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We present the first Dyson–Schwinger calculation of the three-gluon vertex in Landau-gauge QCD in
which its full covariant structure is back-coupled self-consistently. We truncate a Bose-symmetrized
version of the Dyson–Schwinger equation at the level of one-loop diagrams, model the four-gluon vertex,
and neglect terms that contain nonprimitively divergent n-point functions; the ghost-gluon vertex is taken
bare to good approximation. Fit functions for the ghost and gluon propagators that interpolate between
scaling and decoupling are presented. In all aspects of our study, Bose symmetry is manifest, from the
truncation to the basis decomposition and to the momentum invariants. We explore the uniform and soft-
collinear infrared limits and obtain the expected infrared exponents. The presence of a zero crossing in the
tree-level component of the vertex is confirmed for both scaling- and decoupling-type scenarios. The zero
crossing appears at a scale ∼1 GeV; however, its location might be sensitive to the four-gluon vertex and
missing components in the Dyson–Schwinger equation.
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I. INTRODUCTION

In studies of Green’s functions using the Dyson–
Schwinger equations (DSEs) [1–3], the majority of the
effort has been placed on gluon and quark propagators
and how they couple via the quark-gluon vertex. This
necessitates knowledge of the other primitively divergent
Green’s functions, such as the ghost propagator, ghost-
gluon vertex, three-gluon vertex, and four-gluon vertex, in
addition to an infinite tower of higher n-point functions.
For propagators, there have been extensive studies within

the DSE and functional renormalization group approaches
[4–8], together with direct comparisons with calculations
on the lattice [9–13]. Typically, though DSE calculations
have employed Ansätze for the vertices, they have been
fairly successful qualitatively, which is suggestive that
quantitative agreement is within reach. That we are close
enables the use of fit functions to be employed in place
of extended systems of coupled integral equations, thus
minimizing one technical complication in the process of
“moving up the tower.”
Since we are interested primarily in hadronic properties

derived from QCD, the connection between the gauge and
matter fields is of paramount interest. While this coupling
is explicitly mitigated through the quark-gluon vertex, it
itself satisfies a DSE that induces an implicit dependence
upon other n-point functions. Of particular interest are the

three- and four-gluon vertices since they typify the self-
interacting non-Abelian character of Yang–Mills theory
and, when quarks are considered, QCD.
To date, the ghost-gluon vertex, quark-gluon vertex,

three-gluon vertex, and four-gluon vertex have been tackled
(to some extent) in the Landau gauge both functionally and
on the lattice [14–21]. However, barring the ghost-gluon
vertex, no full self-consistent DSE calculation in which
the full covariant structure of the considered vertex is
back-coupled has been completed.
The three-gluon vertex is an important input for phe-

nomenological applications. It has been explored in the
context of gauge invariance [22–24] and perturbation
theory [25,26], and more recently it has been the focus
of intense study [21,27–29]. Lattice calculations of the
three-gluon vertex in two and three dimensions give clear
evidence that the leading tree-level component features a
zero crossing at some IR momentum scale [17,30]. Though
the four-dimensional studies are inconclusive, they are at
least suggestive of a similar feature. Its presence, and in
particular its location, may have profound effects upon a
wealth of hadronic observables. In particular, it has
applications in meson spectroscopy beyond the rainbow
ladder [31], excited states, gluonic components of exotic
mesons, hybrids, and glueballs. It also provides the
irreducible three-body force in baryons, which has so far
not been considered beyond the Faddeev equation with
two-quark interactions [32] or its simplification to quark-
diquark models [33–35]. Therein lie important questions
such as two- vs three-quark dominance in excited states and
the nature of baryonic hybrids [36,37]. The three-gluon
vertex is further relevant for the near-conformal window of
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QCD and QCD-like theories, thus far only explored for
propagators of strongly coupled theories [38]; it enters the
quark-gluon vertex that is expected to drive the theory from
a confining to a conformal phase.
In this paper, we study the structural properties of the

three-gluon vertex through a permutation group analysis
following from Bose symmetry. We thus establish the
importance of the tensor components beyond tree level.
In the subleading components, we are able to resolve
singularities that occur when the momentum of one gluon
becomes soft. These complement the usual divergence in
the uniform limit, for which the power-law (logarithmic)
nature depends upon the scaling (decoupling) of the ghost
propagator. We confirm the presence of the zero crossing in
the leading component of the three-gluon vertex seen in
similar studies and lattice calculations. We demonstrate that
a self-consistent DSE solution can shift its location from the
deep IR toward a “hadronic” scale of ∼1 GeV. That value
will depend on the truncation, thus indicating that the
impact of the four-gluon vertex and missing diagrams
should be explored in detail. We also calculate the non-
perturbative running coupling associated with the three-
gluon vertex and determine its IR fixed point in the case of
scaling.
The paper is organized as follows. In Sec. II we outline

the DSE for the three-gluon vertex, its Bose symmetrization
and truncation, together with the ghost and gluon propa-
gators and four-gluon vertex used as input. In Sec. III we
discuss Bose symmetry in detail and the constraints it
imposes on the tensor decomposition of the three-gluon
vertex and the symmetry properties of the phase space.
In Sec. IV we present our results, including a summary of
our numerical methods. Finally we conclude in Sec. V.
Further details regarding tensor bases are relegated to the
Appendices.

II. THREE-GLUON VERTEX DSE

The full DSE for the three-gluon vertex in the standard
one-particle irreducible (1PI) formulation is shown in
Fig. 1. It contains the following:

(i) the ghost and gluon loops from the first row;
(ii) the “swordfish” diagrams in the second row, where

the first depends on the dressed four-gluon vertex
and the remaining two on the dressed three-gluon
vertex;

(iii) another ghost loop in the third row that depends on
the ghost-gluon four-point function;

(iv) and further two-loop terms that we absorbed in the
last diagram; the gluon five-point function that
appears here is a shorthand for skeleton graphs that
contain the 1PI three-, four-, and five-gluon vertices;
see, e.g., Ref. [16].

Incorporating quarks would produce two further diagrams
analogous to the ghost loops. In the following we consider a
truncation that neglects all two-loop diagrams and vertices

without a tree-level counterpart, which leaves the top two
rows of Fig. 1. To ensure Bose symmetry of the three-gluon
vertex, we symmetrize the equation (which is equivalent to
deriving the DSEs with respect to all three gluon legs and
adding them together). The symmetrized sum of Fig. 1 is
then identical to the symmetrized version of Fig. 2, which
contains the ghost loop, the gluon loop, and two swordfish
diagrams:

Γμνρ
3g ¼ Γμνρ

3g;0 þ g2½Λμνρ
ðghÞ þ Λμνρ

ðglÞ þ Λμνρ
ðsf;1Þ þ Λμνρ

ðsf;2Þ�: (1)

The diagrams are worked out explicitly in Table I.
The DSE depends on the ghost and gluon propagators,

the ghost-gluon vertex, and the four-gluon vertex as an
input. The ghost and gluon propagators in Landau gauge
are given by

DGðpÞ ¼ −
Gðp2Þ
p2

; DμνðpÞ ¼ Zðp2Þ
p2

Tμν
p ; (2)

where Gðp2Þ and Zðp2Þ are the scalar ghost and gluon
dressing functions, Tμν

p ¼ δμν − pμpν=p2 is the transverse
projector with respect to the momentum p, and we will
occasionally refer to Dðp2Þ ¼ Zðp2Þ=p2 as the gluon
“propagator.”
The three-gluon vertex will always be fully contracted

with gluon propagators when it appears, for example, in
hadronic matrix elements. The transversality of the gluon in
the Landau gauge entails that only the transverse projection
of the vertex can contribute to physical observables, and
therefore it is sufficient to restrict oneself to the transverse
projection of the vertex DSE. In practice, the DSE
decouples into a transverse equation and longitudinal ones.
The latter contain the transverse vertex solution as an input,

FIG. 1 (color online). The full DSE for the three-gluon vertex in
QCD without quarks. All dressed vertices are 1PI, except for the
gluon five-point function in the last row, which contains further
skeleton graphs including the 1PI three-gluon, four-gluon, and
five-gluon vertices.
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but not vice versa, and thereby decouple from the dynamics
[39]. All ingredients of Eq. (1) are therefore understood
to be transversely projected. The ghost-gluon and four-
gluon vertices require an explicit transverse projection;
cf. Table II. For the three-gluon vertex, we only need to take
into account the subset of transverse tensor structures,
which are discussed in Sec. III D and Appendix A.
In Ref. [29] the coupled Yang–Mills system of ghost,

gluon, and three-gluon vertex DSEs was solved by retain-
ing the dominant tensor structure of the three-gluon vertex.
The goal of our study is complementary: we retain the full
structure of the vertex and explore the impact of the
remaining tensor components. In exchange, we use a fixed
propagator input and treat the three-gluon vertex DSE as a
stand-alone equation. This is justified from the analysis of
Ref. [29], where the backreaction of the three-gluon vertex
upon the propagator level was found to be small. The ghost
and gluon propagators are reasonably well known in
Landau gauge, and hence we construct parametrizations
for them which are detailed in Sec. II B. We replace
the dressed ghost-gluon vertex by its tree-level form; it
resembles the vertex DSE solution reasonably well

[17,19,40–42]. For the four-gluon vertex, we employ a
tree-level model that reproduces the correct IR exponent
and UV behavior, see Sec. II C.

