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Temperature dependence of the chiral vortical effects
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We discuss the origins of temperature dependence of the axial vortical effect, i.e., generation of an axial
current in a rotating chiral medium along the rotation axis. We show that the corresponding transport
coefficient depends, in general, on the number of light weakly interacting degrees of freedom, rather than
on the gravitational anomaly. We also comment on the role of low-dimensional defects in the rotating
medium, and appearance of the chiral vortical effect due to them.

DOI: 10.1103/PhysRevD.89.105012

I. INTRODUCTION

Quantum anomalies have recently attracted much atten-
tion due to their effect on the classical dynamics of chiral
liquids. Typical examples of such liquids are the strongly
coupled quark gluon plasma, dense QCD at the CFL phase,
superfluid 3He-A, etc. The anomaly effects can manifest
themselves in the response of the fluid to an external
magnetic field or rotation and can be studied through the
transport coefficients in the vector (e.g., electric) or axial-
vector currents,

ja - j?(» + Kma)" + K'EMBa + ..., (1)
JS = J510) T S0 + EAB" + ..., 2)
JSp = JSpo) + Son®” + EaBT + .. (3)

where the j) denote the zero-order components (e.g.,
j?o) = pu® for an ideal fluid or j‘(”o) = pu® + pgu§ for a
superfluid), and w® = €*"°uz0,us and B* = e”’"°uyF 5 are
the vorticity and the magnetic field, respectively, defined on
the four-velocity of the liquid, u#,. We also consider a
baryon axial current (3) specific for the strong interactions.
The ellipses denote higher-order corrections in derivative
expansion.

Coefficient gy, is the so-called chiral magnetic effect
(CME) [1], k,-chiral vortical effect (CVE) [2], £4-chiral
separation effect [3-5], £, -axial vortical effect (AVE) [6,7].
The latter one (and the similar coefficient in the baryon
axial current) is the main focus of interest of this paper and
usually has the form

(o = Cu? + 3) + crT* + O(WPus, i3, pu3), (4

where the first prefactor is the chiral anomaly coefficient,
and u and ps are the ordinary and the axial chemical
potentials, respectively. For the hydrodynamic derivation of
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these coefficients with one or several U(1) 5, see, e.g., [5,8],
for U(1)y x U(1)4 see [9,10], and for U(N); x U(N)g see
[11-13]. In [8] it was pointed out that there are temperature-
dependent corrections to the anomalous coefficients, which
appear as the integration constants and cannot be fixed from
the hydrodynamics only. Similar coefficients appeared in
[14] in a context of the anomalous superfluidity and still
could not be fixed. It was conjectured in [15] that the
coefficient c; originates from the mixed gauge-gravity
anomaly coefficient, but, to our knowledge, there is no
general proof of validity of this conjecture (the proportion-
ality may, however, take place in some special circum-
stances [16], but the mixed anomaly itself depends on the
microscopic properties of the system [17]). Moreover, our
statement is that the coefficient ¢y is model dependent
and reflects the statistical properties of chiral degrees of
freedom in the system. This coefficient has been studied in
the case of free rotating fermions [3], anomalous fermionic
fluid [18] and anomalous chiral superfluids [17,19] without
introducing a mixed gauge-gravity anomaly. In all the cases
the coefficient appeared as an integral over the Bose-
Einstein or Fermi-Dirac distributions, which is a hint of
microscopic, short-distance physics notcaptured (but allowed)
by hydrodynamics.

To demonstrate a nonuniversal nature of the coefficient
cr (and other temperature-dependent corrections) we
choose a physical situation, where it changes within the
same model. We consider QCD with two massless flavors
(at finite pion density) below and above the deconfinement
transition. The system is subject to a uniform rotation.
At low temperature the axial current will be carried by
condensed z° mesons, while at high temperature - by chiral
quarks. We will show, that even the sign of temperature-
dependent corrections is different in these two phases,
due to the change of statistics for the chiral degrees of
freedom.

