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In this paper, we study twist deformed quantum field theories obtained by combining the Wightman
axiomatic approach with the idea of spacetime noncommutativity. We prove that the deformed fields with
deformation parameters of opposite sign satisfy the condition of mutual asymptotic commutativity, which
was used earlier in nonlocal quantum field theory as a substitute for relative locality. We also present an
improved proof of the wedge localization property discovered for the deformed fields by Grosse and
Lechner, and we show that the deformation leaves the asymptotic behavior of the vacuum expectation
values in spacelike directions substantially unchanged.
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I. INTRODUCTION

Models of quantum field theory on noncommutative
spacetime continue to attract attention because of their
relevance for understanding quantum gravity [ 1] and because
they can be obtained as a particular low-energy limit of string
theory [2]. Noncommutativity is usually introduced by
replacing the spacetime coordinates x* with Hermitian
operators X* satisfying commutation relations of the form

[, x] = i, (1)

where 0" is a real antisymmetric matrix, constant in the
simplest case. The relations (1) are translation invariant, but
not Lorentz covariant. The twist deformation was devised
[3,4] as a way to restore the spacetime symmetries broken
by noncommutativity. In its widest form [5], the twisting
principle implies that all symmetries and products of the
theory should be consistently deformed by properly applying
a twist operator. In particular, the tensor product f ® g of
two functions on spacetime is deformed in the following
way: f ® g = f ®g g, where
def (i o 0

0 80 ) exp (50% 50N 1als).

and the twist operator here is

T — 300,80, )
(Hereafter, we use the usual summation convention for the
repeated indices.) From the standpoint of deformation
quantization, noncommutativity amounts to deforming the
ordinary pointwise product f(x)g(x) to the Weyl-Moyal star

product f x4 g which is obtained from f ®, g by restricting
to the diagonal,
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(f %9 9)(x) = (f ®p g)(x.x). )
For the coordinate functions, we have
[X#, x¥], = x* % XY —x¥ % Xt =i, ®)

which is related to (1) by the Weyl-Wigner correspondence.
The strategy of twisting also leads to deformed commutation
relations for the creation and annihilation operators of free
fields, see [5-10]. However, as shown in [8,10,11], some
combinations of twistings can cancel noncommutativity.
Then the S-matrix of twisted quantum field theory turns
out to be equivalent to that of its commutative counterpart,
and this issue does not seem completely resolved (compare,
e.g., [12] and [13]).

A new interesting line of research concerns the use of
noncommutative deformations of free field theories as a
means of constructing integrable models with a factorizable
S-matrix. Grosse and Lechner [14,15] studied a deforma-
tion of this type, generated by twisting the tensor algebra
of test functions in the Wightman framework [16], and
they discovered that the deformed fields can be localized
in wedge-shaped regions of Minkowski space. Grosse and
Lechner also showed that the deformation introduces a
nontrivial interaction and that this weak form of locality is
sufficient for computing two-particle S-matrix elements. A
more general deformation techniques have been developed
in an operator-algebraic setting [17,18] and then extended
to quantum field theory on a curved spacetime [19]. This
deformation method was also applied to a fermionic model
[20] and was used to construct wedge-local fields with
anyonic statistics [21].

In this paper, we consider the twisted quantum field
theory from a complementary point of view stated in
[22,23], with emphasis on the nonlocal aspects of the
deformation. The deformation procedure described below
in terms of the Wightman functions applies to interacting as
well as free fields. Our main observation is that the fields ¢?

© 2014 American Physical Society
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and ¢¢ with deformation parameters of opposite sign
satisfy the condition of mutual asymptotic commutativity,
which was used earlier in nonlocal quantum field theory
(see, e.g., [24] and references therein) as an analog of
relative locality. This result supplements the wedge locali-
zation property found in [14,15]. We also show that the
deformation does not spoil the asymptotic behavior of the
vacuum expectation values in spacelike directions, which
plays the major role in constructing the asymptotic scatter-
ing states in the deformed theory.

The paper is organized as follows. In Sec. II, we list basic
properties of the twisted tensor product ®, and define the
corresponding deformation of Wightman functions. In
Sec. III, we present an improved proof of the wedge
locality property of the deformed fields. In Sec. IV, we
obtain a characterization of the asymptotic behavior of
the (anti)commutator [¢?(x), ¢‘9(y)](;) of two fields with

deformation parameters of opposite sign. We show that this
commutator falls off rapidly at large spacelike separation
of x and y, and we estimate the fall-off rate. Particular
attention is given to the adequate choice of the test
functions that are required for this purpose. At this point,
we use a criterion [25] under which a test function space
has the structure of an algebra with respect to the Weyl-
Moyal star product. Our analysis shows, in particular, that
the commutator under study satisfies the asymptotic com-
mutativity condition proposed for nonlocal fields in [26].
In Sec. V, we prove that the deformation has little or no
effect on the asymptotic behavior of the vacuum expect-
ation values in spacelike directions. Section VI contains
concluding remarks.

II. TWIST DEFORMATION OF
WIGHTMAN FUNCTIONS

In order that the twisted tensor product (2) and Weyl-
Moyal star product (4) be well defined, the functions
involved must satisfy certain conditions. In quantum field
theory formalism, it is a standard practice to use the
Schwartz space S of smooth functions decreasing faster
than any inverse power of their arguments, and this space is,
as well known, an algebra under the star multiplication. But
it should be kept in mind that the expansions of both these
products in powers of the noncommutative parameter 6
are in general divergent for functions in S. A preferable
definition of these products is by using the Fourier trans-
formation, which converts the twist operator (3) to the
multiplication by the function

n(p.q) = e %,  where p9qd§fp,49"”qy- (6)

The function # is a multiplier of the Schwartz space and
f ®y g may be written as

(f ®a 9)(p.q) = e %] (p)d(q). (7
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This definition extends to the case of several variables in
the following way

(f g(n))(pI’"'pm;‘hv-”vqn)

=

(m) o
m

1]
where f,, and g, are assumed to be elements of S(R*")
and S(R*"), respectively. It is easy to see that the bilinear
map (f,g) = f ®y g is continuous in the topology of the
Schwartz space and satisfies the associativity condition
f®o (g®y h) = (f ®g g) ® h, which really determines
the form of the multiplier in (8).

