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In the context of the nonminimal Standard Model extension a special subset of the CPT-even higher-
dimensional operators in the photon sector is discussed from a quantum field theoretical point of view. The
modified dispersion laws, photon polarization vectors and the gauge field propagator are obtained and their
properties are analyzed. It is demonstrated that for certain sectors of the modified theory a puzzle arises for
the optical theorem at tree level. This is followed by a discussion of how it can be interpreted and resolved
at first order Lorentz violation. Furthermore the commutator of two gauge fields that are evaluated at
different spacetime points is obtained and discussed. The structure of the theory is shown to resemble the
structure of the modification based on the corresponding dimension-4 operator. However some properties
are altered due to the nonrenormalizable nature of the theory considered. The results provide more insight
into the characteristics of Lorentz-violating quantum field theories that rest upon contributions of
nonrenormalizable dimension.

DOI: 10.1103/PhysRevD.89.105019 PACS numbers: 11.30.Cp, 14.70.Bh, 03.70.+k, 11.15.Bt

I. INTRODUCTION

Over the past 15 years the study of Lorentz invariance
violation both in theory and experiment has become an
important field. The foundations were laid by the seminal
papers [1–3] in which it was shown that a violation of
Lorentz symmetry can emerge in certain scenarios of string
theory. In addition, Lorentz violation may arise in many
other interesting contexts such as a nontrivial structure of
spacetime (spacetime foam) [4–7], noncommutative field
theories [8], loop quantum gravity [9,10], and quantum
field theories on spacetimes with a nontrivial topological
structure [11,12].
In principle it is assumed that a low-energy effective

description of quantum gravity phenomena can be consid-
ered as an expansion in energy over a mass scale, which
is probably related to the Planck scale. The leading order
term in such an expansion comprises the ordinary Standard
Model of elementary particle physics plus general relativity.
The next-to-leading order term is the minimal Standard
Model extension (SME) [13], which is a framework for
studying and testing Lorentz violation at energies much
smaller than the Planck scale. The minimal SME includes
all Lorentz-violating operators that are power-counting
renormalizable and invariant under the gauge group of
the Standard Model. Since gravity itself is nonrenormaliz-
able one may expect higher order terms in the expansion to
be made up of operators of nonrenormalizable dimension.
These are included in the nonminimal SME.
A special sector of the nonminimal SME forms the basis

of the current paper. A necessary (but not sufficient)

criterion for a renormalizable, interacting quantum field
theory is that it only contains products of field operators
that have a mass dimension of 4 or less. Operators with
mass dimension of at least 5 are called higher dimensional.
In the early days of the development and understanding of
renormalization many theorists considered such quantum
field theories with antipathy. However, this point of view
has changed. Nowadays nonrenormalizable quantum field
theories are powerful tools in both high-energy and con-
densed matter physics. Such theories have significance as
long as they are considered as effective theories only valid
within a certain energy range [14,15].
There are many examples for effective theories: Fermi’s

theory of the weak interaction [16], Euler-Heisenberg
theory [17], chiral perturbation theory, heavy quark effec-
tive theory, etc. (for the latter two cf. the review [15]). Even
the Standard Model of elementary particle physics can be
considered as an effective (though renormalizable) theory
and practically all condensed matter theories are effective
ones. To illustrate why these are successful we consider
Euler-Heisenberg theory as an example for an effective
theory in the photon sector.
Let us assume that we only knew about classical physics,

e.g., the Lagrange density of classical electrodynamics,
which is proportional to a bilinear combination of electro-
magnetic field strength tensors, F2, and leads to Maxwell’s
equations. Based on Lorentz invariance, nothing would
forbid us to add higher-dimensional terms to this
Lagrange density. Two of the possible terms are F4 and
ðF ~FÞ2 with the dual field strength tensor ~F, where each of
them is multiplied with an unknown coefficient of mass
dimension −4. These would then lead to nonlinear versions
of Maxwell’s equations describing light-by-light scattering.*mschreck@indiana.edu
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The latter is certainlynot a classical but a quantumtheoretical
phenomenon. Hence even without any knowledge of quan-
tum theory we could gain an understanding of it if we were
able to determine the unknown coefficients by experiment.
However, since we know about quantum theory, these
coefficients can be calculated in perturbative quantum
electrodynamics (QED) and they are inversely proportional
to the fourth power of the electron mass. Although Euler-
Heisenberg theory is nonrenormalizable, it gives a good
description for quantumeffects in electrodynamics as longas
the photon energy is much smaller than the electron mass.
The nonrenormalizable nature of the theory is revealed since
the cutoff dependence of scattering quantities cannot be
removedbya redefinitionof the theoryparameters.When the
cutoff reaches the electron mass the higher-dimensional
terms can be as large as the renormalizable ones and the
validity of the theory breaks down.
The example given shall demonstrate how useful non-

renormalizable field theories can still be. This was certainly
one motivation for Kostelecký and Mewes to include
higher-dimensional operators in the photon [18], neutrino
[19], and the fermion sector [20] of the minimal SME,
which leads us to the nonminimal SME. Since Lorentz
violation is supposed to originate from physics at the
Planck scale, these terms of nonrenormalizable dimension
are probably suppressed by the Planck mass. The theory is
applicable as long as particle momenta do not lie in the
order of magnitude of this scale.
The current paper shall provide a better insight on the

quantum field theoretical properties of such Lorentz-
violating nonrenormalizable theories. Here the focus is
on the nonminimal, CPT-even photon sector whose terms
are classified in [18]. In Sec. II the action of the theory
considered will be introduced and its general properties
will be discussed. The framework is then restricted to a
particular subset of Lorentz-violating parameters. Based
upon this modification, the modified dispersion relations
of electromagnetic waves are obtained and investigated
in Sec. III, which is followed by the calculation of the
polarization vectors and the photon propagator in Sec. IV.
Using these results the optical theorem at tree level will be
checked in Sec. V. It is demonstrated that a puzzle arises
for certain sectors of the theory and how to resolve it at
leading order Lorentz violation. Section VI is dedicated to
studying the properties of the gauge potential commutator
of the theory with the goal to get some understanding of
its causal structure. The results are concluded in Sec. VII.

Calculational details are relegated to Appendixes A and B.
Natural units with ℏ ¼ c ¼ 1 will be used throughout the
paper unless stated otherwise.

II. CPT-EVEN PHOTON SECTOR OF THE
NONMINIMAL STANDARD MODEL EXTENSION

Within this paper modified Maxwell theory shall be
considered, which is the CPT-even modification of the
SME photon sector. Including the dimension-4 and all
higher-dimensional contributions this theory is defined by
the following action:

SmodMax ¼
Z
R4

d4xLmodMaxðxÞ; (2.1a)

LmodMaxðxÞ ¼ −
1

4
ημρηνσFμνðxÞFρσðxÞ

−
1

4
ðk̂FÞμνϱσFμνðxÞFϱσðxÞ; (2.1b)

ðk̂FÞμνϱσ ¼
X
d even
d≥4

ðkðdÞF Þμνϱσα1…αðd−4Þ∂α1…∂αðd−4Þ : (2.1c)

The action is written in terms of the electromagnetic
field strength tensor FμνðxÞ≡ ∂μAνðxÞ − ∂νAμðxÞ of the
Uð1Þ gauge field AμðxÞ. The fields are defined
on Minkowski spacetime with coordinates ðxμÞ ¼
ðx0;xÞ ¼ ðct; x1; x2; x3Þ and metric ðgμνðxÞÞ ¼ ðημνÞ≡
diagð1;−1;−1;−1Þ. The Lagrange density of Eq. (2.1b)
is decomposed into the standard Maxwell term and the
Lorentz-violating modification. The latter involves
the background coefficients ðk̂FÞμνϱσ , which transform
covariantly with respect to observer Lorentz transforma-
tions and are fixed with respect to particle Lorentz
transformations.
Besides the dimension-4 modified Maxwell term

(cf. Refs. [13,21,22]) the background coefficients include
all higher-dimensional operators with even operator dimen-
sion d > 4. The terms of nonrenormalizable dimension are
characterized by additional derivatives. Each increase of the
operator dimension by 2 involves two additional derivatives
that are contracted with appropriate Lorentz-violating
coefficients with two additional indices. The mass dimen-
sion of these coefficients is decreased by 2 to compensate
the mass dimensions of the derivatives. Transforming these
coefficients to momentum space with the four-momentum
kα yields

ðkðdÞF Þμνϱσα1α2∂α1…∂αðd−4Þ �!
∂α↦−ikα

momentum space
ð−1Þd=2−2ðkðdÞF Þμνϱσα1α2kα1…kαðd−4Þ : (2.2)