As a final remark, even though the nonuniversal char-
acter of ¢ in relativistic hydrodynamics has attracted much
attention recently, hints and examples of it are known for a
long time in (nonrelativistic) condensed matter systems,
see, e.g., [17,20] and Refs. therein.
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II. LOW TEMPERATURES

In this section we consider QCD at low temperature,
described by the chiral N, = 2 Lagrangian with the gauged
Wess-Zumino-Witten (WZW) term [21,22] and nondynam-
ical electromagnetic fields. We compute then the axial
current and find T2 corrections to AVE using the leading
tadpole resummation technique [23]. The action under
consideration is given by [22]

f2
S=7 / d*xTr[D, U DU

N
- i2400 5 | dOxe®rTr[R,RsR,RsR;]
T

N, 4. afys
- M d*xe*Pr A(ITI‘[Q(L/;LYL{; =+ RﬂRyR(;)]

iN, 4 rap 5
+ Tﬂ'z d XF AaTr[Q (Lﬂ + Rﬂ)

1 , ,
+5(QUQU'Ly + QU'QURy)], (5)

with standard definitions

R,=U'0,U,  L,=0,UU", (6)

F = _Wr°F 5, D,=0,+ieA,]0,]. (1)

1
2

Here the chiral fields U can be represented as U =
exp(in®t®/f,), with Tr(tc?) =26%; a, b=1, 2, 3,
and the charge matrix Q = diag(2/3,-1/3) =1/6+
73/2. By means of the vector and axial transformations,

U—elevQUe=iev0, U—e Qs eieals (8)
Vv A

one can find a gauge-invariant and conserved vector
(electric) current,

2 ~ ~
J* =i TQ(R" ~ L]

Ne  capotrioR RR. + 0L, LI

_We T{Qﬁytﬁ‘Qﬁyé]

iN,

+ 1272

F¥Tr [Qz(i,; + Ry)
+ % (QUQU'L, + QU"'QUR/;)] : ©)

as well as a gauge-dependent axial current,
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For i o 7
& = =Tl 0s (R + 1)

+ Weaﬂy‘sTr[QsRﬁRyRa — QsLgL, L)
IN. - -
+ TﬂczFaﬂTf[QQs (Ls—Rp)]

Nc T
+ 7 7 A T 05 (10)

Here R, and L, are (6) with partial derivatives replaced by
the covariant ones. One can redefine the current (10) such
that the last (gauge-variant) term is moved to the right hand
side of the chiral anomaly expression,

. Nc -
0uf§ = = 5 FapFV TH[QQs]. (n

Since we are interested in the condensed neutral pions, we
can simplify the above currents (but not the Lagrangian)
by substituting U = exp(iz*7*/f,) and D, = 9, (due to
the structure of Q or, physically, because of the electric
neutrality of z°) and using the identities

R Ry = —6[aRﬁ] + .. LigLly = 6[aLﬁ] + ... (12)

where ellipses will be important in the last section of this
paper. The charge matrix Qs can be chosen differently,
depending on which current we want to study, e.g., Q5 =
73 /2 for the usual axial current or Qs = 1/3 for the baryon
axial current, jsz. Simplified currents take a form

N. -
a__ 3
= 12;;2} F 0,3,

J& = [0, (13)

j$p = €1 0,m%0, 057 14

J$ € b2 ST (14)
B 36,2 12 sy

At the next step we introduce the condensate velocity u,

from the condition that the zero-order term in the axial
current becomes j? = f,0%% = jou? = psu?. Velocity

depends on the (axial) chemical potential y5 = % = 0}”3 =
]% and is, therefore, equal to
3
ya = I (15)
f Hs

This identification is typical for BEC and superfluids [24].
We add a subscript “S” to distinguish the condensate
velocity from the velocity of the normal component u®.
We assume the normal component to be absent at (or close
to) zero temperature. Using these definitions, one can
rewrite the currents in a purely hydrodynamic form,
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. N. -
J* ==y ksE (16)

s X Mo N X

J§=psuss J5p = 3o 3 M35 (17)