We now turn to the noncommutative deformation
[14,15,22] of quantum field theories that can be associated
with the twisted tensor product. Let {¢,},c; be a finite
system of quantum fields transforming according to irre-
ducible finite-dimensional representations of the proper
Lorentz group Ll or its covering group SL(2,C). Their
components are labelled by an additional index /, but for
brevity we let v denote the pair (z, /). We suppose that all the
assumptions of the Wightman formulation [16] of local
quantum field theory are satisfied and ¢, are defined as
operator-valued distributions with a common dense invari-
ant domain in a Hilbert space H. As usual, we denote by Q
the vacuum state, by w, , the vacuum expectation value
of a product of n fields, and identify it with a tempered
distribution on R*",

<Qv¢1| (fl) o ¢ln(fn)g> = Wl|...ln(fl - ®fn)v (9)
. € S'(R*),

PO 0 (D1 Pn) ) (G1 - G)s (8)
1

Wy ...

The deformed Wightman functions w? ) are defined by

def

W?]...l,,(fl - ®fn) :Wll...ln(fl Qg - Qy fn)’ (10)

f; € S(RY),
or equivalently by
W= [ ey ., (11)
1<j<k<n

The set of deformed distributions w? )

satisfies the

positive-definiteness condition (see [22]). Furthermore,
as shown below in Sec. V, the deformation (10) does
not spoil the cluster decomposition property, and so if a
is a spacelike vector, then for any f €& S(R*") and
g € S(R*"=™)) " the following relation holds:

Wlel...ln(f ® g(/lu)) - Wf)]...l,,, (f)wf)mﬂ...ln (g) as A — oo,

(12)

where by g(;,) we mean the shifted function, ie.,

9ia) Xmsts - Xn) = g(Xpus1 —4Aa, ..., x, — Aa). Therefore,
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by the Wightman reconstruction theorem [16], this set of
distributions determines a field theory uniquely, up to
unitary equivalence. It is easy to construct explicitly
quantum fields ¢ having such expectation values. As
shown in [16], the Schwartz kernel theorem gives a precise
meaning to vectors of the form

B\ (g) = / dxy...dxyg(xrs oo i) b (1) - b, ()
(13)

where g € S(R*"), and the linear subspace D spanned by all
these vectors and Q can be taken as a common domain of

the initial fields ¢,. Foreach f € S(R*), we define ¢¢(f) by

(R = ()L,

¢19(f)¢l|.4.ln(g) = (pu]ml,z(f Qo g), n>1,

(14)
extended by linearity.

It is easy to verify that the fields ¢¢(f) are well defined
as operator-valued tempered distributions with the same
common domain D C H, and it is clear that

Q.0 (1) L (f)Q) =i, (1 ® - ® f).

We also note that the linear span of all vectors of the
form analogous to (13) but with ¢f’j in place of gblj coincides

with D, because the multiplier J;_,e~27/7« maps S(R*")
isomorphically onto itself.

The basic properties of the deformed Wightman func-
tions and fields are described in [14,15] and in [22,23] for
the case of a single neutral scalar field. The deformation
does not change the support properties of the vacuum
expectation values in the momentum space, and therefore

the distributions w?'__) satisfy the spectrum condition. The

translation invariance is also preserved. The vacuum € is a
cyclic vector for the deformed fields ¢¢. Moreover, as
pointed out in [15], they have the Reeh-Schlieder property,
i.e., for each nonempty open set O C R*, the linear span of
vectors of the form [[7_, 4)3 (f;)Q with suppf; C O is

dense in M. If a field ¢, is Hermitian, then so is ¢¢. The
derivation of these properties uses in an essential way the
identity

wi ) (f ®g g) =wi ) (f ® g), (15)
which holds for every n-point Wightman function and for
any test functions f € S(R*") and g € S(R*"=™)), where
1 < m < n. The identity (15) follows directly from (8) and
the translation invariance of the distributions w(__ ), because
the matrix 6" is antisymmetric. In the case of a free neutral
scalar field ¢, its creation and annihilation operators are
deformed as follows:
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ag(p) = e"a(p).  ay(p) = e a*(p).
where P is the energy-momentum operator. The operators
ag(p) and aj(p) satisfy the deformed canonical commu-
tation relations discussed in [5-10]. As already noted, the
deformation (10) preserves the translation invariance, but it
violates the Lorentz covariance and the fields ¢¢ transform
covariantly only under those Lorentz transformations that
leave the matrix 6** unaltered. This deformation also leads
to a strong violation of locality, and the fields ¢? do not
satisfy the microcausality condition. This is easily seen by
considering matrix elements of the deformed field com-
mutator in the simplest case of a free scalar field. Theorem
3 of [22] shows that if 8* # 0, then the matrix elements of
the form (Q, [¢?(x), ¢%(y)]®), where ® is a normalized
two-particle state, are nonzero everywhere; i.e., their
supports coincide with R* x R*. It should be noted that
this is also true for the case of so-called space-space
noncommutativity, where 6% =0 for all v. Therefore,
the deformed fields ¢¢ do not satisfy even the relaxed
local commutativity condition [13,27,28] adapted to this
case and obtained by replacing the light cone with the light
wedge. Nevertheless, the fields ¢? are not completely
delocalized, and because the issues of locality and causality
are crucial for the physical interpretation, the remainder of
the paper is devoted to a precise description of the extent
to which the noncommutative deformation violates locality
and local commutativity.