Hence the scales of the individual contributions in the expansion of ðk̂FÞμνϱσ can be made more transparent with the
following symbolic notation:

jðk̂FÞμνϱσj ¼ jκμνϱσjð1þ ζð2Þk2 þ ζð4Þk4 þ…Þ; (2.3)
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where j • j denotes the order of magnitude of the Lorentz-
violating coefficients and κμνϱσ are the coefficients asso-
ciated with the dimension-4 operator, ðkð4ÞF Þμνϱσ ≡ κμνϱσ.
The quantities ζðd−4Þ (for even d > 4) have mass dimension
4 − d and the variable k denotes a momentum scale.
A necessary condition for this expansion to be well defined
is that ζðd−4Þkd−4 ≪ 1. The leading dimension-4 operator is
often called “marginal” and the subleading terms are named
“irrelevant.”
Equation (2.3) means that the marginal operator is

dominant as long as ζðd−4Þkd−4 ≪ 1. However, the larger
the momentum of a photon the more important are the
higher-dimensional operators, which is why the expres-
sion “irrelevant” can be misleading in this case. Keep in
mind that the validity of the effective theory breaks down
when k approaches an order of magnitude such that
ζðd−4Þkd−4 ¼ Oð1Þ. Then all terms in the expansion above
become equally important and it is not supposed to
converge any more.
The properties of the quantum field theory based on

the marginal operator and all the irrelevant ones set to
zero have been investigated in the series of papers
[23–27]. The current goal is to understand the impli-
cations of including some of the higher-dimensional
ones. To keep the calculations feasible we restrict the
analysis to a particular subset of operators. It is natural
to consider the first of the higher-dimensional operators
that have mass dimension 6 where all remaining ones
are set to 0:

ðk̂FÞμνϱσ ¼ ðkð6ÞF Þμνϱσα1α2∂α1∂α2

�!∂α↦−ikα

momentum space
−ðkð6ÞF Þμνϱσα1α2kα1kα2 : (2.4)

There is a generalization of the nonbirefringent Ansatz
of the dimension-4 operator [28,29]. In particular for the
dimension-6 operator it is given by [18]

ðkð6ÞF Þμνϱσα1α2kα1kα2 ¼
1

2
½ημϱðcFÞνσα1α2 − ηνϱðcFÞμσα1α2

þ ηνσðcFÞμϱα1α2 − ημσðcFÞνϱα1α2 �kα1kα2 ;
(2.5)

with the Minkowski metric ημν and a four-tensor ðcFÞμνϱσ.
Now we want to restrict ourselves to the case that is
equivalent to the isotropic sector of the dimension-4
operator. The corresponding ðcFÞμνα1α2kα1kα2 is a ð4 × 4Þ
matrix that has the same form as the respective matrix
[24,30] of the isotropic sector mentioned. The isotropic
dimensionless coefficient ~κtr of the dimension-4 operator
is replaced by the combination κα1α2tr− kα1kα2 that now
appears in each entry of the matrix:

ðcFÞμνα1α2kα1kα2 ¼
�
2ξμξν −

ξ2

2
ημν
�
κα1α2tr− kα1kα2

¼ 1

2
diagð3; 1; 1; 1Þμνκα1α2tr− kα1kα2 ; (2.6)

with the timelike four-vector ðξμÞ ¼ ð1; 0; 0; 0ÞT. All
remaining Lorentz-violating coefficients are assumed to
vanish. The coefficients κμνtr− have mass dimension−2. The
minus sign in their index was added to distinguish them
from the set of related parameters, κtrþ. In the context of the
coefficients κμν ϱσ , which are contained in the dimension-4
operator, κtrþ corresponds to the double trace κμνμν. Since
the latter can be removed by a field redefinition [13], κtrþ
does not describe any physics when the theory is restricted
to the marginal operator. On the contrary, it can lead to
physical effects for the higher-dimensional operators [18],
but it is discarded here for simplicity.
In what follows, the Lorentz-violating nonminimal

SME sector characterized by Eqs. (2.1), (2.4), (2.5),
and (2.6) shall be studied. Instead of only the coefficient
~κtr for the marginal operator there now exists a ð4 × 4Þ
matrix ðκα1α2tr− Þ that makes up this sector. Since this matrix
is combined with the symmetric two-tensor kα1kα2, its
antisymmetric part can be discarded. Therefore, ðκα1α2tr− Þ is
assumed to be completely symmetric. Furthermore, anti-

symmetrization on any triple of indices of ðkð6ÞF Þμνϱσα1α2
produces zero [18], which reduces the number of
independent coefficients further. However these additional
restrictions are not important for the current paper, and
they are not considered. The physical reason why the
framework is restricted to this particular subset of
coefficients is that it is supposed to make up the simplest
higher-dimensional Lorentz-violating extension of the
photon sector. It is reasonable to understand the proper-
ties of this family of coefficients before looking at more
sophisticated frameworks.
Certain properties of the modified electrodynamics

cannot be investigated without a coupling to matter.
Therefore, the modified free theory is minimally coupled
to a standard Dirac theory of spin-1=2 fermions with charge
e and mass m. This results in a Lorentz-violating extended
QED that is defined by the following action:

Sisotropic d¼6
modQED ½κμνtr−; e; m� ¼ Sisotropic d¼6

modMax ½κμνtr−� þ SDirac½e;m�:
(2.7)

Note that the action carries the superscript “isotropic,” since
the coefficients κμνtr− form a higher-dimensional extension
of the isotropic CPT-even SME extension of the photon
sector. However the theory based on Eq. (2.7) is not
isotropic any more, which will become evident below.
Nevertheless certain characteristics of the isotropic
dimension-4 operator will be taken over by the higher-
dimensional contribution. The Lorentz-violating CPT-even
modification of the gauge field AμðxÞ is given by
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Eqs. (2.1), (2.4), (2.5), and (2.6). The standard Dirac term
for the spinor field ψðxÞ reads

SDirac½e;m� ¼
Z
R4

d4xψ̄ðxÞ
�
γμ
�
i
2
∂μ

↔
− eAμðxÞ

�
−m

�
ψðxÞ;

(2.8a)

A∂μ

↔
B≡ A∂μB − ð∂μAÞB: (2.8b)

The latter action contains the standard Dirac matrices γμ

with the Clifford algebra fγμ; γνg ¼ 2ημν and it is written
such that the respective Lagrange density is Hermitian.

III. DISPERSION RELATIONS

The first step is to obtain the modified dispersion
relations of electromagnetic waves. The field equations
for the theory based on the higher-dimensional operators
have the same form as those of the dimension-4 CPT-even
extension [13,22,28]. They are given by

MμνAν ¼ 0; Mμν ≡ kρkρημν − kμkν − 2ðk̂FÞμρσνkρkσ;
(3.1)

with the four-momentum kμ. The modified dispersion
relations are the conditions that have to be fulfilled by
the four-momentum such that Eq. (3.1) has nontrivial
solutions for Aν. They follow from detðMÞ ¼ 0 with the
matrixM given in Eq. (3.1). To obtain the dispersion laws it
is convenient to divide the matrix ðκμνtr−Þ into three parts:

ðκμνtr−Þ ¼

0
BBB@

κ00tr− κ01tr− κ02tr− κ03tr−
κ01tr− κ11tr− κ12tr− κ13tr−
κ02tr− κ12tr− κ22tr− κ23tr−
κ03tr− κ13tr− κ23tr− κ33tr−

1
CCCA. (3.2)

The first contains the single coefficient κ00tr− that appears
together with two time derivatives. For this reason it will
be denoted as the “temporal part.” The second sector
is characterized by the three mixed coefficients κ0itr− for
i ¼ 1, 2, 3 that are combined with one time and one spatial
derivative. Hence we call it the “mixed part.” Finally, the
third sector is made up of the six spatial coefficients κijtr−
for i ≤ j, j ¼ 1, 2, 3, whereby it is named the “spatial part.”
The following investigations will be performed for these
three sectors separately.

A. Temporal part

In this case all coefficients are set to 0 except for κ00tr−. The
determinant ofM involves a biquadratic polynomial whose
solutions with respect to k0 correspond to the two physical
dispersion relations that are given as follows:

ω1;2ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2κ00tr−

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ00tr−k

2∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ00tr−k

2ð6 − κ00tr−k
2Þ

qr
.

(3.3)

Note that κ00tr− has mass dimension −2 whereby it always
occurs in combination with k2 to produce a dimensionless
quantity. Since the second square root appears with two
different signs there are two distinct dispersion relations
with different phase velocities. To get a better insight into
this issue the following expansions for both dispersion laws
are given for κ00tr−k

2 ≪ 1:

ω1ðkÞ ¼ jkj þ ðκ00tr−Þjkj3 þ
5

2
ðκ00tr−Þ2jkj5 þ…; (3.4a)

ω2ðkÞ ¼
1ffiffiffiffiffiffiffi
κ00tr−

p −
ffiffiffiffiffiffiffi
κ00tr−

q
k2 −

3

2
ðκ00tr−Þ3=2k4 þ…: (3.4b)

The first dispersion law is a perturbation of the standard
dispersion relation ωðkÞ ¼ jkj, whereas the second does
not have an existing limit for κ00tr− ↦ 0. There is an energy
gap that grows inversely proportional to the square root of
the Lorentz-violating parameter. Such a behavior does not
occur for the sectors of the dimension-4 operators that were
considered in [23–27]. The existence of ω2 traces back to
the treatment of the Lorentz-violating extension as an
effective field theory. According to [18] such dispersion
laws are neglected since they do not arise as a small
perturbation from the standard relations. They must be
considered as Planck scale effects. If κ00tr− is indeed nonzero
in nature, modes that are associated with ω2 may become
especially important if the momentum jkj approaches the
Planck scale. However keep in mind that we are dealing
with an effective field theory whose applicability is
expected to break down for momenta in the vicinity of
the Planck scale [see also the discussion at the end of
Sec. (IIc) in [18]]. Besides, note that if we took Eq. (3.4b)
into account κ00tr− would be restricted to positive values.
For the reasons mentioned, modified dispersion relations

that are a perturbation of the standard one will be called
“perturbed” and the others, which are not a perturbation,
will be referred to as “spurious.” Note that the spurious
dispersion relation of Eq. (3.4b) is, in fact, associated with
one of the transverse, propagating modes. This can be
shown with the modified Coulomb and Ampère law
according to [13]. Using the latter procedure unphysical
dispersion laws being associated to the scalar and longi-
tudinal modes can be identified and discarded. This
procedure cannot be applied to remove the spurious
dispersion law, though.

