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We illustrate the physical significance and mathematical origin of resurgent trans-series expansions for
energy eigenvalues in quantum mechanical problems with degenerate harmonic minima, by using the
uniform WKB approach. We provide evidence that the perturbative expansion, combined with a global
eigenvalue condition, contains all information needed to generate all orders of the nonperturbative multi-
instanton expansion. This provides a dramatic realization of the concept of resurgence, whose structure is
naturally encoded in the resurgence triangle. We explain the relation between the uniform WKB approach,
multi-instantons, and resurgence theory. The essential idea applies to any perturbative expansion, and so is
also relevant for quantum field theories with degenerate minima which can be continuously connected to
quantum mechanical systems.
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I. INTRODUCTION

A. Why are resurgent trans-series important?

In a large variety of quantum theoretical settings, it is
well known that perturbative (P) and nonperturbative (NP)
physics are closely related [1–4]. In quantum mechanical
systems with degenerate (harmonic) minima, perturbation
theory leads to divergent and nonalternating series [5–8].1
This leads to two interrelated fundamental problems:

(i) analysis of these divergent series (for example, by
Borel summation) leads to imaginary contributions
to observables (such as energy) that must be real;

(ii) this Borel summation procedure is ambiguous, with
the ambiguity manifest in the sign of the imaginary
nonperturbative contributions [5–7,10–14].

Resurgent trans-series analysis resolves these two prob-
lems, producing an expression for the observable (such
as energy) that is real and unambiguous. This approach
unifies the perturbative (P) series with a sum over all
nonperturbative (NP) contributions, forming a so-called
“trans-series” expression, and the various terms in this
trans-series are connected by an infinite ladder of intricate
interrelations which encode the cancellation of all imagi-
nary and ambiguous terms [15–17]. We refer to this
generalized notion of summability as Borel-Écalle summ-
ability. For example, the leading ambiguous imaginary
term arising from a Borel analysis of the divergent

perturbative series is of order �iπe−2SI=g
2

. This is exactly
canceled by an identical term in the instanton–anti-
instanton amplitude, ½IĪ �� ∼ e−2SI=g

2 � iπe−2SI=g
2

, whose
imaginary part is also ambiguous, and which lives in the
nonperturbative part of the trans-series. We refer to this
cancellation mechanism in quantum mechanics as the
Bogomolny-Zinn-Justin (BZJ) mechanism [6,10]. A very
important aspect of the theory of “resurgence” is the
statement that these cancellations occur to all NP orders,
including P fluctuations around NP saddles. Thus the full
trans-series is real, unique and unambiguous [14].
This beautiful BZJ mechanism of cancellation of ambi-

guities between non-Borel-summable perturbation theory
and the nonperturbative multi-instanton sector has been
explored in some detail for quantum mechanics (QM)
problems with degenerate minima [5–7,10–12,18–21], but
in fact this resurgent structure is a general property of
perturbation theory that is also relevant for quantum field
theory (QFT), in particular when there are degenerate
classical vacua. For example, in asymptotically free quan-
tum field theories such as 4D SUðNÞ gauge theory or 2D
CPN−1 theories there are infrared renormalons that lead to
non-Borel summability of perturbation theory. This is a
serious problem, because it means that perturbation theory
on its own is ill defined, just as is the case for the QM
problems with degenerate minima. Until recently it was not
known how to cancel the resulting ambiguous imaginary
parts against nonperturbative amplitudes, because for both
4D SUðNÞ gauge theory and 2D CPN−1, the IR renorma-
lons lead to nonperturbative effects with exponential
factors having exponents depending parametrically on N
as 2SI=N, and such nonperturbative factors do not appear in
these theories defined on R4 or R2, respectively [22,23].
However, a resolution of this problem has recently been

1In this paper, we are concerned with quantum mechanical
systems which only admit real instantons. In more generic cases
where there are both real and complex saddles, the connection
between perturbation theory and nonperturbative saddles is more
involved. An example of this type of more general problem is
discussed in [9].
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proposed [24,25], motivated by another problem in the
nonperturbative sector, which is that the instanton gas
analysis (which works well for QM) is inconsistent for
these QFTs defined on R4 or R2. The dilute instanton gas
approximation assumes that the interinstanton separation is
much larger than the size of the instanton, while classical
scale invariance implies that instantons of arbitrary size
come with the same action (leading to uncontrolled infrared
divergences); hence the assumption is invalid. A regulari-
zation of the QFT by spatial compactification (either
twisting the boundary conditions or center-stabilizing
deformation) at a weak-coupling semiclassical regime
produces fractionalized instantons, “molecules” of which
are associated with nonperturbative factors of the form
e−2SI=ðg2NÞ. This is appropriate for canceling the ambiguities
from the semiclassical realization of IR renormalon singu-
larities. For CPN−1 models, the N dependence matches
precisely the N dependence coming from the IR renorma-
lons [25], while for 4D gauge theory the dependence is
parametrically correct [24].
Since this is a new type of QFT argument, using

resurgent analysis to relate the IR renormalon problem
of perturbation theory in asymptotically free theories with
the IR divergence of the nonperturbative instanton gas, and
trans-series expansions are still somewhat unfamiliar in
much of the physics community, this paper is designed to
be a simple pedagogical introduction to the physical origin
of trans-series expansions. Our presentation is mainly in
terms of two important quantum mechanical examples, the
double-well and Sine-Gordon potentials, since these con-
tain already much of the physics relevant for the discussion
of nonperturbative effects due to degenerate minima in
gauge theories and CPN−1 models. In fact, these field
theories can be continuously connected to the quantum
mechanical systems with periodic potentials. However,
beyond our pedagogical presentation, we also make a
new observation. For these theories (and others listed
below), we show in explicit detail that

(i) The perturbative series contains all information
about the nonperturbative sector, to all nonpertur-
bative orders.

(ii) Perturbation theory around the perturbative vacuum
and fluctuations about all nonperturbative saddles
(multi-instantons) are interrelated in a precise man-
ner: high orders of fluctuations about one saddle are

determined by low orders about “nearby” saddles (in
the sense of action).

These are extremely nontrivial facts, providing clear and
direct illustrations of the surprising power of resurgent
analysis. The first point was observed previously in the
double-well system [26], but here we show that the result is
more general [27].
There is some body of work concerning trans-series

expansions for wave functions, special functions and
solutions to Schrödinger-like equations, as well as non-
linear differential equations [16,17,28,29]. Since we are
motivated by attempts to compute QFT quantities such as a
mass gap, to be very concrete we focus on energy
eigenvalues, rather than on wave functions, but these
approaches are obviously closely related. There is also
an important set of ideas concerning exact quantization
conditions [30–32], although these have mostly been
investigated for QM potentials without degenerate vacua.
We also stress that the basic idea of resurgent trans-series
analysis is much more general, applying to both linear and
nonlinear problems, and therefore should be applicable to
functional problems like QFT, matrix models and string
theory [24,25,33–35].

B. Where do the trans-series come from?

In this paper we concentrate on trans-series expressions
for energy eigenvalues in certain QM problems, with a
coupling constant g2. Our notation is chosen to match the
coupling parameter g2 in certain QFTs such as Yang-Mills
or CPN−1 models. The general perturbative expansion of an
energy level has the form

EðNÞ
pert.theoryðg2Þ ¼

X∞
k¼0

g2kEðNÞ
k (1)

where N is an integer labeling the energy level, and the
perturbative coefficients EðNÞ

k can be computed by straight-
forward iterative procedures. For the cases we study here,
potentials with degenerate harmonic vacua, this perturba-
tive expansion is not Borel summable, which means that on
its own it is incomplete, and indeed inconsistent.
This situation can be remedied by recognizing that the

full expansion of the energy at small coupling is in fact of
the “trans-series” form [4,15–20]:

EðNÞðg2Þ ¼ EðNÞ
pert.theoryðg2Þ þ

X
�

X∞
k¼1

Xk−1
l¼1

X∞
p¼0

�
1

g2Nþ1
exp

�
−

c
g2

��
k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k-instanton

�
ln

�
� 1

g2

��
l

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
quasi-zeromode

c�k;l;pg
2p|fflfflfflffl{zfflfflfflffl}

perturbative fluctuations

(2)

In (2) we have artificially separated the perturbative
expansion in the zero-instanton sector. The second part
of the trans-series involves a sum over powers of non-
perturbative factors exp½−c=g2�, multiplied by prefactors

that are themselves series in g2 and in lnð�1=g2Þ. The basic
building blocks of the trans-series, g2, exp½−c=g2� and
lnð−1=g2Þ, are called “trans-monomials,” and are familiar
from QM and QFT. In physical terms, the trans-series is a
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sum over instanton contributions, with the perturbative
fluctuations about each instanton, and logarithmic terms
coming from quasizero modes (QZMs). A trans-series
therefore combines perturbation theory with a dilute gas of
1-instantons, 2-instantons, 3-instantons, etc.2 Note that in a
typical textbook treatment, only the proliferation of
1-instanton events is accounted for. However, in order
to make sense of (i.e. to define consistently) the semi-
classical expansion, one needs to take into account a dilute
gas of both 1-instantons and k-instantons, where k ≥ 2. See
Fig. 1 for a snapshot of the Euclidean vacuum of the theory
for the case of periodic potential. The subfigure shows
examples of k-instantons (molecular events).
At second order in the instanton expansion, quasizero-

mode logarithms are first generated. Remarkably, the
expansion coefficients ck;l;p of the trans-series are inter-
twined amongst themselves, and also with the coefficients
of the perturbative expansion, in such a way that the total
trans-series is real and unambiguous. This intertwining can

be represented graphically by the “resurgence triangle”
introduced in [25], shown in Fig. 1(c), and discussed in
detail below for both the double-well and Sine-Gordon
potentials. For example, a Borel analysis of the perturbative
series requires an analytic continuation in g2, producing
nonperturbative imaginary parts, but these are precisely
canceled by the imaginary parts associated with the
lnð−1=g2Þ factors in the nonperturbative portion of the
trans-series. This applies not just at leading order, but to all
subsequent orders arising from Borel summation of the
divergent fluctuation expansion around any instanton
sector. Ambiguities only arise if one looks at just one
isolated portion of the trans-series expansion, for example
just the perturbative part, or just some particular multi-
instanton sector. When viewed as a whole, the trans-series
expression is unique and exact. We call this generalized
summability of a non-Borel summable series Borel- Écalle
summability [15].
We have three main goals in this paper:
(1) Explain in a simple manner how such a trans-series

expansion (2) arises, and also in what sense it is
generic.

FIG. 1 (color online). (a) Dilute gas of 1-instantons for a periodic potential (as given in typical textbook treatment). (b) Dilute gas of
1-instantons, 2-instantons, 3-instantons, etc. 2-instanton events (topological molecules) such as ½II �, ½Ī Ī �, ½IĪ � are rarer, but present.
The amplitude associated with neutral 2-instantons or any other k-instanton with a neutral 2-instanton subcomponent is multifold
ambiguous. This ambiguity cures the ambiguity of perturbation theory around the perturbative vacuum. (c) n-instanton events classified
according to homotopy (columns) and resurgence (refined structure in each column). This picture is the result of uniform WKB and a
multi-instanton approach.

