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In the present paper we investigate the causal structure of the baby Skyrme model using appropriate
geometrical tools. We discuss several features of excitations propagating on top of background solutions
and show that the evolution of high frequency waves is governed by a curved effective geometry. Examples
are given for which the effective metric describes the interaction between waves and solitonic solutions
such as kinks, antikinks, and hedgehogs. In particular, it is shown how violent processes involving the
collisions of solitons and antisolitons may induce metrics which are not globally hyperbolic. We argue that
it might be illuminating to calculate the effective metric as a diagnostic test for pathological regimes in
numerical simulations.
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I. INTRODUCTION

The Skyrme model [1] is a nonlinear theory where the
fields take values in a Riemannian manifold, typically a
Lie group. Originally conceived in the context of high
energy physics the model provided a framework where
baryons emerged as topologically protected solitons, called
Skyrmions. Although the relevant field quantities consisted
of just π-meson clouds, the fermionic nucleon was obtained
as a specific finite-energy, particlelike, and stable configu-
ration of the bosonic fields (see [2] for details). Later, it was
realized that the model appears in the low energy effective
field theory of quantum chromodynamics in the limit in
which the number of colors is large [3]. Recently, apart
from nuclear physics, the model proved to be useful in
various condensed matter systems, string theory, and
holographic QCD [4,5].
Generically, the associated Euler-Lagrange equations are

quasilinear [6]–[8] and subtle issues arise: (i) wave veloc-
ities are not given a priori, but change as functions of initial
data, directions of propagation, and wave polarization;
(ii) it is rather usual that the resulting system does not admit
solutions which can be continuously extended from the
smooth initial configuration: often they tend after a finite
time to discontinuous or singular states; (iii) not all initial
data are mathematically admissible since for a large class of
them the Cauchy problem is ill posed; (iv) there exist the
possibility of domains with nonhyperbolic regimes despite

the fact that the energy momentum tensor satisfies the
dominant energy condition.
Systematic treatment on these topics have proven to be

difficult, and efforts to apply finite difference methods in
simulations discovered numerical instabilities. Although
general results have been obtained for semilinear wave
maps, they do not generalize directly to the quasilinear
regime [9]–[12]. Quite recently, a local well-posedness
result was provided by Wong [13], sharpening some
previous conclusions of Crutchfield and Bell [14] and
Gibbons [15]. Unfortunately, most of the results concerning
the time evolution of Skyrme fields depend on numerics or
approximation schemes, and some of them lack satisfactory
analytical explanation.
To gain some intuition into the dynamics of the theory it

is convenient to obtain an effective metric description of the
linearized waves. This is because the effective metrics
uniquely determine the causal structure providing at the
same time the natural language to treat the well posedness
of the initial-boundary value problem. As a consequence,
they may help in the identification of pathological solutions
when they exist and why instabilities appear in some
situations involving collisions/scattering of solitons.
Among other developments, the effective metric led to
the construction of analog models of gravity, which imitate
the kinematical properties of gravitational fields, and to
insights into the evolutionary properties of hyperbolic
partial differential equations (PDEs) (see [16] for a review).
The point of this article is to investigate the causal

structure of the baby Skyrme model using the appropriate
geometrical tools. The model is a (2þ 1)-dimensional
analogue of the original model with the unit sphere S2
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as a target [17]–[19]. Because of the lesser number of
dimensions the baby version serves as a toy model for the
full theory where some ideas and methods can be tested.
They also have physical significance on their own, having
applications in some condensed matter systems such as the
fractional quantum Hall effect [22]. In particular, we will
derive a fourth order Fresnel-like equation for the high
frequency waves and show that it factorizes into two
quadratic characteristic polynomials. It follows that the
causal structure of the theory is governed by a duplicity of
effective geometries which depend explicitly on the pulled-
back geometry for the map. As a consequence, background
solutions of the equations behave as a birefringent medium
for the linearized waves. We next show that the model
admits signature transitions as well, possibly yielding an
elliptic regime for the PDEs. In the last section we evaluate
the effective metric for some well known solutions such
as kinks and baby Skyrmions and show that a wave
interacting with the solitons have drastic modifications
on its propagation properties.