III. WEDGE LOCALITY

From the definition (8) of the deformed tensor product,
it directly follows that, for any f;,f, € S(R*) and
g € S(R*"), the following identity holds:

(f1 ®p (f2 ®_p 9))(x1.%2.y)

= (f2 ®_g (f1 ®s 9))(x2,x1,Y), (16)
where y = (yy,...y,). Indeed, let py, p,, and g; be the
variables conjugate respectively to x;, x,, and y;, and
let Q = Z;'l=1 ;. The Fourier transform of the left-hand
side of (16) is (f; ® f» ® §)(p1., P2, g) multiplied by
exp{—%(p;-0ps+ pi-0Q — p,-00Q)}, and that of the
right-hand side is obtained by multiplication with
exp{—%(=p2-0p, — p2-0Q + p; -00Q)}. Clearly, these
two multipliers coincide because the matrix 6" is
antisymmetric.

We will also use the following fact. If f € S(R*),
g € S(R*"), and f has compact support, then we have
the inclusions

"The definition of the Fourier transform used here is the same
as in [29] and differs from that in [15] by a sign in exponent,
and in consequence the signs in (17) differ from those in
Eq. (3.12) of [15].
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1
suPP(f ®q g) C <Suppf — E9U§1> x R#",
(17)

1
supp(g ®y f) C R* x (suppf +§9U§>,

where U, is the closure of the set {0eR*:Q=
"14j-(q1, - q,) € suppg}. Indeed, (8) implies that

(f ® 9)(x.y) = (2m)~r+D) / 7(p)y(a)

x &P 9 pdg,...dg,

1 .
— @ [ £(x+300)ata)

x e 2 dg, | dg,. (18)
This integral is nonzero only if x +%‘92;’=1 q; belongs
to suppf for some (qi,...,q,) € suppy; hence, x €
supp f — %QU ;- The latter set is closed because the support
of f is assumed to be compact. The second inclusion
in (17) is proved analogously. Now let f1,f, € S(R?),

g € S(R*), h € S(R*"), and let f, and f, be of compact
support. Then it follows from (17) that

supp(h ®p f1) ® (f2 ®—p 9)
C R x (suppfl +;9U,;)

1
X <suppf2 + §9U§> x R*", (19)

Following [14,15], we introduce the reference matrix

0 9 0 0
o _ -9, 0 0 0 | 0,
o 0 o0 9,
0 0 -9, 0

where 9, > 0 and 9,, # 0, and we let W, denote the right-
hand wedge in Minkowski space, defined by

W, = {x e R*:x! > [x°]}. (1)

As shown in [14], the stabilizer subgroup of the matrix 0,
with respect to the action @ — AGAT of the proper
orthochronous Lorentz group Ll coincides with that of
the wedge W, with respect to the action W — AW,
and there is therefore a one-to-one correspondence
between the orbits of #; and W,. It is easy to see that if
a matrix 6 belongs to the orbit of #; and W, is its
corresponding wedge, then —@ also belongs to this orbit
and W_g = —Wg.

PHYSICAL REVIEW D 89, 105020 (2014)

Theorem 1: (cf. Theorem 4.5 in [15]) Suppose that ¢,
and ¢, belong to a set of Wightman fields with the common
domain of definition D spanned by vectors of the form (13).
Let @ = AO, AT and W, = AW,, where A € L] and where
0, and W, are defined, respectively, by (20) and (21). If ¢,
and ¢, (anti)commute at spacelike separation,2 then the
deformed fields ¢? and ¢/ satisfy the (anti)commutation
relation

B4 (2)) - @ =0 2)

for all ® € D and for any f,,f, € S(R*) such that
supp f1 C Wy and supp f>» C —W,,.

Proof.— We consider the case when ¢, and ¢, commute
at spacelike separation. Let ®, , (g) be a vector of the
form (13), where g € S(R*"), and let ®(,)(h) be a vector of
an analogous form defined by a system of fields ¢1’1 sy,
and a function 2 € S(R*™). By the cyclicity of the vacuum,
it suffices to show that the assumptions on the supports of
f1 and f, imply that

<(I)(m)(h)’ [d)?(fl)’ ¢l_’0(f2)]¢)llln (g)> =0. (23)

Furthermore, because this matrix element is continuous in
f1 and f, and smooth functions of compact support are
dense in S, we can assume without loss of generality that
supp f; and supp f, are compact. Using the identity (16),
this matrix element can be written as

(D) (B). [ (1), &0 (f2)] Py, 0, (9))
=W=—w, i ® (f1 ® (f2®-99)), 24

where w, is obtained from w by the transposition of the
operators ¢,(x;) and ¢y (x,), and where h*(zy,...,2,) =

h(z, ..., z1). Using (15) and the associativity of ®g, we
obtain
(W=we i* ® (f1 ®¢ (f2 ®-09)))
=(W=we,h" Qy (f1 ® (f2 ®-09)))
=(w=wg, (h" ®g f1) ® (f2®-69))
Letk = (ki,....kn), p = (P1, p2), and ¢ = (qy, ..., q,) be

the momentum variables conjugate to the coordinates on
R x R*2 x R*, It follows from the spectrum condition
that

*As usual, we assume that the type of commutation relation is
the same for all components of a field.
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) {(kPQ)ER“ 2 3

j=1
ew,zq,ev—}.