2n-instanton is a correlated n-event, and should be distin-
guished from uncorrelated n 1-instanton events.
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(2) Explain the origin of the interrelations within the
trans-series, and their physical consequences.

(3) In its strongest form, “resurgence” claims that
complete knowledge of the perturbative series is
sufficient to generate the remainder of the trans-
series, including all orders of the nonperturbative
expansion. We show here in simple and explicit
detail how this works in QM systems with degen-
erate harmonic vacua.

We comment that there is not yet universal agreement
in the mathematical literature concerning the rigorous
proof of the generality of trans-series expansions for
resurgent functions. References [19] contain proofs, but
in a recent talk Kontsevich has raised questions about
the rigor of mathematical results concerning resurgent
functions [36]. Nevertheless, each of the trans-series
monomials has a clear physical meaning, and here we
show using relatively elementary techniques (uniform
WKB) that the energy eigenvalues have precisely this
trans-series structure in QM systems with degenerate
harmonic vacua. Moreover, these trans-monomial ele-
ments also have clear physical meaning in quantum field
theory.

II. UNIFORM WKB FOR POTENTIALS WITH
DEGENERATE MINIMA

A. The spectral problem

Consider the spectral problem

−
d2

dx2
ψðxÞ þ VðxÞψðxÞ ¼ EψðxÞ: (3)

We are interested in cases where the potential VðxÞ has
degenerate minima, which are locally harmonic: VðxÞ≈
x2 þ � � �. The two paradigmatic cases we study in detail
are the double-well (DW) and Sine-Gordon (SG)
potentials:

VDWðxÞ ¼ x2ð1þ gxÞ2 ¼ x2 þ 2gx3 þ g2x4 (4)

VSGðxÞ ¼
1

g2
sin2ðgxÞ ¼ x2 −

1

3
g2x4 þ � � � (5)

The Sine-Gordon case can be directly related to the
Mathieu equation by simple changes of variables. This
permits detailed comparison with known results for
Mathieu functions [37,38].
It is convenient to rescale the coordinate variable to

y ¼ gx:

−g4
d2

dy2
ψðyÞ þ VðyÞψðyÞ ¼ g2EψðyÞ (6)

where

VDWðyÞ ¼ y2ð1þ yÞ2 (7)

VSGðyÞ ¼ sin2ðyÞ: (8)

It is well known that in both these cases the perturbative
energy levels are split by nonperturbative instanton effects.
This level splitting is (at leading order) a single-instanton
effect, and is textbook material [4,39–41]. From (6) we see
that g4 plays the role of ℏ2, and so we expect these
nonperturbative effects to be characterized by exponential
factors of the form

exp
�
−

c
g2

�
(9)

for some constant c > 0.
More interestingly, the perturbative series for these

spectral problems is non-Borel-summable, and in the
Borel-Écalle approach is defined by the analytic con-
tinuation g2 → g2 � iϵ, which induces a nonperturbative
imaginary part, even though both potentials are com-
pletely stable and the energy should be purely real. As
mentioned in the Introduction, the resolution of this
puzzle is the Bogomolny-Zinn-Justin mechanism: the
nonperturbative imaginary part is in fact at the two-
instanton order, and is canceled by a corresponding
nonperturbative imaginary contribution coming from
the instanton/anti-instanton amplitude [4,6,10,11]. The
resurgent trans-series expression (2) for the energy
eigenvalue encodes the fact that there is an infinite
tower of such cancellations, thereby relating properties
of the perturbative sector and the nonperturbative sector.
The BZJ cancellation is the first of this tower. A new
observation we make here (see Sec. V) is that we do not
need to compute separately the perturbative and non-
perturbative sectors: in fact, the perturbative series
encodes all information about the nonperturbative
sector, to all nonperturbative orders.

B. Strategy of the uniform WKB approach

Before getting into details, we first state our strat-
egy, and the basic result, which explains already why
the expression for the energy eigenvalues has the
trans-series form in (2). Since the potentials we
consider have degenerate harmonic vacua, in the g2 →
0 limit each classical vacuum has the form of a
harmonic oscillator well. Therefore it is natural to
use a parabolic uniform WKB ansatz for the wave
function [26,42–45]:

ψðyÞ ¼
Dνð1g uðyÞÞffiffiffiffiffiffiffiffiffiffi

u0ðyÞp : (10)
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Here Dν is a parabolic cylinder function [37] (the
solution to the harmonic problem), and ν is an ansatz
parameter that is to be determined. When g2 ¼ 0 we
would have an isolated harmonic well, and ν would be
an integer N. For g2 > 0, we find that ν is close to an
integer [see (13) below].
Substituting this uniform WKB ansatz form (10) of the

wave function into the Schrödinger equation (6) produces
a nonlinear equation for the argument function uðyÞ, and
this equation can be solved perturbatively. Purely local
analysis in the immediate vicinity of the potential
minimum, where the potential is harmonic, leads to a
perturbative expansion of the energy (explained in Sec. II
C below):

E ¼ Eðν; g2Þ ¼
X∞
k¼0

g2kEkðνÞ: (11)

The coefficient EkðνÞ depends on the as-yet-undetermined
ansatz parameter ν. In fact, EkðνÞ is a polynomial in ν,
of degree ðkþ 1Þ. In the g2 → 0 limit, the ansatz
parameter ν tends to an integer N, labeling the unperturbed
harmonic oscillator energy level. Indeed, when ν ¼ N, the
expansion (11) coincides precisely with standard Rayleigh-
Schrödinger perturbation theory:

Eðν ¼ N; g2Þ≡ EðNÞ
pert.theoryðg2Þ: (12)

This perturbative series expression is incomplete, and
indeed ill defined, because the series is not Borel sum-
mable. The fact that it is incomplete should not be too
surprising because so far the analysis has been purely
local, making no reference to the existence of neighboring
degenerate classical vacua. To fully determine the energy
we must impose a global boundary condition that relates
one classical vacuum to another. When we do this we
learn that ν is only exponentially close to the integer N,
with a small correction δν that is a function of both N
and g2:

νglobalðN; g2Þ ¼ N þ δνðN; g2Þ: (13)

The explicit form of the correction term δνðN; g2Þ is
derived and discussed below in Sec. III. For now we state
that generically it has a trans-series form:

δνðN; g2Þ ¼
X
�

X∞
k¼1

Xk−1
l¼1

X∞
p¼0

dð�Þ
k;l;p

�
1

g2Nþ1
exp

�
−

c
g2

��
k

×

�
ln

�
∓ 1

g2

��
l
g2p: (14)

We show in Sec. III that this form follows directly from
properties of the parabolic cylinder functions, and so it is

generic to problems having degenerate vacua that are
harmonic.3

Having solved the global boundary condition to deter-
mine the parameter ν as a function of N and g2, as in (13)
and (14), to obtain the corresponding energy eigenvalue we
insert this value νglobalðN; g2Þ back into the perturbative
expansion (11) for the energy, leading to the final exact
expression for the energy eigenvalue:

EðNÞðg2Þ ¼ EðN þ δνðN; g2Þ; g2Þ

¼
X∞
k¼0

g2kEkðN þ δνðN; g2ÞÞ: (15)

Reexpanding the polynomial coefficients EkðNþδνðN;g2ÞÞ
for small coupling g2, we obtain the trans-series expression
(2) for the Nth energy level, EðNÞðg2Þ:

ENðgÞ ¼ EðN; gÞ þ ðδνÞ
�∂E
∂ν

�
N
þ ðδνÞ2

2

�∂2E
∂ν2

�
N
þ � � �

(16)

We stress that this uniformWKB approach makes it very
clear why the trans-series form of the energy is generic for
problems with degenerate harmonic classical vacua: all
properties of the g2 → 0 limit reduce to properties of the
parabolic cylinder functions, which lead directly to the
trans-series form for δνðN; g2Þ in (14). In particular, all
analytic continuations needed to analyze questions of
resurgence and cancellation of ambiguities can be
expressed in terms of the known analytic continuation
properties of the parabolic cylinder functions [37].

C. Perturbative expansion of the
uniform WKB ansatz

Recalling that the parabolic cylinder function DνðzÞ
satisfies the differential equation [37]

3For a curious counterexample to the oft-held belief that non-
Borel-summable expansions occur for any potential with degen-
erate vacua, consider the nonharmonic case of two square wells,
separated by a distance 1=g, and with a central barrier of height
1=g2. This g dependence is chosen to mimic that of the double-
well potential. This is an elementary problem, soluble in terms of
hyperbolic trigonometric functions, and an expansion of the
eigenvalue condition for small g produces a trans-series expan-
sion, but without any lnð−1=g2Þ terms. Moreover, one finds that
the “perturbative” small g2 expansion is in fact summable. Thus,
the trans-series structure is quite different in this nonharmonic
case. One could argue that this case is ill defined because the
bottom of each well is flat, so there is no real vacuum location,
but the same conclusion can be obtained by replacing the square
wells by triangular wells, which is also a soluble problem, in
terms of Airy functions. Periodic versions of these cases also
produce interesting trans-series. Thus, the harmonic nature of the
classical vacua is a significant feature of the argument.
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d2

dz2
DνðzÞ þ

�
νþ 1

2
−
z2

4

�
DνðzÞ ¼ 0 (17)

we see that the uniform WKB ansatz (10) converts the
Schrödinger equation (6) to the following nonlinear equa-
tion for the argument function uðyÞ appearing in (10):

VðyÞ − 1

4
u2ðu0Þ2 − g2Eþ g2

�
νþ 1

2

�
ðu0Þ2

þ g4

2

ffiffiffiffi
u0

p �
u00

ðu0Þ3=2
�0

¼ 0: (18)

Here u0 means du=dy. At first sight, it looks like (18) is
more difficult to solve than the original Schrödinger
equation (6), but we will see that the perturbative solution
of (18) has some advantages over the perturbative solution
of (6). We solve (18) for uðyÞ and E by making simulta-
neous perturbative expansions:

E ¼ E0 þ g2E1 þ g4E2 þ � � � (19)

uðyÞ ¼ u0ðyÞ þ g2u1ðyÞ þ g4u2ðyÞ þ � � � (20)

Note that the expansion coefficients Ek and ukðyÞ also
depend on the as-yet-undetermined parameter ν that
appears in the ansatz (10), and consequently in the
equation (18). This parameter ν is not determined by the
local perturbative expansions in (19) and (20); the param-
eter ν requires global nonperturbative information describ-
ing how one perturbative vacuum potential well connects to
another. This is discussed below in Sec. III.

1. Leading order: Origin of the usual
exponential WKB factor

At zeroth order in g2 the equation (18) implies

u20ðu00Þ2 ¼ 4V ⇒ u20ðyÞ ¼ 4

Z
y

0

dy
ffiffiffiffi
V

p
(21)

where the lower limit is chosen to satisfy the small y
limiting behavior of the nonlinear equation (18). In
particular, since each well is locally harmonic, VðyÞ≈y2,
we learn that

u0ðyÞ ≈
ffiffiffi
2

p
yþ � � � ; y → 0: (22)

Correspondingly, the Oðg2Þ term in (18) then tells us that
the perturbative expansion for the energy begins as

E ¼ ð2νþ 1Þ þ � � � (23)

The results (22)–(23) are simply reflections of the locally
harmonic nature of the g2 → 0 limit.