II. BABY SKYRME MODELS:
GENERAL REMARKS

The model is based on a smooth map ϕA∶M → N
from spacetime M to a target manifold N. Here, ðM; ηÞ
is equal to R1þ2 equipped with a Minkowski metric
diagðþ − −Þ and ðN; hÞ is the two-dimensional unit sphere
S2 endowed with a positive definite metric hABðϕÞ.
The Lagrangian is constructed from the (1,1) pulled-back
tensorL ≔ hABðϕÞ∂aϕA∂bϕ

B and the action is provided by
[17]–[19]

S ¼
Z

1

2
TrðLÞ þ κ2

4
½TrððLÞ2Þ − ðTrðLÞÞ2� − VðϕÞd3x;

(1)

where κ2 is a parameter controlling the strength of the
nonlinearity.1 The first term in the Lagrangian reproduces
the classical O(3) sigma model while the second is the
three-dimensional analogue of the Skyrme term. While in
ð3þ 1Þ the potential VðϕÞ is optional, but its presence in
the ð2þ 1Þ model is necessary for the stability of the
solitonic solutions.2

In what follows we use the conventions: (i) capital
latin indices, A, stand for the target space quantities and
lower latin indices, a, stand for spacetime tensors;

(ii) ða; bÞ ¼ abþ ba and ½ab� ¼ ab − ba for symmetriza-
tion and antisymmetrization, respectively; (iii) hABPQðϕÞ≡
hA½PhBQ� ¼ h½APhB�Q. Variation with respect to ϕA yields a
system of second order quasilinear PDEs which can be
written in the compact form

ðHAB∂aϕBÞjjC∂aϕ
C þ V;A ¼ 0; (2)

where

HABðϕ; ∂ϕÞ≡ hAB − κ2hAPBQ∂aϕP∂aϕ
Q (3)

and jj represents the covariant derivative with respect to
hAB, i.e., hABjjC ¼ 0. In terms of the target connection ΓA

BC,
Eq. (2) can be written as

∂aðHAB∂aϕBÞ − ΓD
ACHDB∂aϕB∂aϕ

C þ V;A ¼ 0; (4)

which reveals that the equation of motion consists of
various types of self-interactions arising from the non-
standard kinetic terms, the potential, and the target geom-
etry. Nevertheless, quasilinearity implies that the system is
linear with respect to higher order derivatives of the
dependent field variables. Generically, it is possible to
express the equations as

Mab
ABðϕ; ∂ϕÞ∂a∂bϕ

B þ JAðϕ; ∂ϕÞ ¼ 0; (5)

where JA stands for semilinear terms in ϕA (lower order
derivatives) and the principal symbol is given by

Mab
AB

¼
�
ηabhABþ

κ2

2
hAPBQð∂aϕðQ∂bϕPÞ−2ηab∂cϕP∂cϕ

QÞ
�
:

(6)

As it is well known, the highest-order terms in deriv-
atives almost completely control the qualitative behavior of
solutions of a partial differential equation. We note that, in
this case, the principal symbolM is symmetric with respect
to ab and AB, i.e., M½ab�

AB ¼ Mab½AB� ¼ 0. Also, in the
limit of κ2 → 0, Eq. (2) reduces to a semilinear equation

□ϕA þ ΓA
BC∂aϕ

B∂aϕC ¼ 0; (7)

which reproduces the well-known classical Oð3Þ sigma
model in flat spacetime.

III. CAUSAL STRUCTURE

It has been known for some time that the propagation of
the excitations of nonlinear field theories in a given
background is governed by an effective metric that depends
on the background field configuration and on the details of
the nonlinear dynamics (see [16] for a review). These
propagation features can be analyzed by means of the

1Other approaches have been used in the past absorbing the
parameter κ into the potential term by rescaling the coordinates.
In our discussion it will be convenient to keep it in the
calculations for stressing the role played by quasilinearity from
the very beginning.

2See [20] for supersymmetric extensions of the model support-
ing Bogomol'nyi-Prasad-Sommerfield solutions and [21] for a
model endowed with vector mesons.
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eikonal approximation, i.e., the regime of small-amplitude/
high-frequency waves propagating on top of a smooth
solution ϕA

0 ðxÞ. Formally, we consider a one-parameter
family of solutions of the form

ϕAðxÞ ¼ ϕA
0 ðxÞ þ αφAðxÞ exp ðiΣðxÞ=αÞ; (8)

and let the real parameter α → 0. In this limit, only the
higher order derivative terms contribute to the propagation
laws for the waves. In other words, we can discard source
terms JA in (5) and consider only the principal part term
contributions.3

Defining the wave covector ka ≡ ∂aΣ, the equation of
motion reduces to the eigenvalue equation

½Mab
ABðϕ0Þkakb�φB ¼ 0: (9)

