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We discuss the Uð1Þ gauged version of the 3þ 1 dimensional Faddeev-Skyrme model supplemented by
the Maxwell term. We show that there exist axially symmetric static solutions coupled to the noninteger
toroidal flux of magnetic field, which revert to the usual Hopfions Am;n of lower degrees Q ¼ mn in the
limit of the gauge coupling constant vanishing. The masses of the static gauged Hopfions are found to be
less than the corresponding masses of the usual ungauged solitonsA1;1 andA2;1, respectively; they become
lighter as the gauge coupling increases. The dependence of the solutions on the gauge coupling is
investigated. We find that in the strong coupling regime the gauged Hopfion carries two magnetic fluxes,
which are quantized in units of 2π, carrying n and m quanta, respectively. The first flux encircles the
position curve and the second one is directed along the symmetry axis. Effective quantization of the field in
the gauge sector may allow us to reconsider the usual arguments concerning the lower topological bound in
the Faddeev-Skyrme-Maxwell model.
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I. INTRODUCTION

Spatially localized finite energy particlelike soliton
solutions play a prominent role in a wide variety of
nonlinear physical systems, from modern cosmology and
quantum field theory to condensed matter physics (for a
general review see, e.g., [1]).
Interesting examples of the topological solitons appear in

the scalar models of the Skyrme family. In d ¼ 3þ 1
dimensions it includes the original Skyrme model [2] and
the Faddeev-Skyrme model [3], in d ¼ 2þ 1 there is a
simplified baby Skyrme model [4,5] which resembles the
basic properties of the genuine Skyrme model in many
aspects. The structure of these models looks similar, the
corresponding Lagrangian includes the usual sigma model
term, the Skyrme term, which is quartic in derivatives of the
field, and the potential term which does not contain
the derivatives.1 However the topological properties of
the corresponding solitons are different.
A peculiar feature of the soliton solutions, both

Skyrmions and Hopfions, is that they do not saturate the
topological lower bound. In order to attain it and get a
relation2 between the masses of the solitons and their
topological charges Q, one has to modify the model, for
example eliminate the quadratic in derivatives term [8],
which yields exact Bogomol’nyi solutions in the Skyrme-
type submodel [9]. Similarly, the topological bound is
saturated in the truncated Faddeev-Skyrme model [10].

Alternatively, one can extend the model by coupling the
Skyrmions to an infinite tower of vector mesons [11].
Another peculiarity of the soliton solutions of the

Skyrme family is that they can be constructed only numeri-
cally, one has to apply rather complicated numerical
methods which need a serious amount of computation
power. This task becomes particularly complicated in the
case of the Hopfions in the Faddeev-Skyrme model which
are stringlike configurations classified by the linking
number, the first Hopf map S3 → S2.
A physically natural extension of the Skyrme model is

related with the possibility of gauging of the global
symmetry group. Originally, the Abelian gauged Skyrme
model was proposed to model the monopole catalysis of
the proton decay [12], the axially-symmetric gauged
Skyrmions were considered in [13]. Similar analysis of
the gauged baby Skyrmions [14] reveals a very interesting
feature of the corresponding solitons: they carry a magnetic
flux which is not topologically quantized. Gauge versions
of some systems, which resemble a modified Faddeev-
Skyrme model, were also considered in the papers [15–18].
However, to the best of our knowledge, the analysis of the
fully coupled Faddeev-Skyrme-Maxwell system has not yet
been done.
The Hopfions have been intensively studied over recent

years [19–22]. These solitons have a number of physical
applications, for example, in the study of Bose-Einstein
condensates [23], nonlinear optics [24], and nonconven-
tional superconductivity [25].
It was shown that whereas the minimal energy solitons of

the Faddeev-Skyrme model of degree Q ¼ 1, 2 are axially
symmetric, the higher degree solutions should be not just
closed flux-tubes of the fields but knotted field configu-
rations. Note that the solitons of the model possess both

1Note that the potential term is optional in d ¼ 3þ 1 dimen-
sions, on the other hand it is obligatory to stabilize the solitons in
the low-dimensional baby-Skyrme model [6].

