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We show that the Nielsen-Olesen instability of the Savvidy vacuum with a homogeneous chromo-
magnetic condensation disappears in the framework of the functional renormalization group. This result
follows from our observations: (i) the vanishing imaginary part of the effective average action is realized for
arbitrary infrared cutoff as a novel fixed point solution of the flow equation for the complex-valued
effective average action and (ii) an approximate analytical solution for the effective average action is
obtained without the pure imaginary part for large infrared cutoff. This result suggests that there exists a
physical mechanism for maintaining the stability or staying on the fixed point even for sufficiently small
infrared cutoff. We argue that dynamical gluon mass generation (related to two-gluon bound states
identified with glueballs) occurs due to the Becchi-Rouet-Stora-Tyutin-invariant vacuum condensate of
mass dimension two without causing instability.
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I. INTRODUCTION

The dual superconductor picture for the Yang-Mills
theory [1] vacuum is an attractive hypothesis for explaining
quark confinement. It has been intensively investigated
as a promising mechanism for quark confinement up to
today since the early proposal in the 1970s by Nambu,
Mandelstam, ’t Hooft, and Polyakov [2]. In an ordinary
(type II) superconductor, electric charges condense into
Cooper pairs. As a result, magnetic flux is squeezed into
tubes. In the dual superconductor picture of the Yang-Mills
theory vacuum, chromomagnetic monopoles are to be
condensed into dual Cooper pairs and the chromoelectric
flux connecting color charges is to be squeezed into tubes
forming the hadron string. Then the nonzero string tension
plays the role of the constant of proportionality in the linear
potential realizing quark confinement. The key ingredients
of this picture are the existence of chromomagnetic
monopole condensation and the dual Meissner effect.
There are two methods available for defining the

chromomagnetic monopole in the Yang-Mills theory:
(1) Abelian projection (by ’ t Hooft [3]): partial gauge

fixing of the gauge group G to the maximal torus
subgroup: G → Uð1Þr;

(2) field decomposition (by Cho [4], Duan, and Ge [5],
Faddeev and Niemi [6], Shabanov [7], Kondo,
Murakami, and Shinohara [8–10]): gauge-invariant
decomposition of the gluon field for separating the
dominant mode for confinement.

It is very important to answer the question of how to define
the gauge-invariant chromomagnetic monopole in the
Yang-Mills gauge theorywithout scalar fields, which should
be discriminated from the ’t Hooft-Polyakov magnetic

monopole in the Georgi-Glashow model. However, the
details of this issue will be discussed elsewhere, since it
is not the main issue to be discussed in this paper.
For the dual superconductor picture for the Yang-Mills

theory vacuum to be true, the chromomagnetic monopole
condensation must give a more stable vacuum than the
perturbative one. In view of this, Savvidy [11] has argued
based on the general analysis of the renormalization group
equation that the dynamical generation of the chromomag-
netic field should occur in the Yang-Mills theory, i.e., a
non-Abelian gauge theory with asymptotic freedom.
Indeed, Savvidy has shown that the vacuum with a non-
vanishing homogeneous chromomagnetic field strength,
the so-called Savvidy vacuum, has lower energy density
than the perturbative vacuum with zero chromomagnetic
field. The one-loop effective potential VðHÞ of the homo-
geneous chromomagnetic field H obtained in [11] for
SUð2Þ Yang-Mills theory is

VSavvidyðHÞ ¼ 1

2
H2 −
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16π2
1

2
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with β0 ≔ − 22
3
< 0, and a constant c. Then the effective

potential VðHÞ has an absolute minimum at H ¼ H0 ≠ 0
away from H ¼ 0.
Immediately after his proposal, however, N.K.Nielsen

and Olesen [12] have pointed out that the effective potential
VðHÞ of the homogeneous chromomagnetic field H, when
calculated carefully at one-loop level in the perturbation
theory under the background gauge, develops an imaginary
part in the one-loop effective potential:
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in addition to the real part which agrees exactly with the
prediction of the renormalization group equation, i.e., the
Savvidy’s result. This is called the Nielsen-Olesen (NO)
instability of the Savvidy vacuum. The presence of the pure
imaginary part implies that the Savvidy vacuum gets
unstable due to gluon–antigluon pair annihilation.
This result is easily understood based on the following

observation. In the homogeneous external chromomagnetic
field H, the energy eigenvalue En of the massless (off-
diagonal) gluons with the spin S ¼ 1 (Sz ¼ �1) is given by

E�
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ 2gHðnþ 1=2Þ þ 2gHSz

q

ðn ¼ 0; 1; 2; � � �Þ; (3)

where p⊥ denotes the momentum in those space-time
directions that are not affected by the magnetic field and
the index n is a discrete quantum number that labels the
Landau levels. Then the NO instability is understood as
originating from the tachyon modewith n ¼ 0 and Sz ¼ −1
(or the lowest Landau level for the gluon with spin one
antiparallel to the external chromomagnetic field), since

E−
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ − gH

q
(4)

becomes pure imaginary when p2⊥ < gH. In other words,
the NO instability of the Savvidy vacuum with homo-
geneous chromomagnetic condensation is due to the
existence of the tachyon mode corresponding to the lowest
Landau level which is realized in the homogeneous
chromomagnetic field.
It is instructive to compare the Yang-Mills theory with

QED to understand the NO instability correctly, since the
instability of QED (an Abelian gauge theory without
asymptotic freedom) under the applied electric field is
well known. In QED, the nonzero magnetic field does not
lower the vacuum energy and hence no magnetic con-
densation occurs, while the electric field causes electron–
positron pair creation, destabilizing the QED vacuum. The
chromoelectric field destabilizes the vacuum also in Yang-
Mills theory. Therefore, the instability of the Yang-Mills
vacuum under the chromomagnetic field is quite different
from the instability of QED.
Inside each such domain there is a nontrivial chromo-

magnetic field and the tachyon mode does not appear in the
domain supporting p2⊥ > gH. Away to circumvent the NO
instability is to introduce the magnetic domains (domain
structure) with a finite extension into the vacuum [13]. The
physical vacuum in Yang-Mills theory is split into an
infinite number of domains with macroscopic extensions.
Inside each such domain there is a nontrivial configuration
of the chromomagnetic field and the tachyon mode does not
appear in the domain supporting p2⊥ > gH. This resolution
for the NO instability of Yang-Mills theory is called the
Copenhagen vacuum or spaghetti vacuum.

What type of vacuum is allowed and preferred in the
Yang-Mills theory is an important question related to the
physical picture of quark confinement. We can say that
the NO instability is an infrared problem in the non-Abelian
gauge theory. The domain structure introduces an infrared
cutoff that prevents the momenta from taking the smaller
values causing the instability. However, it is quite compli-
cated to work out the dynamics of the Yang-Mills theory on
the concrete inhomogeneous background. Therefore, there
has been a lot of work trying to overcome the NO instability
for the homogeneous chromomagnetic field [14–33].
In view of these, we reexamine the NO instability in the

SUð2Þ Yang-Mills theory1 in the framework of the func-
tional renormalization group (FRG) [35,36] as a realization
of the Wilsonian renormalization group [37]. The FRG
enables us to examine the effects caused by changing the
infrared cutoff in a systematic way.
In this paper we follow the methods developed for FRG

in [38–41]. We point out the following results.
(1) The Nielsen-Olesen instability in the effective po-

tential VðHÞ for the homogeneous chromomagnetic
field H, i.e., the imaginary part Im VðHÞ of VðHÞ,
disappears (or is absent from the beginning) in the
framework of the FRG. (Therefore, the Nielsen-
Olesen instability is an artifact of the one-loop
calculation in the perturbation theory and it dis-
appears in the nonperturbative framework beyond
the perturbation theory.)

(2) However, this result does not necessarily guarantee
the automatic existence of the nontrivial homo-
geneous chromomagnetic field H0 ≠ 0 as the mini-
mum of the effective potential VðHÞ, such that

VðH0Þ < VðH ¼ 0Þ ¼ 0: (5)

(Therefore, the absence of the Nielsen-Olesen in-
stability and the existence of the nontrivial minimum
for the homogeneous chromomagnetic field in the
effective potential are different problems to be
considered independently.)2

(3) As a physical mechanism for maintaining the sta-
bility even for the small infrared cutoff, we propose

1In order to study the true QCD vacuum, we must discuss the
SUð3Þ gaugegroup.However, theSUð3Þ case ismore difficult from
a technical viewpoint than the SUð2Þ case. In this paper, therefore,
we discuss the SUð2Þ toy model and postpone the physical SUð3Þ
case in a subsequent paper. It should be remarked that the physically
interesting case of the SUð3Þ gauge group cannot be obtained
by a simple group-theoretical extension of the SUð2Þ case
and that the different results could be obtained in the case of
SUð3Þ, which is suggested from a formal consideration [34].

2This question was studied in [41] giving the answer in the
affirmative by using the self-dual background, which does not
suffer from the instability from the beginning. This work is quite
interesting but does not answer other questions raised here for
other choices of the background. See Conclusion and Discussion.
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the dynamical mass generation for the off-diagonal
gluons (and off-diagonal ghosts), which is related to
the Becchi-Rouet-Stora-Tyutin (BRST)-invariant
vacuum condensation of mass-dimension two
[42–45]. This gives a consistent picture compatible
with the absence of the instability. (This leads to the
Abelian dominance [3,46]: in the string tension
extracted from the Wilson loop average [47] and
exponential falloff of the off-diagonal gluon propa-
gators [48–51] as well as the magnetic monopole
dominance [52] in the Maximal Abelian gauge [53].)

