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We discuss the origins of temperature dependence of the axial vortical effect, i.e., generation of an axial
current in a rotating chiral medium along the rotation axis. We show that the corresponding transport
coefficient depends, in general, on the number of light weakly interacting degrees of freedom, rather than
on the gravitational anomaly. We also comment on the role of low-dimensional defects in the rotating
medium, and appearance of the chiral vortical effect due to them.
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I. INTRODUCTION

Quantum anomalies have recently attracted much atten-
tion due to their effect on the classical dynamics of chiral
liquids. Typical examples of such liquids are the strongly
coupled quark gluon plasma, dense QCD at the CFL phase,
superfluid 3He-A, etc. The anomaly effects can manifest
themselves in the response of the fluid to an external
magnetic field or rotation and can be studied through the
transport coefficients in the vector (e.g., electric) or axial-
vector currents,

jα ¼ jαð0Þ þ κωω
α þ κEMBα þ…; (1)

jα5 ¼ jα
5ð0Þ þ ξωω

α þ ξABα þ…; (2)

jα5B ¼ jα
5Bð0Þ þ ξωBω

α þ ξABBα þ…; (3)

where the jð0Þ denote the zero-order components (e.g.,
jαð0Þ ¼ ρuα for an ideal fluid or jαð0Þ ¼ ρuα þ ρSuαS for a

superfluid), and ωα ¼ ϵαβγδuβ∂γuδ and Bα ¼ ϵαβγδuβFγδ are
the vorticity and the magnetic field, respectively, defined on
the four-velocity of the liquid, uα. We also consider a
baryon axial current (3) specific for the strong interactions.
The ellipses denote higher-order corrections in derivative
expansion.
Coefficient κEM is the so-called chiral magnetic effect

(CME) [1], κω-chiral vortical effect (CVE) [2], ξA-chiral
separation effect [3–5], ξω-axial vortical effect (AVE) [6,7].
The latter one (and the similar coefficient in the baryon
axial current) is the main focus of interest of this paper and
usually has the form

ξω ¼ Cðμ2 þ μ25Þ þ cTT2 þOðμ2μ5; μ25; μμ25Þ; (4)

where the first prefactor is the chiral anomaly coefficient,
and μ and μ5 are the ordinary and the axial chemical
potentials, respectively. For the hydrodynamic derivation of

these coefficients with one or several Uð1ÞA, see, e.g., [5,8],
for Uð1ÞV × Uð1ÞA see [9,10], and for UðNÞL × UðNÞR see
[11–13]. In [8] it was pointed out that there are temperature-
dependent corrections to the anomalous coefficients, which
appear as the integration constants and cannot be fixed from
the hydrodynamics only. Similar coefficients appeared in
[14] in a context of the anomalous superfluidity and still
could not be fixed. It was conjectured in [15] that the
coefficient cT originates from the mixed gauge-gravity
anomaly coefficient, but, to our knowledge, there is no
general proof of validity of this conjecture (the proportion-
ality may, however, take place in some special circum-
stances [16], but the mixed anomaly itself depends on the
microscopic properties of the system [17]). Moreover, our
statement is that the coefficient cT is model dependent
and reflects the statistical properties of chiral degrees of
freedom in the system. This coefficient has been studied in
the case of free rotating fermions [3], anomalous fermionic
fluid [18] and anomalous chiral superfluids [17,19] without
introducing a mixed gauge-gravity anomaly. In all the cases
the coefficient appeared as an integral over the Bose-
Einstein or Fermi-Dirac distributions, which is a hint of
microscopic,short-distancephysicsnotcaptured(butallowed)
by hydrodynamics.
To demonstrate a nonuniversal nature of the coefficient

cT (and other temperature-dependent corrections) we
choose a physical situation, where it changes within the
same model. We consider QCD with two massless flavors
(at finite pion density) below and above the deconfinement
transition. The system is subject to a uniform rotation.
At low temperature the axial current will be carried by
condensed π0 mesons, while at high temperature - by chiral
quarks. We will show, that even the sign of temperature-
dependent corrections is different in these two phases,
due to the change of statistics for the chiral degrees of
freedom.
As a final remark, even though the nonuniversal char-

acter of cT in relativistic hydrodynamics has attracted much
attention recently, hints and examples of it are known for a
long time in (nonrelativistic) condensed matter systems,
see, e.g., [17,20] and Refs. therein.*tigran.kalaydzhyan@stonybrook.edu
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II. LOW TEMPERATURES