For the DW and SG potentials, (21) yields

DW∶ u0ðyÞ ¼
ffiffiffi
2

p
y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y

3

r
;

SG∶ u0ðyÞ ¼ 2
ffiffiffi
2

p
sin

�y
2

�
: (24)

From the asymptotic behavior of the parabolic cylinder
function [37], in the g2 → 0 limit we find the expected
exponential WKB factor:

DνðzÞ ∼ zνe−z
2=4;

ðz → þ∞Þ ⇒ ψðyÞ ∼ exp

�
−

u20
4g2

�
∼ exp

�
−

1

g2

Z
y

0

ffiffiffiffi
V

p �
:

(25)

We discuss the prefactors below in Sec. IV.4

2. Higher orders

The higher-order perturbative solution is straightforward
but tedious. Imposing the boundary condition of finiteness
of u2ðyÞ at y ¼ 0, one finds that the energy Eðν; g2Þ has an
expansion of the form

EðB; g2Þ ¼ 2B −
X∞
k¼1

g2kpkþ1ðBÞ; B≡ νþ 1

2
(26)

where it proves convenient to express the coefficients in
terms of the parameter B≡ νþ 1

2
. The leading term is

universal [recall (23)], and the coefficients, pkþ1ðBÞ,
of this expansion are polynomials of degree ðkþ 1Þ in
B. Moreover, they have definite parity: pkð−BÞ ¼
ð−1ÞkpkðBÞ. For example, in the two explicit cases of
the double-well and Sine-Gordon potentials:

EDWðB; g2Þ ¼ 2B − 2g2
�
3B2 þ 1

4

�
− 2g4

�
17B3 þ 19

4
B

�

− 2g6
�
375

2
B4 þ 459

4
B2 þ 131

32

�

− 2g8
�
10689

4
B5 þ 23405

8
B3 þ 22709

64
B

�
− � � � (27)

4The relation between the uniform WKB wave function and
instanton amplitude is the following: in our normalization of
Hamiltonian (3), m ¼ 1

2
. Thus, the BPS bound for the instanton

action is S½y� ¼ 1
g2
R
dtð1

4
_y2 þ VðyÞÞ ≥ 1

g2
R 2ymid-point

0 dy
ffiffiffiffi
V

p ¼ SI
g2.

Thus, according to (25), the leading uniformWKB wave function
at ymid-point is ψðymid-pointÞ ∼ e−SI=ð2g2Þ, and is exponentially small;
i.e, the value of the uniform WKB wave function at the midpoint
between the two harmonic minima (see Figs. 2 or 3) is the square
root of instanton fugacity. Also see the discussion around (43).
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ESGðB; g2Þ ¼ 2B −
g2

2

�
B2 þ 1

4

�
−
g4

8

�
B3 þ 3

4
B

�

−
g6

32

�
5

2
B4 þ 17

4
B2 þ 9

32

�

−
g8

128

�
33

4
B5 þ 205

8
B3 þ 405

64
B

�
− � � �

(28)

An important observation is that if we replace ν by an
integer quantum number N, so that B ¼ N þ 1

2
, then the

expansions (26)–(28) coincide precisely with the corre-
sponding expansion obtained from standard Rayleigh-
Schrödinger perturbation theory about the Nth harmonic
oscillator level:

E
�
B ¼ N þ 1

2
; g2

�
¼ EðNÞ

pert.theoryðg2Þ: (29)

In particular, note that for each B > 0, the perturbative
expansion in g2, as in (26)–(28), is a divergent nonalter-
nating series, which is not Borel summable. This fact will
be crucial below when we come to discuss the global
boundary conditions that connect one perturbative vacuum
to another; see Sec. III.
The corresponding perturbative expansion for uðyÞ [the

function that appears in the argument of the parabolic
cylinder function in the uniformWKB ansatz (10)] is of the
form

uðyÞ ¼ uðy; B; g2Þ ¼
X∞
k¼0

g2kukðy; BÞ: (30)

With respect to its dependence on B, the coefficient
function ukðy; BÞ is a polynomial of degree k in B, with
definite parity: ukðy;−BÞ ¼ ð−1Þkukðy; BÞ. For the DW
and SG cases,

uDWðyÞ ¼
ffiffiffi
2

p
y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y

3

r
þ g2B

ln ½ð1þ 2y
3
Þð1þ yÞ2�ffiffiffi

2
p

y
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y

3

q þ � � �

(31)

uSGðyÞ ¼ 2
ffiffiffi
2

p
sin

y
2
þ g2B

ln cos y
2ffiffiffi

2
p

sin y
2

þ � � � (32)

Higher-order terms are straightforward to generate but
cumbersome to write.
While the perturbative expansion (19) of the energy

yields, with the identification ν → N, exactly the same
perturbative series for the energy eigenvalue as Rayleigh-
Schrödinger perturbation theory [see (29)], the situation is
quite different for the wave-function expansion in (20) and

(30). To recover the Rayleigh-Schrödinger perturbation
theory wave function for the Nth level, we use the uniform
WKB ansatz (10), identify ν → N, rewrite y ¼ gx, and
expand in g2:

ψ ðNÞðxÞ

¼
DNð1g ½u0ðgxÞ þ g2u1ðgxÞ þ g4u2ðgxÞ þ � � ��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd=dxÞ½u0ðgxÞ þ g2u1ðgxÞ þ g4u2ðgxÞ þ � � ��=g

p
≡DNð

ffiffiffi
2

p
xÞffiffiffi

2
p þ g2ψ ðNÞ

1 ðxÞ þ g4ψ ðNÞ
2 ðxÞ þ � � � (33)

The leading term is the familiar harmonic oscillator wave
function for the unperturbed Nth level. Interestingly, if we
truncate the perturbative expansion of uðgxÞ at some order
g2k, and use this inside the uniform WKB expression (10),
we obtain a much better approximation to the wave
function than the truncation of the Rayleigh-Schrödinger
perturbation theory wave function at the same order g2k.
The uniform WKB approximation effectively gives a
resummation of many orders of Rayleigh-Schrödinger
perturbation theory.

III. GLOBAL BOUNDARY CONDITIONS

A. Relating one minima to another

So far the entire discussion has been local, in the
neighborhood of the minimum of one of the classical
vacua. To proceed, we need to specify how one classical
vacuum relates to another. Here the details of the double-
well and Sine-Gordon cases differ slightly, but in each case
we impose a global boundary condition at the midpoint of
the barrier between two neighboring classical vacua (we
restrict ourselves here to symmetric barriers). The result
illustrates the physics of level splitting (DW) and band
spectra (SG), respectively.
Consider first the DW potential. Each level labeled by

the index N splits into two levels due to tunneling between
the two classical vacua. To see how this arises, consider
N ¼ 0 and note that the ground state wave function is a
nodeless function, which is therefore an even function
about the midpoint between the two wells (ymidpoint ¼ − 1

2
),

while the first excited state wave-function (which also has
N ¼ 0) has one node and is therefore an odd function about
this midpoint; see Fig. 2. Thus, the global boundary
condition to be imposed at ymidpoint is

ground state∶ ψ 0
DW

�
−
1

2

�
¼ 0 (34)

first excited state∶ ψDW

�
−
1

2

�
¼ 0: (35)

Because of the reflection symmetry of the DW potential
about the midpoint, in effect we only need to solve the DW
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problem in the right-hand half-space, − 1
2
≤ y < ∞, with

either a Neumann (ground state) or Dirichlet (first excited
state) boundary condition at y ¼ − 1

2
, and in both cases with

a Dirichlet boundary condition at y ¼ þ∞. For higher
energy levels (i.e., for higher values of N), we interchange
the Neumann or Dirichlet boundary conditions at y ¼ − 1

2
,

according to whether N is odd or even.
For the SG potential, each perturbative level labeled by

the index N splits into a continuous band of states. This
phenomenon arises from the Bloch condition: ψðyþ πÞ ¼
eiθψðyÞ, where θ is a real angular parameter θ ∈ ½0; π� that
labels states in a given band of the spectrum. This Bloch
boundary condition is efficiently expressed in terms of the
discriminant, using the standard Floquet analysis [37,41].
Define two independent solutions wIðyÞ and wIIðyÞ, nor-
malized as follows at some arbitrary chosen point (which
we take here to be at y ¼ − π

2
, the center of a barrier

between two classical vacua, as in the DW case):

�
wIð− π

2
Þ w0

Ið− π
2
Þ

wIIð− π
2
Þ w0

IIð− π
2
Þ
�

¼
�
1 0

0 1

�
: (36)

The Bloch condition is expressed in terms of the discrimi-
nant, which is itself expressed in terms of the functions wI
and w0

II evaluated at a location shifted by one period, for
example at y ¼ þ π

2
:

cos θ ¼ 1

2

�
wI

�
π

2

�
þ w0

II

�
π

2

��
(37)

¼ wI

�
π

2

�
: (38)

In the last step we have used the symmetry of the SG
potential which implies that w0

IIðπ2Þ ¼ wIðπ2Þ, in order to
write the Bloch condition in the compact form (38). The
band edge wave functions are either periodic or antiperiodic
functions of y, with period π, depending on whether N is

even or odd. For example, for the N ¼ 0 perturbative level,
the wave function for the lower edge of the resulting band is
a periodic function, while for the upper edge it is an
antiperiodic function. See Fig. 3.

B. Global boundary conditions in the
uniform WKB approach

Since the uniform WKB approximation (10) to the wave
function is expressed in terms of parabolic cylinder
functions, the implementation of the global boundary
condition in this approach is intimately related to the
properties of the parabolic cylinder functions. Moreover,
since the argument of the parabolic cylinder function in the
uniform ansatz (10) goes like u0ðyÞ=g in the g2 → 0 limit,
and u0ðymidpointÞ is finite, we see that the global boundary
condition in the g2 → 0 limit is directly related to the
asymptotic behavior of the parabolic cylinder functions at
large values of their argument. It is at this stage that we
must confront the fact that the perturbative expansion of the
energy in (26), and also the perturbative expansion of the
function uðyÞ in (30), is in fact a non-Borel-summable
divergent series in g2. This is because g2 > 0 is a
Stokes line, and we encounter the familiar problems of
trying to make a perturbative expansion on a Stoke line
[28,29,31,32,46,47]. The theory of Borel-Écalle resurgent
summation provides a well-defined approach to this
problem:
(1) Analytically continue in g2 off the positive real axis.

Then all the divergent series become Borel sum-
mable. This is often expressed [4,6,10,11] as con-
tinuing all the way to g2 → −g2, in which case the
nonalternating non-Borel-summable series become
alternating and Borel summable. In fact, it is enough
to go slightly off the positive real g2 axis:
g2 → g2 � iϵ, which avoids the Borel poles and/or
branch cuts.

3
2 2 2

3
2

y

FIG. 3 (color online). The global boundary condition for the
band-edge states of the lowest band for the Sine-Gordon potential
VðyÞ ¼ sin2 y. The lower band-edge wave function is nodeless
and has vanishing derivative at the midpoint of each barrier. The
upper band-edge wave function has one node at the midpoint of
each barrier.

FIG. 2 (color online). The global boundary condition for the
lowest two states in the double-well potential VðyÞ ¼ y2ð1þ yÞ2.
The lower state wave function is nodeless and has vanishing
derivative at the midpoint of the barrier. The upper state wave
function has one node at the midpoint of the barrier.
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(2) Having obtained the Borel summed expressions,
analytically continue ing2 back to thepositive real axis.