B. Mixed part

For the mixed part the determinant of M is more
complicated and contains a third order polynomial in k0.
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Note that this is the first of all sectors of modified Maxwell
theory studied so far where the physical dispersion laws
result from a polynomial of this degree. This renders
the calculation of the dispersion relations more complicated
in comparison to the aforementioned sectors. With the
transformation

k0 ¼ k00 −
a
3
; a ¼ aðkÞ ¼ 1

2κ0itr−k
i ; (3.5)

and an additional multiplication with −a the third order
polynomial can be recast in the form k030 þ pk00 þ 2q
with

p ¼ pðkÞ ¼ k2 −
1

12ðκ0itr−kiÞ2
;

q ¼ qðkÞ ¼ 1 − 72k2ðκ0itr−kiÞ2
216ðκ0itr−kiÞ3

; (3.6a)

d ¼ dðkÞ ¼ q2 þ
�
p
3

�
3

; (3.6b)

where a summation over i ¼ 1, 2, 3 is understood and d
will be needed below. Two of the three zeros of this
polynomial with respect to k00 that are transformed back to
k0 via Eq. (3.5) correspond to the dispersion laws of the
transverse degrees of freedom. They are given by

ω1ðkÞ¼
ffiffiffiffiffiffiffiffiffiffi
−
4

3
p

r
cos

"
1

3
arccos

 
−q

ffiffiffiffiffiffiffiffiffi
−
27

p3

s !#
−
a
3
; (3.7a)

ω2ðkÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
−
4

3
p

r
cos

"
1

3
arccos

 
−q

ffiffiffiffiffiffiffiffiffi
−
27

p3

s !
þ π

3

#
−
a
3
;

(3.7b)

with p and q defined by Eq. (3.6a). Depending on the sign
of the functions a, q, p, and d one of these solutions is a
perturbation of the standard dispersion law and the other
one is a spurious dispersion relation similar to Eq. (3.4b).
For a > 0 and q > 0 (where p is negative for this choice) or
a > 0, q < 0, and p < 0 the only dispersion relation being
a perturbation of the standard dispersion law is ω1ðkÞ,
which can then be rewritten as follows:

ω1ðkÞ ¼
ffiffiffi
u3

p þ ffiffiffi
v3

p
−
a
3
; (3.8a)

u ¼ uðkÞ ¼ −qþ
ffiffiffi
d

p
; v ¼ vðkÞ ¼ −q −

ffiffiffi
d

p
: (3.8b)

For a > 0, q < 0, and p > 0 or a < 0, q < 0 (where p is
negative in this case) or a < 0, q > 0, and d < 0 only
ω2ðkÞ is such a perturbation, which is rearranged to give

ω2ðkÞ ¼ −
signðqÞ

2

ffiffiffiffiffiffiffi
4

3
p

r �
fðxÞ1=6 − 1

fðxÞ1=6
�
−
a
3
; (3.9a)

fðψÞ ¼ ψ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ψ þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffi
ψ − 1

p
; x ¼ 1þ 54q2

p3
: (3.9b)

Both ω1 and ω2 have been recast, from which it can be
shown that they both are real quantities. The cubic roots in
Eq. (3.8a) give opposite imaginary parts that cancel in the
sum. The second dispersion law of Eq. (3.9a) is manifestly
real for p > 0. For p < 0 the real parts arising in each of
the two terms in the square brackets cancel, which gives a
purely imaginary result. Combining it with the imaginary
result from the square root outside of the brackets leads to a
real quantity. These properties are not directly evident from
Eqs. (3.7a), (3.7b).
For a < 0, q > 0, and d > 0 the polynomial does not

have a real and positive zero. Hence this choice does not
lead to a modified dispersion law. Finally, Table. I shows
the regions of κ0itr−k

i that result in non-negative q, p, and d.

C. Spatial part

Finally, the case is considered where all coefficients are
assumed to vanish if they contain at least one Lorentz index
that is equal to 0. The physical dispersion law then results
from a polynomial of second degree and can be cast in the
following form:

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κijtr−k

ikj

1 − κijtr−kikj

s
jkj: (3.10)

Note the similarity to the isotropic dispersion relation when
considering a nonvanishing dimension-4 operator with the
isotropic coefficient ~κtr:

TABLE I. Regions of Lorentz-violating coefficients and momentum components leading to non-negative q, p,
and d, respectively.

q ≥ 0 p ≥ 0 d ≥ 0

κ0itr−k
i ≥ 0 κ0itr−k

i ≤ ð6 ffiffiffi
2

p jkjÞ−1 κ0itr−k
i ≥ ð2 ffiffiffi

3
p jkjÞ−1 κ0itr−k

i ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
ffiffiffi
5

p
− 11

p
ð2 ffiffiffi

2
p jkjÞ−1

κ0itr−k
i < 0 κ0itr−k

i ≤ −ð6 ffiffiffi
2

p jkjÞ−1 κ0itr−k
i ≤ −ð2 ffiffiffi

3
p jkjÞ−1 κ0itr−k

i ≤ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
ffiffiffi
5

p
− 11

p
ð2 ffiffiffi

2
p jkjÞ−1
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ωðkÞjisotropic d¼4
modMax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~κtr
1þ ~κtr

s
jkj: (3.11)

Contrary to the previous cases, there only exists a single
dispersion law, which is a Lorentz-violating perturbation of
the standard dispersion relation. Hence for the spatial part
of the dimension-6 operator the modified dispersion law
has the same form as for the isotropic dimension-4 operator
with ~κtr replaced by −κijtr−kikj. The physical dispersion
relations found for the spatial and the mixed sector are
no longer isotropic. This shows that higher-dimensional
operators of the isotropic CPT-even modification of the
photon sector can deliver anisotropic contributions to the
dispersion relations.
A last comment concerns the degeneracy of the trans-

verse dispersion relations for all three sectors previously
considered. Both the perturbed and the spurious dispersion
laws have a twofold degeneracy, i.e., they appear as a
double zero of the determinant of the matrixM in Eq. (3.1).
The latter degeneracy reflects the degeneracy of the
quantum-mechanical photon state. It is important that the
degeneracy of the perturbed dispersion law is still twofold
despite the occurrence of the spurious dispersion relations.
The reason is that the photon state degeneracy goes in many
physical quantities, e.g., Planck’s radiation law. Hence if it
were modified, Planck’s law would change as well and the
limit of vanishing Lorentz-violating coefficients would not
describe the experimental measurements correctly.

IV. POLARIZATION VECTORS
AND THE PROPAGATOR

The CPT-even Lorentz-violating modification consid-
ered is based on a higher-dimensional operator. Due to the
additional derivatives that are combined with this operator
it is interesting to examine the quantum-field theoretic
properties of the modification. To do so, the modified
polarization vectors and the propagator are needed and they
are obtained as follows.
The propagator of a quantized field is an important

object for studying the properties of the underlying
quantum field theory. It is the Green’s function of the free
field equations, i.e., the inverse of the differential operator
that appears in these equations. However, due to the infinite
number of gauge degrees of freedom of the photon field an
inverse does not exist as long as no gauge fixing condition
is imposed. For all cases of the CPT-even dimension-4
operator considered so far [23–27], Feynman gauge [31–33]
has proven to be a convenient gauge choice. Hence, this
gauge choice will be implemented here as well. In practice
this is done by adding the following gauge-fixing term to
the Lagrange density:

LgfðxÞ ¼ −
1

2
ð∂μAμðxÞÞ2: (4.1)

By partial integration the action of the modified photon
sector can be written as follows:

SFeynman
modMax ¼ 1

2

Z
R4

d4xAμðG−1ÞμνAν; (4.2a)

with the differential operator

ðG−1Þμν ¼ ημν∂2 − 2ðkFÞμϱσν∂ϱ∂σ: (4.2b)

Transforming ðG−1Þμν to momentum space leads to

ðĜ−1Þμν ¼ −k2ημν þ 2ðkFÞμϱσνkϱkσ: (4.3)

Now the system of equations ðĜ−1ÞμνĜνλ ¼ iδμλ must be
solved where Ĝμν is the propagator in momentum space.
To understand the structure of the propagator it must be
expressed in a covariant form using the four-vectors and
two-tensors that are available in this context. This is the
metric tensor ημν, the four-vector kμ, and the preferred
spacetime direction ξμ, which appears in Eq. (2.6). The
isotropic case based on the dimension-4 operator is char-
acterized by ξμ. It is assumed that ξμ is the only preferred
direction that plays a role for the dimension-6 operator
as well. For this reason the following Ansatz is made for
the propagator:

ĜμνjFeynman¼−ifâημνþ b̂kμkνþ ĉðkμξνþξμkνÞþ d̂ξμξνgK̂:
(4.4)