In this section we consider QCD at low temperature,
described by the chiral Nf ¼ 2 Lagrangian with the gauged
Wess-Zumino-Witten (WZW) term [21,22] and nondynam-
ical electromagnetic fields. We compute then the axial
current and find T2 corrections to AVE using the leading
tadpole resummation technique [23]. The action under
consideration is given by [22]

S ¼ f2π
4

Z
d4xTr½DαU†DαU�

− i
Nc

240π2

Z
d5xϵαβγδζTr½RαRβRγRδRζ�

−
Nc

48π2

Z
d4xϵαβγδAαTr½QðLβLγLδ þ RβRγRδÞ�

þ iNc

24π2

Z
d4x ~FαβAαTr½Q2ðLβ þ RβÞ

þ 1

2
ðQUQU†Lβ þQU†QURβÞ�; (5)

with standard definitions

Rα ≡U†∂αU; Lα ≡ ∂αUU†; (6)

~Fαβ ≡ 1

2
ϵαβγδFγδ; Dα ≡ ∂α þ ieAα½Q; ·�: (7)

Here the chiral fields U can be represented as U ¼
expðiπaτa=fπÞ, with TrðτaτbÞ ¼ 2δab; a, b ¼ 1, 2, 3,
and the charge matrix Q ¼ diagð2=3;−1=3Þ ¼ 1=6þ
τ3=2. By means of the vector and axial transformations,

U→
V
eiεVQUe−iεVQ; U→

A
e−iϵAQ5Ue−iϵAQ5 ; (8)

one can find a gauge-invariant and conserved vector
(electric) current,

jα ¼ i
f2π
2
Tr½Qð ~Rα − ~LαÞ�

−
Nc

48π2
ϵαβγδTr½Q ~Rβ

~Rγ
~Rδ þQ ~Lβ

~Lγ
~Lδ�

þ iNc

12π2
~FαβTr

�
Q2ð ~Lβ þ ~RβÞ

þ 1

2
ðQUQU† ~Lβ þQU†QU ~RβÞ

�
; (9)

as well as a gauge-dependent axial current,

jα5 ¼ −i
f2π
2
Tr½Q5ð ~Rα þ ~LαÞ�

þ Nc

48π2
ϵαβγδTr½Q5

~Rβ
~Rγ

~Rδ −Q5
~Lβ

~Lγ
~Lδ�

þ iNc

12π2
~FαβTr½QQ5ð ~Lβ − ~RβÞ�

þ Nc

4π2
~FαβAβTr½Q2Q5�: (10)

Here ~Rα and ~Lα are (6) with partial derivatives replaced by
the covariant ones. One can redefine the current (10) such
that the last (gauge-variant) term is moved to the right hand
side of the chiral anomaly expression,

∂αjα5 ¼ −
Nc

4π2
Fαβ

~FαβTr½Q2Q5�: (11)

Since we are interested in the condensed neutral pions, we
can simplify the above currents (but not the Lagrangian)
by substituting U ¼ expðiπ3τ3=fπÞ and Dα ¼ ∂α (due to
the structure of Q or, physically, because of the electric
neutrality of π0) and using the identities