A. Renormalization

We briefly discuss the renormalization constants that
appear in Table II. The Yang–Mills sector of QCD contains
five primitively divergent Green functions and hence five
renormalization constants, plus one for the coupling g, that
relate the renormalized with the bare quantities:

G ¼ Gð0Þ= ~Z3; Γgh ¼ Γð0Þ
gh

~Z1;

Z ¼ Zð0Þ=Z3; Γ3g ¼ Γð0Þ
3g Z1;

g ¼ gð0Þ=Zg; Γ4g ¼ Γð0Þ
4g Z4: (10)

The Slavnov–Taylor identities relate the vertex renormal-
ization constants to those of the propagators and the
coupling via

~Z1¼ZgZ
1=2
3

~Z3; Z1¼ZgZ
3=2
3 ; Z4¼Z2

gZ2
3: (11)

TABLE I. Diagrams in the three-gluon vertex DSE of Fig. 2. The coefficients combine all color factors, tree-level prefactors from the
QCD Lagrangian, and multiplicities that arise in the DSE derivation. To be specific, ghost and gluon loops get a color factor − NC

2
and

swordfish diagrams 3NC
2
; the ghost loop has a symmetry factor 2 and the swordfish diagrams 1

2
. The second swordfish picks up another

factor 2 because it is counted twice in the symmetrization (cf. Fig. 1). The tree-level prefactors Γgh ∼ −ig, Γ3g ∼ ig, and Γ4g ∼ −g2 are
factored out in the end, so that the tree-level vertices take the form given in Table II. All vertices are transverse in the gluon legs, andR
q ¼ d4q=ð2πÞ4.

Λμνρ
ðghÞðp1; p2; p3Þ ¼ −NC

Z
q
DGðq21ÞDGðq22ÞDGðq23ÞΓρ

gh;0ð−q2; q1; p3ÞΓν
ghð−q1; q3; p2ÞΓμ

ghð−q3; q2; p1Þ; (3)

Λμνρ
ðglÞðp1; p2; p3Þ ¼

NC

2

Z
q
Dðq21ÞDðq22ÞDðq23ÞΓβαρ

3g;0ð−q2; q1; p3ÞΓαγν
3g ð−q1; q3; p2ÞΓγβμ

3g ð−q3; q2; p1Þ; (4)

Λμνρ
ðsf;1Þðp1; p2; p3Þ ¼ −

3NC

4

Z
q
Dðq21ÞDðq22ÞΓβαρ

3g;0ð−q2; q1; p3ÞΓμνβα
4g ðp1; p2; q2;−q1Þ; (5)

Λμνρ
ðsf;2Þðp1; p2; p3Þ ¼ −

3NC

2

Z
q
Dðq21ÞDðq22ÞΓβαρ

3g ð−q2; q1; p3ÞΓμνβα
4g;0 ðp1; p2; q2;−q1Þ; (6)

FIG. 2 (color online). The truncated DSE for the three-gluon vertex, together with the momentum routing used in Eqs. (3)–(6). After
symmetrization, the resulting equation is identical to the symmetrized first two lines of Fig. 1.
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Taylor’s nonrenormalization argument [43] states that the
ghost-gluon vertex can stay unrenormalized in the Landau
gauge. Hence, we can set ~Z1 ¼ 1, which defines the
MiniMOM scheme [44,45], and all renormalization con-
stants can be expressed through ~Z3 and Z3:

Zg ¼
1

Z1=2
3

~Z3

; Z1 ¼
Z3

~Z3

; Z4 ¼
Z3

~Z2
3

: (12)

As a consequence, all DSEs in the Yang–Mills sector are
already renormalized once ~Z3 and Z3 are known, so we do
not need to set another renormalization condition for the
three-gluon vertex. In practice ~Z3 and Z3 are determined
in the process of solving the ghost and gluon DSEs;
cf. Sec. II B for a brief discussion.
It is a simple check to confirm that the renormalization

constants for the various diagrams (3)–(6) and (8) in the
three-gluon vertex DSE combine correctly. If we extract the
intrinsic dependencies of all propagators and vertices on
the renormalization constants according to Eq. (10) and
combine them in front of the integrals, then we have the
following:

(i) the tree-level term provides a factor Z1,

(ii) the ghost loop gives g2= ~Z3
3 ¼ g20Z3=fZ3 ¼ g20Z1,

(iii) the gluon loop is g2Z3
1=Z

3
3 ¼ g20Z1,

(iv) and the swordfish diagrams are g2Z1Z4=Z2
3 ¼ g20Z1.

Therefore Γ3g ¼ Γð0Þ
3g Z1 holds.

B. Ghost and gluon propagators

Here we provide details on our parametrizations for the
ghost and gluon propagators. The data sets correspond
to the calculation in Ref. [5], where the Yang–Mills system
was solved upon neglecting two-loop terms in the gluon
DSE and using tree-level ghost-gluon and three-gluon
vertices; the latter was augmented by a dressing. In addition
to the scaling solution discussed in that work, we also use
four sets of decoupling solutions obtained in the same

truncation.1 Parametrizations for ghost and gluon propa-
gators are available from the literature, but they were either
designed to fit the scaling solution of the DSEs [47] or
decoupling solutions obtained on the lattice [48]. To study
both scenarios, we will construct parametrizations below
that can interpolate between these cases. Furthermore, we
also wish to implement features that were recently obtained
via a direct DSE solution of the Yang–Mills system in the
complex plane [49]. In that study the only nonanalytic
structure of the ghost dressing function was found to be a
cut on the timelike axis, whereas the gluon exhibited an
additional peak at p2 ¼ −Λ2, with Λ ∼ 0.6…0.7 GeV.
For simplicity we restrict ourselves to parametrizations

where the IR, midmomentum, and UV parts factorize, since
this simplifies the separate discussion of the IR and UV
behavior. We work with a single gluonic mass scale
Λ ¼ 0.6 GeV and express all subsequent formulas through
the dimensionless variable x ¼ p2=Λ2. The resulting para-
metrizations have the form

GðxÞ ¼ GIRðxÞGMðxÞGUVðxÞ;
ZðxÞ ¼ ZIRðxÞZMðxÞZUVðxÞ; (13)

whereGIR, ZIR,GM, ZM → 1 in the UVandGUV, ZUV,GM,
ZM → const in the IR.
For the IR behavior, we employ functions which

interpolate between the scaling and decoupling type. In
the scaling scenario, the ghost dressing diverges with x−κ,
and the gluon dressing vanishes with x2κ. In the decoupling
case, the ghost dressing Gð0Þ is constant, and that of the
gluon vanishes with x, so that the gluon propagator Dð0Þ
becomes constant in the IR. The simplest way to accom-
modate both cases, without altering the UV or introducing
timelike poles, is to work with powers of the function

sðx; aÞ ¼ xκ þ a
xκ þ 1

; (14)

where the parameter a discriminates between scaling
(a ¼ 0) and decoupling (a > 0). The IR parts of ghost
and gluon dressing functions are then constructed as

GIRðxÞ ¼ sðx; a1Þ−1;
ZIRðxÞ ¼

x
xþ 1

sðx; a2Þ2−1
κ; (15)

where the scaling exponent is κ ≃ 0.595 [50,51] and the fit
parameters a1, a2 are given in Table IV.
For the midmomentum and UV behavior, we employ the

function

TABLE II. Transversely projected tree-level vertices that ap-
pear in the three-gluon vertex DSE. The tree-level four-gluon
vertex is the effective Lorentz structure that remains in the
swordfish diagrams after working out the color traces.

Γρ
gh;0ðp1; p2; p3Þ ¼ ~Z1T

ργ
p3

�
p2 − p1

2

�
γ

; (7)

Γμνρ
3g;0ðp1; p2; p3Þ ¼ Z1T

μα
p1
Tνβ
p2
Tργ
p3
½δαβðp1 − p2Þγ

þ δβγðp2 − p3Þα þ δγαðp3 − p1Þβ�; (8)

Γμνρσ
4g;0 ðp1; p2; p3; p4Þ ¼ Z4T

μα
p1
Tνβ
p2
Tργ
p3
Tσδ
p4
½δαγδβδ − δαδδβγ �;

(9)

1We are grateful to C. S. Fischer for providing us with these
data.
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hðx; cÞ ¼ 1

cxþ ln x
−

x0
ð1 − ln x0Þðx − x0Þ

;

x0 ¼ e−WðcÞ ¼ WðcÞ
c

; (16)

where WðcÞ is the product logarithm or Lambert-W
function, the solution of the equation WðcÞeWðcÞ ¼ c.
Since the (inverse) zero of cxþ ln x at x ¼ x0 has been
expanded around x0 and subtracted in the second term,
hðx; cÞ is analytic except for a branch cut extending from
x ¼ 0 to minus infinity. In the IR hðx; cÞ goes to a constant,

hðx; cÞ !x→0 1

1 − ln x0
; (17)

whereas for large x it is suppressed, either with an inverse
power of x (if c > 0) or logarithmically (c ¼ 0). The latter
case is useful for modelling the UV running of the ghost
and gluon dressing functions without altering their IR
behavior, since for c ¼ 0 Eq. (16) reduces to

hðx; 0Þ ¼ 1

ln x
−

1

x − 1
!x→0

1; (18)

which follows from Wðc → 0Þ ¼ cþ � � � ⇒ x0 ¼ 1.
Hence, for the UV parts in Eq. (13), we use

GUVðxÞ ¼ b1hðx; 0Þ 9
44;

ZUVðxÞ ¼ b2hðx; 0Þ1322 (19)

and determine the parameters b1 ¼ 1.10 and b2 ¼ 1.32
from the UV running of the dressing functions at large x:

GðxÞ → b1
ðln xÞ 9

44

; ZðxÞ → b2
ðln xÞ1322 : (20)

For the midmomentum parts GMðxÞ and ZMðxÞ, we
obtained reasonable fits with the functional forms

GMðxÞ ¼ 1þ c1 þ d1½xκhðx; 12Þ�2
1þ xκ

;

ZMðxÞ ¼ 1þ c2½xκhðx; 12Þ� þ d2½xκhðx; 12Þ�2
1þ xκ

; (21)

where c ¼ 1
2
in Eq. (16) leads to x0 ≃ 0.70346742. The

remaining parameters are

c1 ¼ 0.81þ 1.42a1; d1 ¼ −6.85;

c2 ¼ 2.45 − 5.12a2; d2 ¼ 28.5: (22)

We did not attempt to include the dependence on the
renormalization parameters in our fits. The renormalization
procedure is described in detail in Refs. [5,50]. To solve the
ghost and gluon DSEs, one has to specify the coupling