The propagator coefficients â;…; d̂ plus the scalar part K̂
depend on the four-momentum components: â ¼ âðk0;kÞ,
etc. Since the propagator is a symmetric two-tensor, the
Ansatz has to respect this property. This can be checked to be
the case in Eq. (4.4). Due to this symmetry, from the original
16 equations only 10 have to be solved to obtain the
propagator coefficients plus the scalar part.
The propagator of a quantum field describes its off-shell

properties. To understand its on-shell characteristics the
dispersion relations are needed plus—in case of the photon
field—the corresponding polarization vectors. The modi-
fied dispersion laws were already obtained in Sec. III. The
polarization vectors will be determined as follows. These
form a set of four four-vectors that is a basis of Minkowski
spacetime. Only two of them describe physical, i.e.,
transverse photon polarization states where the remaining
two correspond to scalar and longitudinal degrees of
freedom. The transverse photon polarization vectors are
solutions of the field equations (3.1) with k0 to be replaced
by the physical dispersion laws. For the temporal, the
mixed, and the spatial sector they can be chosen as follows
where k ¼ ðk1; k2; k3Þ is a general three-momentum:
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εð1Þμ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð6Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k22 þ k23
p

0
BBB@

0

0

−k3
k2

1
CCCA;

εð2Þμ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð6Þp

jkj

0
BBB@

0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

p
k1k2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

p
k1k3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

p

1
CCCA; (4.5)

with a normalization Nð6Þ. The latter is an additional
normalization, which is not related to the requirement that
the scalar product of a polarization vector with itself is
equal to 1. On the contrary, it has to be determined from the
00 component of the energy-momentum tensor [given by
Eq. (36) in [13]] whose expectation value must correspond
to the modified physical photon dispersion law. The
procedure is described in Appendix A in detail. Note that
besides the appearance of Nð6Þ, the polarization vectors are
completely standard. It can be checked that they are
orthogonal to each other and each is orthogonal to the
momentum three-vector. So they are interpreted as the
physical transverse polarizations.
Equation (4.5) provides the polarization vectors of both

the perturbed and the spurious dispersion relation. The
reason is that the degeneracy of each dispersion law is still
twofold as in the standard theory (cf. the discussion at the
end of Sec. III).
As a next step the polarization sum

Πμν ≡ X
λ¼1;2

ε̄ðλÞμεðλÞν; (4.6)

is computed where the bar means complex conjugation.
To investigate the properties of the theory it is reasonable to
write Πμν in a covariant form similar to the Ansatz of
Eq. (4.4), which was made for the propagator:

Πμν ¼ 1

Nð6Þ faημν þ bkμkν þ cðkμξν þ ξμkνÞ þ dξμξνgjk0¼ω:

(4.7)

Here a, b, c, and d are unknown coefficients to be
determined by comparing the Ansatz to the explicit
expression of Eq. (4.6) that is constructed with the
polarization vectors of Eq. (4.5). Since the polarization
sum is symmetric such as the propagator, this leads to ten
equations that must be fulfilled.

A. General results

The propagator coefficients plus its scalar part can be
computed for all ten Lorentz-violating coefficients κμνtr− at
once. Introducing the shorthand notation Qð6Þ ≡ −κμνtr−kμkν
one obtains

K̂ ¼ 1

k20ð1þQð6ÞÞ − k2ð1 −Qð6ÞÞ ; (4.8a)

â ¼ 1;

b̂ ¼ −Qð6Þ½k20ð1 −Qð6ÞÞ − k2ð1þQð6ÞÞ�
k4ð1þQð6ÞÞ ; (4.8b)

ĉ ¼ 2Qð6Þk0
k2ð1þQð6ÞÞ ; d̂ ¼ −

2Qð6Þ

1þQð6Þ : (4.8c)

Note that this propagator has the same structure as the
propagator that is based on the isotropic CPT-even dimen-
sion-4 operator with the replacement Qð6Þ ↦ Qð4Þ ≡ ~κtr.
The minus sign in the definition of Qð6Þ above originates
from the minus sign that emerges when transforming the
two additional derivatives of the dimension-6 operator to
momentum space [cf. Eq. (2.2) for the general case of the
dimension-d operator and Eq. (2.4) for the dimension-6
operator]. I anticipate that the propagator for the full
dimensional expansion has exactly this form with Qð6Þ to
be replaced by

Qð6Þ ↦ QðfullÞ ≡X
d even
d≥4

QðdÞ ≡X
d even
d≥4

ð−1Þd=2−2κα1…αðd−4Þ
tr− kα1…kαðd−4Þ ¼ ~κtr − κα1α2tr− kα1kα2 þ κα1α2α3α4tr− kα1kα2kα3kα4∓…: (4.9)

The coefficients of the polarization sum of Eq. (4.7) can be
stated as

a ¼ −1; b ¼ −
1

k2
; c ¼ k0

k2
; d ¼ 1 −

k20
k2

;

(4.10)
where k0 has to be replaced by the respective physical
dispersion law. Furthermore, the normalization of the polari-
zation vectors is given by the following general expression:

Nð6Þ ¼ 1

2ω2
½ω2ð1þQð6ÞÞ þ k2ð1 −Qð6ÞÞ�: (4.11)

Three remarks are in order. First, the polarization sum
of Eq. (4.7) together with the coefficients of Eq. (4.10)
and the normalization of Eq. (4.11) completely resembles
the polarization sum of isotropic modified Maxwell theory
based on the dimension-4 operator with the replacement
~κtr ↦ −κμνtr−kμkν. Therefore, I suspect that for the CPT-even

QUANTUM FIELD THEORETIC PROPERTIES OF … PHYSICAL REVIEW D 89, 105019 (2014)

105019-7



Lorentz-violating photon sector including ~κtr and all higher-
dimensional operators the polarization sum for each trans-
verse mode has the same structure where Qð6Þ is replaced
by the general expansion of Eq. (4.9) and k0 by the
corresponding modified dispersion relation. For vanishing
Lorentz violation Qð6Þ vanishes as well and ω ¼ jkj. Then
Nð6Þ ¼ 1, which shows that in the standard case the nor-
malization condition involving the 00 component of the
energy-momentum tensor is fulfilled automatically.
Second, the terms with the coefficients b and c do not

play a role when Πμν is contracted with a gauge-invariant
quantity. This holds due to the Ward identity, which is
still valid since the Lorentz-violating modification respects
gauge invariance and no anomalies are expected to occur.
Third, for vanishing Lorentz violation we have k0 ¼ jkj
and, therefore, δ ¼ 0. The truncated polarization sum
(meaning that all terms proportional to kμ are dropped)
then corresponds to the standard result [33]

lim
κμνtr−↦0

Πμνjtruncated ¼ −ημν: (4.12)

Since the Ansätze given by Eqs. (4.4), (4.7) are sufficient to
describe the structure of the propagator and the polarization
vectors, respectively, it is justified to take into account the
timelike preferred spacetime direction ξμ only. There may
be more directions, which are defined by the matrix ðκμνtr−Þ.
However they are not needed to understand the structure of
the Lorentz-violating modification.
Finally the results stated in this section shall be com-

pared to the literature. For this purpose the two recent
articles [34,35] will be consulted. Both articles deal with
Lorentz-violating CPT-even extensions of the Standard
Model photon sector including higher-dimensional oper-
ators. Certain processes such as vacuum Cherenkov radi-
ation and photon decay are considered to set bounds on the
coefficients associated with the higher-dimensional oper-
ators. These operators are to some extent isotropic subsets
of the dimension-6 contribution considered in the current
paper. The authors derive the Feynman rules for their
theories studied, which include the modified photon propa-
gator and the polarization sum. Hence it is reasonable to
compare the results obtained here to theirs.
First of all, in [34] the Lorentz-violating vacuum is

considered as a medium with permittivity ε and permeabil-
ity μ. The energy density ϱE of the electromagnetic field is
then given by the first two terms of their Eq. (2.5):

ϱE ¼ ε

2
E2 þ 1

2μ
B2 ¼ ε

2
F2
0i −

1

4μ
F2
ij: (4.13)

In the first parts of the paper the authors investigate the
CPT-even dimension-4 extension of the photon sector.
Comparing ϱE to the Lagrange density of the framework
based on the dimension-4 operator,

Lisotropic d¼4
modMax ¼ 1

2
ð1þ ~κtrÞF2

0i −
1

4
ð1 − ~κtrÞF2

ij; (4.14)

leads to ε ¼ 1þ ~κtr and μ ¼ 1=ð1 − ~κtrÞ. With the refrac-
tion index

n≡ jkj
ωðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~κtr
1 − ~κtr

s
; (4.15)

resulting from Eq. (3.11), the propagator given by the first
part of the unnumbered equation directly above Eq. (3.1) in
[34] corresponds to Eqs. (4.4), (4.8) with Qð6Þ ↦ Qð4Þ ¼
~κtr when the gauge-dependent terms proportional to the
four-momentum are dropped. Furthermore the polarization
sum given by the first part of Eq. (3.1) in [34] is equal to
Eq. (4.7) with the coefficients of Eq. (4.10) and the
normalization (4.11) where the terms proportional to kμ

are dropped as well. Concerning the nonminimal isotropic
sector considered in the latter reference, the authors take
into account the spatial part of the dimension-8 operator
and write the Lorentz-violating coefficient as τ0=Λ4

L. Here
τ0 is a dimensionless coupling constant and ΛL an energy
scale, which is regarded as the scale of Lorentz violation
associated with the operator considered. Then the corre-
sponding polarization sum is given by the first part of their
Eq. (5.1). In our paper the dimension-8 operator is not
considered directly. However if we take into account
Eq. (4.9) and assume the dispersion relation of the theory
based on the spatial part of the dimension-8 operator to
have an analogous form as Eq. (3.10), the polarization sum
will correspond to our result neglecting the Lorentz-
violating part of the normalization (4.11). This completes
the comparisons with the results of [34].
The photon part of the Lagrange density in Eq. (1) of