(3) This procedure produces nonperturbative imaginary
contributions as the Borel summed series are con-
tinued back to the positive real g2 axis; moreover, the
overall sign of such a term is ambiguous, depending
on whether one approaches the positive real g2 axis
from above or below. The remarkable fact is that if
one makes all analytic continuations consistently in
the global boundary condition, then in the trans-
series expansion all ambiguities in the perturbative
expansions are strictly correlated with corresponding
ambiguities in the nonperturbative sectors, in such a
way that all ambiguities cancel, producing an exact
and unambiguous trans-series expression for the
energy eigenvalue.

C. Global boundary condition for the
double-well system

To derive the explicit form of the global boundary
condition, recall that the global boundary conditions
(34)–(35) are imposed at the barrier midpoint ymidpoint ¼
− 1

2
. When we analytically continue g2 off the positive real

axis, this renders the g2 expansion (30) of the argument
1
g uð− 1

2
Þ of the parabolic cylinder function Dν appearing in

the uniform WKB ansatz (10) Borel summable. But now
this argument 1g uð− 1

2
Þ is also a complex number, off the real

positive axis. Thus in the limit where the modulus of g2

approaches zero, the appropriate asymptotic behavior
of the parabolic cylinder function is not just given by
DνðzÞ ∼ zνe−z

2=4,ðz → þ∞Þ, as used in (25). We now need
to use the (resurgent) asymptotic behavior of the parabolic
cylinder functions throughout the relevant region of the
complex plane, given by [37]:

DνðzÞ ∼ zνe−z
2=4F1ðz2Þ þ e�iπν

ffiffiffiffiffiffi
2π

p

Γð−νÞ z
−1−νez

2=4F2ðz2Þ;
π

2
< � argðzÞ < π (39)

where

F1ðz2Þ ¼
X∞
k¼0

Γðk − ν
2
ÞΓðkþ 1

2
− ν

2
Þ

Γð− ν
2
ÞΓð1

2
− ν

2
Þ

1

k!

�
−2
z2

�
k

(40)

F2ðz2Þ ¼
X∞
k¼0

Γðkþ 1
2
þ ν

2
ÞΓðkþ 1þ ν

2
Þ

Γð1
2
þ ν

2
ÞΓð1þ ν

2
Þ

1

k!

�
2

z2

�
k
: (41)

Notice that there are two different exponential terms e�z2=4

in (39). Normally one or other is dominant or subdominant,
but for certain rays of z2 in the complex plane they may be
equally important. This is a manifestation of the Stokes
phenomenon [28,29,32,46,47].
Consider first the global boundary condition with

Dirichlet boundary condition at the midpoint, as in (35).
Using the full analytic expression (39), the global boundary
condition (35) can be written as

ψDW

�
−
1

2

�
¼ 0 ⇒ Dν

�
uð− 1

2
Þ

g

�
¼ 0

for arbitrary argðg2Þ:Hence
1

Γð−νÞ
�
e�iπ2

g2

�−ν
¼ −ξH0ðν; g2Þ; ðupper levelÞ (42)

where the “instanton factor” is related to the zeroth-order
uniform WKB wave function at the midpoint,

ξ≡
ffiffiffiffiffiffiffi
1

πg2

s
exp

�
−
u20ð− 1

2
Þ

2g2

�
¼ 1ffiffiffiffiffiffiffi

πg2
p exp

�
−

1

6g2

�
¼ 1ffiffiffiffiffiffiffi

πg2
p exp

�
−
SI
g2

�
; (43)

and the perturbative “fluctuations around the instanton” are
given by the function

H0ðν; g2Þ≡
�
u2ð− 1

2
Þ

2

�νþ1
2 F1

�
u2ð−1

2
Þ

g2

�
F2

�
u2ð−1

2
Þ

g2

�
× exp

�
−

1

2g2

�
u2
�
−
1

2

�
− u20

�
−
1

2

���
: (44)

The form of (42) follows directly from the global boundary
condition (35) and the asymptotic properties (39) of the
parabolic cylinder functions.
The expression (42) is an implicit relation for ν as a

function of the coupling g2. As g2 → 0, it is clear that ν is

close to a non-negative integer N. We solve by expanding
ν ¼ N þ δν, noting that

1

Γð−νÞ
�
e�iπ2

g2

�−ν

¼ −N!

�
e�iπ2

g2

�−N	
δν −

�
γ þ ln

�
e�iπ2

g2

�
− hN

�

× ðδνÞ2 þ � � �



(45)

where hN is the Nth harmonic number [37] and γ is the
Euler-Mascheroni constant. This implies that (for the odd
state)
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ν ¼ N þ
ð 2g2ÞNH0ðN; g2Þ

N!
ξ −

ð 2g2Þ2N
ðN!Þ2

×

�
H0

∂H0

∂N þ
�
ln

�
e�iπ2

g2

�
− ψðN þ 1Þ

�
H2

0

�
ξ2

þOðξ3Þ: (46)

This expansion is the trans-series form of the parameter ν
mentioned already in (13)–(14) in Sec. II. This discussion
makes it clear that the “instanton” exponential factor ξ, the
logarithmic factors, and the powers of g2 all come from the
expansion of the gamma function and the exponential
factor in (42), which ultimately originate in the asymptotic
form of the parabolic cylinder function (39). This explains
why the trans-series form for the energy eigenvalue is
generic for problems with degenerate harmonic vacua.
Notice that the leading imaginary part in (46) occurs at

Oðξ2Þ, showing that it is generically a two-instanton effect,
and moreover it is directly related to the square of the real
part at OðξÞ:

Im½ν − N� ¼ �πðRe½ν − N�Þ2 þOðξ3Þ: (47)

This is the first of a set of confluence equations [25], as
discussed below in Sec. IV. The� sign here comes from the
ambiguity in the analytic continuation of g2; it will be
shown to be correlated with the ambiguity in the Borel
summation of the perturbative series, in such a way that the
ambiguous imaginary parts cancel.
If we repeat this argument using the Neumann boundary

condition at the midpoint, then after some computation we
find that the only change is a change in sign on the rhs of
(42), which leads to a change of sign of the odd powers of ξ
in (46). Thus, to leading order in the exponentially small
instanton factor ξ, using (16) and (46), the splitting of the
levels is symmetric5:

EðNÞ
DW ¼ EDWðN; g2Þ �

�
2

g2

�
N H0ðN; gÞ½∂E∂ν�N

N!
ξþOðξ2Þ:

(48)

1. Resurgent expansion for DW vs instantons

We can expand the left-hand side of (42) up to kth order,
and at the same time, the right-hand side up to ðk − 1Þ-th
order in δν. This suffices to systematically extract the trans-
series up to kth order in the instanton expansion. Let us do
this exercise for the ground state energy ðN ¼ 0Þ: let
ν ¼ 0þ δν, and define

σ� ¼ ln

�
e�iπ2

g2

�
¼ σ � iπ; σ ¼ ln

�
2

g2

�
: (49)

Then, expanding both sides of the global boundary con-
dition we find

1

Γð−δνÞ
�
e�iπ2

g2

�−δν
¼f−δνQ0þðδνÞ2Q�

1 þðδνÞ3Q�
2 þ���g

¼−ξH0ðν;g2Þ

¼−ξ
�
H0þH0

0ðδνÞþ
1

2
H00

0ðδνÞ2þ���
�

(50)

where H0 ¼ H0ð0; g2Þ, H0
0 ¼ ½∂H0ðν;g2Þ∂ν �ν¼0, etc., and QnðσÞ

is an nth-order polynomial, encoding the quasizero-mode
integrations in the instanton picture as described below, the
first few of which are given by

Q0 ≡Q0ðσ�Þ ¼ 1;

Q�
1 ≡Q1ðσ�Þ ¼ γ þ σ�

Q�
2 ≡Q2ðσ�Þ ¼ −

1

2
ðγ þ σ�Þ2 þ

π2

12

Q�
3 ≡Q3ðσ�Þ ¼

1

6
ðγ þ σ�Þ3 −

π2

12
ðγ þ σ�Þ − ψ ð2Þð1Þ:

(51)

The subscript n counts, in the instanton picture, the number
of quasizero modes associated with ðnþ 1Þ-instanton
events. Solving for δν iteratively in the instanton fugacity
ξ, we write δν ¼ P

anξn. Then, it is easy to show that

δν ¼ ξH0 þ ξ2½H0H0
0 þH2

0Q1ðσ�Þ�

þ ξ3
�
H0ðH0

0Þ2 þ
1

2
H2

0H
00
0 þ 3H2

0H
0
0Q1ðσ�Þ

− 3H3
0Q2ðσ�Þ þ

π2

3
H3

0

�
þ � � � (52)

2. Remarks and connection to instanton picture

We can interpret various terms in the trans-series
expansion due to topological defects with action nSI .
The origin of terms proportional to ξ, ξ2, ξ3 are, respec-
tively, 1-, 2-, and 3-defects; see Fig. 4. Although there is no
strict topological charge, one can still assign a topology to
instanton and anti-instanton events by their asymptotics.
Doing so will help us to disentangle the contributions to the
physical observable and clarify the cancellations taking
place in the (truncated) resurgence triangle. For I and Ī ,
we assign “topological charges,” �1 as follows:

I∶ QT ¼ yð∞Þ − yð−∞Þ ¼ 0 − ð−1Þ ¼ þ1

Ī∶ QT ¼ yð∞Þ − yð−∞Þ ¼ −1 − ð0Þ ¼ −1: (53)

Consequently, the topological excitations in the double-
well problem and their topological charges are given by5At higher orders in ξ the splitting is no longer symmetric.
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1-defects∶ I ∼ ð…Þξ; QT ¼þ1; Ī ∼ ð…Þξ; QT ¼ −1;

2-defects∶ ½IĪ �� ¼ ½ĪI �� ∼ ð…Þξ2∓ið…Þξ2 QT ¼ 0

3-defects∶ ½IĪI �� ∼ ð…Þξ3 � ið…Þξ3; QT ¼þ1;

½ĪIĪ �� ∼ ð…Þξ3 � ið…Þξ3; QT ¼ −1: (54)

Note that there areno ½II �, ½III �;… type events; i.e,QT ≥ 2
are not present, despite the fact that the action of then-event is
just nSI . This is so becausewe are dealing with a double-well
potential. The situation is different for the periodic SG
potential; see Sec. III D 1. The resurgence triangle [25]
provides a simple graphical representation of the trans-series
structure. Each cell is labeled by ðn;mÞ. The rows are sectors
with fixed action ðnSIÞ, n ¼ 0; 1; 2;…, and columns are
sectors with fixed topological charge QT ¼ m ¼ þ1, 0,
−1(compare with periodic potential, for which jmj ≤ n).
The truncated resurgence triangle for the DW system is

m ¼ þ1 m ¼ 0 m ¼ −1

fð0;0Þ

e
− 1

6g2fð1;1Þ e
− 1

6g2fð1;−1Þ

e
− 2

6g2fð2;0Þ

e
− 3

6g2fð3;1Þ e
− 3

6g2fð3;−1Þ

e
− 4

6g2fð4;0Þ

..

. ..
. ..