This paper is organized as follows. In Sec. II, we
consider the complex-valued flow equation for the effective
average action and decompose it into the real and imagi-
nary parts. We show that the flow equation has a solution
with vanishing imaginary part of the effective average
action for any value of the infrared cutoff Λ, corresponding
to the fixed point.
In Sec. III, we derive explicitly the flow equation for the

effective average action in the chromomagnetic background.
As an infrared regulator, we use themass type infrared cutoff
function to give a closed form for the flow equation. By
removing the ultraviolet divergence due to this choice of the
infrared function, we obtain a flow equation with the
infrared cutoff that is free from the ultraviolet divergence.
In Sec. IV, we show the absence of the NO instability,

i.e., vanishing of the imaginary part of the effective average
action. This is done based on an approximate solution
obtained by solving the flow equation for large values of
the infrared cutoff Λ.
In Sec. V, we discuss the mass generation for the off-

diagonal gluons and ghosts due to the vacuum condensa-
tion of mass-dimension two, which is BRST invariant.
Moreover, we argue the relationship between stability and
mass generation.
The final section is devoted to conclusions and

discussions.

II. COMPLEX-VALUED FLOW EQUATION

The effective average action ΓΛ with the infrared cutoff
Λ is obtained by solving the flow equation [35]

∂tΓΛ¼
1

2
STr½ðΓð2Þ

Λ þRΛÞ−1 ·∂tRΛ�; ∂t≔Λ
d
dΛ

; (6)

where STr denotes the “supertrace” introduced for writing
both commuting fields (e.g., gluons) and anticommuting
fields (e.g., quarks and the Faddeev-Popov ghosts), RΦ

Λ is
the infrared cutoff function for the field Φ introduced as the
infrared regulator term in the form

Z
Φ†RΦ

ΛΦ; (7)

and Γð2Þ
Λ denotes the second derivatives of ΓΛ with respect

to the field variables Φ,

ðΓð2Þ
Λ ÞΦ†Φ ¼

~δ
δΦ† ΓΛ

δ⃖

δΦ
; (8)

corresponding to the inverse exact propagator at the
scale Λ. The ordinary effective action Γ as the generating
functional of the one-particle irreducible vertex functions is
obtained in the limit Λ↓0: Γ ¼ limΛ↓0ΓΛ.
We consider the complex-valued effective average

action ΓΛ ¼ ΓR
Λ þ iΓI

Λ which is decomposed into the real
part ΓR

Λ ≔ ReΓΛ and the imaginary part ΓI
Λ ≔ ImΓΛ. Then

it is shown (see Appendix A) that the flow equation is
decomposed into two parts:

∂tΓR
Λ ¼ 1

2
STrf½ðΓRð2Þ

Λ þ RΛÞ2 þ ðΓIð2Þ
Λ Þ2�−1

× ðΓRð2Þ
Λ þ RΛÞ∂tRΛg; (9)

∂tΓI
Λ ¼ −

1

2
STrf½ðΓRð2Þ

Λ þ RΛÞ2 þ ðΓIð2Þ
Λ Þ2�−1ΓIð2Þ

Λ ∂tRΛg:
(10)

We find that the flow equation has a remarkable
property: the identically vanishing imaginary part ΓI

Λ ≔
ImΓΛ ≡ 0 is an exact solution corresponding to a “fixed
point”:

ImΓΛ ≡ 0 for any value of Λ; (11)

in sharp contrast with the real part. See Fig. 1 for the
behavior of the “beta” function of ΓI

Λ defined by

βðΓI
ΛÞ ≔ ∂tΓI

Λ: (12)

If ΓI
Λ ≠ 0 for a certain value of Λ, it does not maintain the

same value, i.e., βðΓI
ΛÞ ≠ 0.3

FIG. 1 (color online). Left: imaginary part ImΓΛ of the average
effective action as a function of Λ. Right: β function as a function
of ImΓΛ. Here ImΓΛ ¼ 0 corresponds to a fixed point of the
renormalization group.

3If the right-hand side of the flow equation for ΓI
Λ was linear in

ΓI
Λ, a stronger statement would be derived: If ΓI

Λ vanishes for
some particular value of Λ, e.g., for Λ ¼ Λ0, then ΓI

Λ vanishes
automatically for any other value of Λ ≤ Λ0, in particular, for
Λ → 0, provided that ΓΛ and ΓΛ0

are related by integrating (or
solving) the flow equation:

ΓI
Λ ¼ 0 at Λ ¼ Λ0 ⇒ ΓI

Λ ¼ 0 for Λ < Λ0: (13)

STABILITY OF CHROMOMAGNETIC CONDENSATION AND … PHYSICAL REVIEW D 89, 105013 (2014)

105013-3



Thus the problem of showing the absence of the
imaginary part ImΓ ¼ limΛ↓0ImΓΛ in the effective action
Γ ¼ limΛ↓0ΓΛ is reduced to proving the vanishing of the
imaginary part ImΓΛ in the effective average action ΓΛ for a
sufficiently large value of Λ:

ImΓΛ ¼ 0 for a certain value of Λ ≫ 1: (14)

When ΓI
Λ ¼ 0, the flow equation for ΓR

Λ turns into the
standard flow equation.

III. FLOW EQUATION IN THE
CHROMOMAGNETIC BACKGROUND

We consider the D-dimensional Euclidean Yang-Mills
theory. We decompose the SUð2Þ Yang-Mills field Aμ ¼
AA

μTA into the background field Vμ ¼ VA
μTA and the

quantum fluctuation field Xμ ¼ XA
μTA where TA ¼ 1

2
σA

with σA being the Pauli matrices (A ¼ 1; 2; 3):

AA
μ ¼ VA

μ þXA
μ ðA ¼ 1; 2; 3Þ: (15)

We can choose without loss of generality [8] the diagonal
field Vμ as the background field,

VA
μ ðxÞ ¼ δA3VμðxÞ; (16)

and the off-diagonal field Aa
μ (a ¼ 1; 2) as the quantum

fluctuation field,

XA
μ ðxÞ ¼ δAaAa

μðxÞ; ða ¼ 1; 2Þ; (17)

which means that

Aμ ¼ Vμ
σ3

2
þ Aa

μ
σa

2
or A3

μ ¼ Vμ;

Aa
μ ¼ Aa

μ ða ¼ 1; 2Þ: (18)

For the diagonal gauge field V and the off-diagonal
gauge field A, the Yang-Mills Lagrangian has the
interaction terms of the type: VAA, VVAA, and
AAAA, while the gauge-fixing (GF) and the associated
Faddeev-Popov (FP) term for the maximal Abelian (MA)
gauge (defined shortly) has the interactions of the type:
VAA and VVAA. The effective potential ΓðVÞ of V is
obtained from the diagrams with the external legs of V
by integrating all the internal lines that are connected
through the possible interaction vertices. For the one-loop
effective potential, accordingly, it is easy to see that only
the internal lines of A are allowed, which implies that
there is no fluctuating diagonal field A to be integrated
out. For large Λ, the deviation from the one loop is not

so significant and the fluctuating diagonal field can be
neglected.4

In what follows, we prepare the diagonal field VμðxÞ of
the form

VμðxÞ ¼
1

2
xνHνμ; (19)

so that the x-independent homogeneous background field
strength is realized:

FA
μν½V�ðxÞ ≔ ∂μVA

ν ðxÞ − ∂νVA
μ ðxÞ þ ϵABCVB

μ ðxÞVC
ν ðxÞ

¼ δA3ð∂μVνðxÞ − ∂νVμðxÞÞ ¼ δA3Hμν: (20)

Then the background field strength realizes the
(homogeneous) chromomagnetic field,

H ¼ ðH1; H2; H3Þ; (21)

by choosing the nonvanishing components as

H23 ¼ −H32 ≔ H1; H31 ¼ −H13 ≔ H2;

H12 ¼ −H21 ≔ H3: (22)

The total effective average action ΓΛ is specified by
giving the gauge-invariant part Γinv

Λ , the GF part ΓGF
Λ , and

the associated FP ghost part ΓFP
Λ :

ΓΛ ¼ Γinv
Λ þ ΓGF

Λ þ ΓFP
Λ : (23)

We choose the background gauge [56] as the gauge-
fixing condition to maintain the gauge invariance for the
background field. In the above choice for the background
field (16), the background gauge reduces to the maximal
Abelian (MA) gauge:

Fa≔Dab
μ ½V�Ab

μ¼0; Dab
μ ½V�≔∂μδ

ab−gϵab3Vμ: (24)

Then the gauge-fixing term is given by

ΓGF ¼
Z

dDx
1

2α
ðDab

μ ½V�Ab
μÞ2; (25)

4Such a distinction between the diagonal and off-diagonal
fields can be partially justified and has been used so far based on
the results of numerical simulations of SUð2Þ Yang-Mills theory
on a lattice. Beyond one loop, of course, this simplification is not
allowed and we must integrate out the diagonal fluctuation field.
In fact, in order to show the confinement/deconfinement tran-
sition at finite temperature, the diagonal fluctuations play the
most important and essential role, as first shown in [54] and
confirmed in [55] using the same framework as that of this paper.
Such a contribution will be included in the subsequent work
where the interplay between the existence/nonexistence of
chromomagnetic condensation and confinement/deconfinement
at finite temperature will be investigated. In view of these, this
paper is the first attempt towards the thorough analysis of the
stability of the chromomagnetic condensation in the QCD
vacuum.
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where α denotes the gauge-fixing parameter. This ΓGF is
obtained by integrating out the Nakanishi-Lautrup field
Na from

ΓGF ¼
Z

dDx
�
NaðDab

μ ½V�Ab
μÞ þ

α

2
NaNa

�
: (26)

The FP ghost term is determined according to the
standard procedure (see e.g., [57]) as