2This relation is linear for Skyrmions, however for the
Hopfions the corresponding Vakulenko-Kapitanski bound is
E ¼ cQ3=4 where c ¼ ð3=16Þ3=8 [7].
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rotational and internal rotational (or isorotational) degrees
of freedom, such a rotation might seriously affect the
structure of the Hopfions [26,27].
The soliton solutions of the Faddeev-Skyrme model are

invariant with respect to the global SOð2Þ symmetry.
Furthermore, for axially symmetric configurations the
rotations about the third axis in space and in isospace
are identical. Therefore, by analogy with the similar
situation in the planar baby Skyrme model [14], we can
couple the usual Maxwell electrodynamics to the Faddeev-
Skyrme model by gauging this symmetry. Note that in such
a theory, unlike the low-dimensional baby Skyrme model
[28], the Maxwell term alone probably cannot be used as a
substitute for the Skyrme term in order to stabilize the
Hopfions.
In this paper we discuss the topologically stable static

soliton solutions of the full coupled gauged Faddeev-
Skyrme-Maxwell system which carry two magnetic fluxes.
We study numerically the dependency of shapes of the
gauged Hopfions, their masses and magnetic fluxes on the
gauge coupling constant, both in the perturbative limit and
in the strong coupling limit. Since the consistent consid-
eration of the solitons with higher Hopf charges is related
with the complicated task of full numerical simulations in
3d [21], we restrict our consideration to the case of the
static axially symmetric unlinked Hopfions A1;1 and A2;1
of charges Q ¼ 1, 2, respectively. We find that the gauged
Hopfion carries a toroidal magnetic flux which, in the
strong coupling regime is effectively reduced to two
magnetic fluxes, one of which encircles the position curve
of the Hopfion and the second one is directed along the
symmetry axis. Further, we demonstrated that both fluxes
are quantized in units of 2π, carrying n and m quanta,
respectively. We observe that the mass of the gauged
Hopfions is decreasing as the gauge constant grows.
More systematic investigation of the gauged Hopfions

for larger values of Q and with nonvanishing electric field
will be presented elsewhere.

II. THE MODEL

A gauged version of the Faddeev-Skyrme model can be
constructed if we take into account global SOð2Þ invariance
of the 3þ 1 dimensional Lagrangian

LFS ¼
1

32π2
ffiffiffi
2

p
�
∂μϕ

a∂μϕa −
κ

2
ðεabcϕa∂μϕ

b∂νϕ
cÞ2

− μ2½1 − ðϕ3Þ2�
�
; (1)

where κ is the dimensional coupling constant and a triplet
of scalar real fields ϕa ¼ ðϕ1;ϕ2;ϕ3Þ satisfy the constraint
ϕa ·ϕa ¼ 1. An additional potential term V ¼ μ2½1− ðϕ3Þ2�
breaks the global SOð3Þ symmetry of the model. Note
that if the model (1) becomes restricted to the xy plane,

it corresponds to the double vacuum baby Skyrme
model [29].
Under the scaling transformations of the domain space

x → λx the sigma model term scales as λ, the Skyrme term
scales as λ−1 and the potential term scales as λ3. Hence,
even if the latter term is absent, the existence of static
solitons of the model (1) is allowed by the Derrick theorem.
Topological restriction on the field ϕa is that it

approaches its vacuum value at spacial boundary, i.e.,
ϕa
∞ ¼ ð0; 0; 1Þ. This allows a one-point compactification

of the domain space R3 to S3 and the field of the finite
energy solutions of the model, the Hopfions, is a map
ϕa∶ R3 → S2 which belongs to an equivalence class
characterized by the homotopy group π3ðS2Þ ¼ Z.
Explicitly, the Hopf invariant is defined nonlocally as

Q ¼ 1

16π2

Z
R3

εijkF ijAk; (2)

where F ij ¼ εabcϕ
a∂iϕ

b∂jϕ
c and one-form A ¼ Akdxk is

defined via F ¼ dA, i.e., the two-form F is closed,
dF ¼ 0.
For the lowest values of the corresponding Hopf charge

Q ¼ 1, 2 the simplest soliton solutions can be constructed
using the axially symmetric ansatz [19] written in terms of
two functions f ¼ fðr; θÞ and g ¼ gðr; θÞwhich depend on
the radial variable r and the polar angle θ:

ϕ1 ¼ sin fðr; θÞ cosðmφ − ngðr; θÞÞ;
ϕ2 ¼ sin fðr; θÞ sinðmφ − ngðr; θÞÞ;
ϕ3 ¼ cos fðr; θÞ; (3)

where n, m ∈ Z. An axially-symmetric configuration of
this type is commonly referred to as Am;n, where the first
subscript corresponds to the number of twists along the
loop and the second label is the usual Oð3Þ sigma model
winding number associated with the map S2 → S2. The
Hopf invariant of this configuration is Q ¼ mn.
The unbroken global symmetry of the configurations

with respect to the rotations around the third axis allows us
to rotate the components of the axially-symmetric con-
figuration as ðϕ1 þ iϕ2Þ↦ðϕ1 þ iϕ2Þeiα, where α is the
angle of rotation. Thus, we can gauge this subgroup by a
Uð1Þ gauge field Aμ defining the covariant derivative as
(cf. [19,28,30])

Dμϕ
a ¼ ∂μϕ

a þ gAμεabcϕ
bϕc

∞; (4)

where g is the gauge coupling constant.
Note that the field configuration has finite energy if

Dμϕ
a → 0 as r → ∞. Hence, on the spacial asymptotic,

the field of the gauged Hopfion must lie in an orbit of the
gauge group, unless the global symmetry is explicitly
broken by the potential term. In other words, this condition
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generically does not imply that the field ϕa necessarily
tends to a constant on the spacial asymptotic.
The total Lagrangian of the gauged Faddeev-Skyrme-

Maxwell model can be written as

L ¼ 1

32π2
ffiffiffi
2

p
�
−
1

4
FμνFμν þDμϕ

aDμϕa

−
κ

2
ðεabcϕaDμϕ

bDνϕ
cÞ2 − μ2½1 − ðϕ3Þ2�

�
(5)

where we introduced the usual Maxwell term and the field
strength tensor is Fμν ¼ ∂μAν − ∂νAμ. Here we suppose
that the topological charge of the configuration is defined as
usual by (2).
Note that the integrated Maxwell term transforms as λ−1

under the scaling transformations x → λx, i.e., it has the
same scaling properties as the Skyrme term. Setting
λ ¼ ffiffiffi

κ
p

allows us to rescale the Skyrme coupling constant
to κ ¼ 1.
The question about the possible existence of soliton

solutions of the gauged model (5) was briefly discussed
recently in review [31]. It was pointed out that, in some
sense, the Maxwell term looks similar to the Skyrme term,
thus one can consider an additional linking between the
genuine Uð1Þ gauge field Aμ and the “potential” Aμ which
appears in the definition of the Hopf charge (2) [17,31].
However it may result in instability of the configuration
since it seems to be that there are no topological restrictions
on the Maxwell field and there is no lower energy bound in
the generalized Vakulenko-Kapitanski relation [17].
However, as we will see below, there still is an effective
quantization of the field fluxes in the gauge sector
which may allow us to evade a possible collapse of the
configuration.
Hereafter, we restrict the consideration to the original

model without the potential term, so we set μ ¼ 0. Then in
normalized units of energy, in which E → E=ð32π2Þ ffiffiffi

2
p

,
the static energy of the gauged Hopfion is defined by the
functional

E ¼
Z
R3

�
ðDiϕ

aÞ2 þ 1

2
ðεabcϕaDiϕ

bDjϕ
cÞ2

�
(6)

and the electromagnetic part of the total energy functional
is the usual sum of magnetic and electric components:

Eem ¼ 1

2

Z
R3

½B2
k þ E2

k�: (7)

Let us consider a purely magnetic field generated by the
axially symmetric Maxwell potential

A0¼Ar¼ 0; Aθ ¼A1ðr;θÞ; Aϕ¼A2ðr;θÞsinθ (8)

represented in terms of the two functions Aiðr; θÞ i ¼ 1, 2,
here the gauge fixing condition is used to exclude the
radial component of the vector-potential. Note that the
“trigonometric” parametrization (3) is not very convenient
from the point of view of numerical calculations [32,33],
here we used it to produce an initial configurations in the
given topological sector. However the original triplet of the
scalar fields ϕa was considered as dynamical variables in
the corresponding system of the Euler-Lagrange equations.
Certainly, the Uð1Þ gauge potential obeys the usual