R½αRβ� ¼ −∂ ½αRβ� þ…; L½αLβ� ¼ ∂ ½αLβ� þ…; (12)

where ellipses will be important in the last section of this
paper. The charge matrix Q5 can be chosen differently,
depending on which current we want to study, e.g., Q5 ¼
τ3=2 for the usual axial current or Q5 ¼ 1=3 for the baryon
axial current, j5B. Simplified currents take a form

jα ¼ −
Nc

12π2fπ
~Fαβ∂βπ

3; jα5 ¼ fπ∂απ3; (13)

jα5B ¼ Nc

36π2f2π
ϵαβγδ∂βπ

3∂γ∂δπ
3: (14)

At the next step we introduce the condensate velocity uαS,
from the condition that the zero-order term in the axial
current becomes jα5 ¼ fπ∂απ3 ≡ j05u

α
S ≡ ρ5uαS. Velocity

depends on the (axial) chemical potential μ5 ≡ δL
δρ5

¼ ∂0π3
fπ

¼
ρ5
f2π

and is, therefore, equal to

uαS ¼
∂απ3

fπμ5
: (15)

This identification is typical for BEC and superfluids [24].
We add a subscript “S” to distinguish the condensate
velocity from the velocity of the normal component uα.
We assume the normal component to be absent at (or close
to) zero temperature. Using these definitions, one can
rewrite the currents in a purely hydrodynamic form,
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jα ¼ −
Nc

12π2
μ5 ~F

αβuSβ; (16)

jα5 ¼ ρ5uαS; jα5B ¼ Nc

36π2
μ25ω

α
S: (17)

The vector current contains the CME term, while the
baryon axial current contains the axial vortical term.
There are also some comments in order. First, the vector
current does not contain a zero-order part, ρuα, because π0

is neutral. Because of the same reason, there are no chiral
vortical and chiral separation effects in this derivation (they
are proportional to the ordinary μ ¼ 0). Second, one would
naively expect (14) and, hence, the vorticity ωα to vanish
identically. However, in the presence of a nonvanishing
total angular momentum, the only way for the condensate
to develop a vorticity is to have a singular π3 field (since the
condensate is, in general, curl free). This singularity has a
nontrivial topology in the plane perpendicular to the vortex
line (similar to [25,26]),

½∂⊥
α ; ∂⊥

β �πa ¼ 2πfπδð2Þð~x⊥Þ; (18)

which can be derived from the Stokes’s theorem. Property
(18) makes the vorticity to be quantized and concentrated
on a set of lines in this phase. It is important, that there is no
possibility to create vorticity in this system just by quantum
fluctuations, because the vorticity itself is a result of a
nontrivial topology (18) protected against quantum correc-
tions. Moreover, we emphasize the fact that the terms of the
form (14) should be restored in all studies of the rotating
relativistic superfluids.
After obtaining the transport coefficients at zero temper-

ature, we can find thermal corrections to them for the
temperature T ≪ fπ . In order to do that, on should
calculate expectation values of the currents and renormalize
the pion fields and pion decay constant fπ by considering
tadpole diagrams coming from the quartic (in πa) terms of
the pion Lagrangian [11,27]. Given that the pion loops in
tadpoles are excited thermally with the Bose-Einstein
occupation numbers, the renormalization constant for the
pion fields, δZπ

¼ 1 − πr=π, will be proportional to

hπ2iT ≡ h~π2iT
N2

f − 1
¼

Z
2πδðp2Þ
eω=T − 1

d4p ¼ T2

12
: (19)

Expectation values of the currents can be found by
contracting pairs of the pion fields in the cubic in π
expansions of the currents. The result is given by

hjαi ¼ −
Nc

12π2fπ
~Fαβ∂βπ

3

�
1 −

4

3

hπ2iT
f2π

�
; (20)

hjα5i ¼ fπ∂απ3
�
1 −

4

3

hπ2iT
f2π

�
; (21)

hjα5Bi ¼
eNc

36π2f2π
ϵαβγδ∂βπ

3∂γ∂δπ
3: (22)