αðμ2Þ ¼ g2=ð4πÞ and two boundary values for Zðp2Þ and
Gðp2Þ. The former provides the connection with experi-
ment and simultaneously sets the scale in GeV units;
otherwise, the only scale would be the numerical cutoff
Λcutoff that enters the equations. The boundary values for
Zðμ2Þ and Gðμ2Þ are (within certain constraints) arbitrary;
their specification leads to subtracted, finite equations at
the subtraction point μ which also determines Z3 and ~Z3 in
the process. The data sets correspond to a fixed choice
μ ¼ 2.28 GeV, αðμ2Þ ¼ 0.7427 and Λcutoff ¼ 316 GeV.
The resulting values for the ghost and gluon renormaliza-
tion constants are ~Z3 ¼ 1.529 and Z3 ¼ 3.384, respec-
tively, for both scaling and decoupling.
While the choice of Zðμ2ÞG2ðμ2Þ reflects the freedom of

renormalization, the value of Gðμ2Þ discriminates between
scaling and decoupling behavior in the IR. Since the ghost
DSE determines the inverse ghost dressing function that
approaches the perturbative limit from below, lowering
Gðμ2Þ−1 leads to a limit where Gð0Þ−1 vanishes, which is
the scaling solution. It is then numerically more convenient
to subtract the ghost equation directly at p2 ¼ 0 and use
Gð0Þ as the second boundary condition. The resulting
values of Gð0Þ and Dð0Þ are also collected in Table IV. In
practice one additionally has to ensure the absence of
spurious quadratic divergences and longitudinal artifacts in
the gluon DSE, which can arise due to the truncation;
however, these issues are independent of the existence of
scaling and decoupling solutions [39,52].
The fits are shown in Fig. 3 for the scaling case and two

decoupling solutions. They describe the data reasonably
well over the whole momentum domain. We should note
that we aimed for simplicity rather than precision: one
could improve the quality of the fits by relaxing the linear
dependence of the parameters ci on ai in Eq. (22), or by
altering the form of GMðxÞ and ZMðxÞ, etc. We note that
also the resulting spectral functions from the fits are in
qualitative agreement with the direct DSE solutions from
the complex-plane calculation in Ref. [49]. We included the
pole x=ðxþ 1Þ in Eq. (15) on purpose to obtain a peak in
the gluon spectral function; one could replace this factor,
for example, with xhðx; cÞ to obtain parametrizations with
timelike branch cuts only.
Lowering the ghost dressing away from the scaling limit

Gð0Þ → ∞ leads to a nonzero, increasing gluon propagator
Dð0Þ. Our propagator fits yield

Gð0Þ ¼ b1
a1

ð1þ c1Þ ¼ b1

�
1.42þ 1.81

a1

�
;

Dð0Þ ¼ ZðxÞ
xΛ2

����
x¼0

¼ ða2Þ2−1
κ
b2
Λ2

: (23)

It is interesting that they produce not only a maximum but
also a minimum value for the ghost dressing function at
zero momentum: if a1 → ∞, then Gð0Þ goes to a constant
≈1.56. At this pointDð0Þ has reached a plateau and slightly
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decreased again. If one writes Dð0Þ ¼ 1=m2 and interprets
m as an effective “gluon mass,” then in this “extreme”
decoupling case, one has from Table IV m ≈ Λ, whereas in
the scaling limit m → ∞.

C. Four-gluon vertex

Whereas the Landau-gauge ghost and gluon propagators
and the ghost-gluon vertex have been studied extensively
in the past, the nonperturbative properties of the dressed
four-gluon vertex [53] are still largely terra incognita. The

one-loop perturbative behavior is known [54–57], and
nonperturbative explorations have been made [58–60]. In
Ref. [18] the four-gluon vertex DSE in the scaling case was
solved by retaining the three Lorentz-color tensor structures
which are momentum independent and Bose symmetric.
From Table III the UV anomalous dimension of the four-
gluon vertex is 1þ 4δ ¼ 2

11
. In the IR the vertex goes to a

constant (decoupling) or scales with −4κ. We implement
these features here by a simple Ansatz,

Γμνρσ
4g ðp1; p2; p3; p4Þ ¼ f4gðxÞΓμνρσ

4g;0 ; (24)

where Γμνρσ
4g;0 is the tree-level tensor structure. Upon trans-

verse projection and implementation in the swordfish
diagrams, it takes the form of Eq. (9). The Bose-symmetric
dressing function is modelled by

f4gðxÞ ¼ b4
hðxÞ− 2

11

sðy; a4Þ4
; x ¼ p2

1 þ p2
2 þ p2

3 þ p2
4

4Λ2
;

(25)

TABLE III. IR and UV exponents of the primitively divergent
Green functions in Yang–Mills theory. The IR power is the
exponent of p2 (modulo potential logarithms) after removing the
canonical dimension. “SC” denotes scaling, and “DC” denotes
the decoupling. In the scaling case, the vertices can have further
soft-gluon singularities in the IR [8,16,46]. The UV anomalous
dimension is the exponent of lnp2.

SC DC UV

Γgh 0 0 0
G−1 κ 0 −δ ¼ 9

44
Z−1 −2κ −1 1þ 2δ ¼ 13

22

Γ3g −3κ 0 1þ 3δ ¼ 17
44

Γ4g −4κ 0 1þ 4δ ¼ 2
11

TABLE IV. Fit parameters a1 and a2 for the five data sets
(SC ¼ scaling; DC ¼ decoupling). The ghost dressing and (di-
mensionless) gluon propagator at vanishing momentum as
inferred from the data sets are collected as well.

Set a1 a2 Gð0Þ Dð0ÞΛ2

1 (SC) 0 0 ∞ 0
2 (DC) 0.02 0.03 100 0.41
3 (DC) 0.24 0.26 10 0.86
4 (DC) 0.58 0.42 5 1.00
5 (DC) 1.38 0.41 3 0.99
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FIG. 4 (color online). Four-gluon vertex dressing of Eq. (25).
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FIG. 3 (color online). Ghost dressing, gluon propagator, and renormalization-point independent running coupling
αðp2Þ ¼ αðμ2ÞZðp2ÞG2ðp2Þ. The DSE results (solid curves) are compared to our fits (dashed curves) for the scaling case and two
decoupling sets. The legends follow the plots from top to bottom.
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with y ¼ x=4. In the scaling case, we have again a4 ¼ 0;
the choice a4 ¼ 0.43a1 yields a sensible extension to the
decoupling case. The renormalization constant Z4 is
already implicit in the tree-level structure, and f4gðxÞ→1
at the numerical cutoff entails b4 ¼ 0.63. To study the
dependence of our results on the four-gluon vertex model,
we shift it by a constant: f4gðxÞ þ ð0…0.6Þ. This produces
the band shown in Fig. 4.

III. BOSE SYMMETRY

The permutation group is a powerful tool for exploring
the structure properties of the three-gluon vertex. The full
vertex including momentum, Lorentz, and color parts is
Bose symmetric. Since the color structure fabc is totally
antisymmetric, the combination of Lorentz and momentum
parts must be antisymmetric as well:

Γμνρðp1; p2; p3Þ ¼ −Γνμρðp2; p1; p3Þ
¼ Γνρμðp2; p3; p1Þ ¼ −Γρνμðp3; p2; p1Þ
¼ Γρμνðp3; p1; p2Þ ¼ −Γμρνðp1; p3; p2Þ: (26)

It can be decomposed in 14 tensor structures with Lorentz-
invariant dressing functions:

Γμνρðp1; p2; p3Þ ¼
X14
i¼1

fiðp2
1; p

2
2; p

2
3Þτμνρi ðp1; p2; p3Þ:

The Bose symmetry property allows one to arrange both
the tensor basis of the vertex and its dressing functions into
irreducible multiplets of the permutation group S3 and
subsequently combine them to obtain antisymmetric prod-
uct representations. As we will see below, from the
permutation group analysis, one can already make a
number of statements about the symmetry properties of
the phase space and hence the expected momentum
dependence of the vertex dressing functions.

A. Kinematics

Since only two of the momenta in the three-gluon vertex
are independent, it is useful to work with the combinations
(cf. Fig. 5)

k ¼ p2 − p1

2
; Q ¼ −p3; (27)

instead of p1, p2, and p3, so that

p1 ¼ −kþQ
2
; p2 ¼ kþQ

2
; p3 ¼ −Q: (28)

If we write Γμνρðp1; p2; p3Þ ¼ Γμνρðk;QÞ and define

k0 ¼ −
1

2

�
kþ 3Q

2

�
; Q0 ¼ k −

Q
2
;

k″ ¼ −
1

2

�
k −

3Q
2

�
; Q″ ¼ −k −

Q
2
; (29)

the symmetry relations in Eq. (26) take the form

2Γμνρðk;QÞ ¼ −Γνμρð−k;QÞ ¼ Γνρμðk0; Q0Þ
¼ −Γρνμð−k0; Q0Þ ¼ Γρμνðk″; Q″Þ
¼ −Γμρνð−k″; Q″Þ. (30)

From k andQ, one can construct three Lorentz invariants
k2, Q2, and k ·Q. We express them for convenience in
terms of the variables

t ¼ Q2

4
; ξ ¼ 4k2

3Q2
; z ¼ k̂ · Q̂; (31)

where only t carries a dimension. The hats denote nor-
malized 4-momenta. In the spacelike DSE calculation, t
and ξ are real and positive, whereas z ∈ ½−1; 1� is the cosine
of the polar angle. Below we will form combinations of t, ξ,
and z which are multiplets of the permutation group.

B. Permutation-group multiplets

We generically denote multiplets that transform under
irreducible representations of the permutation group by2

S; A; D1 ¼
�
a1
s1

�
; D2 ¼

�
a2
s2

�
; (32)

or, in terms of the Young tableaux,

FIG. 5 (color online). Momentum routing in the three-gluon
vertex.