Maxwell equation

∂μFμν ¼ jν (9)

with the current

jμ ¼ 2gεabcϕaDμϕ
bðϕc

∞ −Dνϕ
c∂νðϕdϕd

∞ÞÞ: (10)

The complete set of the field equations, which follow from
the variation of the action of the Faddeev-Skyrme-Maxwell
model (5), can be solved when we impose the boundary
conditions. As usual, they follow from the regularity on the
symmetry axis and symmetry requirements as well as the
condition of finiteness of the energy and the topology. In
particular, we have to take into account that the magnetic
field is vanishing on the spacial asymptotic. Explicitly, we
impose

ϕ1jr→∞ → 0; ϕ2jr→∞ → 0; ϕ3jr→∞ → 1;

∂rA1jr→∞ → 0; A2jr→∞ → 0; (11)

at infinity and

ϕ1jr→0 → 0; ϕ2jr→0 → 0; ϕ3jr→0 → 1;

A1jr→0 → 0; A2jr→0 → 0; (12)

at the origin. The condition of regularity of the fields on the
symmetry axis yields

ϕ1jθ→0;π → 0; ϕ2jθ→0;π → 0; ϕ3jθ→0;π → 1;

A1jθ→0;π → 0; A2jθ→0;π → 0: (13)

III. NUMERICAL RESULTS

The numerical calculations are mainly performed on an
equidistant grid in spherical coordinates r and θ, employing
the compact radial coordinate x ¼ r=ð1þ rÞ ∈ ½0∶1� and
θ ∈ ½0; π�. To find solutions of the Euler-Lagrange equa-
tions which follow from the Lagrangian (5) and depend
parametrically on the coupling constant g, we implement a
simple forward differencing scheme on a rectangular lattice
with lattice spacing Δx ¼ 0.01. Typical grids used have
sizes 120 × 70. The relative errors of the solutions are of
order of 10−4 or smaller. We also introduce an additional
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Lagrangian multiplier to constrain the field to the surface of
unit sphere.
Each of our simulations began at g ¼ 0 at fixed value of

μ, then we proceed by making small increments in g.
In Fig. 1 we have plotted the graphs of energy of gauged

Hopfion defined by the functional (6), and magnetic energy
as function of the gauge coupling. Here we used the
normalized units of energy and took into account the
Ward’s conjecture [34] concerning the lower energy bound,
in these units it becomes E ≥ Q3=4.
As the gauge coupling increases from zero, the energy of

the gauged Hopfion decreases since the toroidal magnetic
flux is formed. The size of the configuration is decreasing,
it becomes deformed as shown in Fig. 2 where we exhibited

the energy density isosurfaces of the gauged A1;1 and A2;1

Hopfions at g ¼ 0 and g ¼ 2, respectively. This pattern is in
agreement with behavior of the solitons in the SOð3Þ
gauged Skyrme model [35].
Note that as the coupling remains smaller than one, the

electromagnetic energy Eem defined by (7) is increasing,
however in the strong coupling limit its contribution begins
to decrease as g continues to grow, see Fig. 1, right plot. We
can understand this effect if we note that the conventional
rescaling of the potential Aμ → gAμ leads to F2

μν →
1
g2 F

2
μν.

Thus, the very large gauge coupling effectively removes
the Maxwell term leaving the limiting configuration of
gauged Hopfion coupled to a circular magnetic vortex of
constant flux. Apparently, in such a limit the strong
coupling with a vortex yields an effective “mass term”
g2ðA2

1 þ A2
2Þ½1 − ðϕ3Þ2�=r2. Unlike the usual symmetry

breaking term in (1), it affects both the gauge potential
and the field components ϕ1 and ϕ2 which became massive
due to the coupling to the gauge sector.
On the other hand, the gauge field remains massless on

the symmetry axis since ϕ1 ¼ ϕ2 ¼ 0 at θ ¼ 0, π, because
of the boundary condition (13) we imposed there.
Furthermore, it is massless along the position curve of
the Hopfion where ϕ3 ¼ −1, thus a magnetic flux should
also appear there.
Indeed, in Fig. 3 we display the results of our numerical

calculations of the magnetic field of the gauged Hopfion in
the xz plane and in the xy plane. Evidently, in the weak
coupling regime, this is a toroidal field which encircles the
position curve. The flux of such a field is not quantized
since there is no topological reason for that. As the gauge
coupling increases, the vortex is getting smaller and the
magnitude of the magnetic field increases significantly.
Effectively, using the Maxwell equation (9), one can set this
magnetic field into correspondence with a circular electric
current j⃗ [36]. Note that there is an interesting similarity