ΓFP ¼
Z

dDxfiC̄aDab
μ ½V�Dbc

μ ½V�Cc

− g2ϵab3ϵcd3iC̄aCdAb
μAc

μ þ iC̄agϵab3ðDbc
μ ½V�Ac

μÞC3g:
(27)

For the gauge-invariant part Γinv
Λ , we adopt the ansatz, a

function WΛ of the gauge-invariant term Θ constructed
from the field strength FA

μν½A� ≔ ∂μAA
ν − ∂νAA

μ þ
ϵABCAB

μAC
ν :

Γinv
Λ ¼

Z
dDxWΛðΘðxÞÞ; Θ ≔

1

4
ðFA

μν½A�Þ2: (28)

Θ is decomposed as [55]

Θ ¼ 1

4
ðFA

μν½V�Þ2 þ 1

2
AμaðQab

μν þDac
μ ½V�Dcb

ν ½V�ÞAνb

þ 1

4
ðϵ3abAa

μAb
νÞ2; (29)

where

Qab
μν ≔ −ðD2Þabδμν þ 2gϵabHμν;

ðD2Þab ≔ Dac
ρ ½V�Dcb

ρ ½V�: (30)

In the vanishing off-diagonal field limit Aa
μ → 0, Θ is

reduced to

ΘjA¼0 ¼
1

4
ðFA

μν½V�ðxÞÞ2 ¼ 1

4
ð∂μVνðxÞ − ∂νVμðxÞÞ2

¼ 1

2
H2; (31)

H ≔
ffiffiffiffiffiffi
H2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
HαβHαβ

r
> 0: (32)

The off-diagonal gluon fields Aa
μ (and off-diagonal ghost

fields Ca, C̄a) should be integrated out in the framework of
the FRG following the idea of the Wilsonian renormaliza-
tion group. For this purpose, we introduce the infrared
regulator term ΔSΛ for the off-diagonal gluon Aa

μ and off-
diagonal ghosts Ca, C̄a by

ΔSΛ¼
Z
p

�
1

2
Aa
μðpÞRΛ;μνðp2ÞδabAb

νðpÞ

þ C̄aðpÞRΛðp2ÞδabCbð−pÞ
�

ða;b¼ 1;2Þ; (33)

where
Z
p
≔

Z
dDp
ð2πÞD (34)

denotes the integration over the D-dimensional momentum
space. We choose the infrared cutoff function with the
structure:

RΛ;μνðp2Þ ¼ δμνRΛðp2Þ: (35)

We adopt the proper-time form of the flow equation [58]:

∂tΓΛ ¼
Z

∞

0

dτ
1

2
STr½e−τðΓð2Þ

Λ þRΛÞ∂tRΛ�: (36)

After performing the mode decomposition according to the
projection method [38–41], the flow equation reads

∂tΓΛ ¼ 1

2

Z
∞

0

dτΩ−1 Tr½e−τðW0
ΛQþRgluon

Λ Þ · ∂tR
gluon
Λ �

−
1

2

Z
∞

0

dτΩ−1 Tr½e−τð−W0
ΛD

2þRgluon
Λ Þ · ∂tR

gluon
Λ �

þ 1

2

Z
∞

0

dτΩ−1 Tr½e−τð−α−1Λ D2þRgluon
Λ Þ · ∂tR

gluon
Λ �

−
Z

∞

0

dτΩ−1 Tr½e−τð− ~ZΛD2þRghost
Λ Þ · ∂tR

ghost
Λ �; (37)

where we have definedW0
ΛðΘÞ ≔ d

dΘWΛðΘÞ. Here we have
introduced the wave function renormalization constants:

ZΛ ¼ Zgluon
Λ ; Z̄Λ ¼ Zghost

Λ : (38)

In this derivation, we have adopted the truncation—
neglecting the four-point interactions among the off-diagonal
gluons and off-diagonal ghosts −g2ϵab3ϵcd3iC̄aCdAb

μAc
μ,

which do not couple to the background field Vμ.
The spectrum sum is obtained from eigenvalues of the

respective operator. The covariant Laplacian −ðDρ½V�Þ2
with the background field V which gives the (covariant
constant) uniform chromomagnetic fieldH has the spectrum

Spect½−D2
ρ½V�� ¼ p2⊥ þ ð2nþ 1ÞgH; ðn ¼ 0; 1; � � �Þ;

(39)

where p⊥ denotes the ðD − 2Þ dimensional (Fourier)
momentum in those space-time directions that are not
affected by the magnetic field (say, orthogonal to the 1–2
plane) and the index n is a discrete quantum number that
labels the Landau levels. We take into account the fact that
the density of states is gH

2π for the Landau levels.
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Moreover, the operator Qab
μν with the same background

field V has the spectrum

Spect½Qab
μν � ¼

8><
>:

p2⊥ þ ð2nþ 1ÞgH ðD − 2Þ
p2⊥ þ ð2nþ 3ÞgH multiplicity 1

p2⊥ þ ð2n − 1ÞgH 1

ðn ¼ 0; 1; � � �Þ; (40)

where the last term contains the Nielsen-Olesen unstable
mode for n ¼ 0, i.e.,

p2⊥ − gH; (41)

which becomes a tachyonic mode for small
momenta p2⊥ < gH.
The respective trace without the infrared regulator RΛ is

easily obtained [38–40]:

Ω−1 Tr½e−τðW0
ΛQÞ� ¼ NgH

ð4πÞD2 ðτW
0
ΛÞ1−

D
2

�
D

sinhðτW0
ΛgHÞ þ 4 sinhðτW0

ΛgHÞ
�

¼ NgH

ð4πÞD2 ðτW
0
ΛÞ1−

D
2
2ðD − 2Þe−τW0

ΛgH þ 2e−3τW
0
ΛgH þ 2eτW

0
ΛgH

1 − e−2τW
0
ΛgH

;

Ω−1 Tr½e−τð−W0
ΛD

2Þ� ¼ NgH

ð4πÞD2 ðτW
0
ΛÞ1−

D
2

�
1

sinhðτW0
ΛgHÞ

�
¼ NgH

ð4πÞD2 ðτW
0
ΛÞ1−

D
2

�
2e−τW

0
ΛgH

1 − e−2τW
0
ΛgH

�
;

Ω−1Tr½e−τð− ~ZΛD2Þ� ¼ NgH

ð4πÞD2 ðτ
~ZΛÞ1−D

2

�
1

sinhðτ ~ZΛgHÞ

�
¼ NgH

ð4πÞD2 ðτ
~ZΛÞ1−D

2

�
2e−τ ~ZΛgH

1 − e−2τ ~ZΛgH

�
; (42)

where N ¼ 2 for SUð2Þ.
In order to obtain the closed analytical form for the

solution and to compare the FRG calculations with the
loop calculations, we choose the momentum-independent
infrared regular of the mass type

RΦ
Λ ¼ ZΦ

ΛΛ
2; (43)

where ZΦ
Λ denotes the wave function normalization constant

for the field Φ. We discuss later (in the end of Sec. IV)
whether the result is independent of the choice of the
infrared regulator or not.
For the infrared regulator of the mass type, the flow

equation thus reads

∂tΓΛ ¼ NgH

ð4πÞD2
�
ðW0

ΛÞ1−
D
2 ð2 − ηΛÞZΛΛ2

Z
∞

0

dττ1−
D
2e−τZΛΛ2 ðD − 2Þe−τW0

ΛgH þ e−3τW
0
ΛgH þ eτW

0
ΛgH

1 − e−2τW
0
ΛgH

− ðW0
ΛÞ1−

D
2 ð2 − ηΛÞZΛΛ2

Z
∞

0

dττ1−
D
2e−τZΛΛ2 e−τW

0
ΛgH

1 − e−2τW
0
ΛgH

þ α
D
2
−1

Λ ð2 − ηΛÞZΛΛ2

Z
∞

0

dττ1−
D
2e−τZΛΛ2 e−τα

−1
Λ gH

1 − e−2τα
−1
Λ gH

− ð ~ZΛÞ1−D
2 ð2 − ~ηΛÞ ~ZΛΛ2

Z
∞

0

dττ1−
D
2e−τ ~ZΛΛ2 2e−τ ~ZΛgH

1 − e−2τ ~ZΛgH

�
; (44)

where we have introduced the anomalous dimensions:

ηΛ ≔ −∂t lnZΛ ¼ −Z−1
Λ ∂tZΛ;

~ηΛ ≔ −∂t ln ~ZΛ ¼ − ~Z−1
Λ ∂t

~ZΛ: (45)

We find that the integral with respect to τ on the right-
hand side of the flow equation is divergent at D ¼ 4 in the
τ ¼ 0 region, which is an ultraviolet divergence. This
divergence is independent of the infrared divergence
coming from the τ ¼ ∞ region due to the factor eτW

0
ΛgH

for which the Nielsen-Olesen instability is responsible.