=1

supp(W —

(25)

We let V; denote the e-neighborhood of the closed forward
light cone V' and y, denote a smoothed characteristic
function of V* with the following properties: y, is identi-
cally 1 on 17:/2, vanishes outside V', and is a multiplier of
S(R*). Because (u,f)=(2z)~4 (i, f(=-)) for any u€ S’ (R?)
and f € S(R), it follows from (25) that the matrix element
(24) is unchanged on replacing hand g With functions 4, and
ge such that 1if (ky, ... k,,) = x.(=>_ k;)h* (k. ... k,,) and

Fe(qrs @) = 232, 61,)9((11,- .+ q,)- From (19) we have

—6\7;>

1 -
X <suppf2 + EHVJ) x R,

supp(h; ®q¢ f1) ® (f2 ®p ge)

C R¥" x <suppf1 +

The inclusion 6,V~ C W, implies that 10V~ c W, and
%G’V+ C —Wy. Therefore, if the supports of f; and f, are
compact and contained, respectively, in W, and —W,, and if
e is sufficiently small, then supp f; —l—%é\_/; C Wy and
supp f> + 30V € —=Wy. Because (x; — x,)? <0 for any
x1 € Wy and x, € —W,, we conclude that the equality (23)
follows from the locality of the undeformed fields which
means, in terms of Wightman functions, that w—w;,
vanishes for (x; — x,)? < 0. For the case of anticommuting
fields, the reasoning is the same but with obvious changes
of signs.

Because the deformation preserves the translation invari-
ance, (22) also clearly holds if there exists a translation a
such that

supp f1 +a C Wy, supp f» +a C =Wy

Remark 1: The derivation of Theorem 4.5 in [15]
relies on the assertion that the Fourier transform of the
distribution defined by (¥, [¢{(f1). #;*(f2)]P,..., (9))
where W € H, has support in the (n +2) -fold product
of the forward light cone V. This contradicts (22) because
then this distribution would be the boundary value of an
analytic function and hence could not vanish identically
on a non-empty open set. Nevertheless, as shown above,
the theorem’s conclusion holds. Another proof of the
wedge-local (anti)commutation relations for the deformed
fields is given by Lechner [18] in an operator-algebraic
setting.
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IV. ASYMPTOTIC COMMUTATIVITY

Theorem 1 says that the field (anti)commutator
(7 (x)), (xz)](—) vanishes identically on Wy x W_,.

In this sectlon, we show that it also has a rapid decrease
(in the sense of generalized functions) in the whole
spacelike region (x; —x,)? < 0. As before, we restrict
our consideration to the case of commutator. Let U be
an arbitrary vector in H, let ® belong to D, and let

A1), D0 (f2)]®).

By the Schwartz kernel theorem, the bilinear functional
(26) is identified with a distribution in §'(R* x R*). A
simple way of describing the behavior of a distribution at
infinity is by examining its convolution with test functions
decreasing sufficiently fast. Therefore, we should consider
the asymptotic behavior of the convolution uy ¢ * f with
adequately chosen functions f. This convolution may be
written symbolically in the form

uys(f1,f2) = (¥ (26)

(g # 1) (x1.32) = / (. [B0E). 7))

x f(x; —&)dé,ds,. 27)

= &1, %

We will use the Gelfand-Shilov test function spaces Sg
which are contained in S. If # < 1, the definition of these
spaces can be formulated in terms of complex variables,
which considerably simplifies the estimates of Theorem 2
below. As shown in [30], the elements of S5 (R), where
p < 1, can be continued analytically into C?, and Sh s
isomorphic to the space of entire functions W9, where
p=1/aand 6 = 1/(1 — ) > 1. The functions belonging
to W7 satisfy the inequality

d
If(x+iy)| <C H o—alxP+bly I

=l

(28)

with some positive constants a, b, and C depending on f.
The norm corresponding to (28) is given by

Iflles = sup |f(z \Hea\w Blyjl°,

z=x+1iy j=1

(29)

and we let W‘;;f; denote the space of entire functions such
that || f1l; 5 < oo for all positive a < a and b > b. Clearly,

wy= U

a—0,hb—

b
Wiq.

If 6 > p, then the space W‘,fa is nontrivial for any a > 0 and
b >0, but if 6 =p, Wpa is nontrivial only under the
condition a > b. Indeed, if a < b, then (28) implies that
f(z) - f(iz) tends to zero as |z| — oo and is hence iden-
tically zero by the Liouville theorem. The same argument
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shows that W7 is trivial for 6 < p. Under the condition
p > 1, the Founer transformation is an isomorphism of
WZZ onto W”,; " b,, where the primed indices are defined by
the duality relatlons

11 ,
—4-=1,  (pd)Y(pa)y =1, (30)

pop

and by analogous relations for ¢’, b'. We will also use the
spaces W?? defined by

d -
£ < Cyp(1 + )N ] bl 31)
j=1

N=0,1,2...,

b > b,

and the spaces W = | J,_ ., W??, which are isomorphic to
the Gelfand-Shilov spaces S/ with f=1—1/6. The
Fourier transformation maps W° onto the space W, =
S and W b onto the space W, . of smooth functions on
R? with the norms

[x[<N p
b <V,

d
lgll 5 = maxsup [ T 17" |8g(p)|.
j=1
N=0,12,...

The choice of norm | - | on R is inessential to the definition
(31), but when working with functions in W9, it is
convenient to use the norm

ol = (ki)™ (32)

We need two auxiliary lemmas.