2Some of the following discussion and notation is based on
Refs. [61,62], where the nucleon’s Faddeev amplitude was
analyzed in an analogous fashion.
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S and A are completely symmetric or antisymmetric
singlets, and each doublet Di has a mixed-antisymmetric
entry ai and a mixed-symmetric component si.
To make this explicit, consider a function of three

momenta ψðp1; p2; p3Þ. ψ is completely generic and can
represent a Lorentz-invariant momentum variable or dress-
ing function, a 4-momentum, or also a given tensor basis
element. We first define the combinations

ψ�
1 ≔ ψðp1; p2; p3Þ � ψðp2; p1; p3Þ;

ψ�
2 ≔ ψðp2; p3; p1Þ � ψðp1; p3; p2Þ;

ψ�
3 ≔ ψðp3; p1; p2Þ � ψðp3; p2; p1Þ; (33)

which are mixed symmetric or antisymmetric under
exchange of the momentum indices 1 and 2. The singlets
and doublets generated from ψðp1; p2; p3Þ are then the
following linear combinations:

S ¼ ψþ
1 þ ψþ

2 þ ψþ
3 ;

A ¼ ψ−
1 þ ψ−

2 þ ψ−
3 ;

D1 ¼
� ψ−

2 − ψ−
3

− 1ffiffi
3

p ðψþ
2 þ ψþ

3 − 2ψþ
1 Þ

�
;

D2 ¼
� 1ffiffi

3
p ðψ−

2 þ ψ−
3 − 2ψ−

1 Þ
ψþ
2 − ψþ

3

�
: (34)

S and A are fully symmetric or antisymmetric under
exchange of momenta. The doublet entries ai, si are
(anti)symmetric with respect to the indices 1 and 2. The
whole doublet D1 is symmetric under exchange of the first
two momentum arguments, whereas D2 is antisymmetric.
The doublets transform under the two-dimensional

(orthogonal)matrix representationsofS3,whicharegivenby

M ¼
�−1 0

0 1

�
; M� ¼ 1

2

�
1 � ffiffiffi

3
p

� ffiffiffi
3

p
−1

�
: (35)

This can be verified from the six permutation operators

1; P12; P13; P23; P23P12; P13P12; (36)

which are understood to act on the indices of the arguments
pi (instead of interchanging their positions), for example,
P23P12ψðp1; p2; p3Þ ¼ ψðp3; p1; p2Þ. The three combina-
tions in Eq. (33) follow if one applies

1� P12; P31P12 � P23; P32P21 � P13 (37)

toψðp1; p2; p3Þ. Using the relationsPij ¼ Pji,P2
ij ¼ 1, and

PijPjk ¼ PjkPki ¼ PkiPij (without summation), one can
show that the doublets Di transform as

P12Di ¼ MDi; P13P12Di ¼ MMþDi;

P13Di ¼ MþDi; P23P12Di ¼ MM−Di;

P23Di ¼ M−Di: (38)

For a given permutation operator, both doublets D1, D2

transform under its same irreducible representation; hence,
they form a two-dimensional irreducible subspace.
Our notation makes it particularly simple to study

product representations, which we will need in the follow-
ing. To obtain a symmetric singlet in the product space, one
can either combine two doublets or two (symmetric or
antisymmetric) singlets:

D ·D0 ≔ aa0 þ ss0; SS0; AA0: (39)

The singlet property of D ·D0 follows from the orthogon-
ality of the representation matrices in Eq. (35). Similarly,
antisymmetric singlets are constructed from

D ×D0 ≔ as0 − sa0; SA: (40)

Doublets are obtained from the trivial combination SD, but
also from

D �D0 ≔
�
as0 þ sa0

aa0 − ss0

�
; D �A≔

�
s

−a

�
A: (41)

One can show, for example, that D �D0 satisfies the same
transformation properties as in Eq. (38). We collect some
useful identities along the way:

D � ðD �D0Þ ¼ ðD ·DÞD0;

D × ðD �D0Þ ¼ −ðD �DÞ ×D0;

D × ðD �AÞ ¼ −ðD ·DÞ �A0: (42)

The relation

�ðD �DÞ ×D0

ðD �DÞ ×D

�
D −

�
D ×D0

ðD �DÞ ×D

�
D �D ¼ D0 (43)

states that a doublet D0 can be expanded in two doublets D
and D �D and thereby related to two totally symmetric
singlets (the numerators and denominators in the brackets
are totally antisymmetric).
In the discussion below, D will usually operate in the

space of Lorentz invariants and D0 in the space of Lorentz
tensors. For illustration, take Eq. (40): if a and s are two
Lorentz invariants which form a permutation-group dou-
blet, and if a0 and s0 denote two tensor basis elements which
also form a doublet, then the combination as0 − as0 is a new
tensor basis element that is fully antisymmetric. Since the
total vertex (modulo color) must be antisymmetric as well,
the corresponding dressing function can only depend on
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fully symmetric Lorentz invariants. We will construct such
variables in the following.

C. Bose-symmetric Lorentz invariants

To begin with, let us first arrange the momenta that enter
the three-gluon vertex in the multiplet structure. We can use
the 4-momentum ψðp1; p2; p3Þ ¼ p3 as the permutation-
group “seed” and write

ψðp1; p2; p3Þ ¼ ψðp2; p1; p3Þ ¼ p3;

ψðp2; p3; p1Þ ¼ ψðp3; p2; p1Þ ¼ p1;

ψðp3; p1; p2Þ ¼ ψðp1; p3; p2Þ ¼ p2; (44)

and Eq. (33) leads to

ψþ
1 ¼ −2Q; ψ−

1 ¼ 0;

ψþ
2 ¼ Q; ψ−

2 ¼ −2k;

ψþ
3 ¼ Q; ψ−

3 ¼ 2k: (45)

The resulting S, A, and D2 from Eq. (34) are all zero, and
only one doublet remains:

D1 ∼

"
1ffiffi
3

p k

1
2
Q

#
: (46)

These are the two independent momenta of the three-gluon
vertex that make the permutation-group features most
transparent.
D1 can be used to construct Lorentz-invariant variables

in the product space. It follows from Eqs. (39)–(41) that
from one doublet one can only get a singlet (D1 ·D1) and
another doublet (D1 �D1); the antisymmetric combination
D1 ×D1 vanishes. The resulting three Lorentz invariants, if
we interpret the operations ·, ×, and � as scalar products of
4-momenta, are

S0 ¼ D1 ·D1 ¼
k2

3
þQ2

4
¼ tð1þ ξÞ;

D ¼ D1 �D1

S0

¼ 1

S0

" k·Qffiffi
3

p

k2
3
− Q2

4

#
¼

"
2
ffiffi
ξ

p
z

ξþ1

ξ−1
ξþ1

#
; (47)

where t, ξ, and z are the invariants defined in Eq. (31). We
divided D1 �D1 by the singlet S0 in order to remove its
mass dimension. In this way we arrived at one dimensionful
variable S0 ∈ Rþ and two dimensionless angular variables.
To keep the notation simple, we will henceforth refer to
them plainly as

S0 ¼ tð1þ ξÞ; a ¼ 2
ffiffiffi
ξ

p
z

ξþ 1
; s ¼ ξ − 1

ξþ 1
; (48)

with the inverse relations

t ¼ 1 − s
2

S0; ξ ¼ 1þ s
1 − s

; z ¼ affiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p : (49)

Expressed in terms of p2
1, p

2
2, and p2

3, they are given by

S0 ¼
1

6
ðp2

1 þ p2
2 þ p2

3Þ;

a ¼
ffiffiffi
3

p p2
2 − p2

1

p2
1 þ p2

2 þ p2
3

; s ¼ p2
1 þ p2

2 − 2p2
3

p2
1 þ p2

2 þ p2
3

; (50)

which we could have also obtained directly by starting from
ψðp1; p2; p3Þ ¼ p2

3 and repeating the steps (33)–(34).
For fixed S0 > 0, the resulting phase space in the ða; sÞ

plane is the interior of a unit circle, illustrated in Fig. 6. This
follows from z ∈ ½−1; 1� and ξ > 0 ⇒ a2 þ s2 ≤ 1 for
jzj ≤ 1. Adding the S0 direction, the space-like region
which is sampled in the three-gluon vertex DSE becomes a
cylindrical tube with unit radius. In Fig. 6 we show various
momentum configurations in the ða; sÞ plane; they are all
independent of the symmetric variable S0:

(i) The symmetric limit p2
1 ¼ p2

2 ¼ p2
3 is the origin

of the ða; sÞ plane. In terms of the variables (31),
k2 ¼ 3

4
Q2 and k ·Q ¼ 0 ⇒ ξ ¼ 1 and z ¼ 0.

(ii) The three soft kinematic limits where only one of the
gluon momenta vanishes constitute a triangle:

p2
1 ¼ 0⇔ s ¼ −2þ

ffiffiffi
3

p
a;

p2
2 ¼ 0⇔ s ¼ −2 −

ffiffiffi
3

p
a;

p2
3 ¼ 0⇔ s ¼ 1: (51)

It intersects with the unit circle at the three points

FIG. 6 (color online). Phase space for the three-gluon vertex in
the ða; sÞ plane at a slice of fixed S0.

THREE-GLUON VERTEX IN LANDAU GAUGE PHYSICAL REVIEW D 89, 105014 (2014)

105014-9



�
a
s

�
¼ 1

2

� ffiffiffi
3

p
−1

�
; −

1

2

� ffiffiffi
3

p
1

�
;

�
0

1

�
: (52)

(iii) The lines where two momenta coincide are also
shown in the figure. They correspond to a ¼ � ffiffiffi

3
p

s
or a ¼ 0 and intersect each other at the origin.