For a general ka ∈ T�
xM we define the symmetric matrix

MABðϕ0; kÞ≡Mab
ABðϕ0Þkakb. It follows that (9) can be

solved only if ka satisfy the algebraic conditions

Fxðϕ0; kÞ≡ detðMABðϕ0; kÞÞ ¼ 0: (10)

As a consequence, at a given spacetime point, the wave
normals are characterized by the roots of a multivariate
polynomial of fourth order in ka in the cotangent space. The
resulting algebraic variety changes from point to point in a
way completely prescribed by the background solution ϕA

0

and the nonlinearities of the baby Skyrme theory. In
general, it will consist at most of two nested sheets, each
with the topology of a convex cone.
The general form of Fx is given by a homogeneous

polynomial of the form

Fx ¼ detðhABÞGabcdðϕ0Þkakbkckd (11)

with Gabcd a completely symmetric quantity. The latter can
be written solely in terms of the spacetime metric and the
pulled-back geometry. Thus, the vanishing sets of (11)
constitute the baby Skyrmionic analogues of the Fresnel
equation encountered in optics (see [23] and references
therein for a similar derivation in the context of electro-
dynamics). They play the role of a fourth order spacetime
dispersion relation (at least up to a conformal factor).
Now, the algebraic structure of Gabcd reveals that the

quartic equation factorizes, yielding the generic birefrin-
gence effect; i.e., the characteristic polynomial reduces to a
product of two simpler quadratic terms satisfying

½ηabkakb�½ðh−1Þcdkckd� ¼ 0; (12)

with h−1 a reciprocal quadratic form in the cotangent space
given by

ðh−1Þab ≡ ð1 − 2κ2LsÞηab
þ ½κ2ð1 − κ2TrðLÞÞLab þ κ4LacLc

b�; (13)

with Ls denoting the Lagrangian of the model without the
potential term.
Thus, the wave fronts are not arbitrarily given but satisfy

some relations completely prescribed by the pullback. In
general, ΣðxÞ will solve one quadratic polynomial or the
other, although it is possible that there exist some directions
where the vanishing sets coincide. Consequently, the model
admits two different types of waves. One wave travels with
the velocity of light while the other travels with a velocity
which depends implicitly on the solution.
If the quantity ðh−1Þab is nondegenerate, it is possible to

define its inverse hab such that ðh−1Þachcb ¼ δab. The
explicit form of hab may easily be calculated by applying
the Cayley-Hamilton theorem to the matrix L. Because
detðLÞ ¼ 0, it results in the matrix relation

L3 ¼ TrðLÞL2 þ 1

2
½TrððLÞ2Þ − ðTrðLÞÞ2�L; (14)

and we obtain

hab ¼ ð1 − 2κ2LSÞ−1½ηab − κ2Lab�: (15)

In general, the effective metric hab characterizes a
Lorentzian metric on spacetime, the null cones of which
are the effective “sound cones” of the theory. The ray
vectors associated with the wave fronts are defined as

qa ≡ ηabkb if ηabkakb ¼ 0;

qa ≡ ðh−1Þabkb if ðh−1Þabkakb ¼ 0:

It follows from (12) that qa are the vanishing sets of the
dual polynomial Gx, i.e.,

Gxðϕ0; qÞ≡ ½ηabqaqb�½habqaqb� ¼ 0: (16)

As is well known, these cones completely characterize the
causal structure of the theory once a solution is given. Note,
however, that (13) and (15) are defined only up to a
conformal transformation ~hab → Ω2ðxÞhab. For the sake of
simplicity we assume that Ω2 ¼ ð1 − 2κ2LSÞ and adopt the
rescaled effective structure

~hab ¼ ηab − κ2Lab; ð ~h−1Þab ¼ Ω−2hab: (17)

The result that the high-energy perturbations of some
nonlinear theories propagate along geodesics that are not
null in the background geometry but in an effective
spacetime has been obtained several times in the literature
[25]. This is also true for the baby Skyrme model. Indeed,
defining the effective covariant derivative such that
~hab;c ¼ 0, it follows that if ~habqaqb ¼ 0, then

3A similar result may be obtained using the Hadmard’s method
of jump discontinuities (see, for instance, [24]).
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qa;bqb ¼ 0; (18)

which is the equation of a null geodesic. For an arbitrary
smooth solution ϕ0 the quadratic form ~h is generally
curved. Note, however, that it becomes flat in the limit
κ2 → 0. Note also that, although different choices VðϕÞ
may lead to qualitatively different theories, its particular
form does not appear explicitly in the expression of ~hab.