Lemma 1: Let u be a distribution on R¢ with support
in a closed cone V # R, and let G be a closed cone such
that GNV = {0}.If f € W,, ,, then for some N and for any
a < a < a, the convolution (u * f)(x) satisfies the estimate

|(u * f) (‘x)‘ S CG,&,L:J”f”N.()e_aldG'Vxlﬂv X € G9 (33)
where the norm |-| on R? is given by (32) and
dgy = infxeG,|x\=1inf§ev|x - ¢l

Proof.— For simplicity we assume that the set V is
regular.3 Then there exist a constant C > 0 and an integer N

(both depending on u) such that

|(u, £)| < Cmax sup(1 + [E)N[*f ()] (34)
[x[<N gy

*See definition in [29], Supplement A.2. The closed light cone
is a regular set.
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forall f € S(R?). If the regularity condition is not satisfied,
then V in (34) should be replaced by its e-neighborhood.
This slightly complicates the analysis, but does not change
the result. By the definition of norms in W, ,, we have
0% F(E)] < 11flljx ae™@" for any k and @ < a. Replacing
the function f(&) by f(x — &) and using (34), we obtain

—alx—&lP
N, alx—¢|

|(ux f)(x)| < CIIfIIN.aE;llVD(l + 1€])

N g=alx—gf

< Clifllya(l+ |X|)N§ug(1 +lx=¢))

< Callfllwa(l + [x])Vemarldr, (35)
where @, < a and can be chosen arbitrarily close to a, and
dy(x) = infzey|x — £|. Because the cone V is invariant
under dilations, we have

dy(x) = [xldy (x/|x]).

It follows from the above condition GNV={0} that
dgy=inf e xj—1dy(x) > 0. Therefore, the factor (1+|x|)"
can be omitted from the last row in (35), slightly decreasing
ap, and we arrive to (33). Lemma 1 is proved.

Remark 2: We consider below a special case, where
d=d, + d, and suppu C V x R%, with V a cone in R,
Then an estimate analogous to (33) holds in any closed
cone G C R% such that GNV = {0} and even under a
weaker assumption on the behavior of f with respect to the
second group of variables. In particular, those functions are
admissible that satisfy the conditions

|xlinf ey |x/|x| — & =

max|0*f (%, )| < Cruae™™ 1+ DN 36)

N=012,...

From (36), we obtain an estimate of type (33) for
(u* f)(x,0), but with ||f|ly, replaced by C;y, The
function space defined by (36) is the completed tensor
product W, ,(R% )®S(Rd2).
Lemma 2: If ¢/ >p=p'/(p'—1), then for every
quadratic form Q(p) with real coefficients, the function
¢'9(P) is a multiplier of W’ % for any a > 0, b > 0.
Proof.— We need to esumate the function |e/2(P+is)| =
e~ImQ(P+is) [ et Q) be the matrix of the quadratic form Q
and let |Q| = max; ;|Qi|. Young’s inequality for products
states that if 7 and ¢ are nonnegative real numbers and p and
p' are positive numbers satisfying the first of duality
relations (30), then rt < r”/p + t”' /p'. Using this inequal-
ity with r = |p;|/e and t = &|s;|, where & > 0, we obtain

]Imz (p + i) Qulpic + ise)| < 21QI Iyl

Jjk

pj )
<2d|Q> (\;!”m eI ) (37)
—~\p p
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The condition p < ¢’ implies that for arbitrarily small &,
there is a constant C, > 0 such that
[pi/ell < Co+elpl”. (38)
In line with (29), the norms in Wp ", are defined by
gl = sup,slg(p + is)| TTS, eeIPI" st Substituting

(38) into (37), we conclude that for any a; < a < a and
by > b > b, there exists a constant C; ; such that

lge™llz, 5, < Cay 5, gllas for all g€ W2,

which completes the proof. )

Remark 3: If ¢/ = p, then ¢/2(?) is a multiplier of W”,,
but not of W” " The condition ¢’ > p for the spaces of type
W is equlvalent to the condition a > p for B As shown in
[25], only under this condition SPis an algebra with respect
to the Weyl-Moyal product (4).

We now turn to describing the asymptotic behavior of
distribution (26) at large spacelike separations. The corre-
sponding theorem is accompanied below by a simple but
explanatory example. We let V denote the cone in R*? =
R* x R* consisting of the pairs (x;,x,) such that x; — x,
belongs to the closed light cone,

V= {(x;,x;) € R*?:(x; — x,)? > 0}.

Theorem 2: Let ®(g) be a vector of the form (13)
with g € W?(R*"), let ¥ be an arbitrary vector in H, and
let G be a closed cone in R*? such that GNV = {0}.
If f € W5(R*?), where p<o’=0/(c—1) and || f|l,, < o0,
then for any a < a, the function (27) satisfies the
estimate

(g 0% f)(x1.%2)]|
<Coavalfllapexp{=adgy (x| +[x:P)}, (x1,x,) €G,
(39)
where the angular distance dg y, is defined in Lemma 1.
Proof— Let uy be the distribution defined on R*2*")
by the three-linear functional (U, [¢,(f}), ¢v (f2)]®(9))- By
locality of the undeformed fields, its support lies in the cone
V x R**, and (16) implies that
(uypp. f1 ® f2) = (uy, [1 ®o (f2 ®_9 9))
for all f1,f, € S(R*) and g€ S(R*).

(40)

By the definition of the product ®y, the Fourier transform of
J1®¢(f2®_g) has the form - (f| ® f2 ® §), where
—%(P19P2+(P1—P2)9 E;:l ‘Ij)_

n(p1.p2.q) =e (41)

Since S(R*) ® S(R*) is dense in S(R*?), it follows from
(40) that for any f € S(R*?),

PHYSICAL REVIEW D 89, 105020 (2014)
(uy o, f) = (uy, hy),

where

heSn-(F ® §) € S(R4H),

Therefore,
(M\I:,@ * [)(x1, %) = (ug * hf)(xlvx%o)'

If feW5(R*?) and g€ W5(R*"), then |If ® gl =
Iflasllglle, by the definition (29). The Fourier trans-
formation as already said, is an isomorphism of WZ'Z onto

(42)

W, " b,, and by Lemma 2 the function # is a multiplier of
w”, 5 b,x(R“("”)) under the condition p<¢’. Hence the
correspondence f—h; is continuous from W54 (R*?) to

W5h x (R*"+2)), and for any @, < @ < a and b, > b > b,
we have

Wfllz, 5, < Ca b, W lap < Ca, b, 1 - 43)
The operation of differentiation is continuous in WZ,’Z ,ascan

easily be seen by using Cauchy’s formula. Therefore, W, , is
continuously embedded in WZ;Z, and

lhflina, < Ceallhfllz 5, forany N and a, <a.