Bose symmetry entails that each slice of 120° in the
ða; sÞ plane carries the complete phase space information.
To see this explicitly, suppose that we expand the vertex in a
fully antisymmetric tensor basis. The corresponding dress-
ing functions must be symmetric and can only depend on
totally symmetric momentum variables. We can construct
two such variables from a and s, namely,

S1 ¼ D ·D ¼ a2 þ s2 ∈ ½0; 1�;
S2 ¼ ðD �DÞ ·D ¼ 3a2s − s3 ∈ ½�1; 1�: (53)

All further combinations are redundant. The dressing
functions of the vertex will then depend on S0, S1, and
S2. The contours of constant S1 and S2 in the ða; sÞ plane
are shown in Fig. 7. S1 ≤ 1 describes the radius of the
circle, and the S2 profile exhibits the 120° symmetry which
must be reflected in the vertex dressing functions. All
three soft kinematic limits correspond to the same
value S2 ¼ −1.
These observations are interesting in light of potential

soft singularities of the three-gluon vertex. For the scaling
solution, the vertex exhibits an IR singularity with −3κ in
the uniform momentum limit (S0 ¼ 0) and further soft
singularities in the kinematic limits S2 ¼ −1 [46]. Since
the scaling and decoupling solutions are continuously
connected, we expect to encounter remnants of this singular
behavior also in the decoupling solutions. In particular, we

should recover the profiles of the dressing functions in
Fig. 7 in our numerical results, together with an enhance-
ment at the three soft kinematic points.

D. Bose-symmetric tensor basis

To reveal the symmetry properties of the dressing
functions, the corresponding tensor structures of the
three-gluon vertex must be cast in permutation-group
multiplets as well. The vertex has 14 Lorentz basis tensors.
For convenience we work with the momenta

pi and qi ¼ pj − pk; (54)

where the pi are the usual gluon momenta (which are
outgoing in our convention) and fi; j; kg is an even
permutation of f1; 2; 3g. This seeming redundancy is
resolved by the fact that only

pμ
1; p

ν
2; p

ρ
3; qμ1; q

ν
2; q

ρ
3 (55)

will appear in what follows; i.e., the momentum labels are
intertwined with the respective Lorentz indices.
The simplest construction principle starts from the

following six seed elements, which exhaust the possible
momentum content in pi and qi:

ψμνρ
1 ¼ 1

2
δμνqρ3; ψμνρ

4 ¼ 1

2
pμ
1p

ν
2q

ρ
3;

ψμνρ
2 ¼ 1

6
qμ1q

ν
2q

ρ
3; ψμνρ

5 ¼ 1

6
pμ
1p

ν
2p

ρ
3;

ψμνρ
3 ¼ 1

2
qμ1q

ν
2p

ρ
3; ψμνρ

6 ¼ 1

2
δμνpρ

3:

(56)

They are sufficient to generate a complete, linearly inde-
pendent tensor basis. Following the steps (33)–(34), one
can arrange their permutations into multiplets A0ðψ iÞ,
S0ðψ iÞ, Dj

0ðψ iÞ. The permutations act on the Lorentz
indices and momentum labels of the pi. We denote the
multiplets with primes to distinguish them from the Lorentz
invariants from the last section. The resulting 14 non-
vanishing tensor elements are collected in Table V. A0ðψ1Þ
is the tree-level structure of the three-gluon vertex
from Eq. (8).
The arrangement in Table V entails that all elements that

contain either of the vectors pμ
1, p

ν
2, or p

ρ
3 vanish upon a full

transverse projection with Tαμ
p1
Tβν
p2
Tγρ
p3
. The three-gluon

vertex in the Landau gauge will always be contracted with
such a transverse projector by virtue of the gluon propa-
gators, and hence only the transverse part carries the
dynamics. It is then sufficient to retain the four tensor
structures that survive the projection:

FIG. 7 (color online). Contours of constant S1 (dashed circles)
and constant S2 (solid curves) in the ða; sÞ plane. The signs
indicate the regions where S2 is either positive or negative. At the
three soft kinematic points, S2 ¼ −1.
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A0ðψ1Þ; A0ðψ2Þ; D2
0ðψ1Þ: (57)

In principle one could exploit color gauge invariance and
split each of the four remaining dressing functions into two
parts: one which is fixed by the Slavnov–Taylor identity
(STI) for the three-gluon vertex and another one which is
purely transverse and subject to analyticity constraints. The
STI is not very helpful in practice because it depends on the
unknown ghost-gluon scattering kernel. Nevertheless, con-
tributions from both parts will generally survive the trans-
verse projection.
The basis elements A0ðψ1Þ and A0ðψ2Þ are already

antisymmetric, whereas those contained in the doublet
D2

0ðψ1Þ are not. We can combine the doublet with the
Lorentz invariants a and s from Eq. (48) to form further
antisymmetric tensor structures. From Eqs. (40), (41), and
(43), we have the following independent possibilities:

D ×D2
0ðψ1Þ; ðD �DÞ ×D2

0ðψ1Þ: (58)

In practice we find it useful to work with the linear
combinations

τ1 ¼ A0ðψ1Þ;

τ2 ¼
1

S0

A0ðψ2Þ;

τ3 ¼ 2

�
A0ðψ1Þ −

ffiffiffi
3

p

2
D ×D2

0ðψ1Þ
�
;

τ4 ¼ 3

�
ðD �DÞ ×D2

0ðψ1Þ −
S2

S1

D ×D2
0ðψ1Þ

�
; (59)

where S1 and S2 are the fully symmetric Lorentz invariants
defined in Eq. (53). These τi are fully antisymmetric and
have all mass dimension 1. In the standard form, they can
be written as

τμνρ1 ¼ qμ1δ
νρ þ qν2δ

ρμ þ qρ3δ
μν;

S0τ
μνρ
2 ¼ qμ1q

ν
2q

ρ
3;

S0τ
μνρ
3 ¼ p2

1q
μ
1δ

νρ þ p2
2q

ν
2δ

ρμ þ p2
3q

ρ
3δ

μν;

−
S1

A
S0τ

μνρ
4 ¼ ω1q

μ
1δ

νρ þ ω2qν2δ
ρμ þ ω3q

ρ
3δ

μν; (60)

where ωi ¼ pi · qi ¼ −p2
j þ p2

k andA is the antisymmetric
variable

A ¼ ðD �DÞ ×D ¼ 3s2a − a3: (61)

This choice produces dressing functions that are suffi-
ciently well behaved. In total we have arrived at four totally
antisymmetric basis elements; consequently, their momen-
tum dressing functions must be totally symmetric and can
only depend on the Lorentz invariants S0, S1, and S2.
Applying a full transverse projection to these four

structures does not change their symmetry properties
because the projection operator is Bose symmetric. With
the abbreviations

T μν
i ¼ Tμα

pj T
αν
pk
; tμi ¼ Tμν

pi qi ¼ Tμν
pi ðpj − pkÞν; (62)

where fi; j; kg is again an even permutation of f1; 2; 3g and
Tμν
k the usual transverse projector defined below Eq. (2), the

final transverse basis elements can be written as

τμνρ1⊥ ¼ tμ1T
νρ
1 þ tν2T

ρμ
2 þ tρ3T

μν
3 ;

S0τ
μνρ
2⊥ ¼ tμ1t

ν
2t

ρ
3;

S0τ
μνρ
3⊥ ¼ p2

1t
μ
1T

νρ
1 þ p2

2t
ν
2T

ρμ
2 þ p2

3t
ρ
3T

μν
3 ;

−
S1

A
S0τ

μνρ
4⊥ ¼ ω1t

μ
1T

νρ
1 þ ω2tν2T

ρμ
2 þ ω3t

ρ
3T

μν
3 : (63)

Hence, the transversely projected three-gluon vertex is
given by

Γμνρ
3g ðp1; p2; p3Þ ¼

X4
i¼1

FiðS0;S1;S2Þτμνρi⊥ ðp1; p2; p3Þ:

(64)

E. Relation with Ball–Chiu basis

Ball and Chiu wrote the tensor decomposition of the
three-gluon vertex in the following way [23] (see also
Ref. [22]):

Γμνρðp1; p2; p3Þ ¼
X6
i¼1

Γμνρ
i ðp1; p2; p3Þ: (65)

TABLE V. Tensor basis for the three-gluon vertex in the
permutation-group arrangement. The pi are the gluon momenta
and qi ¼ pj − pk.

A0ðψ1Þ qμ1δ
νρ þ qν2δ

ρμ þ qρ3δ
μν

D2
0ðψ1Þ

�
1ffiffi
3

p ðqμ1δνρ þ qν2δ
ρμ − 2qρ3δ

μνÞ
qμ1δ

νρ − qν2δ
ρμ

�
A0ðψ2Þ qμ1q

ν
2q

ρ
3

S0ðψ3Þ pμ
1q

ν
2q

ρ
3 þ qμ1p

ν
2q

ρ
3 þ qμ1q

ν
2p

ρ
3

D1
0ðψ3Þ

�
pμ
1q

ν
2q

ρ
3 − qμ1p

ν
2q

ρ
3

− 1ffiffi
3

p ðpμ
1q

ν
2q

ρ
3 þ qμ1p

ν
2q

ρ
3 − 2qμ1q

ν
2p

ρ
3Þ
�

A0ðψ4Þ qμ1p
ν
2p

ρ
3 þ pμ

1q
ν
2p

ρ
3 þ pμ

1p
ν
2q

ρ
3

D2
0ðψ4Þ

�
1ffiffi
3

p ðqμ1pν
2p

ρ
3 þ pμ

1q
ν
2p

ρ
3 − 2pμ

1p
ν
2q

ρ
3Þ

qμ1p
ν
2p

ρ
3 − pμ

1q
ν
2p

ρ
3

�
S0ðψ5Þ pμ

1p
ν
2p

ρ
3

S0ðψ6Þ pμ
1δ

νρ þ pν
2δ

ρμ þ pρ
3δ

μν

D1
0ðψ6Þ

�
pμ
1δ

νρ − pν
2δ

ρμ

− 1ffiffi
3

p ðpμ
1δ

νρ þ pν
2δ

ρμ − 2pρ
3δ

μνÞ
�

THREE-GLUON VERTEX IN LANDAU GAUGE PHYSICAL REVIEW D 89, 105014 (2014)

105014-11



The six antisymmetric vertex contributions are given by

Γμνρ
1 ¼ A1q

μ
1δ

νρ þ A2qν2δ
ρμ þ A3q

ρ
3δ

μν;