This ultraviolet divergence is due to the fact that the
momentum-independent infrared cutoff function of the
mass type does not suppress the high-momentum modes.
This aspect is a shortcoming of the mass-type infrared
regulator. Other choices of the infrared regulator are
discussed in the end of this section.
Therefore, we first remove the ultraviolet divergence at

τ ¼ 0. This is done in the standard way by adopting the
minimal subtraction, i.e., MS scheme. See Appendix B for
the details. Thus we arrive at the flow equation without the
ultraviolet divergence:

KEI-ICHI KONDO PHYSICAL REVIEW D 89, 105013 (2014)

105013-6



∂tΓΛ¼
N
2

2gH
ð4πÞ2

�
−ln

2gH
4πμ2

−γ

��
ðW0

ΛÞ−1ð2−ηΛÞZΛΛ2

�
ζ

�
0;
1

2
þ ZΛΛ2

2W0
ΛgH

�
þζ

�
0;
3

2
þ ZΛΛ2

2W0
ΛgH

�
þζ

�
0;−

1

2
þ ZΛΛ2

2W0
ΛgH

��

þαΛð2−ηΛÞZΛΛ2ζ

�
0;
1

2
þ ZΛΛ2

2α−1Λ gH

�
−2ð2− ~ηΛÞΛ2ζ

�
0;
1

2
þ Λ2

2gH

��

þN
2

2gH
ð4πÞ2

�
ðW0

ΛÞ−1ð2−ηΛÞZΛΛ2

�
ζð1;0Þ

�
0;
1

2
þ ZΛΛ2

2W0
ΛgH

�
þζð1;0Þ

�
0;
3

2
þ ZΛΛ2

2W0
ΛgH

�
þζð1;0Þ

�
0;−

1

2
þ ZΛΛ2

2W0
ΛgH

�

−2ζ

�
0;
1

2
þ ZΛΛ2

2W0
ΛgH

��
þαΛð2−ηΛÞZΛΛ2ζð1;0Þ

�
0;
1

2
þ ZΛΛ2

2α−1Λ gH

�
−2ð2− ~ηΛÞΛ2ζð1;0Þ

�
0;
1

2
þ Λ2

2gH

��
; (46)

where ζðz; λÞ is the generalized Riemann ζ function or the Hurwitz ζ function defined by (B3) and its integral representation
(B4), and its derivatives ζðm;nÞðz; λÞ are defined by (B10).

IV. ABSENCE OF THE INSTABILITY

For large Λ, we can take the approximation

ðiÞ WΛðΘÞ ¼ Θ ⇒ W0
ΛðΘÞ≡ 1

⇔ZΛ ≡ 1 ⇒ ηΛ ≡ 0;

ðiiÞ ~ZΛ ≡ 1 ⇒ ~ηΛ ≡ 0;

ðiiiÞ αΛ ≡ αΛUV
¼ const ≥ 0: (47)

This is a good approximation for ΓΛ at sufficiently largeΛ. If we choose α−1Λ ≡W0
Λ, the second and third terms cancel on the

right-hand side of the flow equation (44), which corresponds to the Feynman gauge. If we chooseαΛ ≡ 0, the third termon the
right-hand side of the flow equation (44) vanishes, which corresponds to the Landau gauge.
Then we obtain an approximate flow equation for large Λ:

∂tΓΛ ¼ N
2

2gH
ð4πÞ2

�
− ln

2gH
4πμ2

− γ

�
2Λ2

�
ζ

�
0;
3

2
þ Λ2

2gH

�
þ ζ

�
0;−

1

2
þ Λ2

2gH

�
− ζ

�
0;
1

2
þ Λ2

2gH

�
þ αΛζ

�
0;
1

2
þ Λ2

2α−1Λ gH

��

þ N
2

2gH
ð4πÞ2 2Λ

2

�
ζð1;0Þ

�
0;
3

2
þ Λ2

2gH

�
þ ζð1;0Þ

�
0;−

1

2
þ Λ2

2gH

�
− 2ζ

�
0;
1

2
þ Λ2

2gH

�
− ζð1;0Þ

�
0;
1

2
þ Λ2

2gH

�

þ αΛζ
ð1;0Þ

�
0;
1

2
þ Λ2

2α−1Λ gH

��
: (48)

Then the flow equation can be cast into the total derivative form:

∂tΓΛ¼∂t

�
N
2

ð2gHÞ2
ð4πÞ2

�
ln
2gH
4πμ2

þγ

��
ζ

�
−1;

3

2
þ Λ2

2gH

�
þζ

�
−1;−

1

2
þ Λ2

2gH

�
−ζ

�
−1;

1

2
þ Λ2

2gH

�
þαΛζ

�
−1;

1

2
þ Λ2

2α−1Λ gH

��

−
N
2

ð2gHÞ2
ð4πÞ2

�
ζð1;0Þ

�
−1;

3

2
þ Λ2

2gH

�
þζð1;0Þ

�
−1;−

1

2
þ Λ2

2gH

�
−2ζ

�
−1;

1

2
þ Λ2

2gH

�
−ζð1;0Þ

�
−1;

1

2
þ Λ2

2gH

�

þαΛζ
ð1;0Þ

�
−1;

1

2
þ Λ2

2α−1Λ gH

���
; (49)

where we have used the relation following from the definition:

ζðm;1Þðz − 1; λÞ ¼ ∂
∂λ ζ

ðm;0Þðz − 1; λÞ ¼ −ζðm;0Þðz; λÞ; (50)

which yields
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∂tζ
ðm;0Þ

�
−1;aþ Λ2

2gH

�
¼ ζðm;1Þ

�
−1;aþ Λ2

2gH

�
Λ2

gH

¼−ζðm;0Þ
�
0;aþ Λ2

2gH

�
Λ2

gH
: (51)

We take into account the fact that the effective average
action ΓΛ at Λ ¼ ΛUV ¼ ∞ is given by the bare action for
the classical chromomagnetic field background:

ΓΛ¼∞ ¼ 1

4
ðFA

μν½V�Þ2 ¼ 1

2
H2: (52)

Then an approximate solution is obtained by integrating the
flow equation from Λ ¼ ΛUV ¼ ∞ to Λ:

ΓΛ ¼ 1

2
H2 þ ~VΛðHÞ; (53)

with

~VΛðHÞ¼−
N
2

ð2gHÞ2
ð4πÞ2

�
ln
2gH
4πμ2

þγ

��
ζ

�
−1;

3

2
þ Λ2

2gH

�

þζ

�
−1;−

1

2
þ Λ2

2gH

�
−ζ

�
−1;

1

2
þ Λ2

2gH

�

þαΛζ

�
−1;

1

2
þ Λ2

2α−1Λ gH

��

þN
2

ð2gHÞ2
ð4πÞ2

�
ζð1;0Þ

�
−1;

3

2
þ Λ2

2gH

�

þζð1;0Þ
�
−1;−

1

2
þ Λ2

2gH

�
−ζð1;0Þ

�
−1;

1

2
þ Λ2

2gH

�

−2ζ

�
−1;

1

2
þ Λ2

2gH

�
þαΛζ

ð1;0Þ
�
−1;

1

2
þ Λ2

2α−1Λ gH

��
;

(54)

where ~VΛðHÞ ¼ 0 at Λ ¼ ∞.
Using the formula [59–63],

ζð−1; λÞ ¼ −
1

2
λ2 þ 1

2
λ −

1

12
; ðλ ∈ RÞ; (55)

we find that the first term proportional to ln gH
μ2
is real valued

for gH
μ2

> 0, since

ζ

�
−1;

3

2
þ r
2

�
þ ζ

�
−1;−

1

2
þ r
2

�
¼ −

11

12
−
1

4
r2: (56)

On the other hand, the recursion relation [59]

ζð1;0Þð−1; aþ 1Þ ¼ ζð1;0Þð−1; aÞ þ a ln a; (57)

leads to

ζð1;0Þ
�
−1;

3

2
þ r
2

�
þζð1;0Þ

�
−1;−

1

2
þ r
2

�

¼ 2ζð1;0Þ
�
−1;

1

2
þ r
2

�
þ1þ r

2
ln
1þ r
2

−
−1þ r

2
ln
−1þ r

2
:

(58)

Note that ζð1;0Þð−1; λÞ is real valued for λ > 0. See
Appendix B. Thus, we arrive at the effective potential
for large Λ, e.g., in the case of αΛ ≡ 1,

VΛðHÞ ¼ 1

2
H2 þ 1

16π2
Λ2

�
ln
gH
μ2

þ 1

4
− C

�

−
2

16π2
gHΛ2 ln

Λ2 − gH
Λ2 þ gH

þ 1

16π2
g2H2

�
11

3
ln
gH
μ2

þ 2 ln
Λ2 þ gH

gH
þ 2 ln

Λ2 − gH
gH

−
11

3
C − 4 ln 2

−
1

3
þ 8ζð1;0Þ

�
−1;

1

2
þ Λ2

2gH

��
; (59)

while in the case of αΛ ≡ 0,

VΛðHÞ ¼ 1

2
H2 þ 1

16π2
Λ2

�
1

2
ln
gH
μ2

þ 1

4
−
1

2
C

�

−
2

16π2
gHΛ2 ln

Λ2 − gH
Λ2 þ gH

þ 1

16π2
g2H2

�
−
1

6
ln
gH
μ2

þ 2 ln
Λ2 þ gH

gH
þ 2 ln

Λ2 − gH
gH

−
23

6
C− 4 ln2

−
1

3
þ 4ζð1;0Þ

�
−1;

1

2
þ Λ2

2gH

��
: (60)

The same effective potential is obtained by solving the flow
equation (44) to obtain the effective potential with the
ultraviolet divergence and then removing the ultraviolet
divergence by the same method as that above. See
Appendix B for more details for the Hurwitz ζ function.
It is instructive to give a comment on the gauge

parameter. In the Lorenz gauge there is a privileged choice:
α ¼ 0 is a fixed point. Whereas there is no special choice
for the gauge parameter in the MA gauge: there is no fixed
point for α at least in the one-loop level. See Appendix C.
For the large Λ satisfying Λ2 ≥ gH, ~VΛðHÞ is real valued

and VΛðHÞ has no imaginary part:

ImVΛðHÞ ¼ 0 for Λ2 ≥ gH; (61)

and

∂t ImVΛðHÞ ¼ 0 for Λ2 ≥ gH: (62)