(44)

Applying Lemma 1 to the right-hand side of (42) and using
(43) and (44), we arrive at (39). Now let g € W5,
Performing the Fourier transformation, using the condition
p < o', and making the inverse transformation, we obtain

[y (x + iy, + i) < Cpappllfllape™™ (14 )7

ANATEN - (AT
% Hebb,\ +BIYI”
JH

where x denotes the pair (x1, x,) and x” denotes the variables
of g. Hence h4(x, x') satisfies inequalities of type (36) with a
constant Cy y 5 proportional to || f|, . Invoking Remark 2,
we arrive again at (39), which completes the proof.

Remark 4: The condition GNV = {0} implies that G
is contained in a wedge of the form {(x;,x,):x; —x,€G},
where G is a closed cone in R* having only the origin in
common with the closed light cone V. The norm (32)
dominates the Euclidean norm || - || and using the paral-
lelogram identity, we see that for all x; —x, € G, the
following inequality holds,

(g0 * f)(x1, )| £ Couollfllas

a
X exp {—550,\7”361 —x2||P},

where the distance 5 7 is defined by the Euclidean norm.
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As an explanatory example, consider the matrix element

g, 0 (f1.£2) = (091 [0°(f1). 070 (f2)|0(92)Q). (45)

where ¢ is a free massive neutral scalar field. Expressing
the four-point vacuum expectation value in terms of two-
point ones and passing to the momentum representation,
(45) can be written as

i
11212 = oo | dkdprdpadad(i+a)o(p,+ po)

x A (k)A(p,)e2POr2tpri0a-p209) ()
X JACl(—Pl)JA%(—Pz)@z(_Q)

= G [ dkaph (WA 5,8
X ]Acl(—P)JAcz(P)gz(k)v

where A(p) = —2zie(p°)5(p* — m?) is the Fourier trans-
form of the Pauli-Jordan function, and A is its positive-

frequency part. Letting f(p) = 71(p)f2(~p) and g(k) =

31(—=k)g>(=k) and turning back to the coordinate repre-
sentation, we obtain

Ug, g, (f1:f2) = i(AL ®r A, g ® f)
=i(A; ® A, g ® f) (46)

If supp f1 C Wy and supp fr» C W_y, then f, being the
convolution product of f(&) and f,(—¢), is supported in
W. Taking into consideration the support properties of AJr,
we conclude, as in Sec. III, that supp(g ®. f) C
Wy + 60V~ C Wy, and hence u, , (f.f>) vanishes for
such test functions. To test the behavior of (45) for arbitrary
spacelike separations, we use the shifted test functions
filx; =& and f,(x, — &), where (x; —x,)> < 0. Then
(&) is replaced by f(x; —x, — &) and g ®,y f is shifted
away from the support of A, ® A. Therefore,
Uy, g (f1(x1 =+), f2(xo —-)) inherits the fall-off properties
of g ®y f. It is clear from (18) that the rate of decrease of
g ®yp [ in the x variable is the same as that of f, if the latter
decreases slower than § does. In technical terms, if g, (k),

and hence §(k), belongs to W, = W and falls off as e~1¥I",
we take fi, in W, with p <¢ and conclude that
Ug, 5 (f1(x; =), f2(x, —-)) decreases with a rate charac-
terized by Lemma 1. In the case of interacting fields, the
occurrence of the term — % Pp10p, in (41) forces us to take f
and f, in W,NW? = W7. With such a choice, the function
(27) falls off in the same manner in all spacelike directions.

It should be pointed out that the linear subspace spanned
by the vacuum Q and all vectors of the form (13) with g €
We is dense in H, because W¢ is dense in S. Any W°
contains W! whose Fourier transform is nothing but the
space Cy° of all infinitely differentiable functions of compact
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support, and C{° is just the function space that is employed in
the Haag-Ruelle scattering theory. The condition p < ¢,
together with the condition p < ¢ of non-triviality of W9,
implies that p < 2, because min(s, ¢’) < 2. Since p can be
chosen arbitrarily close to 2, Theorem 2 merely says that the
commutator [¢f (x;), ¢7%(x,)] decreases approximately as a
Gaussian at large spacelike separation of x; and x,. The
borderline case p = o, i.e., the case of test functions in
Wg =S{_, where f=1-1/6=1/c, is of particular
interest.* Theorem 3 of [26] shows, that in this case, (39)
amounts to the condition that the distribution uy ¢ has a
continuous extension to the space S (V) = W°(V) of entire
functions satisfying the inequalities

|f(x +iy)| < Cy(1 + |x|)~N exp {bdy(x) + bly|°}. (47)
N=012,...,

where U is an open cone, depending on f, such that
V\{0} C U, and where Cy and b are positive constants,
also depending on f. Conditions of this kind were earlier
used in nonlocal quantum field theory, where the framework
of tempered distributions appears to be too restrictive and the
adequate choice of test function space takes on great
significance. In particular, the spaces S#(V) with g < 1,
consisting of analytic functions, were used in formulating an
asymptotic commutativity principle replacing local commu-
tativity for nonlocal fields. In [26], nonlocal fields ¢, and ¢,
defined as operator-valued generalized functions on S#(R*)
are referred to as asymptotically (anti)commuting, if the
matrix element (¥, [¢,(x;), ¢, (xz)](;)@ has a continuous

extension to S#(V) for any vectors ® and W in their common
dense domain in the Hilbert space. The principle of
asymptotic commutativity implies that any two field com-
ponents either commute or anticommute asymptotically at
large spacelike separation of the arguments. This condition
provides a way of extending the CPT and spin-statistics
theorems to nonlocal QFT [24]. The condition of mutual
asymptotic commutativity was also used in [31] to extend
the Borchers equivalence classes to nonlocal fields.
Theorem 2 shows that the deformed fields ¢¢ and ¢7°
(more precisely, their restrictions to the test functions in
SP(R*)), p < 1/2) (anti}commute asymptotically if the
initial fields ¢, and ¢, (anti)commute at spacelike separa-
tion. Using the fact that the twist operator (3) is an auto-
morphism of S#(V) for < 1/2, an extension of the

distribution (¥, [¢?(x,), ¢;(x,)] (;)(D) to this space can

explicitly be constructed, but here we find it preferable to
define the asymptotic commutativity as a fall-off property of
the smoothed field commutator, which clearly shows its
meaning.

