;ϕι0 ðx2Þ�ðþÞ

− Φi has a continuous

extension to SβðVÞ for any vectorsΦ andΨ in their common
dense domain in the Hilbert space. The principle of
asymptotic commutativity implies that any two field com-
ponents either commute or anticommute asymptotically at
large spacelike separation of the arguments. This condition
provides a way of extending the CPT and spin-statistics
theorems to nonlocal QFT [24]. The condition of mutual
asymptotic commutativity was also used in [31] to extend
the Borchers equivalence classes to nonlocal fields.
Theorem 2 shows that the deformed fields ϕθ

ι and ϕ−θ
ι0

(more precisely, their restrictions to the test functions in
SβðR4Þ), β < 1=2) (anti)commute asymptotically if the
initial fields ϕι and ϕι0 (anti)commute at spacelike separa-
tion. Using the fact that the twist operator (3) is an auto-
morphism of SβðVÞ for β < 1=2, an extension of the
distribution hΨ; ½ϕθ

ι ðx1Þ;ϕ−θ
ι0 ðx2Þ�ðþÞ

− Φi to this space can

explicitly be constructed, but here we find it preferable to
define the asymptotic commutativity as a fall-off property of
the smoothed field commutator, which clearly shows its
meaning.

4We note that ρ < σ0 implies β < 1=2.
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V. CLUSTER PROPERTIES OF THE DEFORMED
WIGHTMAN FUNCTIONS

In order to prove the uniqueness of the vacuum state
in reconstructing quantum fields from a given set of
Wightman functions, it suffices to use the cluster decom-
position property

wι1…ιnðf ⊗ gðλaÞÞ → wι1…ιmðfÞwιmþ1…ιnðgÞ ðλ → ∞Þ;
where f ∈ SðR4mÞ, g ∈ SðR4ðn−mÞÞ, and a is an arbitrary
spacelike vector. However, Theorem 3–4 of [16] shows that
the vacuum expectation values of local field theory satisfy
the slightly stronger condition

wι1…ιnðhðm;λaÞÞ → ðwι1…ιm ⊗ wιmþ1…ιnÞðhÞ ðλ → ∞Þ;
(48)

where h is any function in SðR4nÞ and
hðm;λaÞðx1;…; xnÞ ¼ hðx1;…; xm; xmþ1 − λa;…; xn − λaÞ:

Setting

ĥ ¼
Y

1≤j<k≤n
e−

i
2
pjθpkðf̂ ⊗ ĝÞ

and using (8) and (11), we see that the limit relation (48)
implies (12) for the deformedWightman functions, because
the distribution wι1…ιm ⊗ wιmþ1…ιn contains the factor
δðPm

j¼1 pjÞδð
P

n
j¼mþ1 pjÞ by the translation invariance.

The Haag-Ruelle scattering theory uses essentially
the decomposition of vacuum expectation values into
truncated ones. The truncated Wightman functions wT

are obtained by eliminating the contribution of the
intermediate vacuum state from the support of ŵ, see
[29,32]. If zero is an isolated point of the spectrum of
the energy-momentum operator, i.e., the spectrum has
the form

spP ⊂ f0g∪V̄þ
μ ; (49)

where V̄þ
μ ¼

n
p∶p0 ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

p o
and μ > 0; then

supp ŵTðp1;…; pnÞ is contained in the set defined by

Xn
j¼1

pj ¼ 0;
Xk
j¼1

pj ∈ V̄þ
μ ; k ¼ 1;…; n − 1:

The asymptotic behavior of the truncated vacuum
expectation values at spacelike infinity plays the major
role in constructing the scattering states. Because of
this, it is desirable to elucidate how the deformation
under consideration affects this behavior. In accordance
with (11), we define the deformed truncated n-point
vacuum expectation values by

wT;θ
ι1…ιnðf1 ⊗ … ⊗ fnÞ¼defwT

ι1…ιnðf1 ⊗θ … ⊗θ fnÞ: (50)

The usual method [29,32] of estimating the spacelike
asymptotic behavior of wT , as well as the proof of
cluster property (48) in [16], is based on Ruelle’s
auxiliary theorem which can be given the following
form: If two tempered distributions u1 and u2 coincide
on an open cone Γ and the supports of their Fourier
transforms are separated by a finite distance, then both
of these distributions vanishes at infinity faster than any
inverse power of jxj in any closed cone G such
that G∖f0g ⊂ Γ.
Indeed, for each test function f ∈ S, the convolution

ðu1 − u2Þ � f together with all its derivatives decreases
rapidly in any direction within Γ, because a shift inside this
cone implies that the test function moves away from the
support of ðu1 − u2Þ. The corresponding estimate is similar
to that made in the proof of Lemma 1 for the case of test
functions in Wσ