[35] describes an isotropic subset of the framework
considered in the current paper. The modified photon
dispersion relation is given by Eq. (2) in the latter reference.
The strength of Lorentz violation is characterized by their
ξ=M2 where ξ is a dimensionless parameter and M a mass
scale. With the identification ξ=M2 ¼ κ11tr− ¼ κ22tr− ¼ κ33tr−
their dispersion relation is a first order expansion of
Eq. (3.10) of the spatial sector. Their polarization sum
of Eq. (4) is equal to our result except that they use their
first order approximation of the dispersion relation and the
Lorentz-violating part of the normalization (4.11) has been
neglected in their expression. The photon propagator,
which is given by the unnumbered equation below their
Eq. (7), equals Eqs. (4.4), (4.8) when dropping the gauge-
dependent terms and neglecting the Lorentz-violating part
in the prefactor of k20 in the denominator.
To summarize, under certain assumptions the results of

the present paper coincide with the results of [34,35], which
fortifies our calculations.
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B. Temporal part

Some of the general results presented above can be stated
explicitly for the temporal part since they are not too
lengthy. For this special case there are two isotropic
dispersion laws [see Eq. (3.3)]; i.e., they only depend on
jkj. Without loss of generality, the momentum three-vector
can be chosen to point along the z axis. Then the transverse
polarization vectors of Eq. (4.5) can be simplified to give
(where one of the two possible signs is picked)

εð1Þμ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð6Þp

0
BBB@

0

0

1

0

1
CCCA; εð2Þμ ¼ 1ffiffiffiffiffiffiffiffiffi

Nð6Þp

0
BBB@

0

1

0

0

1
CCCA: (4.16)

Both the perturbed and the spurious mode have different
normalization factors that follow from Eq. (4.11) by
inserting the corresponding dispersion law:

N0ð6Þ
1 ¼ 1

2

�
1þ κ00tr−k

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ00tr−k

2ð6 − κ00tr−k
2Þ

q �
;

(4.17a)

N00ð6Þ
1 ¼ 1

2

�
1þ κ00tr−k

2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ00tr−k

2ð6 − κ00tr−k
2Þ

q �
:

(4.17b)

Note that the signs in front of the two square roots in
Eq. (4.17) are opposite to the signs of the square roots in the
dispersion relations given by Eq. (3.3).

V. OPTICAL THEOREM AT TREE LEVEL

The occurrence of spurious photon modes in the tem-
poral and the mixed sector of the CPT-even modification
based on the dimension-6 operator makes us curious about
the validity of the optical theorem. The latter shall be
studied in the current section where first of all the spatial
case is considered. The optical theorem will be investigated
based on a particular process: the scattering of a left-handed

electron and a right-handed positron at tree level
(see Fig. 1). The calculation will be performed according
to [26,27].
As long as no problems occur in the context of the

optical theorem, the imaginary part of the forward scatter-
ing amplitude M≡Mðe−LeþR → e−Le

þ
R Þ must be related to

the production cross section of a modified photon ~γ from a
left-handed electron and a right-handed positron. We will
denote the matrix element of the latter process as
M̂≡Mðe−LeþR → ~γÞ. Note that it is not important which
process at tree level is considered. In the proof no relation-
ships will be employed that exclusively hold for this
particular process. The only property, which is assumed,
is the validity of the Ward identity. This is reasonable as
the axial anomaly, which is linked to the chiral structure of
quantum field theories, occurs at higher order of the
electromagnetic coupling constant.
Now the forward scattering amplitude (left-hand side of

the equation in Fig. 1) can be obtained with the standard
Feynman rules for the fermion sector and the modified
photon propagator. It reads as follows:

M¼
Z

d4k
ð2πÞ4δ

ð4Þðk1þk2−kÞe2ūðk1Þγλ
1−γ5
2

vðk2Þv̄ðk2Þγν

×
1−γ5
2

uðk1Þ
1

K̂−1þ iϵ

× ½âηνλþ b̂kνkλþ ĉðkνξλþξνkλÞþ d̂ξνξλ�: (5.1)

Here e is the elementary charge; u, v, ū, and v̄ are standard
Dirac spinors; γ5 ¼ iγ0γ1γ2γ3 with the standard Dirac
matrices γμ (for μ ∈ f0; 1; 2; 3g); and 1 is the unit matrix
in spinor space. The kinematical variables used are shown
in Fig. 1. The four-dimensional δ function ensures total
four-momentum conservation. The photon propagator with
the propagator coefficients is taken from Eq. (4.8). The
physical poles that appear in the scalar propagator part are
treated with the ordinary iϵ procedure. This means that the
positive pole is shifted to the lower complex half-plane
(meaning that an integration contour runs above the pole)
and the negative one is shifted to the upper complex half-
plane (where a contour runs below this pole).

FIG. 1. Forward scattering amplitude of the process e−Le
þ
R → e−Le

þ
R (left-hand side) that is equal to the total cross section of e−Le

þ
R → ~γ

(right-hand side) if the optical theorem is valid. Here ~γ denotes a modified photon. The kinematic variables used are stated next to the
particle symbols. The infinitesimal one-particle phase space element for the process on the right-hand side of the equation is called dΠ1.
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A. Spatial part

For the spatial part of the modified theory considered the
procedure used in [26,27] does not fundamentally change.
The denominator of the scalar propagator part is factorized
with respect to the propagator poles. Terms of quadratic and
higher order in the infinitesimal parameter ϵ are not taken
into account. The photon propagator has two physical
poles, where

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Qð6Þ

3

1þQð6Þ
3

vuut jkj; Qð6Þ
3 ≡ −κijtr−kikj; (5.2)

is the positive one and −ω < 0 corresponds to its negative
counterpart. The scalar part K̂ of the propagator is then
written in the following form:

1

K̂−1 þ iϵ
¼ 1

k20ð1þQð6Þ
3 Þ − k2ð1 −Qð6Þ

3 Þ þ iϵ

¼ 1

ð1þQð6Þ
3 Þðk0 − ωþ iϵÞðk0 þ ω − iϵÞ

: (5.3)

Due to the iϵ prescription the relation

1

k0 − ωþ iϵ
¼ P

1

k0 − ω
− iπδðk0 − ωÞ; (5.4)

with the principal value P, holds for the physical pole. The
first part of Eq. (5.4) is purely real. The second part is
imaginary and due to the δ function it forces the zeroth
four-momentum component to be equal to the respective
physical photon frequency. The negative pole does not
contribute to the imaginary part because of total four-
momentum conservation. Furthermore

1

ð1þQð6Þ
3 Þðk0 þ ωþ iϵÞ

����
k0¼ω

¼ 1

2ωNð6Þ
3

;

Nð6Þ
3 ≡ 1 − κijtr−k

ikj; (5.5)

where Nð6Þ
3 follows from Eq. (4.11) by inserting the

dispersion relation of Eq. (5.2). In principle, the procedure
used corresponds to an application of the cutting rules by
Cutkosky [36] in a Lorentz-violating theory. Using these
results, the k0 integration in Eq. (5.1) can be done. Since
the interest lies in the imaginary part, terms involving the
principal value are not considered and k0 is replaced by the
photon frequency ω:

2ImðMÞ ¼
Z

d3k
ð2πÞ32ωδð4Þðk1 þ k2 − kÞe2ūðk1Þγν

1 − γ5
2

vðk2Þv̄ðk2Þγμ
1 − γ5
2

uðk1Þ
1

Nð6Þ
3

ð−ημν þ dξμξνÞ

¼
Z

d3k
ð2πÞ32ωδð4Þðk1 þ k2 − kÞðM̂†ÞνðM̂ÞμΠμν

¼
Z

d3k
ð2πÞ32ωδð4Þðk1 þ k2 − kÞjM̂j2; (5.6a)

with

M̂≡ X
λ¼1;2

εðλÞμ ðkÞðM̂ÞμðkÞ: (5.6b)

Terms that involve at least one four-momentum in the tensor
structure of the propagator can be dropped, if the Ward
identity is taken into account. Hence, the optical theorem at
tree level is valid for the spatial sector as expected.