The vector current contains the CME term, while the
baryon axial current contains the axial vortical term.
There are also some comments in order. First, the vector
current does not contain a zero-order part, pu®, because z°
is neutral. Because of the same reason, there are no chiral
vortical and chiral separation effects in this derivation (they
are proportional to the ordinary y = 0). Second, one would
naively expect (14) and, hence, the vorticity @, to vanish
identically. However, in the presence of a nonvanishing
total angular momentum, the only way for the condensate
to develop a vorticity is to have a singular 7z field (since the
condensate is, in general, curl free). This singularity has a
nontrivial topology in the plane perpendicular to the vortex
line (similar to [25,26]),

0k, 0410 = 22,5231, (18)

which can be derived from the Stokes’s theorem. Property
(18) makes the vorticity to be quantized and concentrated
on a set of lines in this phase. It is important, that there is no
possibility to create vorticity in this system just by quantum
fluctuations, because the vorticity itself is a result of a
nontrivial topology (18) protected against quantum correc-
tions. Moreover, we emphasize the fact that the terms of the
form (14) should be restored in all studies of the rotating
relativistic superfluids.

After obtaining the transport coefficients at zero temper-
ature, we can find thermal corrections to them for the
temperature 7 < f,. In order to do that, on should
calculate expectation values of the currents and renormalize
the pion fields and pion decay constant f, by considering
tadpole diagrams coming from the quartic (in z“) terms of
the pion Lagrangian [11,27]. Given that the pion loops in
tadpoles are excited thermally with the Bose-Einstein
occupation numbers, the renormalization constant for the
pion fields, 5; = 1 —z,/x, will be proportional to

>2 2 2
> _<”>T 2”‘3(17) 4 T
= = - —=. 1
() N /ew/T_1d” 5o 19

Expectation values of the currents can be found by
contracting pairs of the pion fields in the cubic in =z
expansions of the currents. The result is given by

o\ Nc af 3 _i<ﬂ2>T
<] > _ 12ﬂ2fﬂF 8ﬂﬂ (1 3 f,2, ) (20)
4 2
s :fﬂaaﬂs(l _?’;#)7 @1)
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s EN
<]53> = <

= —3677.'2f2 e“ﬁy‘sﬁﬁﬂ38},35ﬂ3. (22)

The renormalization of z¢ and f, comes from the tadpole
corrections to the pion propagator and the 7%y vertex,
which is well known (see [27] and references therein),

T2 T2

Replacing the bare zero-temperature quantities by their
renormalized values in (20), (22), we obtain

. N, -, T2
(J* == 22 FP9ym} (1 - 6—fz>’ (24)
. N. T2
(J8p) = Weaﬂ 0470, 05m; (1 - W) (25)

In addition, the zero-order term in the axial current has the
same form as it did before renormalization, (j¢) = f70°x3,
which does not change our identification of the fluid
velocity, i.e., j¢(T) = psu%. One can also immediately
notice a modification of CME (24), which a priori is not
protected against the thermal corrections. Turning back to
the hydrodynamic formulation, we write down the final
result,

N, ~ T’
o o c aff . S
JUT) = = nsF u,;(l —w), (26)
i (T) = NC 2 /«t% T2 a 27
]SB( )_3677,' /’t5_9f721 wS' ( )

The nature of temperature corrections in this phase is not
related to the gravitational anomaly and is, actually, the
same as for the temperature corrections to the chiral
condensate [28]. Since the coefficient in front of 77
depends on ps, we conclude that ¢y = 0 (unless there
are additional circumstances, when us cancels f,). We
should also mention that the reason we choose 7 is that the
other carriers of the axial charge, such as the 7, 7’ fields [7]
or the axionlike excitations of the quark gluon plasma [29],
are not renormalized by the tadpole resummation because
the effective Lagrangian does not contain terms quartic in
fields and quadratic in derivatives of these fields. If these
fields were condensed instead of z°, then the corrections in
(27) vanish, which is one more piece of evidence support-
ing the model dependence of the T2 coefficient.