ρ ⊂ S. Let now χðpÞ be a multiplier of S,
equal to 1 on a neighborhood of supp û1 and equal to
zero on a neighborhood of supp û2. Then we have the
identity

u1 � f ¼ ðu1 − u2Þ � ðχ � fÞ; (51)

which shows that u1 � f also rapidly decreases inside Γ.
This theorem is applied to the truncated vacuum expect-

ation values in the following way. Let J be a nonempty
subset of the set of indices ð1; 2;…; nÞ with a nonempty
complement J0. We let π denote the permutation
ð1; 2;…; nÞ → ðJ; J0Þ and π0 denote the permutation
ð1; 2;…; nÞ → ðJ0; JÞ. By local commutativity, wT coin-
cides with the permuted distribution wT

π on the cone

ΓJ ¼ ⋂
j∈J;j0∈J0

Γjj0 ;

where

Γjj0 ¼ fx ∈ R4n∶ðxj − xj0 Þ2 < 0g;
and wT

π in turn coincides with wT
π0 on this cone. It follows

from the spectrum condition that ŵT
π0 ¼ 0 if

P
j∈Jpj ¼

PJ∉Vþ
μ , and that ŵT

π ¼ 0 if PJ∉V−
μ , because PJ þ PJ0 ¼ 0

by the translation invariance. The cones ΓJ with various J
cover the plane x01¼���¼x0n in R4n, and the Ruelle theorem
says that, for any f∈SðR4nÞ, the function wT

ι1…ιn �f
restricted to this plane and considered as a function of
the difference variables xj − xjþ1 belongs to SðR3ðn−1ÞÞ. It
is precisely the property of wT

ι1…ιn � f that is used in [29,32]
to prove the existence of asymptotic scattering states.
The Ruelle theorem can be considerably strengthened

using the freedom in choosing the multiplier χ in (51). By
varying this multiplier, the distributions u1 and u2 can be
shown to decay exponentially inside G with a rate constant
determined by the distance between supp û1 and supp û2. In
[33], this improvement is reduced to an extremum problem
whose solution is expressed through Chebyshev polyno-
mials. To detect this decay, appropriate test functions are
needed. Clearly, they should decrease sufficiently fast at
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infinity, and we use the functions in S that have exponential
decrease of order ≥ 1 and type ≥ 1=l, and satisfy the
condition

∥f∥N;l̄¼def max
jκj≤N

sup
x
j∂κfðxÞj

Y
j

ejxjj=l̄ < ∞

for all l̄ > l andN ¼ 0; 1;…. Letting S1;l denote this space,
the result [33] can be stated as follows. In local quantum
field theory with the spectrum condition (49), the con-
volution of wT

ι1…ιn with any test function f ∈ S1;l satisfies
the estimate

j∂κðwT
ι1…ιn � fÞðxÞjjx0

1
¼���¼x0n

≤ Cl̄∥f∥jκjþK;l̄ exp

�
−

μR
2ðn − 1Þð1þ 3μl̄Þ

�
; (52)

where l̄ > l and can be taken arbitrarily close to l, the
constant K is determined by the order of singularity of
wT
ι1…ιn , and

R ¼ max
j;k

∥xj − xk∥:

With l ≪ 1=μ, (52) shows that wT
ι1…ιn decays no slower

than expf−μR=2ðn − 1Þg as R → ∞. In order to character-
ize the behavior of the deformed functions wT;θ

ι1…ιn at
infinity, it is again necessary to choose the test functions
in an adequate way. We use the spacesWσ;b

1;1=l ⊂ S1;l, where
σ and b can be taken arbitrarily large. This choice cannot be
illustrated by the example of a free scalar field because its
truncated n-point functions vanish identically, except for
n ¼ 2, and the two-point function, being translation invari-
ant, is unchanged by the deformation. But as a hint, we note
that to test, e.g., the behavior of Δþ ⊗θ Δþ in the spacelike
directions, it is natural to use test functions decreasing like
expf−jxj=lg, with l ≪ 1=μ, and whose Fourier transforms
behave at infinity no worse, because the twisting of the
tensor product intermixes the coordinate-space asymptotic
behavior with that in momentum space, as shows (18) and
the explanatory example given in Sec. IV.
Theorem 3: If the assumption (49) on the existence of

a mass gap holds, then for each test function f ∈ Wσ;b
1;1=l, the

function wT;θ
ι1…ιn � f satisfies the inequalities

j∂κðwT;θ
ι1…ιn � fÞðxÞjjx0

1
¼���¼x0n

≤ Cκ;l̄∥f∥1=l̄;b exp
�
−

μR
2ðn − 1Þð1þ 3μl̄Þ

�
; (53)

where l̄ > l and can be chosen arbitrarily close to l.