Therefore, the Nielsen-Olesen instability disappears for any
value of Λ, in particular, even at Λ ¼ 0 according to the
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above argument of the fixed point for the pure imaginary
part of the flow equation. See Fig. 2.
For the small Λ satisfying Λ2 < gH, however, the

effective average potential VΛðHÞ obtained above has
the nonvanishing imaginary part,

ImVΛðHÞ ¼ 4

16π2
g2H2

Λ2

gH − 1

2
lnð−1Þ=i

¼ 1

8π
gHðgH − Λ2Þ for Λ2 < gH; (63)

which yields the nontrivial flow of the imaginary part,

∂t ImVΛðHÞ ¼ −
1

4π
gHΛ2 < 0 for Λ2 < gH: (64)

The β function for ImVΛ is obtained as

βðImVΛÞ¼ 2 ImVΛ−
1

4π
ðgHÞ2 < 0 for Λ2 <gH: (65)

This is not a contradiction, since the approximate solution
of VΛðHÞ obtained above is not considered to be valid
in the small Λ region; Λ2 < gH. In fact, the deriva-
tive ∂tImVΛðHÞ has the discontinuity at Λ2 ¼ gH.
The effective potentials obtained above reproduce the
Nielsen-Olesen result by putting Λ ¼ 0:

VNOðHÞ ¼ 1

2
H2 þ

22
3

16π2
g2

1

2
H2

�
ln
gH
μ2

þ c

�
þ i

g2H2

8π
:

(66)

The above argument for the absence of the instability or
the vanishing of the imaginary part in the average effective
potential VΛðHÞ was done for a specific choice of the
infrared regulator. However, the result will be true for any
other choice of the infrared regulator, since the infrared
regulator RΛðp2Þ is constructed in such a way that any
infrared cutoff function approaches the asymptotic form of
the same form as the mass-type one in the large Λ:

RΦ
Λðp2Þ → ZΦ

ΛΛ
2 for Λ2 → ∞: (67)

Indeed, this condition must be imposed to reproduce the
“one-loop result” in the large Λ, which is indeed one of the
properties required to hold for the infrared regulator [64].
The claim can be explicitly checked for the infrared

regulators, e.g., the optimal type [65],

RΛðp2Þ ¼ ZΛðΛ2 − p2ÞθðΛ2 − p2Þ; (68)

and the step function,

RΛðp2Þ ¼ ZΛΛ2θðΛ2 − p2Þ: (69)

This is nontrivial for the exponential type,

RΛðp2Þ ¼ p2

e
p2

ZΛΛ2 − 1

¼ p2e
− p2

ZΛΛ2

1 − e
− p2

ZΛΛ2

; (70)

since the momentum integration is difficult to be performed
explicitly for this choice.
Moreover, it is important to confirm the statement

explicitly for the choice of the infrared regulator
RΛðΓð2Þðp2ÞÞ with the nontrivial argument Γð2Þðp2Þ pro-
posed in [38], since it is demonstrated in [40] that such a
choice of the argument for the infrared regulator is actually
essential to control the physical limit Λ → 0.
Here is a good place to review the preceding works on

which this work is based. In the paper by Reuter and
Wetterich [38], a new nonperturbative flow equation for the
average effective action was proposed for Yang-Mills
theories. The subsequent works [39–41] are more or less
based on this framework. In a subsequent work by them
[39], it was applied to the calculation of the gluon
condensation and the computation of the effective action
for a uniform chromomagnetic field to examine the
instability of the Savvidy vacuum. This work improved
the earlier error in the evaluation of the flow equation in
preceding work, but it did not find a desired gluon
condensation in a simple way, since the strong infrared
effects were cut off in an ad hoc way by introducing
effectively an infrared fixed point by hand. Therefore,
the resulting flow equation taken at face value shows a
Landau-pole-type singularity.
The work by Gies [40] is an improvement of the earlier

works by Reuter and Wetterich, which was called “spec-
trally adjusted” RG flow or spectral adjustment of the RG
procedure. Gies has succeeded to estimate the effect of the
∂ΛΓ

ð2Þ
Λ terms coming from the argument of the infrared

regulator function RΛðΓð2Þ
Λ Þ that had been dropped in the

preceding work. These terms become essential when the
RG flow rapidly changes in the strong coupling domain. In
fact, this improvement is necessary to derive the infrared
fixed point, namely, the running coupling constant reaching

FIG. 2 (color online). Left: imaginary part ImVΛ of an
approximate average effective potential as a function of Λ. Right:
β function as a function of ImVΛ. Here ImVΛ ≡ 0 corresponds to
a fixed point of the functional renormalization group.
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a finite and nonzero value in the limit Λ → 0 without
encountering divergence.
In [39] and [40], an ansatz of the power seriesWΛðΘÞ ¼P∞
n¼0

1
n!wnðΛÞΘn is adopted for WΛðΘÞ, not to solve the

flow, but to define the running coupling constant from the
coefficient w1ðΛÞ in front of the term Θ ≔ 1

4
F2
μν. It should

be remarked that different choices for the definition of the
running coupling can lead to different results, since the
running coupling itself is not a meaningful quantity
intrinsically in the sense that it depends on the scheme
and the definition.
In the works [39,40], the magnetic field is only used as

a technical tool to determine the flow equation. One
need not assume that there is a physical magnetic
background field. The same results for the running
coupling would be obtained with, e.g., a heat-kernel
expansion of the traces that are blind to the instability.
Therefore, the NO instability is not an issue at all in these
works. Still, calculating the flow using the magnetic field
as a tool, of course, contains contributions from the
Nielsen-Olesen mode, as it is also true for the one-loop
calculation.
In the work by Eichhorn, Gies, and Pawlowski [41], on

the other hand, the full propagators were used to
compute the gluon condensate. The negative eigenvalues
of the spin-1 Laplacian can potentially botch the com-
putations. Therefore, they have used the self-dual back-
ground in order to avoid these complications from the
beginning.

V. GLUON MASS GENERATION AND
VACUUM CONDENSATIONS

The above approximate solution (59) eventually has the
imaginary part and hence cannot be used in the limit
Λ → 0. As will be shown in this section, however,
the approximate solution obtained in the same type of
approximations has the limit Λ → 0 without developing
the imaginary part, if the effects of mass generation
are incorporated into the analysis. Such mass generation
is expected to occur, as established in the numerical
simulations on the lattice [48–50].5
We introduce the mixed composite operators of gluons

and ghosts. For SUð2Þ,

O ¼ 1

2
Aa
μAμa þ αiCaCa ða ¼ 1; 2Þ: (71)

We then study the mass generation for the off-diagonal
gluons (and ghosts), originating from the dimension-two
condensation hOi. It is shown [43] that the dimension-two

condensation hOi is BRST invariant6 in the modified MA
gauge [66] defined by the GF+FP term:7

LMA
GFþFP¼NaFaþα

2
NaNaþ iC̄aDab

μ ½V�Dbc
μ ½V�Cc

−g2ϵabϵcdiC̄aCdAc
μAb

μþgiC̄aϵabðDbc
μ ½V�Ac

μÞC3

þαgϵabiC̄aNbC3þα

4
g2ϵabϵcdC̄aC̄bCcCd; (72)

which is deduced from the OSpðD; 2Þ-invariant form:

LMA
GFþFP ¼ iδδ̄

�
1

2
Aa
μAa

μ þ
α

2
iC̄aCa

�

¼ −iδ
�
C̄a

�
Fa þ α

2
Na

�
−
α

2
giC̄aϵab3C̄bC3

�
;

Fa ≔ Dab
μ ½V�Ab

μ; (73)

where δ and δ̄ are, respectively, the BRST and anti-BRST
transformations.
According to [68], we introduce a new field ϕ which is

an auxiliary field with no kinetic term represented by the
Lagrangian density,

Lϕ ¼ 1

2
ðϕþ GOÞ†G−1ðϕþ GOÞ

¼ 1

2
ϕ†G−1ϕþ ϕ†Oþ 1

2
O†GO; (74)

by inserting the unity,

1 ¼
Z

Dϕe−
R

dDxLϕ ; (75)

FIG. 3. Left: vertex joining the collective field ϕ to two off-
diagonal gluon fields A. Right: an exchange of the collective
field ϕ.

5This means the mass generation for the off-diagonal gluons in
the MA gauge. For the diagonal gluon, this is not yet confirmed
even for the MA gauge.

6We can construct a gauge-invariant version of the composite
operator of mass dimension two; see [8–10].

7In the MA gauge, the four-point interaction AAC̄C appears
irrespective of the gauge-fixing parameter α and it generates the
four-point ghost self-interaction C̄CC̄C by quantum corrections.
Therefore, such a four-point ghost self-interaction is indispen-
sable to maintain renormalizability. The naive MA gauge is
nonrenormalizable, since it does not include the four-point ghost
self-interactions. In the modified MA gauge, the strength of the
four-point ghost self-interactions is proportional to the gauge-
fixing parameter α. Such a four-point ghost self-interaction
follows from the OSpðD; 2Þ invariance. See [67] for the meaning
of the four ghost interactions in the MA gauge.
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in the path-integral measure.8 See Fig. 3. We observe the
following:

(i) From the first term 1
2
ϕ†G−1ϕ, we observe that G

represents the effective propagator of the collective
field ϕ, i.e., a two-gluon bound state propagator.

(ii) The second term ϕ†O yields the cubic interactions
ϕAA (and ϕC̄C) for the operator O quadratic in the
off-diagonal gluons (and ghosts).

(iii) The third term 1
2
O†GO involving only the funda-

mental fields has the form of an exchange of ϕ in the
tree approximation.