Γμνρ
2 ¼ B1p

μ
1δ

νρ þ B2pν
2δ

ρμ þ B3p
ρ
3δ

μν;

Γμνρ
3 ¼ C1q

μ
1t

νρ
23 þ C2qν2t

ρμ
31 þ C3q

ρ
3t

μν
12;

Γμνρ
4 ¼ Sðpμ

2p
ν
3p

ρ
1 þ pμ

3p
ν
1p

ρ
2Þ;

Γμνρ
5 ¼ F1b

μ
1t

νρ
23 þ F2bν2t

ρμ
31 þ F3b

ρ
3t

μν
12;

Γμνρ
6 ¼ Hðpμ

2p
ν
3p

ρ
1 − pμ

3p
ν
1p

ρ
2 þ bμ1δ

νρ þ bν2δ
ρμ þ bρ3δ

μνÞ:
(66)

As before, qi ¼ pj − pk, and we abbreviated

tμνij ¼ pi · pjδ
μν − pμ

jp
ν
i ;

bμi ¼
1

2
tμαii q

α
i ¼ pi · pjp

μ
k − pk · pip

μ
j : (67)

fi; j; kg is again a cyclic permutation of f1; 2; 3g, and
pi þ pj þ pk ¼ 0. The “projector” tμνij is transverse to pμ

i
and pν

j , and bμi is transverse to pμ
i . The elements Γ5 and Γ6

are transverse in all indices. The dressing functions Ai, Bi,
Ci, S, Fi, and H are scalar functions of the arguments p2

1,
p2
2, and p2

3, and A1, A2, and A3 are even permutations of
each other.
To extract a Bose-antisymmetric tensor basis from

Eq. (66), one has to work out the permutation-group
multiplets for the dressing functions. Ai, Ci, and Fi are
symmetric in their first two momentum arguments; hence,
they produce symmetric singlets S and doublets of typeD1.
The dressing function Bi is antisymmetric in its first
two arguments, so it generates an antisymmetric singlet
A and a doublet of typeD2. S is fully antisymmetric, andH
is fully symmetric in all arguments. This will produce a
tensor decomposition of similar structure as in Table V. For
example, if we use A3 as the permutation-group seed, we
obtain the following Lorentz-invariant dressing functions
via Eq. (34):

SðA3Þ ¼ 2ðA1 þ A2 þ A3Þ;
AðA3Þ ¼ 0;

D1ðA3Þ ¼
�
a1ðA3Þ
s1ðA3Þ

�
¼

�
2ðA1 − A2Þ

− 2ffiffi
3

p ðA1 þ A2 − 2A3Þ
�
;

D2ðA3Þ ¼ 0:

Upon inverting these relations, the Ball–Chiu structure Γ1

can be written as

Γ1 ¼
1

6
SðA3ÞA0ðψ1Þ þ

1

4
D1ðA3Þ ×D2

0ðψ1Þ; (68)

where the tensor structuresA0ðψ1Þ andD2
0ðψ1Þ are those in

Table V. One can further expandD1ðA3Þ in terms of the two
momentum doublets

D ¼
�
a
s

�
and D �D according to Eq. (43), so that its two dressing
functions a1ðA3Þ and s1ðA3Þ become linear combinations
of two fully symmetric singlet functions:

D1ðA3Þ ¼ S0ðA3ÞDþ S″ðA3ÞD �D: (69)

The Ball–Chiu structure Γ1 then accommodates three
independent Bose-symmetric dressing functions SðA3Þ,
S0ðA3Þ, and S″ðA3Þ with corresponding tensor structures

A0ðψ1Þ; D×D2
0ðψ1Þ; ðD�DÞ×D2

0ðψ1Þ; (70)

which are just those in Eq. (58).
Similarly, the the Ball–Chiu structure Γ2 takes the form

Γ2 ¼
1

6
AðB3ÞS0ðψ6Þ −

1

4
D2ðB3Þ ×D1

0ðψ6Þ; (71)

and the remaining relations for Γ3…Γ6 are collected in
Appendix B.

IV. RESULTS AND DISCUSSION

Let us briefly recapitulate our setup. We solved the
truncated three-gluon DSE, the symmetrized version of
Eq. (1) and Fig. 2. We used DSE solutions for the ghost and
gluon propagators (Sec. II B), a bare ghost-gluon vertex,
and a model for the four-gluon vertex (Sec. II C) as input.
The scaling and decoupling solutions are continuously
connected via the propagator input; for presentation pur-
poses we will restrict ourselves to the decoupling set 4
(Table IV), which is close to the extreme decoupling case. It
is sufficient to retain the transverse projection of the vertex,
Eq. (64), which depends on four Lorentz-invariant dressing
functions FiðS0;S1;S2Þ. The momentum variables are
discussed in Sec. III C. To provide instructive figures that
can accommodate sign changes and IR divergences, we
plot sinh−1 Fi instead of Fi (we recall that sinh−1 x ≈ x for
x≲ 1, whereas it grows logarithmically for large jxj).

A. Symmetric momentum configuration

We start with the symmetric momentum configuration
a ¼ s ¼ 0, which corresponds to p2

1 ¼ p2
2 ¼ p2

3. Figure 8
shows the various contributions to the dominant tree-level
dressing function F1 as a function of the symmetric
variable S0. The curves correspond to the diagrams in
Fig. 2: tree level, ghost loop, gluon loop, and the two
swordfish diagrams, which add up to the final result given
by the solid line. The different signs of the individual
contributions already indicate that the system is subject to
delicate cancellation effects, which makes it a numerically
highly nontrivial problem.
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For large momenta, F1 approaches the renormalization
constant Z1 ¼ Z3= ~Z3, which is fixed from the propagator
input. The diagram that drives the IR (but is otherwise
negligible) is the negative ghost-loop contribution. It
diverges with −3κ in the scaling case [63,64] and loga-
rithmically in the decoupling solution [27,28]. Concerning
the remaining diagrams, the gluon loop is positive and
produces a bump in the midmomentum region. This bump
is partially cancelled by the negative swordfish diagrams
which overwhelm the gluon loop and shift the total sum
further in the negative direction, thereby producing a zero
crossing in F1. Remarkably, the zero crossing does not
happen in the deep IR but rather at a hadronic
scale S0 ∼ 1 GeV2.
A sign change for F1 has been anticipated in lattice

calculations [17] and found in recent continuum studies
[27–29,65]. However, all these works predict a zero cross-
ing deep in the IR region. This can happen for various
reasons; from Fig. 8 it is clear that a tree-level plus
ghost-loop only calculation will produce a sign change
at very low momenta. As we will discuss in more detail in
Sec. IV D, a certain choice of renormalization-group
improved vertices can also have a sizeable impact on the
location of the zero crossing.
We have checked that the choice of projector that has

been used in lattice studies has no impact on our result. This
is illustrated in the left panel of Fig. 11, where the tree-level
dressing F1 is contrasted with the ratio G1. The latter is
obtained from projecting the three-gluon vertex with the
tree-level tensor structure and dividing again by the tree-
level overlap. G1 is the quantity that is usually extracted
from lattice calculations of the vertex. For a direct com-
parison, we plot both functions over the momentum
variable p ¼ ffiffiffiffiffiffiffiffi

2S0

p
because of the factor 1=6 in our

definition of S0, Eq. (50). The figure shows that both
form factors are very similar and their zero crossings
happen at the same momentum scale p ∼ 1.1…1.4 GeV.

This is essentially due to the smallness of the remaining
form factors, which we will discuss below. Again, the
behavior in Fig. 11 deviates from lattice results which
exhibit a zero at much lower momenta. Nevertheless, lattice
data on the three-gluon vertex are so far only available for
two-color QCD; it remains to be seen whether forthcoming
SUð3Þ results will confirm such a behavior or not.
It is worthwhile to note that both scaling and decoupling

solutions are essentially identical except for the deep IR
region. This may not come as a surprise since already the
propagators show the same behavior, but it nurtures the
speculation whether the distinction between scaling and
decoupling has any measurable physical relevance. In any
case, the zero of F1 at S0 ∼ 1 GeV2 is a robust feature in
both scenarios. Of course one cannot exclude the possibil-
ity that the DSE ingredients which are currently modelled
(the four-gluon vertex) or discarded (the last row in Fig. 1)
can have a quantitative impact on the location of the sign
change.

B. Angular dependence

In the left panel of Fig. 9, we show all four dressing
functions for scaling, contrasted with the leading compo-
nent in decoupling. The angular dependence is represented
by the shaded regions and is significantly larger in the F2,
F3, and F4 components. However, these components are
themselves suppressed when compared to the tree-level
dressing; the next relevant component is F3, which con-
tributes at the ∼10% level. These results justify a restriction
to the tree-level structure for modelling purposes. It is also
evident that, for scaling, all components feature the same
scaling behavior in the IR.
In the right-panel of Fig. 9, we focus upon the subleading

components in the decoupling scenario. The scaling results
are practically identical except in the IR S0 ≲ ð0.5 GeVÞ2
where they begin to deviate and eventually diverge. Note
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FIG. 8 (color online). Individual contributions to the tree-level dressing F1 for scaling (left panel) and decoupling (right panel). The
names of the individual contributions follow from Eq. (1).
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the strong angular dependence in the dressing functions,
particularly in the UV, for which the correct description
is essential to obtain numerically stable solutions. It is
produced by a strong enhancement at the three soft

kinematic points discussed earlier in connection with
Figs. 6 and 7.
This behavior is apparent in Fig. 10, which shows

all four Fi in the ða; sÞ plane at a fixed value of

FIG. 10 (color online). Angular dependence of the Fi in the ða; sÞ plane at fixed S0 ¼ 102 GeV2. The soft-divergence enhancements
in F2, F3, and F4 can be clearly seen, whereas in F1 the angular dependence is essentially flat.
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FIG. 9 (color online). Angular dependence (indicated by bands) of Fi as a function of S0. In the left panel, we contrast scaling with
decoupling, where the former features a stronger angular dependence in the IR. In the right panel, we show the angular dependence of F2