.
(55)

Various comments are in order in connection with the
trans-series (52), instanton and multi-instanton amplitudes
(54), and the truncated resurgence triangle (55).

(i) In the instanton picture, the interpretation of
Qnðσ�Þ is the following. For an ðnþ 1Þ-instanton
event, there are ðnþ 1Þ low lying modes. In the
noninteracting instanton gas picture, these are
ðnþ 1Þ-position moduli of these defects. Including
interaction, n of these become quasizero modes
that need to be integrated exactly, and one is the
“center of action” of the ðnþ 1Þ-defect. In this
way, one obtains the amplitude of the correlated
ðnþ 1Þ-instanton event, and Qnðσ�Þ or QnðσÞ is its
prefactor. (See the next item.) We call Qn the
quasizero-mode polynomial; the degree of polyno-
mial n counts the number of quasizero modes that
are integrated over.6

(ii) The polynomials are of two types: those which are
two-fold ambiguous Q�

n ¼ Qnðσ�Þ and those which
are not Qn ¼ QnðσÞ. For the ðnþ 1Þ-instanton
configuration with only instantons, unambiguous
polynomials QnðσÞ arise. (This does not happen
in the double-well system, because an instanton is
always followed by an anti-instanton. But it does
happen for the periodic potential as we discuss later.)
Whenever there are both correlated instanton and
anti-instanton pairs in an ðnþ 1Þ-instanton event,
polynomials with ambiguities arise. Such is always
the case in the double-well potential.

FIG. 4 (color online). Same as Fig. 1, for the double-well potential.

6The correspondence with the notation of Zinn-Justin [10] is
the following. Q1ðσÞ ¼ P2ðσÞ, 2ðQ1Þ2 þQ2 ¼ P3ðσÞ, etc. ZJ
uses subscript ðnþ 1Þ for a polynomial of degree n, because the
polynomial multiplies an ðnþ 1Þ-event amplitude. Since the
degree n of the polynomial is equal to the number of integrated
quasizero modes, and the number of QZM is one less than the
number of the constituents of a correlated event, we call this
polynomial QnðσÞ.
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(iii) These polynomials are universal. They will appear in
any QM mechanics problems with degenerate min-
ima.7 In any given theory, we have to consider both
instantons as well as correlated/molecular ðnþ 1Þ-
events. These polynomials are an integral part of the
ðnþ 1Þ-correlated instanton events.

(iv) The ambiguities in Qnðσ�Þ cancel the ambiguities
associated with the non-Borel summability of the
perturbation theory according to the rules of the
resurgence triangle. For example, the ambiguity in
Q�

1 and Q�
2 cancel the ambiguities associated with

non-Borel summability of the perturbation theory
around the perturbative vacuum and one-instanton
sector, respectively.

3. The truncated resurgence triangle and (graded)
partition functions

The structure associated with the truncated resurgence
triangle can also be seen by studying partition functions
graded by parity symmetry. Parity in our DW potential is
defined as

P∶ y → −1 − y
�
reflection with respect to y ¼ −

1

2

�
(56)

and commutes with the Hamiltonian, ½P;H� ¼ 0.
We can define two types of partition functions. One is

regular, and one is twisted by the insertion of the parity
operator:

Zðβ; g2Þ ¼ tre−βH⟶
Z
yðtþβÞ¼yðtÞ

DyðtÞe−S½y�

~Zðβ; g2Þ ¼ trPe−βH⟶
Z
yðtþβÞ¼P½yðtÞ�¼−yðtÞ−1

DyðtÞe−S½y�:

(57)

The boundary conditions associated with Zðβ; g2Þ forbid
the contribution of a single instanton effect as well as any
topological configuration which has the same asymptotic
behavior as the single instanton. On the flip side, the
boundary conditions associated with ~Zðβ; g2Þ forbid the
contribution of the perturbative vacuum saddle as well as
any topological configuration which has the same asymp-
totic behavior as the perturbative vacuum. For example,
Zðβ; g2Þ receives a contribution from the m ¼ 0 column,
while ~Zðβ; g2Þ receives a contribution from the�1 columns
in the resurgence triangle. In the periodic SG potential, the
columns are characterized by a winding number associated
with their θ-angle dependence; see Sec. III D 1.

D. Global boundary condition for the
Sine-Gordon system

A similar analysis applies to the SG system. We first take
the appropriate linear combinations of the two linearly
independent parabolic cylinder functions to match the
normalization conditions for the functions wIðyÞ and
wIIðyÞ in (36). Define even and odd functions on the
interval y ∈ ½− π

2
;þ π

2
�:

f1ðyÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
u0ðyÞp �

Dν

�
uðyÞ
g

�
þDν

�
−
uðyÞ
g

��
ðevenÞ

(58)

f2ðyÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
u0ðyÞp �

Dν

�
uðyÞ
g

�
−Dν

�
−
uðyÞ
g

��
ðoddÞ

(59)

where we note that uðyÞ is odd, and u0ðyÞ is even and
positive on this interval. The Wronskian is

W ≡ f1ðyÞf02ðyÞ − f01ðyÞf2ðyÞ ¼ −
4

g

ffiffiffi
π

2

r
1

Γð−νÞ (60)

which is independent of y, and is nonzero except when ν is
a non-negative integer. Then, the appropriately normalized
basis solutions (36) can be written as

wIðyÞ ¼
1

W

�
f02

�
−
π

2

�
f1ðyÞ − f01

�
−
π

2

�
f2ðyÞ

�
(61)

wIIðyÞ ¼
1

W

�
−f2

�
−
π

2

�
f1ðyÞ þ f1

�
−
π

2

�
f2ðyÞ

�
: (62)

Using the parity properties of f1 and f2 we can therefore
write the Bloch condition (38) in various equivalent
ways:

cos θ ¼ 1

W

�
f02

�
π

2

�
f1

�
π

2

�
þ f01

�
π

2

�
f2

�
π

2

��
(63)

¼ 1þ 2

W
f01

�
π

2

�
f2

�
π

2

�
(64)

¼ −1þ 2

W
f02

�
π

2

�
f1

�
π

2

�
: (65)

Thus, as in the double-well case, the global boundary
condition is imposed at the midpoint between two
neighboring perturbative vacua: ymidpoint ¼ π

2
. Moreover,

the global condition is expressed in terms of parabolic
cylinder functions evaluated at ymidpoint. This Bloch
condition results in the perturbative energy level splitting
into a continuous band, with states within the band

7They also have natural generalization to QFT, which is not
explored here.
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labeled by the angular parameter θ. The bottom of the
lowest band has θ ¼ 0 and its wave function is an even
function, while the top of the lowest band θ ¼ π and its
wave function is an odd function. For these lowest band-
edge states the Bloch condition takes a simpler form
reminiscent of the DW case (34), (35):

ðlower; even state; θ ¼ 0Þ∶ f01ðymidpointÞ ¼ 0 (66)

ðupper; odd state; θ ¼ πÞ∶ f1ðymidpointÞ ¼ 0: (67)

The Bloch condition determines the ansatz parameter ν as
a function of the coupling g2, for each value of the Bloch
angle θ. As before, uðπ

2
Þ is a non-Borel-summable

divergent series in g2, so we need to analytically continue
in g2 off the Stokes line (g2 > 0) in order to properly
define the Bloch condition. This requires again the full
analytic continuation behavior (39) of the parabolic
cylinder functions that enter into the definition of the
functions f1 and f2. Proceeding in a manner similar to
the DW potential, we can write the boundary conditions
(63)–(65) as an equation determining ν in terms of g2:

1

Γð−νÞ
�
2

g2

�
−ν

� i
π

2

�
e�iπ2

g2

�þν ξ2½H0ðν; g2Þ�2
Γð1þ νÞ

¼ −ξH0ðν; g2Þ cos θ: (68)

This is the analog of (42) for DW, now applied to the SG
potential.
At leading nonperturbative order, we find that the

parameter ν is exponentially close to an integer. For
example, for the lowest band we write ν ¼ 0þ δνþ � � �,
and the Bloch condition (63) becomes in the small g2 limit:

cos θ ¼ −
g
4

ffiffiffi
2

π

r
Γð−νÞ

�
f02

�
π

2

�
f1

�
π

2

�
þ f01

�
π

2

�
f2

�
π

2

��
(69)

∼
g
4

ffiffiffi
2

π

r
ðδνÞ π

2uðπ=2Þ exp
�ðuðπ=2ÞÞ2

2g2

�
: (70)

Using from (32) the fact that

u

�
π

2

�
∼ 2 −

g2

4
ð2νþ 1Þ ln 2þ � � � (71)

we find that

δν ∼ −
4ffiffiffi
π

p
g
cos θe

− 2

g2 (72)

which gives the familiar instanton result for the splitting of
the lowest band. Incorporating fluctuation terms we find

Eðlowest bandÞ
θ ∼

�
1 −

g2

4
−
g4

16
− � � �

�
− cos θ

8ffiffiffi
π

p
g
e
− 2

g2

×

�
1 −

7g2

16
−
59g4

512
− � � �

�
þOðe− 4

g2Þ: (73)

This is in agreement with the Mathieu equation results
[7,37,38]. In Fig. 5 we show that this expansion gives
an excellent approximation to the lowest band for the
Sine-Gordon potential. The edges of the lowest band are
given by θ ¼ 0, π in the small coupling limit, g2 → 0.
We can also compute the strong-coupling limit, g2 → ∞,
by treating the potential as a perturbation of the free
periodic or antiperiodic solution on the single-period
interval. We obtain the following weak- and strong-
coupling expressions:

½E�
0 �ðweak-couplingÞ

¼
�
1 −

g2

4
−
g4

16
−
3g6

64
− � � �

�
� 8ffiffiffi

π
p

g
e−2=g

2

×

�
1 −

7g2

16
−
59g4

512
− � � �

�
þ � � � (74)

½E�
0 �ðstrong-couplingÞ ¼

(
g2 þ 1

4g2 −
1

128g6
þ � � �

1
2g2 −

1
32g6

þ 7
215g14

− � � � (75)

Note that the strong-coupling expansion is convergent
(it is not unusual for functions to have convergent
expansions for large/small argument, but asymptotic
expansions for small/large argument). We can also plot

0.0 0.2 0.4 0.6 0.8 1.0
g

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E0

FIG. 5 (color online). A comparison of the exact band edges,
and the center of the band, for the lowest band of the Sine-
Gordon potential (solid lines), with the weak-coupling trans-
series expansion (dotted lines), and the strong-coupling results
(dashed lines). The exact results are generated using the
Mathematica functions MathieuCharacteristicA and Mathieu-
CharacteristicB, which compute Mathieu band edges numeri-
cally. The weak-coupling expansions have been plotted here
using the expression in (74), and the strong-coupling expansions
have been plotted using (75). Note the excellent numerical
agreement.
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the exact expressions for the band edges, by writing the
global boundary conditions (66)–(67) directly in terms
of Mathieu functions, which can be plotted. Figure 5
shows excellent agreement of the exact result with the
asymptotic limits.
If we include more exponentially small terms (along with

the perturbative fluctuations around them) in the weak-
coupling trans-series expansion, the trans-series will
approach the exact result even for larger values of the
coupling. Analogously, if we include more terms in the
strong-coupling expansion, the series will actually
approach the exact result even for smaller values of the
coupling.