By including Lϕ, the two-point functions Γð2Þ
Λ are

modified as

ðΓð2Þ
Λ ÞAa

μAb
ν
¼ W0

ΛQ
ab
μν þ φδμνδ

ab;

ðΓð2Þ
Λ ÞC̄aCb ¼ − ~ZΛðD2Þab þ αΛφδ

ab; (76)

where

φ ¼ hϕi: (77)

Here we have adopted the truncation— neglecting the four-
point interactions among the off-diagonal gluons and
off-diagonal ghosts.
We use the infrared regulator of the mass type and the

same approximations for WΛ, Z̄Λ, and αΛ as those adopted
in the previous case. Then we obtain the effective average
potential VΛðH;φÞ describing the chromomagnetic con-
densation and dynamical mass generation simultaneously.
We consider the simplest case of αΛ ≡ 1 to clarify the
qualitative feature (see [44] for a physical meaning of
the dimension-two condensate in this gauge).9 In this case,
the effective potential is given by

VΛðH;φÞ ¼ 1

2g2Λ
H2 þ 1

2GΛ
φ2 þ ~VΛðH;φÞ; (78)

~VΛðH;φÞ¼−
1

4π2
H2

�
ln
H
μ2

−C

��
ζ

�
−1;

3

2
þ X
2H

�

þζ

�
−1;−

1

2
þ X
2H

��

þ 1

4π2
H2

�
ζð1;0Þ

�
−1;

3

2
þ X
2H

�

þζð1;0Þ
�
−1;−

1

2
þ X
2H

�
−2ζ

�
−1;

1

2
þ X
2H

��
;

(79)

where

X ≔ φþ Λ2: (80)

Here we have rescaled H as H → 1
g H for later convenience

so that the quantum part ~VΛ does not include the g
dependence. We find that ~VΛðH;φÞ is obtained from
~VΛðHÞ¼ ~VΛðH;φ¼0Þ by shifting the variable Λ2→Λ2þφ:

~VΛðH;φÞ ¼ ~VΛðH;φ ¼ 0ÞjΛ2→X ¼ ~VΛðHÞjΛ2→X: (81)

The real-valued condition for VΛ is replaced by

X −H > 0; or H < X ≔ φþ Λ2: (82)

In other words, the stability excludes the region

H ≥ X ≔ φþ Λ2: (83)

Therefore, we define the allowed region for stability,

RΛ ¼ fðH;φÞ;H < X ≔ φþ Λ2; H ≥ 0;φ > 0g: (84)

which is a region below the straight line H ¼ X with the
slope 1 and intercept Λ2. See Fig. 4.
VΛðH;φÞ can be made real valued by taking suffi-

ciently large Λ, as in the case of VΛðHÞ. In the absence
of φ, this argument for eliminating the imaginary part
does not work in the small Λ region in which the

FIG. 4. Left: allowed regionRΛ and the prohibited region in (H;φ) at Λ > 0 and Λ ¼ 0. Right: allowed regionRΛ and the prohibited
region in (H;X), where X is equal to the shift of φ by −Λ2, X ≔ φþ Λ2.

8It is shown that the effective field ϕ can be introduced without
breaking the BRST symmetry. In fact, it is shown [43] that the
operator O of mass dimension two is BRST invariant up to the
total derivative, i.e., δO ¼ ∂μ½Aa

μðxÞCaðxÞ� and that the BRST
transformation of ϕ is determined from the requirement
δðϕþGOÞ ¼ 0.

9The thorough analysis including quantitative features will be
given in a subsequent paper.
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inequality H > Λ2 is satisfied. This shortcoming is
avoided by including φ. In fact, the allowed region for
stability RΛ becomes narrower for a lower value of Λ but
survives even in the limit Λ → 0. Hence, the H axis or
φ ¼ 0 is excluded in the limit Λ → 0.
The running coupling gΛ is monotonically increasing in

decreasing Λ. Therefore, the tree term 1
2
g−2Λ H2 also

becomes negligible for small enough Λ.
We can write down the flow equation for GΛ. Solving

it, we find that G−1
Λ monotonically decreases as Λ

decreases. Therefore, the effect of the tree term
1
2
G−1

Λ φ2 becomes more and more negligible for smaller
Λ. In fact, the increasing of GΛ in decreasing Λ is
reasonable, since the bound state propagator GΛðsÞ will
approach the structure with a polelike dependence on s
for small enough Λ [69–71]. Therefore, the details of the
behavior of GΛ do not change the following result
qualitatively.
Thus the existence and location of the minimum can

be dominantly determined by the quantum part ~VðH;φÞ.
In view of these, we have looked for the minimum of
~VΛðH;φÞ in the region RΛ. See Fig. 5 for the three-
dimensional plot of ~VΛðH;XÞ. We find two minima:
one minimum at H ≠ 0 and φ ≠ 0 in the region H > X,
and another minimum at H ¼ 0 and φ ≠ 0 in the
region H < X. If we trust the above potential, the H
axis or φ ¼ 0 is prohibited in the limit Λ → 0, and
therefore the former minimum is not allowed in the limit
Λ → 0, but it might be allowed by finding a more
precise improved solution. The latter solution minimum
survives in the limit Λ → 0, which means that the mass
generation occurs with the vanishing chromomagnetic
condensation.
The following are details of the potential. In Fig. 6,

we have given the plot of the potential ~VΛðXÞ ≔
~VΛðH;XÞ at fixed values of H. The region X > H is
allowed where ~VðXÞ is real valued, while the region 0 <
X < H is prohibited where ~VðXÞ includes the nonzero
imaginary part. For relatively small H, a lower (pertur-
bative) minimum for the real part of the effective
potential exists for X between zero and H, which is
however in the prohibited region. This lower minimum is
separated from the higher (nonperturbative) minimum by
a little hill with a top at X slightly above H. For higher
H, a point is reached where the minimum with smaller X
has a lower energy than the one with greater X, around
H=μ2 ¼ 0.2. For H yet higher, the higher minimum
disappears altogether and only the lower one remains.
The full effective potential has the additional contribu-
tion 1

2g2 H
2 þ 1

2Gφ
2, which does not change the above

picture but rather strengthens the above tendency. Thus
the minimum for the effective potential V can exist for H
lower than a yet smaller critical value H=μ2 ∼ 0.3. See
Fig. 7 for the collection of all the plots in Fig. 6.

FIG. 5 (color online). Real and imaginary parts of the
quantum part of the effective potential ~VðH;XÞ. The region 0 ≤
H ≤ X is allowed where ~VðH;XÞ is real valued, while the region
X < H is prohibited where ~VðH;XÞ includes the nonzero
imaginary part.
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Thus, a nonzero chromomagnetic field decreases the
effective gluon mass, and when the chromomagnetic
field is sufficiently strong the gluon mass disappears,
since the lower minimum is in the prohibited region.

This conclusion is different from the result of
Vercauteren and Verschelde [33] that the mass is lowered
to a value slightly lower than gH after a phase transition
occurred when the chromomagnetic field is strong
enough.
In Fig. 8, we have given the plot of the potential

~VΛðHÞ ≔ ~VΛðH;XÞ at fixed values of X. The region 0 <
H < X is allowed where ~VðHÞ is real valued, while the
region H > X is prohibited where ~VðHÞ includes the
nonzero imaginary part. For relatively small X, a lower
(perturbative) minimum for the real part of the effective
potential exists for H between zero and X, which is
however in the prohibited region. When going to higher
values of X, we find thatH ¼ 0 turns into a local minimum
of the potential. For H slightly below X, there is a
maximum and for H higher than X there is a higher
(nonperturbative) minimum. When increasing X, the higher
minimum first deepens out, reaching a lowest value for X,
and it then goes up. See Fig. 9 for the collection of all the
plots in Fig. 8.
We have considered the effect of the gluon mass on the

chromomagnetic field condensation. When the gluon mass
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FIG. 6 (color online). Real part (solid line) and imaginary part (dashed line) of the quantum part of the effective potential ~VðXÞ ¼
~VðH;XÞ with various values of H: H ¼ 0.01, H ¼ 0.1, H ¼ 0.2, H ¼ 0.3, H ¼ 0.5, and H ¼ 1.0.
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FIG. 7 (color online). Real part (solid line) and imaginary part
(dashed line) of the quantum part of the effective potential
~VðXÞ ¼ ~VðH;XÞ with various values of H: H ¼ 0.01,
H ¼ 0.1, H ¼ 0.2, H ¼ 0.3, H ¼ 0.5, and H ¼ 1.0. The region
H ≤ X is allowed where ~VðXÞ ¼ ~VðH;XÞ is real valued, while
the region 0 < X < H is prohibited where ~VðXÞ ¼ ~VðH;XÞ
includes the nonzero imaginary part.
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is sufficiently large, the vacuum is no longer unstable
against the formation of a homogeneous chromomagnetic
field, and the Nielsen-Olesen instability, caused by the
imaginary part in the effective potential, is resolved.