FIG. 1 (color online). Left: The normalized energy E of the A1;1 and A2;1 gauged Hopfions; Right: The corresponding magnetic
energy as a function of the coupling constant g at μ ¼ 0.

FIG. 2 (color online). Top row: energy density isosurfaces for
gauged solitons A1;1 at g ¼ 0 (left plot) and g ¼ 2 (right plot).
Bottom row: energy density isosurfaces for gauged solitons A2;1
at g ¼ 0 (left plot) and g ¼ 2 (right plot).
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between the magnetic flux around the gauged Hopfion and
the magnetic field generated by the vortexlike configura-
tions in the SUð2Þ Yang-Mill-Higgs system [37–39]
It is instructive to compare our results with the pattern of

evolution of the gauged baby Skyrmions [14]. In the latter
case the solitons also carry magnetic flux Φ ¼ g

R
R2 B

which is in general, nonquantized. The flux of the gauged
baby Skyrmions is associated with the position of the
solitons; it is orthogonal to the xy plane. An interesting

observation is that as the gauge coupling grows, the
magnetic flux of the degree n baby Skyrmions varies from
0 to −2πn, i.e., in the strong coupling regime the magnetic
flux is quantized though there are no topological reasons
for it.
Since the axially symmetric Hopfions can be thought of

as planar Skyrmions placed along a twisted closed string
[19,40], this picture is certainly consistent with our results.
Indeed, as shown in Fig. 3, the circular magnetic flux is

FIG. 3 (color online). Magnetic field orientation of the gauged A1;1 Hopfion. Top row: The magnetic flux in the xz plane at g ¼ 0.1
(left) and g ¼ 2 (right). The red profile indicates the position curve of the gauged Hopfion given by the isosurface of the form
ϕ3 ¼ −0.80. Bottom row: The magnetic flux in the xy plane at g ¼ 0.1 (left) and g ¼ 2 (right). The position curve is indicated by the
solid closed curves.
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orthogonal to the xz plane, although its radius is slightly
larger than the radius of the position curve of the Hopfion.
Certainly, the total flux through the xz plane is zero, in
order to evaluate the magnitude of the flux we have to
consider the xz half-plane or, equivalently, the zρ plane.
We found that in the strong coupling limit the magnetic flux
of the gauged Hopfion through the zρ plane becomes
quantized in units of 2π, see Fig. 4.
A particularly interesting observation is that the total

circular flux of the configurations of degrees Q ¼ 1, 2
through the zρ plane shows the same dependence on the
coupling constant, independently of the Hopf degree of the
soliton. We can understand this pattern when we recall that,
as it was mentioned above, the axially symmetric configu-
ration of the typeAm;n can be thought of as composed from
the planar baby Skyrmion of charge n twisted m times
along the circle. Thus, the circular magnetic flux is
associated with the planar charge n ¼ 1, which is the same
in both cases we are considering.
The situation changes in the strong coupling limit

g ≥ gcr ∼ 3. Then the contribution of the Maxwell term

becomes negligible and the condition of regularity of the
energy functional (6) is satisfied if Dkϕ

a ¼ 0 as r → ∞.
Furthermore, our simulations show that at the large
coupling the component Aφðr; θÞ develops a sharp plateau
gAφ ¼ −m in the vicinity of the position curve. Here the
integer m, as it is defined in (3), corresponds to the number
of twists along the position curve. The plateau further
extends as the gauge coupling grows. On the other hand, in
the strong coupling limit the position curve itself expands
from a circle S1 to some region. In some sense it resembles
the Meissner effect—at critical value of the gauge coupling
gcr ∼ 3 the magnetic field is expelled from the Hopfion.
Indeed, in this region the covariant derivative in azimu-

thal direction Dφϕ
a ¼ 0 and the component Aφ is a pure

gauge, i.e., gAφ ¼ iU∂φU−1, where U ¼ eimφ. Clearly this
corresponds to the linear string of magnetic flux through
the center of the Hopfion, which is quantized in units of 2π
and carries m quanta.
We illustrated this observation in Fig. 5, where both the

profiles of the rescaled component of the potential Aφ in
units of g=m and the component ϕ3 in the xy plane are
shown in the weak and strong coupling regimes.
Hence, the corresponding integrated flux through the