A. Signature transitions and breakdowns

As ~hab is a field dependent quantity, we cannot guarantee
that all roots of Gx are automatically real. This will be
the case only if the background fields satisfy certain
conditions. A direct calculation yields the condition

detð ~hÞab= detðηabÞ ¼ ð1 − 2κ2LSÞ > 0; (19)

which means that, in order to guarantee that the effective
metric has the correct signature ðþ − −Þ, the Lagrangian
has to satisfy an algebraic constraint. Note that the
constraint is the same for all possible potentials.
Following Manton [26] we suppose that Lab can

be diagonalized relative to ηab. It is clear that its eigen-
values are necessarily non-negative, so we write them
as Lab ¼ diagðλ20; λ21; λ22Þ. A direct calculation yields the
components

~h00¼ð1−κ2λ20Þ; ~h11¼−ð1þκ2λ21Þ; ~h22¼−ð1þκ2λ22Þ:
(20)

It follows that the 00 component of the effective metric is
not always positive, as it should be. For sufficiently small
values of λ0, ~h defines a metric with a hyperbolic signature.
In this regime, all roots of ~F and ~G are real, and we have a
well-defined causal structure. Nevertheless, for large values
of λ0 it is possible to envisage a situation where the effective
metric changes its signature. The new regime is charac-
terized by a spacetime region where the equations are of the
elliptic type ðþ;þ;þÞ: instabilities arise. The two distinct
regions are generally separated by a two-dimensional
membrane where the metric is singular.
One concludes that the physical validity of the baby

Skyrme model is constrained by the inequality λ20 < κ−2.
For static fields, this is always the case since λ0 ¼ 0. For
time-dependent fields it is important to keep in mind that a
signature transition may occur. If this is the case, the system
of quasilinear PDEs loses its physical predictability. This
danger is particularly important during violent processes
involving the collision of solitons and antisolitons [27].
Therefore, it might be illuminating to calculate the effective
metric during numerics as a diagnostic tool.

IV. EXAMPLES

We shall illustrate the formalism described above with
examples coming from well-known solutions to the baby
Skyrme model. To explore these aspects, it is convenient
to parametrize the fields with spherical coordinates
ϕA ¼ ðf;ψÞ in the target and metric hAB ¼ diagð1; sin2fÞ.
From now on we will work with the so-called old model
potential [28] which explicitly violates the O(3)-rotational
iso-invariance of the theory4

VðfÞ ¼ μ2ð1 − cos fÞ; (21)

where μ2 is a mass parameter which we set equal to 1. This
potential is analogous to the pion mass term in the ð3þ 1Þ
dimensional Skyrme model and is generally associated
with external fields in the context of magnetic systems.

A. Sine-Gordon-like solutions

As shown in [30], any solution of the sine-Gordon model
is also a solution of the baby Skyrme model. Indeed, in the
case of a map with constant azimuthal field (∂aψ ¼ 0) the
equation of motion (4) becomes

∂a∂af þ sin f ¼ 0 (22)

which, of course, is the sine-Gordon equation. Thus, all
known solutions of (22) such as kinks, antikinks, and
breathers automatically satisfy the baby Skyrme model
equations. Although the simplified model is restrictive from
the point of view of admissible solutions, it provides a
useful arena for developing insights on how the causal
structure behaves if a background solution is given. This
simplification can be viewed as a first step toward the
analysis of the full nonintegrable model.5

Note that for these types of maps the parameter κ2 does
not appear in the equations. Despite this fact, the effective
metric controlling the causal structure is given by

~hab ¼ ηab − κ2∂af∂bf: (23)

We analyzed the causal structure associated with a static
kink, a collision of kinks, and a collision of kink and
antikink. The results are illustrated below.

4Other possibilities include the holomorphic potential and the
so-called new model potential [29].