*We note that p < ¢ implies g < 1/2.
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V. CLUSTER PROPERTIES OF THE DEFORMED
WIGHTMAN FUNCTIONS

In order to prove the uniqueness of the vacuum state
in reconstructing quantum fields from a given set of
Wightman functions, it suffices to use the cluster decom-
position property

Wy, (f ® g(ﬂa)) > Wy, (f)wl,,,ﬂ.“l,, (g)

where f € S(R*"), g € S(R*"=™), and a is an arbitrary
spacelike vector. However, Theorem 3—4 of [16] shows that
the vacuum expectation values of local field theory satisfy
the slightly stronger condition

(A - o),

(A = ),
(48)

Wy, (h(m,ia)) - (Wll...lm ® WlmH...l,,)(h)

where £ is any function in S(R**) and

Mgy (Xis oo X)) = h(Xp, oo Xy Xy — A, o0, X, — Aa).

Setting
i= I1 e

1<j<k<n

and using (8) and (11), we see that the limit relation (48)
implies (12) for the deformed Wightman functions, because
the distribution w, , ®w, ., contains the factor
821y pj)8(320-, 41 pj) by the translation invariance.

The Haag-Ruelle scattering theory uses essentially
the decomposition of vacuum expectation values into
truncated ones. The truncated Wightman functions w’
are obtained by eliminating the contribution of the
intermediate vacuum state from the support of W, see
[29,32]. If zero is an isolated point of the spectrum of
the energy-momentum operator, i.e., the spectrum has
the form

spP c {0}UV}, (49)

where V| = {p:po > /p? +/12} and x>0, then
suppW!(py, ..., p,) is contained in the set defined by

n k
dp=0. D> pieVi k=1
=T =

The asymptotic behavior of the truncated vacuum
expectation values at spacelike infinity plays the major
role in constructing the scattering states. Because of
this, it is desirable to elucidate how the deformation
under consideration affects this behavior. In accordance
with (11), we define the deformed truncated n-point
vacuum expectation values by

,n—1.

def T

WLTI'?.In(fl ® ... ®fn):Wll...|n<f1 ®6 ®9 fn) (50)
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The usual method [29,32] of estimating the spacelike
asymptotic behavior of w’, as well as the proof of
cluster property (48) in [16], is based on Ruelle’s
auxiliary theorem which can be given the following
form: If two tempered distributions u; and u, coincide
on an open cone I' and the supports of their Fourier
transforms are separated by a finite distance, then both
of these distributions vanishes at infinity faster than any
inverse power of |x| in any closed cone G such
that G\{0} C T

Indeed, for each test function f € S, the convolution
(uy —uy) * f together with all its derivatives decreases
rapidly in any direction within I', because a shift inside this
cone implies that the test function moves away from the
support of (u; — u,). The corresponding estimate is similar
to that made in the proof of Lemma 1 for the case of test
functions in W9 C S. Let now y(p) be a multiplier of S,
equal to 1 on a neighborhood of suppit; and equal to
zero on a neighborhood of suppii,. Then we have the
identity

uy* f = (uy —uy) x (x * f),

which shows that u; * f also rapidly decreases inside I
This theorem is applied to the truncated vacuum expect-
ation values in the following way. Let J be a nonempty
subset of the set of indices (1,2, ...,n) with a nonempty
complement J'. We let = denote the permutation
(1,2,...,n) > (J,J') and 7’ denote the permutation
(1,2,...,n) = (J',J). By local commutativity, w’ coin-
cides with the permuted distribution w’ on the cone

N i

JjeJ j'es

(G

FJ:

where
[={xeR":(x;—x;)* <0},

and wf in turn coincides with w’, on this cone. It follows
from the spectrum condition that W, =0 if djeilj =
P;¢V,;, and that Wl = 0 if P;¢V;,, because P; + Py =0
by the translation invariance. The cones I'; with various J
cover the plane x)=---=x9 in R*", and the Ruelle theorem
says that, for any feS(R*), the function w! , xf
restricted to this plane and considered as a function of
the difference variables x; — x;, | belongs to S(R3"~D). It
is precisely the property of w{ s« f thatis used in [29,32]
to prove the existence of asymptotic scattering states.
The Ruelle theorem can be considerably strengthened
using the freedom in choosing the multiplier y in (51). By
varying this multiplier, the distributions #; and u, can be
shown to decay exponentially inside G with a rate constant
determined by the distance between supp it; and supp it,. In
[33], this improvement is reduced to an extremum problem
whose solution is expressed through Chebyshev polyno-
mials. To detect this decay, appropriate test functions are
needed. Clearly, they should decrease sufficiently fast at
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infinity, and we use the functions in S that have exponential
decrease of order > 1 and type > 1/I, and satisfy the
condition

”f” == max su aKf e‘x |/l < 00
NI max Pl H

foralll > land N = 0, 1, .... Letting S, denote this space,
the result [33] can be stated as follows. In local quantum
field theory with the spectrum condition (49), the con-
volution of wlT] .., With any test function f € §; ; satisfies
the estimate