1. Resurgent expansion for SG vs instantons

Similar to Sec. III C 1, we can expand the first (second)
term in the left-hand side of (68) up to kth [ðk − 2Þ-th]
order, and at the same time, the right-hand side up to

ðk − 1Þ-th order in δν. This suffices to systematically
extract the trans-series up to kth order in the instanton
expansion. Doing so also helps us to visualize the
differences and similarities between the resurgent expan-
sions in periodic and double-well potentials.
For the ground state, we let ν ¼ N þ δν ¼ 0þ δν. Then,

f−δνQ0 þ ðδνÞ2Q1 þ ðδνÞ3Q2g

� iπξ2

2
½H2

0 þ ðδνÞð2H0H0
0 þQ�

1 Þ�

¼ ξ

�
H0 þ ðδνÞH0

0 þ
1

2
ðδνÞ2H00

0

�
cos θ (76)

where Qn and Q�
n are the quasizero-mode polynomials

given in (51). Solving for δν iteratively in instanton
fugacity ξ, we find

δν ¼ −ξH0 cos θþξ2
�
½H0H0

0 þH2
0Q1�cos2θ∓ iπ

2
H2

0

�

þ ξ3
��

−H0ðH0
0Þ2 − 3H0

0H
2
0Q1 −H3

0ð2ðQ1Þ2 þQ2Þ −
1

2
H2

0H
00
0

�
cos3θ

þ
�
�iπQ1H3

0 �
3

2
iπH2

0H
0
0 �

1

2
iπH3

0Q
�
1

�
cos θ

�
þ � � �

¼ −
1

2
ξH0eiθ −

1

2
ξH0e−iθ þ

1

4
ξ2½H0H0

0 þH2
0Q1�e2iθ þ

1

2
ξ2½H0H0

0 þH2
0Q

�
1 � þ

1

4
ξ2½H0H0

0 þH2
0Q1�e−2iθ þ � � � (77)

2. Remarks and connection to instanton picture

We can interpret the various terms in the trans-series expansion due to topological defects with action nSI and winding
number m ≤ n. For example, the origin of terms proportional to ξ, ξ2, ξ3 are, respectively, 1-, 2-, and 3-defects. Let us
classify the n-defects contributing to the trans-series expansion at order n:

1-defects∶ I ∼ ð…Þξeiθ; Ī ∼ ð…Þξe−iθ;
2-defects∶ ½II � ∼ ð…Þξ2e2iθ; ½Ī Ī � ∼ ð…Þξ2e−2iθ ½IĪ �� ¼ ½ĪI �� ∼ ð…Þξ2∓ið…Þξ2
3-defects∶ ½III � ∼ ð…Þξ3e3iθ; ½Ī Ī Ī � ∼ ð…Þξ3e−3iθ;½ĪII �� ¼ ½IĪI �� ¼ ½IIĪ �� ∼ ð…Þξ3eiθ � ið…Þξ3eiθ;

½Ī Ī I �� ¼ ½IĪ Ī �� ¼ ½ĪIĪ �� ∼ ð…Þξ3e−iθ � ið…Þξ3e−iθ: (78)

Note the multiplicity of the n-defects. At action level n,
the events with topological charge m ¼ n − 2k, k ¼
0; 1;…; n have multiplicity ðnkÞ. For example, 2- and 3-
defects have multiplicities 1, 2, 1 and 1, 3, 3, 1,
respectively, and combine to give cos2 θ, cos3 θ terms
in the trans-series (77). In general, we have instanton
events of the form ½In−kĪk� with n units of action and θ
dependence eiðn−2kÞθ. The multiplicities of these corre-
lated events are ðnkÞ. Hence,

Xn
k¼0

n
k
eiðn−2kÞθ ¼ ðeiθ þ e−iθÞn ¼ 2n cosn θ (79)

giving the result obtained above, e.g., in (77).
Away to organize trans-series is through the structureof the

resurgence triangle, where each cell is labeled by ðn;mÞ,
jmj ≤ n. The rows are sectors with fixed action ðnSIÞ,
n ¼ 0; 1; 2;…, and the columns are sectors with fixed
topological charge jmj ≤ n. The resurgence triangle for the
periodic potential is
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fð0;0Þ

e
− 2

g2
þiθ

fð1;1Þ e
− 2

g2
−iθ

fð1;−1Þ

e
− 4

g2
þ2iθ

fð2;2Þ e
− 4

g2fð2;0Þ e
− 4

g2
−2iθ

fð2;−2Þ

e
− 6

g2
þ3iθ

fð3;3Þ e
− 6

g2
þiθ

fð3;1Þ e
− 6

g2
−iθ

fð3;−1Þ e
− 6

g2
−3iθ

fð3;−3Þ

e
− 8

g2
þ4iθ

fð4;4Þ e
− 8

g2
þ2iθ

fð4;2Þ e
− 8

g2fð4;0Þ e
− 8

g2
−2iθ

fð4;−2Þ e
− 8

g2
−4iθ

fð4;−4Þ

⋰ ..
. . .

.

(80)

Various comments are in order in connection with the
trans-series (77), instanton and multi-instanton amplitudes
(78), and the resurgence triangle (80).

(i) The n-instanton, e.g., I , ½II �, ½II…I � (similarly
for n-anti-instanton) amplitudes, associated with the
edges of the triangle m ¼ �n are the leading semi-
classical configuration in the corresponding homo-
topy class, and they are unambiguous. This is
because instanton-instanton interactions are repul-
sive and defining the n-instanton amplitude does not
require the BZJ prescription. The quasizero-mode
integrations produce ambiguity-free Qn−1ðσÞ poly-
nomials. However, the perturbative expansion
around the n-instanton is non-Borel-summable
and still ambiguous.

(ii) Since an n-instanton amplitude has θ-dependence
einθ, it cannot mix with perturbation theory around
the perturbative vacuum, which is clearly insensitive
to θ. Since the basis feinθ; n ∈ Zg forms an orthogo-
nal complete set for periodic functions with period
2π, we can define superselection sectors in the
resurgence triangle; i.e., columns with different θ
angle dependence are associated with different
homotopy classes and do not mix with each other
in the cancellation of their ambiguities.

(iii) The ambiguous part in the Oðξ2Þ term does not
depend on the Bloch angle θ. The contribution of
½ĪI �� produces ambiguous quasizero-mode poly-
nomials Q�

1 ¼ Q1ðσ�Þ. It must be this way if this
imaginary term is to cancel against an imaginary
term arising from the non-Borel-summable pertur-
bative series, because the perturbative series is
independent of θ. This pattern continues throughout
the entire trans-series, and the resurgence triangle
[25], in which the resurgent cancellations are char-
acterized by their θ dependence.

3. The resurgence triangle and graded
partition functions

The structure associated with the resurgence triangle can
also be seen by studying graded partition functions.
Consider the Fourier expansion of the partition function
in the orthonormal basis feinθ; n ∈ Zg:

Zðβ; g; θÞ ¼
Xþ∞

m¼−∞
eimθZmðβ; gÞ: (81)

Then, it is not hard to realize that Zmðβ; gÞ has a resurgent
expansion associated with the mth column in (80). In the
operator formalism, this data can be extracted by studying
the twisted partition function Zm ¼ trTme−βH with the
insertion of the translation operator T. In path integrals,
this corresponds to restricting the boundaries of the path
integration, namely,

Zm ¼ trTme−βH⟶
Z
xðtþβÞ¼xðtÞþmπ

g

DxðtÞe−S½x�: (82)

For example, the boundary conditions associated with the
Z�1 forbid the contribution of the perturbative vacuum
sector, as well as any topological configuration which has
the same asymptotic behavior as the perturbative vacuum.
The leading saddle contributing to Z�1 is a one-instanton
event, from which one can extract the bandwidth at
leading order.

IV. EXPLICIT RESURGENCE RELATIONS

A. Comparison with Zinn-Justin and Jentschura

In order to discuss the explicit resurgent relations
encoded in the trans-series expressions for the energy
eigenvalues, it is convenient at this stage to comment on
the similarities and differences between the uniform WKB
approach, discussed in this paper, and the approach of
Zinn-Justin and Jentschura (ZJJ), who have presented
extensive results for the resurgent relations [20].

1. Double-well potential

For the DW problem, ZJJ express their exact quantiza-
tion condition as [20]

1ffiffiffiffiffiffi
2π

p Γ
�
1

2
− BðE; g2Þ

��
2

g2

�
BðE;g2Þ

e−AðE;g2Þ=2 ¼ �i (83)

where the � sign in (83) refers to the splitting of a given
perturbative level into two separate levels, and the
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perturbative function BðE; g2Þ and the nonperturbative
function AðE; g2Þ were computed to be (converting the
results of [20] to our notation: EZJ →

E
2
, and gZJ → g2)

BDWðE; g2Þ ¼
E
2
þ g2

�
3

4
E2 þ 1

4

�
þ g4

�
35

8
E3 þ 25

8
E

�

þ g6
�
1155

32
E4 þ 735

16
E2 þ 175

32

�

þ g8
�
45045

128
E5 þ 45045

64
E3 þ 31185

128
E

�
þ � � � (84)

ADWðE; g2Þ ¼
1

3g2
þ g2

�
17

4
E2 þ 19

12

�

þ g4
�
227

8
E3 þ 187

8
E

�

þ g6
�
47431

192
E4 þ 34121

96
E2 þ 28829

576

�

þ g8
�
317629

128
E5 þ 264725

48
E3 þ 842909

384
E

�
þ � � � (85)

Notice that our global boundary condition (42) has the form

1ffiffiffiffiffiffi
2π

p Γ
�
1

2
− B

��
2

g2

�
B
e−AðB;g2Þ=2 ¼ �i (86)

where B≡ νþ 1
2
, and A ¼ AðB; g2Þ is a known function of

B and g, given in (42)–(44).
To understand the precise relation between ZJJ’s result

(83)–(85) and our expression (86), observe that if we invert
the expression (84) for B ¼ BðE; g2Þ to write it as E ¼
EðB; g2Þ we obtain

EDWðB; g2Þ ¼ 2B − 2g2
�
3B2 þ 1

4

�
− 2g4

�
17B3 þ 19

4
B

�

− 2g6
�
375

2
B4 þ 459

4
B2 þ 131

32

�

− 2g8
�
10689

4
B5 þ 23405

8
B3 þ 22709

64
B

�
− � � � (87)

which agrees precisely with the perturbative expansion (27)
for EðB; g2Þ that was found in the perturbative expansion of
the uniform WKB approach. Recall that this is exactly the
usual perturbative expansion for the energy of the Nth
level, when we identify B ¼ N þ 1

2
. Moreover, if we now

insert this expression for E ¼ EDWðB; g2Þ as a function of

B into ZJJ’s expression (85) for A ¼ ADWðE; g2Þ, we obtain
the expansion of ADWðB; g2Þ in powers of the coupling:

ADWðB; g2Þ ¼
1

3g2
þ g2

�
17B2 þ 19

12

�

þ g4
�
125B3 þ 153

4
B

�

þ g6
�
17815

12
B4 þ 23405

24
B2 þ 22709

576

�

þ g8
�
87549

4
B5 þ 50715

2
B3 þ 217663

64
B

�
þ � � � (88)

This matches precisely the function ADWðB; g2Þ obtained
from our global condition (42)–(44).
Thus, the conditions (83) and (86) are equivalent.