Proof.— By definition (50), we have

wT;θ
ι1…ιn � f ¼ wT

ι1…ιn � h; where ĥðpÞ ¼ f̂ðpÞ
Y
j<k

e−
i
2
pjθpk:

(54)

The Fourier transformation maps Wσ;b
1;1=l onto the space of

functions analytic in the complex ð1=lÞ-neighborhood of
the real space and satisfying, for each l̄ > l, the conditions

sup
jsj≤1=l̄

jgðpþ isÞj ≤ Cl̄;b̄0
Y
j

e−b̄
0jpjjσ0 ; where jsj ¼ max

j
jsjj:

Because σ0 > 1, Lemma 2 obviously extends to this space,
and the function

Q
j<ke

−i
2
pjθpk is hence its multiplier.

Therefore, h belongs to Wσ;b
1;1=l and depends continuously

on f. It follows from the Cauchy theorem that the norms
of S1;l and Wσ;b

1;1=l are related by ∥h∥N;l̄ ≤ CN;l̄∥h∥1=l̄;b̄. We

conclude that if f ∈ Wσ;b
1;1=l, then (52) implies (53), and

Theorem 3 is thus proved.
Remark 5 For simplicity, we have considered the

vacuum expectation values of products of deformed fieldsQ
jϕ

θ
ιjðxjÞ with a common deformation parameter θ.

However, an analogous theorem holds for productsQ
jϕ

θj
ιj ðxjÞ with different θj. The proof is the same, but

with a multiplier of a different form than
Q

j<ke
−i
2
pjθpk in

(54). As it is clear from the foregoing, the most interesting
case is that when θj differ only in sign.

VI. CONCLUSION

The noncommutative deformation (10) gives an interest-
ing example of quantum fields defined as operator-valued
tempered distributions on the Schwartz space S and
satisfying the asymptotic commutativity condition previ-
ously proposed for highly singular nonlocal fields with
analytic test functions in Sβ ¼ W1=ð1−βÞ, where β < 1. It
should be emphasized that the asymptotic commutativity
principle [24,26] is not fully implemented in the simplest
deformation of Wightman field theory considered here,
because the commutator ½ϕθ

ι ðx1Þ;ϕθ
ι0 ðx2Þ� of fields with

equal deformation parameters does not satisfy it. This
commutator decreases in the spacelike region in the same
fashion as the Wightman functions, i.e., exponentially with
the damping factor depending on the threshold mass μ.
A more sophisticated way of deformation is apparently
required for the deformed field theory to meet fully the
condition of asymptotic commutativity and thus allow a
consistent physical interpretation as nonlocal field theory.
Theorem 2 proved above can be supplemented by an

additional statement. The noncommutative deformation
(10) enters an elementary length l ∼

ffiffiffiffiffijθjp
into the theory,

and this length can be included in the characterization of
the behavior of the matrix elements uΨ;Φ of the field
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commutator ½ϕθ
ι ðx1Þ;ϕ−θ

ι0 ðx2Þ�. Namely, it can be shown
that if the function g in the definition (13) of the vector Φ
belongs to SβðR4nÞ, where β < 1=2, then the distribution
uΨ;Φ has a continuous extension to the space W2;bðVÞ,
where b ¼ 1=ð2l2Þ. As proved in [22], such a property is
also characteristic of the matrix elements of the commutator
½ϕðx1Þ;ϕðx2Þ�, where ϕðxÞ is the deformed normal ordered
square ∶φ ⋆θ φ∶ðxÞ of a free scalar field φ.
Theorem 3 shows, in particular, that incoming and

outgoing n-particle scattering states can be defined for
the deformed interacting fields in four-dimensional space-
time in the usual way [29,32] without appealing to the
wedge locality. In the case of lower dimensions it should
be combined with Hepp’s idea [34] of using the so-called
nonoverlapping scattering states. In fact, to prove the
existence of the θ-dependent asymptotic states, it suffices
to use a weaker version of Theorem 3 which employs test
functions with compact support in momentum space
and shows a decrease faster than any power of 1=R, but
the strong version (53) is essential to understanding the

analytic properties of the corresponding S-matrix. The
construction of the scattering matrix is a more subtle
and complicated problem which will be discussed in detail
in a subsequent paper. A preliminary analysis shows that
the arguments used for this purpose in [14,15,18] can be
adapted to asymptotic commutativity. Then it makes sense
to consider a wider class of deformations, not necessarily
preserving the wedge locality. In this connection, it is worth
noting that an analogous deformation can be performed
on nonlocal quantum fields defined initially on Sβ, where
β < 1, and subject to the asymptotic commutativity con-
dition. Analogues of Theorems 2 and 3 can be shown to
hold in this case, too, and this implies the existence of
asymptotic scattering states.
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