to F4 for decoupling.
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S0 ¼ 102 GeV2. We exemplify decoupling set 4, but at this
scale the dressing functions are essentially identical for
scaling and decoupling solutions. As anticipated in
Sec. III C, the dressing functions recover the rotationally
symmetric profiles illustrated in Fig. 7. Close to the sym-
metric point, the subleading dressing functions are suppressed
compared to F1, whereas for larger radii their magnitudes
change. While F1 shows almost no angular dependence, the
other functions exhibit a soft gluon enhancement in the three
corners where p2

i ¼ 0⇔ S2 ¼ −1. The qualitative behavior
is similar if S0 is taken to be in the midmomentum region,
although the peaks become sharper in the scaling case.
Whether the subleading dressing functions diverge or not
is numerically difficult to resolve; soft singularities are
expected to happen at least in the scaling case.
We found that these features can also have an impact on

the stability of the DSE iteration. Without accounting
for the Bose symmetry of the phase space, which is
manifest in the ða; sÞ plane, soft singularities can show
up in seemingly random places and complicate the numeri-
cal solution process. To resolve this we defined our grid
directly in the variables S0, a, and s. It is convenient to
express a and s in cylindrical coordinates and perform a
Chebyshev expansion in the angular variable. A fully
symmetric dressing function is thus symmetric within
any slice of 120°, and the pattern is repeated by going
around the circle once. Hence, it is sufficient to calculate
only one-third of the ða; sÞ plane.

C. Running coupling from three-gluon vertex

Figure 11 shows the running couplings from the ghost-
gluon and three-gluon vertices, defined as

αghðp2Þ¼αðμ2ÞZðp2ÞG2ðp2Þ;

α3gðp2Þ¼αðμ2ÞZ3ðp2ÞF2
1ðp2Þ; αðμ2Þ¼g2ðμ2Þ

4π
:

(72)

They are renormalization-group invariant and scale with
an inverse logarithm in the UV, as can be inferred from
Eqs. (10)–(12) and Table III. From the definition of
α3gðp2Þ, it is clear that the zero crossing in F1 will be
inherited by the running coupling, which is positive due to
its quadratic dependence on F1. Both couplings agree in the
UV, but their nonperturbative shape is quite different,
which underlines the fact that there is no unique “non-
perturbative running coupling.”
In fact, one can construct many renormalization-group-

invariant combinations of Z, G, and higher n-point func-
tions which satisfy the same properties:

αgh ¼
g2

4π
ZðGΓghÞ2; (73)

αðnÞ3g ¼ g2

4π
ZðGΓghÞ2

�
ZΓ3g

GΓgh

�
n
; (74)

αðnÞ4g ¼ g2

4π
ZðGΓghÞ2

�
ZΓ4g

ðGΓghÞ2
�
n
. (75)

Γgh, Γ3g, and Γ4g denote the tree-level dressing functions
of the ghost-gluon, three-gluon, and four-gluon vertices,
respectively. From Eqs. (10)–(11), their renormalization-
group invariance also holds for ~Z1 ≠ 1, and they all have
the same UV scaling with an inverse logarithm. Hence, they
are all equally valid definitions of nonperturbative running
couplings, although their shape in the small-momentum
region will be very different. In the IR they all become
constant in the scaling case; we find αð2Þ3g ≃ 0.0016 (see
Fig. 11). For decoupling they vanish as αgh ∼ p2 or α3g,

α4g ∼ ðp2Þnþ1. Usually αgh, α
ð2Þ
3g , and α

ð1Þ
4g are quoted; for the

latter two, these choices of n eliminate the dependence on
the ghost-gluon vertex dressing.
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FIG. 11 (color online). Left panel: Tree-level dressing function F1 vs the ratioG1 that is frequently used to present lattice results. Right
panel: The running coupling of the three-gluon vertex, Eq. (74) with n ¼ 2, for both scaling- and decoupling-type scenarios, together
with that of the ghost-gluon vertex.
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D. Model and truncation dependence

It is nontrivial to reproduce the correct anomalous
dimensions in the UV at the level of one-loop diagrams
within the DSE framework, since in each diagram one
vertex is always bare. It is then the higher-order diagrams
(in particular those at two loop) that provide this consis-
tency. A commonly used technique is to effectively dress
each bare vertex with a “renormalization group (RG)
improvement.” The idea is to construct combinations of
the ghost and gluon propagator dressings, G and Z, such
that the correct anomalous dimensions of the vertex are
reproduced together with being a finite constant in the IR.
That is, following Refs. [19,29] one could introduce a
momentum dependence in the renormalization constants
Z1 and Z4,

Z1 → Za1Ga2 ; Z4 → Zb1Gb2 ; (76)

where a1 ¼ 0, a2 ¼ −17=9, b1 ¼ 0, b2 ¼ −8=9 for
decoupling, and for scaling a1 ¼ −1 − 3δ, a2 ¼ 2a1,
b1 ¼ −1 − 4δ, b2 ¼ 2b1 with δ ¼ −9=44.
In Fig. 12 we show the functional form of this RG

improvement for various forms of propagator input. At
large perturbative momentum, as expected, the deviation is
small. However, it modifies the IR and midmomentum
regions far too strongly. Since these RG improved vertices
feature in the gluon-loop and swordfish diagrams only, they
provide a suppression therein with respect to the ghost-loop
diagram; essentially they provide a momentum-dependent
reweighting of the contributions, eventually leading back to
ghost-loop dominance. Moreover, since these dressings
apply to only one external leg, they explicitly break Bose
symmetry; in our system, however, this is mitigated
through symmetrization of the DSE.
In Fig. 13 we show a comparison of the leading F1

component for scaling and decoupling, both with and
without the RG improvement. The IR and far UV are
essentially the same since one region is dominated by
perturbative effects, while the other is determined by ghost
dominance, which is independent of the RG dressings.
However, we see a very strong dependence in the mid-
momentum (owing to the effective momentum-dependent
reweighting), which changes the location of the zero
crossing by between 1 and 2 orders of magnitude in S0.
Without RG improvement, the location of the zero crossing
is very similar for both scaling and decoupling. However,
with the RG improvement, an order of magnitude shift is
introduced; this suggests that the use of Eq. (76) introduces
an additional model uncertainty.
Another type of model dependence comes from the four-

gluon vertex. The bands in Fig. 13 represent the parametric
dependence of our four-gluon vertex dressing discussed in
connection with Eq. (25) and shown in Fig. 4. We chose our
model so that the deviation between scaling and decoupling

10-4 10-3 10-2 10-1 100 101 102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Z
i

p2 (GeV2)

ΓRGI
3g

ΓRGI
4g

FIG. 12 (color online). The spread in the RG improved vertices
for scaling- vs decoupling-type solutions.
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starts to set in at a momentum scale ≈10 GeV2, which is
relatively high compared to the propagators where the
difference appears only much further down in the IR.
Therefore, the spread in F1 between scaling and decoupling
in the vicinity of the zero crossing is essentially due to the
difference in the four-gluon vertex model. This makes clear
that the location of the zero crossing will certainly depend
on the truncation, i.e., the (full) four-gluon vertex and
neglected diagrams in the DSE. Still, both model versions
in Fig. 4 lead to a sign change at S0 ∼ 1 GeV2, which is a
robust feature within our present truncation.
We note that a dressed four-gluon vertex (instead of a

bare one) also turned out to be essential for the stability of
the DSE solution. We found during the course of these
investigations that taking the four-gluon vertex to be bare
throughout leads to nonconvergence of the DSE for the
three-gluon vertex. The nonlinear integral equations were
solved using standard iteration in combination with under-
relaxation; to confirm the nonconvergence, we further
employed Newton’s iterative method. Neither techniques
led to stable solutions. We also searched for solutions in
which the three-gluon vertex features no zero crossing,
without success. This indicates that the dressing of the four-
gluon vertex is important, and moreover that it must be
sufficiently strong in order to provide the needed stability
into the system. Our vertex model in Fig. 4 provides that
strength. At this stage, it is hard to judge what impact the
missing diagrams have on the system; certainly they play a
role in further stabilizing the equations but may have a
material impact on the midmomentum region and hence the
location of the zero crossing.
Our propagator input is consistent with solutions of the

ghost and gluon propagator in which two-loop terms are
neglected. This has the effect that the bump in the gluon
propagator does not have the same strength as seen on the
lattice. To test whether this has a material impact on our
truncation, we enhanced the gluon propagator by multi-
plication with the function

1þ x expð−xÞ; (77)

where x ¼ p2=Λ2 and Λ is the same scale as obtained for
the propagator fits. This increases the peak in the running
coupling of the ghost-gluon vertex by 1=3 but has no
discernible impact on the location of the zero crossing of
the three-gluon vertex. This leads us to believe that it is
indeed the details of the four-gluon vertex and missing
contributions that are of import.
We also explored the three particle-irreducible system

[66] in which all vertices are dressed, but the four-gluon
vertex is always bare, and no two-loop terms appear.
We found that this system was unstable without a small
enhancement of Z4. Qualitatively, however, the solutions
are similar to the 1PI system with only small modifications
in the IR.