Hopfion along the symmetry axis is −2πm. Similar to the
flux through the xz plane, which encircles the Hopfion, it
becomes quantized in the strong coupling regime. We
conclude that the gauged Hopfion carries two magnetic
fluxes, the first circular flux encircles the position curve
while the second one is directed along the third axis. In the
strong coupling regime they both are quantized in units of
2π and carry n and m quanta, respectively.
Evidently, the appearance of the effective quantization of

the magnetic field matches the underlying topology of the
Hopfion configuration. This observation may be used to
identify related topological invariants in the Maxwell sector
of the gauged model. This mechanism could allow us to
reconsider the usual arguments concerning implementation
of the Protogenov-Verbus topological bound [18].
Physically, appearance of the quantized magnetic flux

FIG. 4 (color online). The magnetic flux in units of 2π through
the zρ-plane as a function of the coupling constant g for the
solutions of degree Q ¼ 1, 2.
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FIG. 5 (color online). The magnetic flux gAϕð~x; 0Þ=m (solid line) and the scalar field component ϕ3ð~x; 0Þ (dashed line) of the gauged
Hopfions of degree Q ¼ 1, 2 in the xy plane; the radial variable ρ is compactified onto the unit interval, ~x ¼ ρ=ð1þ ρÞ ∈ ½0; 1�.
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through the center of the Hopfion may yield a constraint
which could affect the usual scaling arguments [18].

IV. CONCLUSIONS

The main purpose of this work was to present a new type
of gauged solitons in the Faddeev-Skyrme-Maxwell theory.
Our consideration is restricted to the simple axially-
symmetric Hopfions Am;n of lower degree Q ¼ mn.
Similar to the corresponding solutions in the Skyrme
model they are topologically stable, in the weak coupling
regime they carry noninteger toroidal magnetic flux. In the
strong coupling regime the configuration is associated with
two magnetic fluxes, one of which represents a circular
vortex, and the second one is orthogonal to the position
curve. In this limit we observe an effective quantization of
both fluxes, the first flux is quantized in units of the
winding number n and the second flux is quantized in units
of m, respectively.
Certainly, this is a first step toward complete investiga-

tion of the gauged Hopfions. Clearly, this study should be
extended to the Hopfions of higher degrees and different
geometry. One can expect by analogy with isorotations of
the solitons of the Skyrme systems (see [26,27] and
[41,42]) that the coupling of the Hopfions to the electro-
magnetic field may drastically affect their structure. Since
for a given degree Q there are several different soliton
solutions of rather similar energy and the number of
solutions seems to grow with Q [21], various bifurcations
may occur as the gauge coupling varies. Further, we cannot
exclude possible instabilities of gauged Hopfions at some
critical coupling.

We do not investigate here possible effects of the
potential term in (1) on the properties of the gauged
Hopfions. We can expect, by analogy with the case of
the gauged baby Skyrme model [14] that the results may
strongly depend on the ratio μ2=g. On the other hand, the
limiting truncated Faddeev-Skyrme-Maxwell system which
appears in the strong coupling limit should be considered in
depth, a possible interplay between the mass generating
terms and the potential may drastically affect the stability of
the configuration.
An important feature of the Faddeev-Skyrme model is

that the energy of the Hopfions is related with the
topological degree via the Vakulenko-Kapitanski bound
E ≥ Q3=4 [7]. We expect that the coupling to the Maxwell
field will affect this relation, in particular, the solutions may
approach the topological bound. This problem will be
investigated elsewhere.
As a direction for future work, it would be interesting to

study spinning gauged Hopfions, these electrically charge
solutions with an intrinsic angular momentum can be
constructed by analogy with similar configuration in the
gauged Skyrme model [18].
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