B. Temporal part

The temporal part is characterized by two distinct
dispersion relations according to Eq. (3.3). To make the
following calculations more transparent they will be written
as follows:

ω1;2ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2κ00tr−

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a∓ ffiffiffi

b
pq

; a ¼ 1 − κ00tr−k2;

b ¼ 1 − κ00tr−k
2ð6 − κ00tr−k

2Þ: (5.7)

The first of these is a perturbation of the standard
dispersion law, whereas this is not the case for the
second. Therefore the second can be considered as
spurious for momenta that are much smaller than the
Planck scale. Nevertheless there is no reason why it
formally should not be taken into account in the optical
theorem. Although it is considered as spurious it is,
indeed, a transverse dispersion law (see the discussion in
Sec. III A). When ω2 is not discarded, the structure of
the temporal sector is reminiscent of the structure of a
birefringent theory. In [27] a birefringent sector of
modified Maxwell theory was considered that is based
on the dimension-4 operator. If both ω1 and ω2 are
assumed to contribute to the imaginary part of the
forward scattering amplitude the calculation can be
performed analogously to how this was done in the
latter reference. The only difference is that each trans-
verse dispersion relation is linked to a separate polari-
zation sum according to Eq. (4.6) and not only to one of
the two contributions of the sum. This has to do with the
twofold degeneracy of each dispersion law (cf. the last
paragraph of Sec. III).
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The scalar part of the modified photon propagator then has four different poles. Two of them are given by Eq. (5.7) and
the other two by their respective negative counterparts. The denominator of the scalar part is factorized with respect to these
poles and the iϵ prescription is applied again:

1

K̂−1 þ iϵ
¼ −

1

κ00tr−ðk0 − ω1 þ iϵÞðk0 þ ω1 − iϵÞðk0 − ω2 þ iϵÞðk0 þ ω2 − iϵÞ : (5.8)

Then Eq. (5.4) can be used for each of the positive poles. The negative ones do not play a role due to four-momentum
conservation. This results in the following contributions to the imaginary part, where a factor of −iπ is omitted:

−
1

κ00tr−ðk0 þ ω1Þðk0 − ω2Þðk0 þ ω2Þ
����
k0¼ω1

¼ −
1

2κ00tr−ω1ðω2
1 − ω2

2Þ
¼

ffiffiffiffiffiffiffi
κ00tr−

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a −

ffiffiffi
b

pp ffiffiffi
b

p ; (5.9a)

−
1

κ00tr−ðk0 − ω1Þðk0 þ ω1Þðk0 þ ω2Þ
����
k0¼ω2

¼ −
1

2κ00tr−ω2ðω2
2 − ω2

1Þ
¼ −

ffiffiffiffiffiffiffi
κ00tr−

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ffiffiffi

b
pp ffiffiffi

b
p : (5.9b)

Note that the residue of the second pole given by Eq. (5.9b) is negative indicating unphysical behavior, which is
analogous to what occurs for ghosts. According to the previous section and the discussion in [27], for the optical theorem to

be valid these expressions have to correspond to the following results where N0ð6Þ
1 and N00ð6Þ

1 are the normalizations of the
temporal case taken from Eq. (4.17):

1

2ω1N0ð6Þ
1

¼
ffiffiffiffiffiffiffi
κ00tr−

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a −

ffiffiffi
b

pp 4

2 − aþ ffiffiffi
b

p þ 2½1þ 2=ða −
ffiffiffi
b

p Þ�κ00tr−k2
; (5.10a)

1

2ω2N00ð6Þ
1

¼
ffiffiffiffiffiffiffi
κ00tr−

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ffiffiffi

b
pp 4

2 − a −
ffiffiffi
b

p þ 2½1þ 2=ðaþ ffiffiffi
b

p Þ�κ00tr−k2
: (5.10b)

However, Eqs. (5.9a), (5.10a) and Eqs. (5.9b), (5.10b)
can evidently not be equal to each other. Therefore the
optical theorem at tree level appears to be violated for the
temporal sector of the dimension-6 operator. The reason is
the occurrence of a spurious dispersion law, which renders
the structure of the theory birefringent.

C. Mixed case

Also the mixed case has two distinct dispersion
relations that are given by Eqs. (3.8), (3.9) where only
one of them is a perturbation of the standard dispersion law.
Contrary to the temporal sector, they change their roles
depending on the choice of the Lorentz-violating coeffi-
cients and momentum components (see the discussion in
Sec. III B). Without loss of generality in what follows we
assume that ω1 is the perturbation and ω2 > 0 is spurious.
The scalar propagator part has three poles: ω1, ω2, and a

third negative pole ω3. The latter is neither a negative
counterpart of ω1 nor of ω2. The denominator of the scalar
propagator is then factorized as follows:

1

K̂−1þ iϵ
¼ 1

a−1k30þ k20þa−1k2k0−k2þ iϵ

¼ 1

a−1ðk0−ω1þ iϵÞðk0 −ω2þ iϵÞðk0þω3− iϵÞ :

(5.11)

Here a−1 ¼ 2κ0itr−k
i is the inverse of a defined in Eq. (3.5).

According to Eq. (5.4) the poles k0 ¼ ω1 and k0 ¼ ω2

deliver the following contributions to the imaginary part
where a factor of −iπ has again been dropped:

1

a−1ðk0 − ω2Þðk0 þ ω3Þ
����
k0¼ω1

¼ 1

a−1ðω1 − ω2Þðω1 þ ω3Þ
;

(5.12a)

1

a−1ðk0 − ω1Þðk0 þ ω3Þ
����
k0¼ω2

¼ 1

a−1ðω2 − ω1Þðω2 þ ω3Þ
:

(5.12b)

If the optical theorem is valid, each of these expressions
must correspond to the respective following contribution:

1

2ω1N0ð6Þ
2

¼ ω1

ω2
1ð1þ ω1=aÞ þ k2ð1 − ω1=aÞ

; (5.13a)

1

2ω2N00ð6Þ
2

¼ ω2

ω2
2ð1þ ω2=aÞ þ k2ð1 − ω2=aÞ

: (5.13b)

There are again two different normalization factors such
as in the temporal case, which are denoted as N0ð6Þ

2 and
N00ð6Þ

2 . They result from Eq. (4.11) by inserting the
appropriate dispersion law ω1 or ω2. Since Eqs. (5.12a),
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(5.12b) depend on ω3, which does not appear in
Eqs. (5.13a), (5.13b), these results cannot correspond to
each other. This can also be shown explicitly by inserting
the modified dispersion relations directly. Therefore the
optical theorem at tree level seems to be invalid for the
mixed sector as well.

D. Interpretation

In the last section it was demonstrated that the optical
theorem at tree level appears to be violated for the temporal
and the mixed case of the Lorentz-violating modification
based on the CPT-even dimension-6 operator in the photon
sector. However a violation of the optical theorem does not
necessarily indicate that unitarity is violated as well.1

Since the optical theorem is perfectly valid for the spatial
case, its violation for the other two sectors must be linked to
the additional time derivatives that appear in the higher-
dimensional operator. These time derivatives may spoil
the Hamiltonian of the system, which renders the time
evolution of the states unconventional. This was pointed
out to happen in the fermion sector of the SME [38]. The
observation made here is supposed to be the analogue in the
nonminimal photon sector. In the latter reference it was
shown that the issues arising can be solved at first order
Lorentz violation by a field redefinition.
Here we will go on an alternative path. The field is not

redefined but the additional time derivatives (or the k0
components in momentum space) can be eliminated from
the field equations at first order Lorentz violation by taking
into account the on-shell result

k2 ¼ k20 − k2 ¼ Oðκμνtr−kμkνÞ; (5.14)

where κμνtr−kμkν contains a particular subset of Lorentz-
violating coefficients. Each additional k0, which appears in
the dimension-6 operator, is multiplied with a Lorentz-
violating coefficient. Hence, replacing these k0 by jkj for
on-shell quantities leads to an error at second order Lorentz
violation whereas all expressions remain valid at first order.

1. Temporal case

For this case the replacement k20κ
00
tr− ↦ k2κ00tr− is per-

formed in the matrixM of Eq. (3.1). Notice that no spurious
dispersion law appears any more after this replacement
has been made. One obtains a single isotropic modified
dispersion relation that is given by

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Qð6Þ

1

1þQð6Þ
1

s
jkj; Qð6Þ

1 ≡ −κ00tr−k2: (5.15)

With the modified dispersion law in this form the optical
theorem can be shown to be valid in a completely
analogous way as this was done for the spatial case in
Sec. VA. The only thing to do is to replace Qð6Þ

3 by Qð6Þ
1

defined above. The caveat is that this calculation is only
applicable at first order Lorentz violation due to the
performed replacement.

2. Mixed case

For the mixed case the replacement k0κ0itr− ↦ jkjκ0itr− is
done in the matrix M of Eq. (3.1). Also here the spurious
dispersion law disappears and one ends up with a single
modified dispersion relation:

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Qð6Þ

2

1þQð6Þ
2

s
jkj; Qð6Þ

2 ≡ 2κ0itr−jkjki: (5.16)

In this case the optical theorem can be shown to be valid
with the transformed dispersion law following the lines of
Sec. VAwith Qð6Þ

3 replaced by Qð6Þ
2 . Therefore the validity

of the optical theorem at tree level has been demonstrated
for this sector at first order Lorentz violation as well.