However, the philosophy is subtly different. In [20], the
expression (83) is regarded as an equation for the energy E
as a function of g2, provided both functions BðE; g2Þ and
AðE; g2Þ are known. On the other hand, we regard (86) as
an equation for B (equivalently for ν≡ B − 1=2) as a
function of g2, provided the function AðB; g2Þ is known,
and we then insert the resulting Bðg2Þ into the perturbative
expansion (26) in order to obtain the resurgent trans-series
expression for the energy eigenvalue. We will see in Sec. V
that there is a surprising advantage to the latter, uniform
WKB, perspective.

2. Sine-Gordon potential

A similar correspondence applies to the SG potential.
ZJJ express their exact (Bloch) quantization condition as

�
2

g2

�
−BðE;g2Þ eAðE;g2Þ=2

Γð1
2
− BðE; g2ÞÞ þ

�
−

2

g2

�
BðE;g2Þ

×
e−AðE;g2Þ=2

Γð1
2
þ BðE; g2ÞÞ ¼

2 cos θffiffiffiffiffiffi
2π

p (89)

where θ is the Bloch angle, and the perturbative function
BðE; g2Þ and the nonperturbative function AðE; g2Þ were
computed to be (converting the results of [20] to our
notation: EZJ →

E
2
, and gZJ →

g2

4
)

BSGðE; g2Þ ¼
1

2
Eþ g2

16
ð1þ E2Þ þ g4

128
ð5Eþ 3E3Þ

þ g6

64

�
17

32
þ 35

16
E2 þ 25

32
E4

�

þ g8

256

�
721

128
Eþ 525

64
E3 þ 245

128
E5

�
þ � � �

(90)
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ASGðE; g2Þ ¼
4

g2
þ 3g2

16
ð1þ E2Þ þ g4

16

�
23

4
Eþ 11

8
E3

�

þ g6

64

�
215

64
þ 341

32
E2 þ 199

64
E4

�

þ g8

256

�
4487

128
Eþ 326

8
E3 þ 1021

128
E5

�
þ � � �

(91)

[Note there is a small typo in (6.32) of [20]. The term − 199
4

should be þ 199
4
.]

We invert the first expression (90) to obtain

ESGðB; g2Þ ¼ 2B −
g2

2

�
B2 þ 1

4

�
−
g4

8

�
B3 þ 3

4
B

�

−
g6

32

�
5

2
B4 þ 17

4
B2 þ 9

32

�

−
g8

128

�
33

4
B5 þ 205

8
B3 þ 405

64
B

�
− � � �

(92)

which agrees precisely with the perturbative expression
(28) found in the uniform WKB approach. Substituting
ESGðB; g2Þ for E in order to reexpress A as A ¼ AðB; g2Þ,
we find

ASGðB; g2Þ ¼
4

g2
þ g2

4

�
3B2 þ 3

4

�
þ g4

16

�
5B3 þ 17

4
B

�

þ 5g6

4096
ð176B4 þ 328B2 þ 27Þ

þ 9g8

16384
ð336B5 þ 1120B3 þ 327BÞ þ � � �

(93)

In the ZJJ approach [20], the expression (89) determines the
energy E as a function of g2, provided both functions
BðE; g2Þ and AðE; g2Þ are known. On the other hand, in the
uniform WKB approach, this same condition is viewed as
determining B as a function of g2, given the function
AðB; g2Þ, and this is then inserted into the perturbative
expansion EðB; g2Þ to determine the energy.

B. Cancellation of ambiguities
(beyond Bogomolny–Zinn-Justin)

We first demonstrate the cancellation between the
ambiguous imaginary terms arising from the non-Borel-
summability of the perturbative series and the ambiguous
imaginary terms arising from the analytic continuation in g2

in the global boundary condition including perturbative
fluctuations around the nonperturbative factors. This can-
cellation of ambiguities at two-instanton order is known as

the Bogomolny–Zinn-Justin mechanism. Below, we pro-
vide evidence that this is also true if one includes
perturbative fluctuations around the nonperturbative
saddle ½IĪ �.

1. Double-well potential

The energy trans-series for the level N can be written as

EðNÞðg2Þ ¼ E

�
B ¼ N þ 1

2
; g2

�
þ δν

�∂EðB; g2Þ
∂B

�
B¼Nþ1

2

þ 1

2
ðδνÞ2

�∂2EðB; g2Þ
∂B2

�
B¼Nþ1

2

þ � � � (94)

The first term is the perturbative series, which is non-Borel-
summable. The resummation results in the imaginary
ambiguous term of order two-instantons, e−2SI=g

2

. For
the reality of the resurgent trans-series for real coupling,
this must be canceled by an imaginary part coming from the
higher nonperturbative terms in the trans-series.
From (46) we see that the first imaginary term arises in

the Oðξ2Þ term in δν, which is the two-instanton sector. To
this order it has the form

ImðδνÞ ¼ �π

�ð− 2
g2ÞN
N!

× exp

�
−
1

2

�
ADW

�
N þ 1

2

�
−

1

3g2

���
2

ξ2 þ � � �

(95)

¼ �π

�ð− 2
g2ÞN
N!

�2�
1 − g2q2

�
N þ 1

2

�
þ g4

�
1

2
q22

�
N þ 1

2

�

− q3

�
N þ 1

2

��
þ � � �

�
ξ2 þ � � � (96)

where the polynomials qkðBÞ are defined in (88):

ADWðB; gÞ −
1

3g2
≡X∞

k¼1

g2kqkþ1ðBÞ: (97)

Note that the prefactor of ξ2 is a perturbative series in g2.
The leading imaginary part of the energy coming

from the two-instanton sector, including the perturbative
fluctuations around it, can be found by calculating
Imð½δν ∂E

∂B�B¼1
2

Þ. Using (87) we find

∂EDW

∂B ¼ 2

�
1 − 6Bg2 −

�
51B2 þ 19

4

�
g4 þ � � �

�
: (98)

For example, for the N ¼ 0 level we get (recall,
ξ2 ∼ e−2SI=g

2

)
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Im

��
δν

∂E
∂B

�
B¼1

2

�
¼ �2π

�
1 −

35g2

6
−
1277g4

72
− � � �

�

×

�
1 − 3g2 −

35g4

2
− � � �

�
ξ2 (99)

¼ �2π

�
1 −

53

6
g2 −

1277

72
g4 − � � �

�
ξ2: (100)

Compare this with the large-order behavior of perturbation
theory quoted in Eq. (8.7) of [20] (converted to our
notation)

Eð0Þ
k ∼ −

2

π
3kþ1k!

�
1 −

53

6

1

ð3kÞ −
1277

72

1

ð3kÞ2 − � � �
�
: (101)

Given the subleading corrections to large-order terms
(101), we can obtain the imaginary part by standard
dispersion relation arguments [4]. Remarkably, not only
does the leading term cancel, but also the subleading terms
are canceled once we include the prefactor. This precise
correspondence between the coefficients of the behavior of
high orders of perturbation theory about the vacuum and
the coefficients of the low orders of fluctuations about the
2-instanton sector is an explicit example of resurgence.
The behavior near one saddle (P saddle) “resurges” in the
behavior near another saddle (½IĪ �, a NP saddle) [15].

2. Sine-Gordon potential

For the SG potential, we note the important distinction
that the imaginary part in the Oðξ2Þ term does not depend
on the Bloch angle θ. It must be this way if this term is to
cancel against an imaginary term arising from the non-
Borel-summable perturbative series, because the perturba-
tive series is clearly independent of θ. For example, for the
N ¼ 0 level we get

Im

��
δν

∂ESG

∂B
�
B¼1

2

�
¼ �2π

�
1 −

3g2

8
−
13g4

128
− � � �

�

×

�
1 −

g2

4
−
3g4

32
− � � �

�
ξ2 (102)

¼ �2π

�
1 −

5

2

g2

4
−
13

8

�
g2

4

�
2

− � � �
�
ξ2: (103)

Compare this with the large-order behavior of perturbation
theory quoted in Appendix A of [7] (converted to our
notation)

Eð0Þ
k ∼ −

2

π
k!

�
1 −

5

2k
−
13

8

1

k2
− � � �

�
(104)

from which we obtain the imaginary part by standard
dispersion relation arguments [4].

To recap, for the DW and SG problems, the instanton
actions are given by SDWI ¼ 1

6
and SSGI ¼ 1

2
, respectively.

The instanton factor is ξ ¼
ffiffiffiffiffi
2SI
πg2

q
e−SI=g

2

, while the imagi-

nary part associated with Borel resummation of vacuum
energy is�2πξ2 ¼ �2 × 2SI

g2 e
−2SI=g2 . Including fluctuations

around the ½IĪ � in the trans-series, we can write

Im

�
2 × ½IĪ ��

X∞
k¼0

a½IĪ �k g2k
�

¼ � 4SI
g2

e−2SI=g
2ða½IĪ �0 þ a½IĪ �1 g2 þ a½IĪ �2 g4 þ � � �Þ

þOðe−4SI=g2Þ: (105)

This implies that, using the dispersion relations,

E0
k ¼

1

π

Z
∞

0

ImE0ðg2Þ
dðg2Þ
ðg2Þkþ1

; (106)

the large-order behavior of the perturbation theory (includ-
ing the subleading 1=k suppressed terms) is given by

Eð0Þ
k ∼ −

2

π

k!
ð2SIÞk

×

�
a½IĪ �0 þ a½IĪ �1

�
2SI
k

�
þ a½IĪ �2

�
2SI
k

�
2

þ � � �
�
(107)

which can be checked against the result obtained via
Bender-Wu recursion relations, an independent method
to calculate (107).
This implies that in both DWand SG cases, not only does

the leading term cancel, but also the subleading terms are
canceled once we include the prefactor. Once again, there is
a precise correspondence between the coefficients of the
behavior of high orders of perturbation theory about the
vacuum and the coefficients of the low orders of fluctua-
tions about the 2-instanton sector: this is resurgence
at work.

V. GENERATING NP PHYSICS
FROM P PHYSICS

At first sight (and naively), there is no real difference
between the ZJJ and uniform WKB approaches. However,
the latter approach reveals a simple and elegant relation
between perturbative and nonperturbative physics that is
not obvious in the former.
In ZJJ, one computes the perturbative function BðE; g2Þ

and the nonperturbative function AðE; g2Þ, and imposes an
exact quantization condition. Although calculation of
BðE; g2Þ is straightforward, the evaluation of AðE; g2Þ is
more challenging.
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In the uniform WKB approach, one computes the
perturbative function EðB; g2Þ and the prefactor function
AðB; g2Þ, and imposes a global boundary condition. This
reveals an extremely simple (but nonobvious) relation
between the two functions EðB; g2Þ and AðB; g2Þ:

∂E
∂B ¼ −

g2

S

�
2Bþ g2

∂A
∂g2

�
(108)

where S is the numerical coefficient of the instanton
action in ξ≡ e−S=g

2

=
ffiffiffiffiffiffiffi
πg2

p
. This relation was not

observed in [20], because the relation is not apparent
when looking at the expansions of the functions BðE; g2Þ
and AðE; g2Þ. (Note that EZJ →

E
2
, and gZJ → g2. We used

ZJJ in [27].)
Equation (108) has a magical implication: that all the

information in the nonperturbative expression AðB; g2Þ is
completely determined by the perturbative expression
EðB; g2Þ. Thus, the nonperturbative computation of
AðB; g2Þ is actually unnecessary. The overall factor S
appearing in the formula can also be deduced from the
large-order growth of EðB; g2Þ, or can be computed
trivially by usual instanton methods, but the crucial
thing is that it is also already encoded in late non-
alternating terms of, for example, the ground state
perturbative expansion EðB ¼ 0þ 1

2
; g2Þ ∼P

nang
2n

where an ∼ n!=ð2SÞn.
This is astonishing, especially in light of the extremely

complicated nonperturbative multi-instanton analysis
required to compute AðE; g2Þ in [20]. All features of the
nonperturbative sector are encoded in the perturbative
sector, provided we know the perturbative expansion
EðB; g2Þ as a function of both the coupling g2 and the
level number parameter B.
This is an explicit realization of Écalle’s statement that

all information about the trans-series is encoded in the
perturbative sector. For this double-well potential, this fact
was noticed previously, in a slightly different form, in a
beautiful paper by Álvarez [26]. Below we show that it is
more general [27].