5Similar simplifications are often considered in the context of
analogue models of gravitation where basic concepts such as
emergent horizons can be anticipated without evoking the whole
complexity of the system. A typical example is the assumption
of inviscid, vorticity-free fluids in the study of artificial black
holes [16].
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1. Static kink

The kink represents a localized solitary wave, traveling
at a velocity jcj < 1. It is characterized by a solution of the
form

fðx; tÞ ¼ 4 arctan

�
exp

�
� x − x0 − ctffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2
p

��
; (24)

where the � signs correspond to localized structures which
are called kink and antikink, respectively. In a reference
frame comoving with the solution, we can set x0 ¼ c ¼ 0.
A direct calculation yields a diagonal effective geometry of
the form

~h00 ¼ 1; ~h11 ¼ −ð1þ 4sechðxÞÞ; ~h22 ¼ −1:
(25)

Note that Eqs. (25) are the same for the kink or the antikink
solutions, which means that high frequency excitations
interact with both solutions in the same way. Obviously,
this metric has a Lorentzian signature for all spacetime
points.
Figure 1 shows the light cones evaluated with the

effective metric in the t-x plane. It is seen that the cones
coincide with those of the Minkowskian geometry far from
the kink (antikink), and get thinner inside it, signaling that
high-energy perturbations propagate subluminally there.
We also see that the propagation in the direction y is
not affected by the kink (antikink), in accordance with

Eqs. (25). The time spent by a given perturbation inside the
localized solution depends on the parameters κ and μ, but
the solution cannot trap the high-energy perturbations.

2. Kink-kink collision

Although there are no static solutions describing
multisolitons in the sine-Gordon scheme, there are time-
dependent solutions, which describe the scattering/
collisions of two or more kinks [2]. It is perhaps in the
collisions of solitons that the effective geometry may help
us in understanding better when instabilities arise and when
the solutions are nonphysical. Rather unusually, some
of these solutions can be written in analytical form. The
kink-kink solution is given by

fðx; tÞ ¼ 4 arctan

�c × sinhð xffiffiffiffiffiffiffiffi
1−c2

p Þ
coshð ctffiffiffiffiffiffiffiffi

1−c2
p Þ

�
; (26)

and describes the collision between two kinks with respec-
tive velocities c and −c, approaching the origin from
t → −∞, and moving away from it with velocities �c
for t → þ∞.
It is well known that there is a repulsive force between

two kinks, so they scatter backward after the collision. This
behavior is reflected in the causal structure of this solution.
Figure 2 illustrates the behavior of

ffiffiffi
~h

p
in the x-t plane for

different values of the velocity parameter c. Again, it is
possible to show that the signature of the effective metric is
Lorentzian for all possible events, implying that the high
frequency limit is well defined. Far away from the kinks,
the metric becomes nearly flat and ~h ≈ 1. Nevertheless,
near the collision, this quantity is considerably modified
leading to nontrivial interactions between the waves and the
solution. Figure 3 shows the behavior of the cones for a
particular value of c.

3. Kink-antikink collision

The kink-antikink collision solution is

fðx; tÞ ¼ 4 arctan

� sinhð ctffiffiffiffiffiffiffiffi
1−c2

p Þ
c × coshð xffiffiffiffiffiffiffiffi

1−c2
p Þ

�
(27)

with�c again describing the velocities of the solitons. As is
well known, unlike most topological solitons which are
annihilated by antisolitons into radiation, the kink and
antikink scatter elastically.
From the physical point of view it seems that there is

nothing wrong with the kink-antikink collision.
Nevertheless, a direct inspection in the effective metric
reveals a hidden pathology in the solution. Indeed, the
effective metric is not Lorentzian everywhere and becomes
singular in a large bidimensional surface in spacetime.
This membrane separates the hyperbolic region from a
region where the baby Skyrme equations become elliptic

FIG. 1 (color online). Causal structure of the kink (antikink)
solution in the t-x plane. The colors represent the behavior of the
function

ffiffiffi
~h

p
with parameters κ2 ¼ 1 and μ ¼ 1. In this case it is

well defined for all possible spacetime events. Note, however,
that it only varies significantly near the kink (antikink), yielding
the usual cone for distant excitations.
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(see Fig. 4). Thus, the PDEs are actually mixed in this
regime. There is a good chance that the instabilities
reported in numerical simulations involving collisions
are associated with this signature transition.

B. Hedgehog solutions

It is well known that the baby-Skyrme model has
solitonlike topologically stable static solutions (called baby
Skyrmions) and that these solitons can form bound states.
To construct these solutions, one must use a radially
symmetric ansatz (hedgehog configuration) and reduce
the quasilinear PDE (4) to ordinary differential equations.
Adopting polar coordinates ðr; θÞ in the spacetime x-y

plane, we consider the class of static solutions of the
form

fn ¼ fnðrÞ; ψ ¼ nθ; (28)

where fnðrÞ is the so-called profile function and n ∈ Z. We
assume also the supplementary conditions fnð0Þ ¼ mπ
(m ∈ Z) and limr→þ∞fn ¼ 0 to guarantee that the solutions
are localized in space and that the total energy is finite. In
analogy with the ð3þ 1Þ case, the domain of this model is
compactified to S2, yielding the topology required for the
classification of its field configurations into homotopy
classes π2ðS2Þ ¼ Z. The above ansatz implies that the