V. CONCLUSIONS AND OUTLOOK

We provided the first calculation of the three-gluon
vertex within the framework of the Dyson–Schwinger
equations in which the full covariant structure of the vertex
is back-coupled. They scale as expected in the uniform IR
limit (logarithmically or with a power) in both decoupling
and scaling. In the subleading components, we found
enhancements due to soft-collinear divergences.
The presence of a zero crossing in the leading component

was confirmed. The DSE solution shifts its value from the
deep infrared to a scale ∼1 GeV; however, its location is
dependent upon the modelling of the four-gluon vertex and
missing components. The presence of a zero crossing may
have a tangible impact on hadron physics, in particular
bound-state studies, dependent on whether it occurs at a
high enough scale to be relevant. Here, excited states would
be more sensitive; this can be exemplified through Bethe–
Salpeter studies beyond the rainbow ladder featuring a
dressed quark-gluon vertex [31]. We anticipate that future
lattice calculations for SUð3Þ may provide an answer.
It would be interesting to incorporate unquenching

effects into this system, since they will obviously have a
qualitative impact. Along these lines, large-Nf calculations
and applications to Technicolor within the Dyson–
Schwinger framework can be explored.
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APPENDIX A: ORTHONORMAL TENSOR BASIS

In Sec. III D we constructed a tensor basis for the three-
gluon vertex that implements the features of transversality
and Bose symmetry. However, for the numerical solution
of the three-gluon vertex DSE, it is advantageous to work
with an orthonormal tensor basis (even if it is not
necessarily Bose symmetric) since this reduces the numeri-
cal effort considerably. We will detail its construction in the
following.
The three-gluon vertex has 14 basis elements in total.

The simplest construction principle for an orthonormal
basis starts with the momenta k and Q defined in Eq. (27),
or equivalently k� ¼ k�Q=2, so that

k− ¼ −p1; kþ ¼ p2; Q ¼ −p3: (A1)

We can orthonormalize k and Q by defining
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dμ ¼ Q̂μ; sμ ¼ bkTμ; (A2)

where kμT ¼ Tμν
Q kν is the transverse projection of k,

with Tμν
Q ¼ δμν − Q̂μQ̂ν, and a hat denotes a normalized

4-momentum. In the frame where

Q ¼
ffiffiffiffiffiffi
Q2

p
0BBB@

0

0

0

1

1CCCA; k ¼
ffiffiffiffiffi
k2

p 0BBB@
0

0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p

z

1CCCA; (A3)

d and s are then simply the unit vectors in the 4 and 3
directions, respectively.
If we temporarily define

Tμν
1 ¼ δμν; Tμν

4 ¼ sμdν þ dμsν;

Tμν
2 ¼ sμsν; Tμν

5 ¼ sμdν − dμsν;

Tμν
3 ¼ dμdν; (A4)

we can write down a complete 14-dimensional basis by
collecting all possible combinations of s, d, and the
Kronecker delta:

fsρ; dρg × fTμν
1 ;Tμν

2 ;Tμν
3 ;Tμν

4 ;Tμν
5 g; (A5)

fsμ; dμg × δρν; fsν; dνg × δρμ: (A6)

The next step is to construct a basis in terms of s and d
with definite transversality properties. Since in the Landau
gauge any internal or external gluon leg of the vertex will
always be contracted with a transverse gluon propagator, it
is sufficient to work with those basis elements that are
transverse to all momenta kμ−, kνþ, and Qρ. If we introduce
the auxiliary variables

a ¼
ffiffiffiffiffi
3ξ

p
z; b ¼

ffiffiffiffiffi
3ξ

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; (A7)

we can write the momenta as

kμ� ¼ ffiffi
t

p ðbsμ þ ða� 1ÞdμÞ; Qμ ¼ 2
ffiffi
t

p
dμ: (A8)

The elements with dρ in Eq. (A5) are longitudinal with
respect to Qρ, whereas those with sρ are transverse. We can
reexpress the five elements in Eq. (A4) in terms of tensor
structures which have also definite transversality properties
with respect to kμ− and kνþ. These have been worked out in
Ref. [67] in the context of nucleon Compton scattering, and
they read3

Y1 ¼
1ffiffiffi
2

p ðT1 − T2 − T3Þ;

Y2 ¼
1ffiffiffiffiffiffiffiffiffiffi
n1n2

p ½ð1 − a2ÞT2 − b2T3 þ abT4 − bT5�;

Y3 ¼
1ffiffiffiffiffiffiffiffiffiffi
n1n2

p ½ð1 − a2ÞT3 − b2T2 − abT4 − bT5�;

Y4 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2n1n2
p ½ð1 − a2 þ b2ÞT4 − 2abðT2 − T3Þ�;

Y5 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2n1n2
p ½ð1 − a2 − b2ÞT5 þ 2bðT2 þ T3Þ�:

Here we omitted the Lorentz indices and abbreviated

n1 ¼ 1þ a2 þ b2; n2 ¼ n1 −
4a2

n1
: (A9)

Y1 and Y2 are completely transverse in the indices μ and ν;
Y3 is completely longitudinal, and the remaining ones are
mixed. Thus, from Eq. (A5) we get only two fully trans-
verse elements: sρYμν

1 and sρYμν
2 .

To make the transversality properties of the remaining
elements in Eq. (A6) manifest, it is helpful to rewrite sμ and
dμ in terms of kμ� and the momenta sμ� ≔ Tμα

k�s
α which are

transverse to kμ�. If we also normalize them, we arrive at

cs�μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 2a

p ½ða� 1Þsμ − bdμ�;

ck�μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 2a

p ½bsμ þ ða� 1Þdμ�: (A10)

If we further replace the Kronecker deltas in Eq. (A6) by
δρν → Yρν

1 and δρμ → Yρμ
1 (which are transverse to both s

and d), we arrive at the following complete basis:

ρμνρ1 ¼ Yμν
1 sρ ρμνρ2 ¼ Yμν

2 sρ ρμνρ3 ¼ Yρν
1 bs−μ

ρμνρ4 ¼ Yρμ
1 csþν ρμνρ5 ¼ Yμν

1 dρ ρμνρ6 ¼ Yμν
2 dρ

ρμνρ7 ¼ Yρν
1
ck−μ ρμνρ8 ¼ Yρμ

1
ckþν ρμνρ9 ¼ Yμν

3 sρ

ρμνρ10 ¼ Yμν
4 sρ ρμνρ11 ¼ Yμν

5 sρ ρμνρ12 ¼ Yμν
3 dρ

ρμνρ13 ¼ Yμν
4 dρ ρμνρ14 ¼ Yμν

5 dρ: (A11)

It is already orthonormal because the basis elements satisfy
the orthogonality relation

ρμνρi ρμνρj ¼ δij: (A12)

Only the first four elements are fully transverse; applying
three transverse projectors leaves them invariant while
eliminating all the remaining ones:

3In Ref. [67], Y1…Y5 correspond to Y1, Y3, Y10, Y11, and Y12

in Eqs. (60), (D11), and below Eq. (D12).
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Tμα
k−
Tνβ
kþT

ργ
Q ρ

αβγ
i ¼ ρμνρi i ≤ 4; (A13)

Tμα
k−
Tνβ
kþT

ργ
Q ρ

αβγ
i ¼ 0 i > 4: (A14)

Therefore, it is sufficient to work with these first four
alone since they carry the complete dynamics. The
decoupling of the three-gluon vertex DSE into transverse
and longitudinal equations is manifest with this basis
choice. The ρμνρi do not have definite Bose symmetry, and
neither do their dressing functions. However, this is
irrelevant for the numerical solution of the DSE as long
as the full ða; sÞ plane from Fig. 7 is back-coupled during
the iteration. The dressing functions Fi attached to the τi⊥
of Eq. (63) are then obtained from those of the ρj above
through rotation.

APPENDIX B: RELATION WITH
BALL–CHIU BASIS

In this appendix we return to the relation between the
Ball–Chiu basis and Table V. The result for Γ1 has been
given in Eq. (68); here we also collect the remaining Ball–
Chiu structures. To shorten the notation, we abbreviate the
tensor basis multiplets of Table V by

A1;D1; A2; S3;D3; A4;D4; S5; S6;D6

and those for the Ball–Chiu dressing functions constructed
from Eq. (66) by

SA;DA; AB;DB; SC;DC; SF;DF;

whereas S is already antisymmetric and H is symmetric. In
the following, S0 and

D ¼
�
a
s

�
are the usual momentum multiplets, where we use the
additional shorthand ~S ¼ D ·D − 1 and ~D ¼ DþD �D.
Then we obtain

Γ1 ¼
1

6
SAA1 þ

1

4
DA ×D1;

Γ2 ¼
1

6
ABS6 −

1

4
DB ×D6;

Γ3 ¼
1

8
SC

�
A2 −

1

3
A4

�
−

1

16
DC × ðD4 −

ffiffiffi
3

p
D3Þ

−
1

6
S0ðSC þ

ffiffiffi
3

p
D ·DCÞA1

−
1

4
S0

�
DC −D �DC þ 2ffiffiffi

3
p DSC

�
×D1; (B1)

Γ4 ¼−
1

4
SðS3þS5Þ;

Γ5 ¼
1

8
S0

��
SF −

ffiffiffi
3

p

2
D ·DF

��
A2−

1

3
A4

�
þ 1

2
D×DFð3S5−S3Þ−

�
DSF −

ffiffiffi
3

p

2
DF

�
×D3

−
1ffiffiffi
3

p
�
DSF þ

ffiffiffi
3

p

2
DF þ

ffiffiffi
3

p
D �DF

�
×D4

�
þ 1

4
S2
0

�
2

3

�
~SSF −

ffiffiffi
3

p

2
~D ·DF

�
A1þ

�
~SDF þ

1

2
~D �DF −

1ffiffiffi
3

p ~DSF

�
×D1

þð ~D×DFÞS6þ
�
~DSF þ

ffiffiffi
3

p

2
~D �DF

�
×D6

�
;

Γ6 ¼H

�
S0A1þ

1

4
ðA2þA4Þ−

ffiffiffi
3

p

2
S0D× ðD1þ

ffiffiffi
3

p
D6Þ

�
: (B2)

We recall that only the tensor structures A1, D1, and A2

will survive a full transverse projection with three gluon
propagators. This entails that the Ball–Chiu structures Γ2

and Γ4 vanish upon such a projection; the four dressing
functions they contain do not carry any physics (in the
Landau gauge). The six functions in Γ1 and Γ3 are

constrained by the STI, whereas the four functions in Γ5

and Γ6 are fully transverse and subject to analyticity
constraints. These are enforced by the projectors in
Eq. (67), which are free of kinematic singularities. After
a transverse projection, all 10 independent functions
collapse into the four structures in Eq. (63).
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