VI. CONCLUSION AND DISCUSSION

In this paper, we have shown that the Nielsen-Olesen
instability of the Savvidy vacuum with homogeneous
chromomagnetic condensation is avoided in the framework
of the FRG. Actually, we have shown that the imaginary
part of the effective average action vanishes at sufficiently
large infrared cutoff Λ, and this property can survive at
Λ ¼ 0. This behavior can be understood as a fixed point
solution of the flow equation for the complex-valued
effective average action. Therefore, the Nielsen-Olesen
instability is an artifact of the loop calculation in the
perturbation theory.
First, the most important observation given in Sec. II in

this paper is the “fixed point” structure that exists in the
imaginary part ImΓΛ of the complex-valued average
effective action ΓΛ governed by the FRG equation of the
Wetterich type.
This fixed point is different from the infrared fixed point

of the usual RG. The fixed point of this paper is restricted to
the fixed point for all the scales from the ultraviolet down to
the infrared, i.e., for any value of the flow parameter Λ, and
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FIG. 8 (color online). Real part (solid line) and imaginary part (dashed line) of the quantum part of the effective potential ~VðHÞ ¼
~VðH;XÞ with various values of X: X ¼ 0, X ¼ 0.3, X ¼ 1.0, X ¼ 1.5, X ¼ 1.75, and X ¼ 2.0.
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FIG. 9 (color online). Real part (solid line) and imaginary part
(dashed line) of the effective potential ~VðHÞ ¼ ~VðH;XÞ with
various values of X: X ¼ 0, X ¼ 0.3, X ¼ 1.0, X ¼ 1.5,
X ¼ 1.75, and X ¼ 2.0. The region 0 ≤ H ≤ X is allowed where
~VðHÞ is real valued, while the region X < H is prohibited where
~VðHÞ includes the nonzero imaginary part.
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the fixed point is considered only for the imaginary part
of the complex-valued average effective action. In this
sense, the claim of this paper is that the complex valued
FRG equation has the fixed point solution, i.e., the
identically vanishing imaginary part ImΓΛ ≡ 0 as an
exact solution, while the real part ReΓΛ does not have
such a remarkable structure. This novel concept is
schematically shown in Fig. 1 using the beta function
βðImΓΛÞ defined for the imaginary part ImΓΛ of the
average effective action ΓΛ.
If the average effective action as the solution of the FRG

equation exhibits this fixed point structure, then the
stability holds at any scale Λ including Λ ¼ 0, since the
imaginary part is identically vanishing and hence vanishing
also at Λ ¼ 0. This fact is the most important discovery of
this paper, which has not been recognized in the preceding
works to the best of the author’s knowledge. In Fig. 1, two
possibilities for the solution are drawn: the fixed-point
solution with ImV ≡ 0 and the nonfixed-point solution
with ImV≢0.
Second, we have proceeded to show that the solution of

the FRG equation satisfies the fixed point criterion. This is
the content of Sec. IV. Of course, no one knows the exact
solution of the FRG equation for the Yang-Mills theory.
And we do not know even the explicit analytical form of the
approximate solution which is valid for any Λ. In order to
examine the stability, however, it is enough to show that all
the solutions satisfy the fixed point structure at large but
arbitrary value of Λ (for a finite interval of large Λ), since
the smooth solutions must remain on the fixed point once
they are on the fixed point, i.e., showing ImV ¼ 0 at large
Λ. See Fig. 1.
For large Λ, in fact, we can find a good approximate

analytical solution due to the asymptotic freedom of the
theory, although this is not the case for small Λ due to the
strong interactions at the infrared region. Hence, the first
check whether or not the solution satisfies the fixed point
criterion, i.e., ImV ≡ 0, was performed in the large Λ
region in Sec. IV. The result shows that the solution satisfies
the criterion, i.e., no imaginary part at large but arbitrary
value of Λ (for a finite interval of large Λ). This result is
explicitly obtained for some infrared cutoff functions. But it
must hold for any infrared cutoff function on general
ground, since the infrared cutoff function is required to
satisfy the same asymptotic behavior for large Λ. Thus, the
stability must be shown without discussing other details of
the solution. The approximate solution given in this paper is
valid for large Λ at best Λ > gH. Therefore, Fig. 2 is
consistent with Fig. 1.
To show the recovery of stability or the vanishing of the

imaginary part just at Λ ¼ 0 starting from the stability
region at large Λ, we need to control the approximate
solution along the flow from the largeΛ all the way down to
Λ ¼ 0, which is quite a difficult task. Fortunately, we do
not need to do so for concluding only the stability.

Next, we tried to find a better approximate solution that
is valid for even lower values of Λ for understanding the
physics behind the restoration of stability or the elimination
of instability. This is the content of Sec. V. We have
discussed the physical mechanism for keeping the stability
for smaller Λ: the stability is maintained even for small Λ
once the mass generation occurs for the off-diagonal gluons
(and off-diagonal ghosts).
In fact, we have found two minima of the effective

potential as a function of the chromomagnetic field
condensate H and dynamical mass generation due to
dimension-two vacuum condensation φ:

(i) One minimum at H ≠ 0 and φ ≠ 0 in the allowed
region of stability RΛ for relatively small Λ: Both
the chromomagnetic field condensate and dynamical
mass generation due to dimension-two vacuum
condensation occur simultaneously in the region
of validity for the infrared scale Λ.

(ii) Another minimum at H ¼ 0 and φ ≠ 0 in the region
RΛ: This minimum survives in the limit Λ → 0,
which means that the mass generation occurs with
the vanishing chromomagnetic condensation.

If we accept our result for solving the flow equation at
face value, however, our approximate solution for the
effective action is valid only for the infrared cutoff Λ
above Λ0, i.e., Λ ≥ Λ0 ≈ 0.335 GeV. In fact, the running
Yang-Mills coupling constant αΛ ≔ g2Λ=ð4πÞ ceases run-
ning at Λ ¼ Λ0 where αΛ ¼ α0 ≈ 1.88…. This is the same
situation as that encountered in the work [39].
In order to obtain the true effective action, we need to

solve the flow equation all the way down to Λ → 0. In fact,
a finite value for the running coupling constant has been
obtained even at Λ ¼ 0 in the framework of the FRG
[40,41], although it had been shown for the first time in the
framework of the Schwinger-Dyson equation [72].
The comparison of our result for the effective poten-

tial with that of [41] suggests that (i) H ≠ 0 and φ ≠ 0
is realized in the Yang-Mills vacuum. Using these solu-
tions [40,41], moreover, we are able to discuss the
possible relationship between the stability and the scaling/
decoupling [72–74] solutions that were recently claimed to
be the true infrared solutions in the deep infrared region
realizing quark and gluon confinement [75–78]. These
issues will be further discussed in future works.
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APPENDIX A: DECOMPOSITION OF
A COMPLEX-VALUED MATRIX

In order to obtain the inverse matrix Pþ iQ of the
complex matrix Aþ iB, we set

ðAþ iBÞðPþ iQÞ ¼ 1 ¼ ðPþ iQÞðAþ iBÞ; (A1)

which yields

�
AP − BQ ¼ 1 ¼ PA −QB;

AQþ BP ¼ 0 ¼ PBþQA:
(A2)

From the second equation, we obtain

Q ¼ −A−1BP ¼ −PBA−1: (A3)

Substituting this relation into the first equation to eliminate
Q, we obtain P,

APþ BA−1BP ¼ 1 ¼ PAþ PBA−1B

⇒ ðAþ BA−1BÞP ¼ 1 ¼ PðAþ BA−1BÞ
⇒ P ¼ ðAþ BA−1BÞ−1

¼ AðAAþ BA−1BAÞ−1 ¼ ðAAþ ABA−1BÞ−1A; (A4)

and hence

Q ¼ − ðAB−1Aþ BÞ−1
¼ − A−1BAðAAþ BA−1BAÞ−1
¼ − ðAAþ ABA−1BÞ−1ABA−1: (A5)

If ½A; B� ¼ 0, i.e., AB ¼ BA, then B−1A−1 ¼ A−1B−1,
which leads to A−1B ¼ BA−1 and AB−1 ¼ B−1A.
Therefore, we obtain

P ¼ ðA2 þ B2Þ−1A; Q ¼ −ðA2 þ B2Þ−1B: (A6)

Note that if B → 0, then P → A−1 and Q → 0.

APPENDIX B: REMOVING THE ULTRAVIOLET
DIVERGENCE

The ultraviolet divergence of (44) at τ ¼ 0 is removed as
follows. (i) We introduce the parameter,

ϵ ≔ 2 −
D
2
¼ 4 −D

2
ðD ¼ 4 − 2ϵÞ; (B1)

and replace D by D ¼ 4 − 2ϵ. (ii) Expand the right-hand
side into the Laurent series in powers of ϵ, and (iii) extract
the terms of order ϵ0 (ϵ-independent terms).
By using the rescaling of τ, the flow equation (44) reads

∂tΓΛ ¼ N
2

ð2gHÞD2−1
ð4πÞD2

�
ðW0

ΛÞ−1ð2 − ηΛÞZΛΛ2

Z
∞

0

dss1−
D
2e

−s ZΛΛ2

2W0
Λ
gH ðD − 3Þe−1

2
s þ e−

3
2
s þ e

1
2
s

1 − e−s
þ αΛð2 − ηΛÞZΛΛ2

×
Z

∞

0

dss1−
D
2e

−s ZΛΛ2

2α−1
Λ

gH e−
1
2
s

1 − e−s
− ð ~ZΛÞ−1ð2 − ~ηΛÞ ~ZΛΛ2

Z
∞

0

dss1−
D
2e−s

~ZΛΛ2

2gH
2e−

1
2
s

1 − e−s

�
: (B2)

We introduce the generalized Riemann ζ function or the
Hurwitz ζ function ζðz; λÞ defined by

ζðz; λÞ ≔
X∞
n¼0

1

ðnþ λÞz ; (B3)

which has its integral representation [59]:

ζðz; λÞ ¼ 1

ΓðzÞ
Z

∞

0

dssz−1
e−λs

1 − e−s
ðRe z > 1; Reλ > 0Þ:

(B4)

Although the Hurwitz ζ function ζðz; λÞ is originally
defined for Re z > 1;Re λ > 0, it can be analytically
continued to other regions in the complex z plane as an
analytic function. Then the flow equation is rewritten as

∂tΓΛ¼
N
2

ð2gHÞD2−1
ð4πÞD2 Γ

�
2−

D
2

��
ðW0

ΛÞ−1ð2−ηΛÞZΛΛ2

×

�
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�
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D
2
;
1