LA o 169] [P

n

UR
20— 1)(1 +3u7>}’ 62

where [ > [ and can be taken arbitrarily close to /, the

constant K is determined by the order of singularity of
T

Wy, .a,» and

< Cillflliwj+x7XP {—

R = max||x; — x;||.
nax]lx; x|

With [ <« 1/u, (52) shows that wlTl .., decays no slower
than exp{—puR/2(n — 1)} as R — oo. In order to character-
ize the behavior of the deformed functions wlTl’f‘.n at
infinity, it is again necessary to choose the test functions
in an adequate way. We use the spaces W‘l’:ll’ 1 C Sy ;> where
o and b can be taken arbitrarily large. This choice cannot be
illustrated by the example of a free scalar field because its
truncated n-point functions vanish identically, except for
n = 2, and the two-point function, being translation invari-
ant, is unchanged by the deformation. But as a hint, we note
that to test, e.g., the behavior of A, ®, A, in the spacelike
directions, it is natural to use test functions decreasing like
exp{—|x|/I}, with [ < 1/u, and whose Fourier transforms
behave at infinity no worse, because the twisting of the
tensor product intermixes the coordinate-space asymptotic
behavior with that in momentum space, as shows (18) and
the explanatory example given in Sec. IV.

Theorem 3: If the assumption (49) on the ex1stence of
amass gap holds, then for each test function f € W1 11> the
function wTe a1, * f satisfies the inequalities

[0 (W, L, ) () Lo

n

HR___ } (53)

where [ > [ and can be chosen arbitrarily close to I.
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Proof.— By definition (50), we have

T.0

wyla, x f=wl % h, where i(p

He—fﬂﬂl’k

j<k

(54)

The Fourier transformation maps W‘l’ 171 onto the space of
functions analytic in the complex (1/I)-neighborhood of
the real space and satisfying, for each [ > [, the conditions

sup |g(p +is)| < Cy, ,,,He—ifip,»\“’,
sl<1/1

where |s| = max|s;|.
j

Because ¢’ > 1, Lemma 2 obviously extends to this space,
and the function [] j<ke‘%Pf9pk is hence its multiplier.
Therefore, i belongs to W‘l’ji’ /1 and depends continuously
on f. It follows from the Cauchy theorem that the norms
of §;; and W1 ' are related by [[Ally; < Cyillally 75 We

conclude that if f € W1 e then (52) implies (53), and

Theorem 3 is thus proved.

Remark 5 For simplicity, we have considered the
vacuum expectation values of products of deformed fields
Hj(/){’j (x;) with a common deformation parameter 6.

However, an analogous theorem holds for products

ngbf)j’ (x;) with different 6;. The proof is the same, but

with a multiplier of a different form than []; <ke‘%”./‘91’k in
(54). As it is clear from the foregoing, the most interesting
case is that when 6; differ only in sign.

VI. CONCLUSION

The noncommutative deformation (10) gives an interest-
ing example of quantum fields defined as operator-valued
tempered distributions on the Schwartz space S and
satisfying the asymptotic commutativity condition previ-
ously proposed for highly singular nonlocal fields with
analytic test functions in §# = W'/(=#) where g < 1. It
should be emphasized that the asymptotic commutativity
principle [24,26] is not fully implemented in the simplest
deformation of Wightman field theory considered here,
because the commutator [¢f(x;), % (x,)] of fields with
equal deformation parameters does not satisfy it. This
commutator decreases in the spacelike region in the same
fashion as the Wightman functions, i.e., exponentially with
the damping factor depending on the threshold mass u.
A more sophisticated way of deformation is apparently
required for the deformed field theory to meet fully the
condition of asymptotic commutativity and thus allow a
consistent physical interpretation as nonlocal field theory.

Theorem 2 proved above can be supplemented by an
additional statement. The noncommutative deformation
(10) enters an elementary length £ ~ \/W into the theory,
and this length can be included in the characterization of
the behavior of the matrix elements uy g of the field
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commutator [@?(x;), $7%(x)]. Namely, it can be shown
that if the function g in the definition (13) of the vector ®
belongs to S/(R*"), where < 1/2, then the distribution
uy g has a continuous extension to the space W22(V),
where b = 1/(2£7). As proved in [22], such a property is
also characteristic of the matrix elements of the commutator
[(x1), Pp(x7)], where ¢(x) is the deformed normal ordered
square ¢ xg @:(x) of a free scalar field ¢.

Theorem 3 shows, in particular, that incoming and
outgoing n-particle scattering states can be defined for
the deformed interacting fields in four-dimensional space-
time in the usual way [29,32] without appealing to the
wedge locality. In the case of lower dimensions it should
be combined with Hepp’s idea [34] of using the so-called
nonoverlapping scattering states. In fact, to prove the
existence of the #-dependent asymptotic states, it suffices
to use a weaker version of Theorem 3 which employs test
functions with compact support in momentum space
and shows a decrease faster than any power of 1/R, but
the strong version (53) is essential to understanding the

PHYSICAL REVIEW D 89, 105020 (2014)

analytic properties of the corresponding S-matrix. The
construction of the scattering matrix is a more subtle
and complicated problem which will be discussed in detail
in a subsequent paper. A preliminary analysis shows that
the arguments used for this purpose in [14,15,18] can be
adapted to asymptotic commutativity. Then it makes sense
to consider a wider class of deformations, not necessarily
preserving the wedge locality. In this connection, it is worth
noting that an analogous deformation can be performed
on nonlocal quantum fields defined initially on S”, where
p < 1, and subject to the asymptotic commutativity con-
dition. Analogues of Theorems 2 and 3 can be shown to
hold in this case, too, and this implies the existence of
asymptotic scattering states.
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