The renormalization of πa and fπ comes from the tadpole
corrections to the pion propagator and the π0γγ vertex,
which is well known (see [27] and references therein),

πar ¼ πa
�
1 −

T2

36f2π

�
; frπ ¼ fπ

�
1 −

T2

12f2π

�
: (23)

Replacing the bare zero-temperature quantities by their
renormalized values in (20), (22), we obtain

hjαi ¼ −
Nc

12π2frπ
~Fαβ∂βπ

3
r

�
1 −

T2

6f2π

�
; (24)

hjα5Bi ¼
Nc

36π2frπ2
ϵαβγδ∂βπ

3∂γ∂δπ
3
r

�
1 −

T2

9f2π

�
: (25)

In addition, the zero-order term in the axial current has the
same form as it did before renormalization, hjα5i ¼ frπ∂απ3r ,
which does not change our identification of the fluid
velocity, i.e., jα5ðTÞ ¼ ρ5uαS. One can also immediately
notice a modification of CME (24), which a priori is not
protected against the thermal corrections. Turning back to
the hydrodynamic formulation, we write down the final
result,

jαðTÞ ¼ −
Nc

12π2
μ5 ~F

αβuSβ

�
1 −

T2

6f2π

�
; (26)

jα5BðTÞ ¼
Nc

36π2

�
μ25 −

μ25
9f2π

T2

�
ωα
S: (27)

The nature of temperature corrections in this phase is not
related to the gravitational anomaly and is, actually, the
same as for the temperature corrections to the chiral
condensate [28]. Since the coefficient in front of T2

depends on μ5, we conclude that cT ¼ 0 (unless there
are additional circumstances, when μ5 cancels fπ). We
should also mention that the reason we choose π0 is that the
other carriers of the axial charge, such as the η, η0 fields [7]
or the axionlike excitations of the quark gluon plasma [29],
are not renormalized by the tadpole resummation because
the effective Lagrangian does not contain terms quartic in
fields and quadratic in derivatives of these fields. If these
fields were condensed instead of π0, then the corrections in
(27) vanish, which is one more piece of evidence support-
ing the model dependence of the T2 coefficient.

III. HIGH TEMPERATURES

As the system is heated, the fraction of the condensed
phase becomes smaller, vanishing above the critical tem-
perature. In the absence of dissipation, the total angular
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momentum should be transferred completely to the normal
phase. Since the rotation is uniform, the integrated (quan-
tized) vorticity ωα

S, defined on the condensate velocity uαS,
at low-T is the same as the integrated high-T vorticity ωα.
At asymptotically high temperatures, the chirality is carried
by free chiral fermions. We assume that there is some
mechanism (probably of the topological nature) that trans-
lates the axial charge of the system at low T to the
imbalance between numbers of quarks with different
chiralities at high T, characterized by the chiral chemical
potential μ5. As before, we consider nondynamical gauge
fields (otherwise, see [30] for loop corrections). The
transport coefficients can be computed from various deriv-
atives of the grand thermodynamic potential [1],

Ω ¼
X
s¼�

Z
d3p
ð2πÞ3

�
ωp;s þ T

X
�

log

�
1þ e−

ωp;s�μ

T

��
;

where ω2
p;s ¼ ðpþ sμ5Þ2 þm2 and, since we are mostly

interested in the vortical effects, we consider a weak
magnetic field,

ffiffiffiffiffiffi
eB

p
< μ5. For one quark flavor and color,

the vector (axial) density is the derivative of Ω with respect
to the vector (axial) chemical potential in the limit m → 0.
Taking into account this fact and some results of theWigner
function analysis [31], we obtain

κEM ¼ Nc

4

∂3Ω
∂μ2∂μ5 Tr½Q

2� ¼ Nc

2π2
μ5Tr½Q2�; (28)

κω ¼ Nc

2

∂2Ω
∂μ∂μ5 Tr½Q� ¼ Nc

π2
μμ5Tr½Q�; (29)