2
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2W0
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�

þζ

�
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2
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3

2
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2W0
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�
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�
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D
2
;−

1

2
þ ZΛΛ2

2W0
ΛgH

��

þαΛð2−ηΛÞZΛΛ2ζ

�
2−

D
2
;
1

2
þ ZΛΛ2

2α−1Λ gH

�

−2ð ~ZΛÞ−1ð2− ~ηΛÞ ~ZΛΛ2ζ

�
2−

D
2
;
1

2
þ Λ2

2gH

��
: (B5)

This expression has the divergence at D ¼ 4, since
Γð0Þ ¼ ∞, although ζð0; λÞ < ∞ for λ < ∞.
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Therefore, we rewrite the flow equation into

∂tΓΛ ¼ N
2

ð2gHÞ1−ϵ
ð4πÞ2−ϵ ΓðϵÞ

�
ðW0

ΛÞ−1ð2 − ηΛÞZΛΛ2

×
�
ð1 − 2ϵÞζ

�
ϵ;
1

2
þ ZΛΛ2

2W0
ΛgH

�

þ ζ

�
ϵ;
3

2
þ ZΛΛ2

2W0
ΛgH

�
þ ζ

�
ϵ;−

1

2
þ ZΛΛ2

2W0
ΛgH

��

þ αΛð2 − ηΛÞZΛΛ2ζ

�
ϵ;
1

2
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2α−1Λ gH

�

− 2ð ~ZΛÞ−1ð2 − ~ηΛÞ ~ZΛΛ2ζ

�
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1

2
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2gH

��
: (B6)

For ϵ ≪ 1, we can use the expansions around ϵ ¼ 0,

ΓðϵÞ ¼ ϵ−1 − γ þOðϵÞ; (B7)

μ2ϵ
�
2gH
4π

�
−ϵ

¼ exp

�
−ϵ ln

�
2gH
4πμ2

��

¼ 1 − ϵ ln
2gH
4πμ2

þOðϵ2Þ; (B8)

and

ζðϵ; λÞ ¼ ζð0; λÞ þ ϵζð1;0Þð0; λÞ þOðϵ2Þ; (B9)

where we have defined

ζðm;nÞðz; λÞ ≔ ∂m

∂zm
∂n

∂λn ζðz; λÞ: (B10)

APPENDIX C: GENERALIZED RIEMANN
ζ FUNCTION

The generalized Riemann ζ-function ζð0;0Þð1 − n; λÞ can
be represented as

ζð0;0Þð1 − n; λÞ ¼ −
1

n
BnðλÞ; (C1)

where BnðλÞ is the Bernoulli polynomial of degree n.
For n ¼ 1,

ζð0;0Þð0; λÞ ¼ −B1ðλÞ ¼ −λþ 1

2
: (C2)

For n ¼ 2,

ζð0;0Þð−1; λÞ ¼ −
1

2
B2ðλÞ ¼ −

1

2

�
λ2 − λþ 1

6

�
: (C3)

The expansionof the derivative of thegeneralizedRiemann
ζ function ζð1;0Þð1 − n; λÞ for large λ is given by [59]

ζð1;0Þð1 − n; λÞ ¼ 1

n

�
ln λ −

1

n

�
BnðλÞ −

1

2n
λn−1

−
1

n

Xn
k¼2

Bk

Xk−1
j¼0

nCj
ð−1Þj
k − j

λn−k

þ ð−1Þn−1ðn − 1Þ!

×
X∞

k¼nþ1

Bk

kðk − 1Þ…ðk − nÞ λ
n−k; (C4)

where Bk is the Bernoulli numbers.
For n ¼ 1,

ζð1;0Þð0; λÞ ¼ ðln λ − 1ÞB1ðλÞ −
1

2
þ 1

2
B2λ

−1 þOðλ−2Þ

¼ ðln λ − 1Þ
�
λ −

1

2

�
−
1

2
þOðλ−1Þ: (C5)

For n ¼ 2,

ζð1;0Þð−1; λÞ ¼ 1

2

�
ln λ −

1

2

�
B2ðλÞ −

1

4
λþ 1

2
B2λ

−1

þOðλ−2Þ

¼ 1

2

�
ln λ −

1

2

��
λ2 − λþ 1

6

�
−
1

4
λþOðλ−1Þ:

(C6)

The following recursion relation holds [59]:

ζð1;0Þð−1; aþ nÞ ¼ ζð1;0Þð−1; aÞ þ
Xn−1
n¼0

ðkþ aÞ lnðkþ aÞ:

(C7)

In particular,

ζð1;0Þð−1; aþ 1Þ ¼ ζð1;0Þð−1; aÞ þ a ln a: (C8)

APPENDIX D: FLOW OF GAUGE
PARAMETERS IN MA GAUGE

It was shown [79–82] that the gauge-fixing parameter β
of the diagonal part in the Lorentz gauge obeys the RG
equation to the one-loop calculation:

μ
∂
∂μ βR ¼ 44

3
βR

g2R
ð4πÞ2 ; (D1)

andthat thegauge-fixingparameterαoftheoff-diagonalpartin
themodifiedmaximal Abelian gauge obeys the RG equation:

μ
∂
∂μ αR ¼

�
−2α2R þ 8

3
αR − 6

�
g2R

ð4πÞ2 : (D2)

It is well known that the running of the gauge coupling
constant is governed by the differential equation:
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βðg2RÞ ≔ μ
∂g2R
∂μ ¼ −

22

3

C2ðGÞ
ð4πÞ2 g4R: (D3)

Equation (D3) is a closed equation for gR, which is solved
exactly as a function of μ:

g2RðμÞ ¼
g2Rðμ0Þ

1þ 22
3

C2ðGÞ
ð4πÞ2 g

2
Rðμ0Þ ln μ

μ0

¼ 1

22
3

C2ðGÞ
ð4πÞ2 ln

μ
ΛQCD

; (D4)

where we have used the boundary condition gRðμ0Þ ¼ ∞ at
μ0 ¼ ΛQCD. Using the solution (D4), the derivative

1
g2R
μ ∂
∂μ in

(D1) and (D2) is rewritten as

1

g2R
μ
∂
∂μ ¼ 22

3

C2ðGÞ
ð4πÞ2

∂
∂ ln ln μ

ΛQCD

: (D5)

We apply (D5) to rewrite the differential equation (D1)
into the form that does not explicitly depend on g2:

22

3
2

∂
∂ ln ln μ

ΛQCD

βR ¼ 44

3
βR; (D6)

which is easily solved. The integration,

Z
β̄

β

dβ
β

¼
Z

μ

μ0

d ln ln
μ

ΛQCD
; (D7)

yields

β̄ ¼ β
lnðμ=ΛQCDÞ
lnðμ0=ΛQCDÞ

¼ β
g2

ḡ2
: (D8)

In what follows, we use β to denote the initial value, β̄ ≔ βR
the running parameter and β� the fixed point of RG. As
μ → ∞ or ḡ → 0, β̄ → þ∞ for β > 0 and β̄ → −∞ for
β < 0, while β̄≡ 0 for β ¼ 0. As μ → 0 or ḡ → ∞, β̄ → 0.
Hence, β� ¼ 0 is the IR fixed point for β.

In a similar way, (D2) is cast into

44

3

∂
∂ ln ln μ

ΛQCD

αR ¼ −2α2R þ 8

3
αR − 6 < 0: (D9)

Before solving this equation, we can observe that ᾱ is
monotonically increasing (decreasing) in decreasing
(increasing) μ towards the IR (UV) direction, and that
there is no fixed point for α, in sharp contrast to the Lorentz
gauge. See Fig. 10.
Equation (D9) is solved by the integration

Z
ᾱ

α

dαR
−2α2R þ 8

3
αR − 6

¼ 3

44

Z
μ

μ0

d ln ln
μ

ΛQCD
: (D10)

First, we consider sufficiently small α (jαj ≪ 1), neglecting
the order α2 term,

Z
ᾱ

α

dαR
αR − 9

4

¼ 2

11

Z
μ

μ0

d ln ln
μ

ΛQCD
; (D11)

which yields

ᾱðμÞ ¼ 9

4
þ
�
α −

9

4

��
lnðμ=ΛQCDÞ
lnðμ0=ΛQCDÞ

� 2
11

¼ 9

4
þ
�
α −

9

4

��
g2

ḡ2

� 2
11

→ −∞ ðμ → ∞; ḡ → 0Þ:

(D12)

Next, we take into account theOðα2Þ term too. Applying
the formula

Z
dx

ax2þbxþc
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac−b2
p arctan

2axþbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac−b2

p ðb2<4acÞ;

(D13)

to (D10), we obtain

arctan
−3ᾱþ 2ffiffiffiffiffi

23
p ¼ arctan

−3αþ 2ffiffiffiffiffi
23

p

þ
ffiffiffiffiffi
23

p

22
ln

�
lnðμ=ΛQCDÞ
lnðμ0=ΛQCDÞ

�
: (D14)

Thus the running gauge parameter obeys

ᾱðμÞ¼2

3
−

ffiffiffiffiffi
23

p

3
tan

�
arctan

−3αþ2ffiffiffiffiffi
23

p þ
ffiffiffiffiffi
23

p

22
ln
�
g2

ḡ2

��
: (D15)

This shows that ᾱ → −∞ as μ → ∞ (ḡ → 0) irrespective of
the value of α. Note that arctan x is multivalued,
unless −π=2 < arctan x < π=2.
For higher loop calculations in the MA gauge, see [83].

FIG. 10 (color online). Flow of the gauge parameter α in the
modified MA gauge for the off-diagonal gauge field. The arrow is
directed to the IR region, i.e., decreasing the renormalization
scale μ.
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