VI. GAUGE FIELD COMMUTATOR

In the current section the interest lies in the commutator
Kμνðy; zÞ≡ ½AμðyÞ; AνðzÞ� of two gauge fields where both
are evaluated at different spacetime points y and z. This
commutator is closely linked to the causal structure of the
theory. If it vanishes for two distinct spacetime points the
physical fields can be measured exactly at the respective
points. A nonvanishing commutator indicates that mea-
surements of physical observables at the corresponding
spacetime points can influence each other. In this case they
cannot be simultaneously measured with arbitrary precision
because of the uncertainty relation.
Due to translational invariance of the theory, a coordinate

transformation w ↦ w0 ¼ w − z can be performed such
that it suffices to consider KμνðxÞ≡ Kμνðx; 0Þ ¼
½AμðxÞ; Aνð0Þ� with x≡ y − z instead. The goal is to gain
some understanding in the commutator without too much
calculational effort. For this reason the general case with ten
Lorentz-violating coefficients is reduced to the spatial case
with the equal coefficients κ11tr− ¼ κ22tr− ¼ κ33tr− ≡ κ̄tr and all
others set to zero. With

Qð6Þ
3 ¼ −ðκ11tr−k21 þ κ22tr−k22 þ κ33tr−k

2
3Þ ¼ −κ̄trk2; (6.1)

the following isotropic dispersion relation is obtained:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ̄trk2

1 − κ̄trk2

s
jkj: (6.2)

1For example, see [37] and references therein for an argu-
mentation why the optical theorem could, indeed, be violated for
processes mediated by the strong interaction, whereas unitarity of
the S matrix is still granted. However this requires the con-
struction of a scattering matrix T and this method differs from
using the usual decomposition S ¼ 1þ iT with the identity 1 and
the S matrix S.
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The commutator can be written in the form KμνðxÞ ¼
iθμνðxÞDðxÞ where θμν respects its tensor structure and
DðxÞ is the scalar commutator function. In Appendix B it
is demonstrated that θμν is related to the polarization sum
and DðxÞ involves the scalar propagator function K̂ of
Eq. (4.8a). The scalar commutator function can then be

computed as a contour integral in the complex k0 plane
followed by an integration over the three-dimensional
momentum space. The contour C has to be chosen such
that all poles of the integrand are encircled in a counter-
clockwise direction. The k0 integral can then be performed
with the residue theorem:

DðxÞ ¼
I
C

d4k
ð2πÞ4 K̂ expð−ikxÞ ¼

I
C

dk0

2π

Z
d3k
ð2πÞ3

expð−ik0x0 þ ik · xÞ
ð1 − κ̄trk2Þðk0 − ωÞðk0 þ ωÞ

¼
Z

d3k
ð2πÞ3

1

1 − κ̄trk2

i
2ω

½expð−iωx0Þ − expðiωx0Þ� expðik · xÞ: (6.3)

Note that the sign convention in the complex exponential function differs from the convention used in [25,26] and it is in
accordance with [27]. At this point it is reasonable to introduce spherical coordinates due to the isotropy of the case
considered. This leads to

DðxÞ ¼ 1

ð2πÞ2
Z

π

0

dϑ sinϑ
Z

∞

0

djkj 1

1 − κ̄trjkj2
jkj2
ω

sinðωx0Þ expðijkjjxj cos ϑÞ

¼ 1

2π2jxj
Z

∞

0

djkj 1

1 − κ̄trjkj2
jkj
ω

sinðωx0Þ sinðjkjjxjÞ

¼ 1

2π2jxj
Z

∞

0

djkj 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ̄2trjkj4

p sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ̄trjkj2
1 − κ̄trjkj2

s
jkjx0

!
sinðjkjjxjÞ: (6.4)

For κ̄tr ¼ 0 the integral can be computed to give the standard result [39,40]

ΔðxÞ≡ lim
κ̄tr↦0

DðxÞ ¼ 1

2π
sgnðx0Þδ½ðx0Þ2 − jxj2�; sgnðxÞ ¼

8<
:

−1 for x < 0;
0 for x ¼ 0;
1 for x > 0.

(6.5)

The computation of the integral in Eq. (6.4) for non-
vanishing κ̄tr is prohibitively difficult. However note that an
evaluation of this integral is not necessarily reasonable.
This is because the theory considered is effective and
assumed to break down when jkj lies in the vicinity of the
Planck scale. Thus the form of the integrand cannot be
assumed to be valid for arbitrarily large integration
momentum jkj. This is directly evident from the properties
of the dispersion law and the integrand. For jkj > 1=

ffiffiffiffiffi
κ̄tr

p
the square roots have branch cuts and the dispersion
relation is complex valued. Photons can then not propagate
any more and the physical meaning of DðxÞ is lost.
Therefore the integration should be cut off at some value
jkj ¼ Λ ≪ 1=

ffiffiffiffiffi
κ̄tr

p
.

Nevertheless even if the integral is not evaluated some
of its properties can be deduced. The full result for the
commutator given by Eq. (B.4) is a solution of the modified
free field equations (3.1) of the photon sector. Furthermore
it holds that DðxÞ vanishes for x0 ¼ 0 and that
DðxÞ ¼ Dð−xÞ. These properties are valid for the standard
result ΔðxÞ as well. However, many of the remaining
properties that hold for the standard theory are spoiled for

the effective theory considered here due to the singularity
of the integrand for jkj ¼ 1=

ffiffiffiffiffi
κ̄tr

p
. The latter changes the

small-distance behavior of the theory. If the integration is
done to the cutoff Λ ≪ 1=

ffiffiffiffiffi
κ̄tr

p
then κ̄trjkj2 ≪ 1 can be

exploited. Under this assumption the integrand is expanded
where terms of second and higher order in κ̄tr are discarded:

DðxÞ ¼ 1

2π2jxj
Z

Λ

0

djkj½sinðjkjx0Þ sinðjkjjxjÞ

þ κ̄trjkj3x0 cosðjkjx0Þ sinðjkjjxjÞ� þOðκ̄2trÞ

¼ 1

2π2jxj
�
fðΛÞ − κ̄trx0

d3fðΛÞ
dðx0Þ3 þOðκ̄2trÞ

�
; (6.6a)

fðjkjÞ ¼ x0 sin½jkjðx0 − jxjÞ�
ðx0Þ2 − jxj2 −

sinðjkjx0Þ cosðjkjjxjÞ
x0 þ jxj :

(6.6b)

The standard scalar commutator function ΔðxÞ, which
is given by Eq. (6.5), is a distribution. Therefore, DðxÞ
is interpreted as a distribution as well. Note that the
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trigonometric functions occurring in Eq. (6.6) oscillate
very rapidly since they are evaluated at the cutoff Λ. If
DðxÞ is multiplied with a sufficiently smooth function
gðxÞ and the product is integrated over x, the main
contribution to the result comes from the regions x0 ¼
jxj and x0 ¼ −jxj. These define the standard nullcone
in configuration space. This is exactly the behavior
that one would expect from a Lorentz-violating theory
where Lorentz violation is assumed to be a small
perturbation.
Contrary to the power-counting renormalizable cases of

modified Maxwell theory previously considered in [23–27]
the modified nullcones in configuration space cannot be
determined from the scalar commutator function. The
reason is that the theory of nonrenormalizable dimension,
which is considered in this paper, is expected to be valid
only for distances much larger than

ffiffiffiffiffi
κ̄tr

p
. Such distances

correspond to small momenta and deviations from the
standard dispersion relation are small according to
Eq. (6.2). That is why only the standard nullcone structure
is encoded in Eq. (6.6).
One last comment shall be added with respect to the

commutator of two vector potentials considered. Since the
gauge field is not gauge invariant, this commutator does
not have a direct physical meaning. Instead, Kμνϱσðy; zÞ≡
½FμνðyÞ; FϱσðzÞ� should be considered essentially contain-
ing the commutators of the physical electric and magnetic
fields. However note that

Kμνϱσðy; zÞ ¼ ½∂μAνðyÞ; ∂ϱAσðzÞ� − ½∂μAνðyÞ; ∂σAϱðzÞ�
− ½∂νAμðyÞ; ∂ϱAσðzÞ� þ ½∂νAμðyÞ; ∂σAϱðzÞ�

¼ ∂μ
y∂ϱ

zKνσðy; zÞ − ∂μ
y∂σ

zKνϱðy; zÞ
− ∂ν

y∂ϱ
zKμσðy; zÞ þ ∂ν

y∂σ
zKμϱðy; zÞ: (6.7)

Hence the commutator of two field strength tensors can
be expressed by the commutators of the vector poten-
tials. As a result, the commutator of two field strength
tensors and the commutator of two vector potentials
differ in their tensor structure, but they both will involve
the scalar function DðxÞ of Eq. (6.4). The tensor
structure of the theory, which is a nonminimal extension
of the isotropic sector of modified Maxwell theory, is
completely analogous to the tensor structure of the
quantum field theory based on the isotropic dimension-
4 operator, cf., for example, Eqs. (4.4) and (4.7). As a
result, the index structure of the commutator of the
physical fields, i.e., ½EiðyÞ; EjðzÞ�, ½EiðyÞ; BjðzÞ�, and
½BiðyÞ; BjðzÞ� will be equal to the results of
Eqs. (4.4a)–(4.4c) in [25]. What is different, though,
is the functional behavior of the scalar commutator
function DðxÞ. So it is sufficient to restrict the analysis
of microcausality solely to DðxÞ.