III. HIGH TEMPERATURES

As the system is heated, the fraction of the condensed
phase becomes smaller, vanishing above the critical tem-
perature. In the absence of dissipation, the total angular
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momentum should be transferred completely to the normal
phase. Since the rotation is uniform, the integrated (quan-
tized) vorticity w§, defined on the condensate velocity uf,
at low-T is the same as the integrated high-T" vorticity »®.
At asymptotically high temperatures, the chirality is carried
by free chiral fermions. We assume that there is some
mechanism (probably of the topological nature) that trans-
lates the axial charge of the system at low 7T to the
imbalance between numbers of quarks with different
chiralities at high 7, characterized by the chiral chemical
potential ps5. As before, we consider nondynamical gauge
fields (otherwise, see [30] for loop corrections). The
transport coefficients can be computed from various deriv-
atives of the grand thermodynamic potential [1],

Q o d3p T 1 1 _lUp“riI‘
= ; W Cl)p.s‘f' zi: 0og +e T 5

where @? ; = (p + sps)* + m* and, since we are mostly
1nterested in the vortical effects, we consider a weak
magnetic field, v/eB < ys. For one quark flavor and color,
the vector (axial) density is the derivative of Q with respect
to the vector (axial) chemical potential in the limit m — O.
Taking into account this fact and some results of the Wigner
function analysis [31], we obtain

o = TG = TG @)
o= ol = Yl @9)

b =080 = ol @O

&, ="M ?91? =Nl D e ), G
b= 2O S0l = M) G2

b =3 20N Moo i) @)

As one can see, the T2 coefficient changed sign compared
to (27), which is due to the Fermi-Dirac statistics for
the fermions. The reason why the u(us)-independent 72
coefficient is at all present in (31), (33), in comparison to
(27), is due to the properties of moments of the Fermi
distribution ny(w),

/m dpp™y np(p £ p) =#- T+ O(PT""), (34)
0 +
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throughout the calculation of the transport coefficients.
Growth of ¢ from zero at low temperatures to a non-
vanishing constant at high temperatures is in a qualitative
agreement with the quenched lattice data [32].

IV. DEFECTS

We are now addressing a subtle consequence of the
identity (18), which is a modification of the Maurer-Cartan
equations (12),

RiRg) = ~0Rpy + Y _ind(x)8(x))e*.  (35)
LigLy = 0Ly + Y _ims(x)5(x)z,  (36)

where we sum over vortices in the z° condensate, with
vortex lines intersecting the (a, f#) plane. Substitution of the
identities (35), (36) into the WZW action (5) will result in
the appearance of two types of terms: the chiral or axial
vortical terms, and terms of the two-dimensional action
induced on the vortex line, C;, which are new. We focus on
the latter one,

N,
S
2D = 36 s

/ Pxe? (A, 057 = 3f,AAy).  (37)

As one can see, this is a source term for an electric current
(not current density) along the string,

N €aﬂ
ja _ ¢ o 3
I T

which in the case of a pion condensate uniformly rotating
along the z axis is simply a persistent current,

—6/:Az). (38)

N, _N #s
C 8 3 _ et
36nf, " 367

Jo == (39)

along the (superconducting) vortex line. One can check that
the electric currents on the string and in the bulk of the fluid
are separately conserved in absence of external electric
fields. Switching on an electric field along the string will
result in a bulk (radial) electric current perpendicular to the
string and the anomaly inflow [25].

Current (38) receives temperature corrections in a full
analogy to (14),

N e 8/;713 T2 T2
1) = ¢ r(1- —Agl1-=—)).
V) =6 <6fﬂ( 18f,%> "( 9f,%>>

Considering, again, a simplified situation (39) and taking
into account that each vortex carries a quantum Qg ., =
—27/us of vorticity, we get temperature corrections to the
total persistent current,
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() (@)
<Qéuant> 72772

N 2 T?
<Jtzot> = 2 < -

— | (Q7). 40
52 )@) 6o
This current is the superfluid version of the CVE, which
was not considered before in the literature.

V. CONCLUSIONS

In this paper we have demonstrated the model depend-
ence for the temperature corrections to the chiral or axial
vortical effects, coming from the quantum statistics of the
chiral degrees of freedom. In addition, we emphasized the
importance of low-dimensional defects (singular fields) for
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the condensed systems in rotation. These defects give rise
to a rich phenomenology, which will be considered in the
future publications.
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