ξA ¼ Nc

4

∂3Ω
∂μ3 Tr½Q� ¼ Nc

2π2
μTr½Q�; (30)

ξω ¼ NcNf

2

∂2Ω
∂μ2 ¼ NcNf

6
T2 þ NcNf

2π2
ðμ2 þ μ25Þ; (31)

ξAB ¼ 1

3
·
Nc

4

∂3Ω
∂μ3 Tr½Q� ¼ Nc

6π2
μTr½Q�; (32)

ξωB ¼ 1

3
·
Nc

2

∂2Ω
∂μ2 ¼ Nc

18
T2 þ Nc

6π2
ðμ2 þ μ25Þ: (33)

As one can see, the T2 coefficient changed sign compared
to (27), which is due to the Fermi-Dirac statistics for
the fermions. The reason why the μðμ5Þ-independent T2

coefficient is at all present in (31), (33), in comparison to
(27), is due to the properties of moments of the Fermi
distribution nFðωÞ,
Z

∞

0

dppn
X
�
nFðp� μÞ ¼ # · Tnþ1 þOðμ2Tn−1Þ; (34)

throughout the calculation of the transport coefficients.
Growth of cT from zero at low temperatures to a non-
vanishing constant at high temperatures is in a qualitative
agreement with the quenched lattice data [32].

IV. DEFECTS

We are now addressing a subtle consequence of the
identity (18), which is a modification of the Maurer-Cartan
equations (12),

R½αRβ� ¼ −∂ ½αRβ� þ
X
i

iπδðxαi Þδðxβi Þτ3; (35)

L½αLβ� ¼ ∂ ½αLβ� þ
X
i

iπδðxαi Þδðxβi Þτ3; (36)

where we sum over vortices in the π0 condensate, with
vortex lines intersecting the ðα; βÞ plane. Substitution of the
identities (35), (36) into the WZW action (5) will result in
the appearance of two types of terms: the chiral or axial
vortical terms, and terms of the two-dimensional action
induced on the vortex line, Ci, which are new. We focus on
the latter one,

S2D ¼ Nc

36πfπ

Z
Ci

d2xϵαβðAα∂βπ
3 − 3fπAαAβÞ: (37)

As one can see, this is a source term for an electric current
(not current density) along the string,

jα ¼ Ncϵ
αβ

36πfπ
ð∂βπ

3 − 6fπAβÞ; (38)

which in the case of a pion condensate uniformly rotating
along the z axis is simply a persistent current,

jz ¼ −
Nc

36πfπ
∂tπ

3 ¼ −
Ncμ5
36π

; (39)

along the (superconducting) vortex line. One can check that
the electric currents on the string and in the bulk of the fluid
are separately conserved in absence of external electric
fields. Switching on an electric field along the string will
result in a bulk (radial) electric current perpendicular to the
string and the anomaly inflow [25].
Current (38) receives temperature corrections in a full

analogy to (14),

hjαi ¼ Ncϵ
αβ

6π

�∂βπ
3
r

6fπ

�
1 −

T2

18f2π

�
− Aβ

�
1 −

T2

9f2π

��
:

Considering, again, a simplified situation (39) and taking
into account that each vortex carries a quantum Ωquant ¼
−2π=μ5 of vorticity, we get temperature corrections to the
total persistent current,
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hJztoti ¼
hjzi · hΩzi
hΩz

quanti
¼ Ncμ

2
5

72π2

�
1 −

T2

9f2π

�
hΩzi: (40)

This current is the superfluid version of the CVE, which
was not considered before in the literature.

V. CONCLUSIONS

In this paper we have demonstrated the model depend-
ence for the temperature corrections to the chiral or axial
vortical effects, coming from the quantum statistics of the
chiral degrees of freedom. In addition, we emphasized the
importance of low-dimensional defects (singular fields) for

the condensed systems in rotation. These defects give rise
to a rich phenomenology, which will be considered in the
future publications.
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