VII. CONCLUSIONS

In the current article the Lorentz-violating extended
QED based on the dimension-6 operator of the CPT-even
modified Maxwell term was investigated. This extension
can be considered as an effective quantum field theory of
nonrenormalizable dimension that is predictive as long as
the photon momentum is much smaller than the Planck
scale. The original ten Lorentz-violating coefficients κμνtr−
were grouped into three different sectors: the temporal one
with the only coefficient κ00tr−, the mixed case with the three
coefficients κ0itr− for i ¼ 1, 2, 3 and the spatial one with the
remaining six coefficients.
Apart from the modified photon dispersion relation

being a perturbation of the standard dispersion law, both
the temporal and the mixed sectors are characterized by
additional spurious dispersion relations. These are not
perturbations, but for small Lorentz violation they contain
terms proportional to some negative power of the Lorentz-
violating coefficient. If they are taken into account the
modifications show characteristics of birefringent photon
theories.
Having obtained the modified dispersion laws, the

goal was to test the validity of the optical theorem
due to the peculiar properties of the Lorentz-violating
modifications. The upshot is that the optical theorem at
tree level was found to hold for the spatial case whereas
it seemed to be violated for the remaining two cases.
The violation was traced back to the additional time
derivatives that occur in the dimension-6 operator. After
removing these time derivatives by a replacement rule
that is valid on shell at first order Lorentz violation, it
was demonstrated that both the spurious modes are
removed and the validity of the optical theorem at tree
level is restored.
Furthermore for a particular case of Lorentz-violating

coefficients it was shown that the commutator of two
gauge fields evaluated at different spacetime points can
be reduced to a one-dimensional integral. The integrand
becomes singular for momenta lying in the order of
magnitude of the inverse square root of the Lorentz-
violating coefficient, which may probably be associated
with the Planck scale. Hence the nonrenormalizable theory
breaks down for such momentum scales and, therefore,
the short-distance behavior of the modified nullcone in
configuration space cannot be determined. However, for
distances much larger than the Planck length the nullcone
can be considered as standard.
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Appendix A: Normalization of polarization vectors

The normalization of the photon polarization vectors of
Eq. (4.5) does not follow from the field equations but from
the condition

hk; σj∶P0∶jk; σi ¼ hk; σj
Z

d3x∶T00∶jk; σi ¼! ωðkÞ:
(A1)

Here jk; σi is a state describing a single photon with three-
momentum k and transverse polarization σ. The integration
is performed over three-dimensional configuration space.
Furthermore, ∶T00∶ is the normal ordered 00 component of
the energy-momentum tensor, which in modified Maxwell
theory reads as follows [13]:

T00 ¼ 1

2
ðE2 þB2Þ − ðkFÞ0j0kEjEk

þ 1

4
ðkFÞjklmεjkpεlmqBpBq; (A2)

where E ¼ ðE1; E2; E3Þ and B ¼ ðB1; B2; B3Þ are the
electric and magnetic field strength vectors, respectively.
The symbol εijk denotes the totally antisymmetric Levi-
Cività tensor. The electric and magnetic fields can be
obtained from the vector potential Aμ. We write the latter as
a Fourier decomposition with annihilation operators aðkÞ
and creation operators a†ðkÞ:

AμðxÞ ¼
X
r¼1;2

Z
~dk½aðrÞðkÞεðrÞμðkÞ

× expð−ikxÞ þ aðrÞ†ðkÞε̄ðrÞμðkÞ expðikxÞ�; (A3a)

~dk ¼ d3k
ð2πÞ32ωðkÞ ; (A3b)

where k0 ¼ ωðkÞ. The bar denotes complex conjugation
and the summation runs over the physical polarizations
r ¼ 1, 2. The E and B fields follow from the vector
potential in the usual manner:

E ¼ −
∂A
∂t −∇A0 ¼

X
r¼1;2

Z
~dkfaðrÞðkÞfðrÞðkÞ expð−ikxÞ − aðrÞ†ðkÞfðrÞðkÞ expðikxÞg; (A4a)

B ¼ ∇ ×A ¼
X
r¼1;2

Z
~dkfaðrÞðkÞbðrÞðkÞ expð−ikxÞ − aðrÞ†ðkÞbðrÞðkÞ expðikxÞg; (A4b)

with the vector coefficients

fðrÞðkÞ≡ gðrÞðkÞ − hðrÞðkÞ; gðrÞðkÞ≡ iωðkÞεðrÞðkÞ; hðrÞðkÞ≡ ikεðrÞ0ðkÞ; (A5a)

bðrÞðkÞ≡ ik × εðrÞðkÞ: (A5b)

With these ingredients the expectation value of a bilinear combination of the electric field strength components,
which is integrated over configuration space, is computed. To simplify the notation, the spatial indices are set as
lower ones:

Eij ≡ hk; σj
Z

d3x∶EiðxÞEjðxÞ∶jk; σi

¼
X

r;s¼1;2

hk; σj
Z

d3x ~dk0 ~dk00∶½aðrÞðk0ÞfðrÞi ðk0Þ expð−ik0xÞ − aðrÞ†ðk0ÞfðrÞi ðk0Þ expðik0xÞ�

× ½aðsÞðk00ÞfðsÞj ðk00Þ expð−ik00xÞ − aðsÞ†ðk00ÞfðsÞj ðk00Þ expðik00xÞ�∶jk; σi

¼ −
X

r;s¼1;2

hk; σj
Z

~dk0∶
1

2ωðk0Þ ½a
ðrÞðk0ÞaðsÞ†ðk0ÞfðrÞi ðk0ÞfðsÞj ðk0Þ

þ aðrÞ†ðk0ÞaðsÞðk0ÞfðrÞi ðk0ÞfðsÞj ðk0Þ�∶jk; σi (A6)
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Normal ordering moves all creation operators to the
left, hence ∶aðrÞðk0ÞaðsÞ†ðk0Þ ≔ aðsÞ†ðk0ÞaðrÞðk0Þ. Using
hk; σjaðsÞ†ðk0ÞaðrÞðk0Þjk; σi ¼ ð2πÞ32ωðkÞδðk − k0Þδrσδsσ
leads to

Eij ¼ −
1

ωðkÞ f
ðσÞ
i ðkÞfðσÞj ðkÞ: (A7)

An analogous calculation for the B field with fi replaced
by bi results in

Bij ≡ hk; σj
Z

d3x∶BiðxÞBjðxÞ∶jk; σi

¼ −
1

ωðkÞ b
ðσÞ
i ðkÞbðσÞj ðkÞ: (A8)

Now Eqs. (A6), (A8) can be used to obtain the normali-
zation of the polarization vectors by inserting these
expressions into Eqs. (A1), (A2).

Appendix B: Computation of the gauge
field commutator

The commutator KμνðxÞ of two vector potentials (one
evaluated at a generic spacetime point x1 ¼ x and the other
at x2 ¼ 0) can be calculated with Eq. (A3). It is written as
an integral over a commutator K̂μν in momentum space:

KμνðxÞ≡ ½AμðxÞ; Aνð0Þ� ¼
X

r;s¼1;2

Z
~dk ~dk0K̂μνðk; k0Þ;

(B1a)

with

K̂μνðk; k0Þ ¼ ½KμðkÞ; Kνðk0Þ�; (B1b)

KμðkÞ ¼ aðrÞðkÞεðrÞμðkÞ expð−ikxÞ
þ aðrÞ†ðkÞε̄ðrÞμðkÞ expðikxÞ; (B1c)

Kνðk0Þ ¼ aðsÞðk0ÞεðsÞνðk0Þ þ aðsÞ†ðk0Þε̄ðsÞνðk0Þ: (B1d)

Now the evaluation of the aforementioned commutator in
momentum space yields

K̂μνðk; k0Þ ¼ ½aðrÞðkÞ; aðsÞ†ðk0Þ�εðrÞμðkÞε̄ðsÞνðk0Þ expð−ikxÞ þ ½aðrÞ†ðkÞ; aðsÞðk0Þ�ε̄ðrÞμðkÞεðsÞνðk0Þ expðikxÞ
¼ ð2πÞ32ωðkÞδrsδð3Þðk − k0Þ½εðrÞμðkÞε̄ðsÞνðk0Þ expð−ikxÞ − ε̄ðrÞμðkÞεðsÞνðk0Þ expðikxÞ�
¼ ð2πÞ32ωðkÞδrsδð3Þðk − k0ÞεðrÞμðkÞεðsÞνðkÞ½expð−ikxÞ − expðikxÞ�: (B2)

In the last step it was used that the corresponding polarization vectors were chosen as real in Sec. IV. Employing
the definition of the polarization sum Πμν of Eq. (4.6) the commutator in configuration space can be
obtained as

KμνðxÞ ¼
Z

d3k
ð2πÞ32ωðkÞΠ

μνðkÞ½expð−ikxÞ − expðikxÞ� ¼
Z

d3k
ð2πÞ3Π

μνðkÞ
�
expð−ikxÞ
2ωðkÞ

����
k0¼ωðkÞ

þ expð−ikxÞ
−2ωðkÞ

����
k0¼−ωðkÞ

�

¼ −i
I
C

dk0

2π

Z
d3k
ð2πÞ3Π

μνðkÞBðkÞ expð−ikxÞ ¼ −i
I
C

d4k
ð2πÞ4Π

μνðkÞBðkÞ expð−ikxÞ; (B3a)

BðkÞ ¼ 1

½k0 − ωðkÞ�½k0 þ ωðkÞ� : (B3b)

Here the contour C is chosen such that it encircles
all poles of BðkÞ in a counterclockwise direction. Finally
the normalization of the polarization vectors is put intoBðkÞ
to get the scalar propagator part K̂. The result then reads

KμνðxÞ ¼ iθμνði∂μ; i∂νÞ
I
C

d4k
ð2πÞ4 K̂ expð−ikxÞ; (B4a)

θμνðkμ; kνÞ ¼ ημν þ 1

k2
kμkν −

k0

k2
ðkμξν þ ξμkνÞ

−
�
1 −

ðk0Þ2
k2

�
ξμξν: (B4b)

Here the second-rank tensor θμν is expressed via
derivatives to reproduce the structure of the polariza-
tion tensor Πμν when acting on the complex exponen-
tial function. This shows that the scalar properties
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of the commutator are encoded in the four-dimensional
contour integral over the scalar propagator part K̂.
Note that this derivation is only valid for the spatial sector.

That is why in Sec. VI a special case of the spatial sector is

considered. The computation of the scalar commutator
function has to be modified for the temporal and the mixed
sectors. This is not within the scope of the current article, but
it is an interesting open problem for future studies.
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