FIG. 2 (color online). Color diagrams representing the function
ffiffiffi
~h

p
for the kink-kink collision in the t-x plane for 0.1 ≤ c ≤ 0.9. Note

that the function is real for all values of the parameter.
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profile functions fn satisfy the nonlinear ordinary differ-
ential equation

�
rþ n2sin2f

r

�
f″ þ

�
1 −

n2sin2f
r2

þ n2f0 sin f × cos f
r

�
f0

−
n2 sin f × cos f

r
− r × sin f ¼ 0 (29)

with f0 ¼ df=dr. Unfortunately, there are no analytic
solutions for this model and the baby Skyrmion solutions
have to be computed numerically. Nevertheless, we may
readily compute the form of the effective geometry. It follows
that the causal structure associated with the baby Skyrmions
is given by null intervals ~habdxadxb ¼ 0 satisfying

dt2 − ð1þ f02n Þdr2 − ðr2 þ n2sin2fnÞdθ2 ¼ 0; (30)

where the effective geometry carries with it the topological
degree of the map n. In Fig. 5 is shown the qualitative
behavior of the velocity of propagation v2 ¼ dr2=dt2 as a
function of the coordinate r for n ¼ 1 and n ¼ 2.
We note that the rotationally inavariant ansatz (28) is a

simplification which does not provide absolute minimums
for higher degrees n ≠ 2. To understand higher order
degrees one needs to use a more complicated ansatz.
Unfortunately it is not clear at the moment how to treat
these solutions using analytical tools. Generically the
resulting system is treated numerically using finite differ-
ence schemes to evaluate the space derivatives while time
evolution integration is made using a Runge-Kutta method.
The 3-soliton, for instance, is not rotationally symmetric,
and its configuration is similar to a molecule made up of
three distorted baby Skyrmions [18]. Typically, for n > 2
the hedgehog fields (28) are unstable and the time evolution
ends at a less symmetric configurations with lower energy.
In principle the effective metric may be computed for these
nonsymmetric situations as well. We thus conclude that
it would be an interesting task to calculate the effec-
tive metrics in simulations involving complicated static
solutions as well as in collisions of baby Skyrmions.

V. CONCLUSIONS

The net result of this paper is the derivation of an
effective metric description of high frequency waves in the
baby Skyrme model. Starting with the geometric optics
approximation we derive a fourth order Fresnel-like

FIG. 3 (color online). Causal structure associated with the kink-
kink collision in the t-x plane for c ¼ 0.7. Note that the velocities
of propagation are drastically modified near the collision.

FIG. 4 (color online). Causal structure of the kink-antikink
collision in the t-x plane for c ¼ 0.5. The colors represent the
function

ffiffiffi
~h

p
. Note that there exists a region where it vanishes.

The white hole in the middle of the figure represents a region with
an elliptic signature.

2 4 6 8 10
r

0.5

0.6

0.7

0.8

0.9

1.0
v2

FIG. 5 (color online). Radial velocity in terms of r for the first
two baby Skyrmions n ¼ 1 (blue curve) and n ¼ 2 (red curve).
Note that for r → ∞ and r ¼ 0 the velocities coincide with the
velocity of light.
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equation and show that it factorizes into two quadratic
characteristic polynomials. It follows that the causal struc-
ture of the theory is governed by two distinct geometrical
structures, each playing the role of a second order space-
time dispersion relation (at least up to a conformal factor).
As a consequence we show that background solutions of
the baby Skyrme equations behave as birefringent medium
for the linearized waves. As usual in the context of crystal
optics, birefringence is responsible for the phenomenon of
double refraction whereby a ray, when incident upon a
complex material, is split into two rays taking slightly
different paths. We then analyze examples for which the
effective metric describes the interaction between waves
and solitonic solutions such as kinks, antikinks, and
hedgehogs. In particular, it is shown how violent processes
involving the collisions of solitons and antisolitons may

induce metrics which are not globally hyperbolic. Possible
extensions of our work include numerical simulations
involving less symmetric static configurations as well as
violent processes of collision. It would also be interesting to
work with other potentials which may lead to different
qualitative behavior. In particular, a similar analysis in
the context of the integrable model would be very
welcome.
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