A. Double-well potential

For the sake of comparison, we recall the DW potential
expressions:

EDWðB; g2Þ ¼ 2B − 2g2
�
3B2 þ 1

4

�
− 2g4

�
17B3 þ 19

4
B

�

− 2g6
�
375

2
B4 þ 459

4
B2 þ 131

32

�

− 2g8
�
10689

4
B5 þ 23405

8
B3 þ 22709

64
B

�
− � � � (109)

ADWðB; g2Þ

¼ 1

3g2
þ g2

�
17B2 þ 19

12

�
þ g4

�
125B3 þ 153

4
B

�

þ g6
�
17815

12
B4 þ 23405

24
B2 þ 22709

576

�

þ g8
�
87549

4
B5 þ 50715

2
B3 þ 217663

64
B

�
− � � �

(110)

Notice the similarities between terms in the expansion of
ADWðB; g2Þ and EDWðB; g2Þ. To make this completely
explicit, compute

∂EDWðB; g2Þ
∂B

¼ 2 − 12Bg2 − 2g4
�
51B2 þ 19

4

�

− 2g6
�
750B3 þ 459B

2

�

− 2g8
�
53445B4

4
þ 70215B2

8
þ 22709

64

�
− � � � (111)

And, for comparison, compute

− 6g4
∂ASGðB; g2Þ

∂g2
¼ 2 − 6g4

�
17B2 þ 19

12

�
− 18g6

�
125B3 þ 153

4
B

�

− 18g8
�
17815

12
B4 þ 23405

24
B2 þ 22709

576

�
− � � �

(112)

We deduce the remarkably simple relation between
the perturbative expression EDWðB; g2Þ and ADWðB; g2Þ:

∂EDW

∂B ¼ −12Bg2 − 6g4
∂ADW

∂g2 (113)

which is nothing but (108) with S ¼ 1=6, the instanton
action. This means that the nonperturbative expression
ADWðB; g2Þ is completely determined by the perturbative
expression EDWðB; g2Þ.

B. Sine-Gordon potential

Remarkably, exactly the same thing happens for the SG
potential. Again, for the sake of comparison, we recall the
expressions:
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ESGðB; g2Þ ¼ B −
g2

2

�
B2 þ 1

4

�
−
g4

8

�
B3 þ 3B

4

�

−
g6

32

�
5B4

2
þ 17B2

4
þ 9

32

�

−
g8

128

�
33B5

4
þ 205B3

8
þ 405B

64

�
þ � � �

(114)

ASGðB; g2Þ ¼
4

g2
þ g2

4

�
3B2 þ 3

4

�
þ g4

16

�
5B3 þ 17B

4

�

þ 5g6

4096
ð176B4 þ 328B2 þ 27Þ

þ 9g8

16384
ð336B5 þ 1120B3 þ 327BÞ þ � � �

(115)

Notice again the similarities between terms in the expan-
sion of ASGðB; g2Þ and ESGðB; g2Þ. To make this com-
pletely explicit, compute

∂ESGðB; g2Þ
∂B ¼ 2 − Bg2 −

g4

8

�
3B2 þ 3

4

�

−
g6

32

�
10B3 þ 17B

2

�

−
g8

128

�
165B4

4
þ 615B2

8
þ 405

64

�
− � � �

(116)

And, for comparison, compute

−
1

2
g4

∂ASGðB;g2Þ
∂g2 ¼ 2−

g4

8

�
3B2 þ 3

4

�

−
g6

32

�
10B3 þ 17B

2

�

−
g8

128

�
165B4

4
þ 615B2

8
þ 405

64

�
− � � �

(117)

We deduce the remarkably simple relation:

∂ESG

∂B ¼ −Bg2 −
1

2
g4

∂ASG

∂g2

¼ −
2ðg2=4ÞB

S
−
ðg2=4Þ2

S
∂A

∂ðg2=4Þ : (118)

In the second equality, we observe that instanton action
S ¼ 1=2 and expansion parameter g2 → g2=4, and hence,
this is again the same as (108) [27].

C. Fokker-Planck potential

In [20], ZJJ present expressions for BðE; gÞ and AðE; gÞ
for the Fokker-Planck potential (in this section we use their
conventions for the coupling and normalizations):

VFPðyÞ ¼
1

2
y2ð1 − yÞ2 þ g

�
y −

1

2

�
: (119)

This is essentially a double-well potential, with a linear
symmetry breaking term. It can be thought of as the SUSY
QM version of the double-well problem. ZJJ give the
results:

BFPðE; gÞ ¼ Eþ 3gE2 þ g2
�
35E3 þ 5

2
E

�

þ g3
�
1155

2
E4 þ 105E2

�
þ � � � (120)

The nonperturbative function AFPðE; gÞ is [20]

AFPðE; gÞ ¼
1

3g
þ g

�
17E2 þ 5

6

�
þ g2

�
227E3 þ 55

2
E

�

þ g3
�
47431

12
E4 þ 11485

12
E2 þ 1105

72

�
þ � � �

(121)

Inverting, to write E as a function of B, we find

EFPðB; gÞ ¼ B − 3gB2 − g2
�
17B3 þ 5

2
B

�

− g3
�
375

2
B4 þ 165

2
B2

�
þ � � � (122)

Inserting the expression for E ¼ EFPðB; gÞ we obtain

AFPðB; gÞ ¼
1

3g
þ g

�
17B2 þ 5

6

�
þ g2

�
125B3 þ 55

2
B

�

þ 5

72
g3ð21378B4 þ 11370B2 þ 221Þ þ � � �

(123)

Thus, we observe the relation

∂EFPðB; gÞ
∂B ¼ −6Bg − 3g2

∂AFPðB; gÞ
∂g : (124)

So, again, the nonperturbative function AFPðB; gÞ is deter-
mined by the perturbative function EFPðB; gÞ.

D. Symmetric anharmonic oscillator Potential

Another example studied by ZJJ is the OðdÞ symmetric
anharmonic oscillator (AHO), with potential (in this
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section we use their conventions for the coupling and
normalizations):

VAHOð~xÞ ¼
1

2
~x2 þ gð~x2Þ2: (125)

The radial problem with angular momentum l leads to a
spectral problem characterized by a parameter j¼lþd=2−1.
ZJJ find the following expressions, as a function of j:

BAHOðE; gÞ ¼ Eþ g
2
ðj2 − 3E2 − 1Þ

þ g2

4
ð−15j2Eþ 35E3 þ 25EÞ

þ g3

16
ð−35j4 þ 630j2E2 þ 210j2 − 1155E4

− 1470E2 − 175Þ þ � � � (126)

The function AAHOðE; gÞ is [20] (note that we adopt the sign
convention from [20])

AAHOðE; gÞ ¼ −
1

3g
þ g

�
3j2

4
−
17E2

4
−
19

12

�

þ g2
�
−
77j2E
8

þ 227E3

8
þ 187E

8

�

þ g3
�
−
341j4

64
þ 3717j2E2

32
þ 1281j2

32

−
47431E4

192
−
34121E2

96
−
28829

576

�
þ � � �

(127)

Inverting, to write E as a function of B, we find

EAHOðB; gÞ ¼ Bþ 1

2
gð3B2 − j2 þ 1Þ

þ 1

4
g2ð−17B3 þ 9Bj2 − 19BÞ

þ 1

16
g3ð375B4 − 258B2j2 þ 918B2

þ 11j4 − 142j2 þ 131Þ þ � � � (128)

Converting A to a function of B, we find

AAHOðB; gÞ ¼ −
1

3g
þ 1

12
gð−51B2 þ 9j2 − 19Þ

þ 1

8
g2ð125B3 − 43Bj2 þ 153BÞ

þ 1

576
g3ð−53445B4 þ 26730B2j2

− 140430B2 − 909j4 þ 14778j2 − 22709Þ
þ � � � (129)

Thus, we see that for all j, we have the relation

∂EAHOðB; gÞ
∂B ¼ 3Bgþ 3g2

∂AAHOðB; gÞ
∂g : (130)

So, again, the nonperturbative function AAHOðB; gÞ is deter-
mined by the perturbative function EAHOðB; gÞ.

VI. CONCLUSIONS

In this paper we have given an elementary derivation,
using a uniform WKB expansion, of the appearance of
trans-series expressions of the form (2) for energy
eigenvalues in quantum problems with degenerate har-
monic minima. We have shown that this trans-series
form is generic for such problems because it can be
related, in the small g2 limit, to basic analyticity
properties of the parabolic cylinder functions that
underly harmonic vacuum problems. The global boun-
dary conditions that relate neighboring vacua for the
double-well potential and the periodic Sine-Gordon
potential problems lead naturally to resurgent relations
connecting different parts of the trans-series expansion,
again due to analyticity properties of the parabolic
cylinder functions.
The trans-series expansion unifies the perturbative

and nonperturbative sectors, in such a way that ambi-
guities are canceled between sectors, yielding real and
unambiguous results. The global boundary conditions
are expressed in terms of two functions, the perturbative
energy E ¼ EðB; g2Þ, and a nonperturbative function
A ¼ AðB; g2Þ that contains the single-instanton factor
and fluctuations around it. Here B ¼ N þ 1

2
, where N is

an integer labeling the energy level or band. Given these
two functions, the global boundary condition generates
the entire trans-series expansion, incorporating all multi-
instanton effects to all orders both perturbatively and
nonperturbatively.
Finally, we have shown that there is a remarkably

simple relation between the functions EðB; g2Þ and
AðB; g2Þ, which means that AðB; g2Þ is completely deter-
mined by knowledge of EðB; g2Þ. Thus, the entire trans-
series, including all perturbative, nonperturbative and
quasizero-mode terms, is encoded in the perturbative
expansion [27]. In other words, the fluctuations around
the vacuum saddle point contain information about all
other nonperturbative saddles, including their nonpertur-
bative actions as well as perturbative fluctuations around
them. This is a physical manifestation of the mathematical
concept of resurgence. A more complete understanding of
this remarkable phenomenon in the language of path
integrals would facilitate further application of the ideas
and methods of resurgence to quantum field theory and
string theory [24,25,33–35,48–51].
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