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We study renormalization-group flows in Yukawa theories with massless fermions, including
determination of fixed points and curves that separate regions of different flow behavior. We assess
the reliability of perturbative calculations for various values of Yukawa coupling y and quartic scalar
coupling λ by comparing the properties of flows obtained with the beta functions of these couplings
calculated to different orders in the loop expansion. The results provide a determination of the region in y
and λ where calculations up to two loops can yield reasonably reliable results. In the regime of weak
couplings where the perturbative calculations are most reliable, we find that the theories have no nontrivial
fixed points, and the flow is toward a free theory in the infrared.
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I. INTRODUCTION

The dependence of the coupling constants in a quantum
field theory on the Euclidean momentum scale μ, at which
they are measured, is of fundamental importance. This
behavior is described by the beta functions for these
couplings [1]. In a theory with two or more couplings, a
change in μ thus induces a renormalization-group (RG)
flow in the space of couplings. The RG flow typically
involves some infrared (IR) or ultraviolet (UV) fixed
points, and one can characterize these as being attractive
or repulsive along certain directions in the space of
couplings. If the couplings are sufficiently small, then
the respective beta functions can be reliably calculated
perturbatively. As one or more of these couplings increases
in magnitude, higher-loop contributions to the various beta
functions become important, motivating calculations of
these beta functions to higher loop order to obtain reliable
results for RG flows (trajectories) and fixed points. If one or
more couplings becomes too large, then it may not be
possible to describe the RG flows, or, more generally, the
properties of the theory, using perturbative calculations.
A general criterion for the reliability of a perturbative

calculation is that if one calculates some quantity to a given
loop order, then there should not be a large fractional
change in this quantity if one computes it to one higher
order in the loop expansion. Thus, in a situation where a
putative fixed point occurs at moderately strong coupling, it
is important to study how the value of the coupling(s) at this
fixed point change(s) if one calculates the beta function(s)
to higher loop order. For example, an asymptotically free
non-Abelian gauge theory with sufficiently many fermions
in a given representation has an IR fixed point (IRFP) [2]. If
the number of fermions is only slightly less than the
maximum allowed by the constraint of asymptotic freedom,

this IRFP occurs at weak coupling [3]. As the number of
fermions is decreased, the IRFP moves to stronger cou-
pling, and studies have been carried out of the effect of
higher-loop terms in the beta function of the gauge
coupling in this case [4]. One may also investigate a
possible ultraviolet fixed point (UVFP) in an infrared-free
theory such as U(1) gauge theory with higher-loop calcu-
lations (e.g., [5,6] and references therein).
It is also of considerable interest to investigate renorm-

alization-group flows in the more complicated case of
quantum field theories that depend on more than one
interaction coupling. There have been many studies of
such flows for theories and ranges of momentum scale μ
where the couplings are reasonably weak, so that pertur-
bative calculations are reasonably accurate. This is the case
for computations of RG flows of the SUð3Þc, SUð2ÞL, and
Uð1ÞY gauge couplings in the standard model (SM) or the
minimal supersymmetric standard model (MSSM) upward
from a reference scale of, say, 1 TeV, up to higher scales
such as 1016 GeV. There has also been interest in calculat-
ing the RG flow of the elements of Yukawa matrices in the
SM and MSSM, and the quartic Higgs coupling λSM in the
SM, from the 1 TeV scale to higher scales. Again, these RG
flows can be reasonably well described by perturbative
calculations, although with the measured value of the
Higgs-like boson observed by the LHC, mH ≃ 126 GeV
[whence in the SM, λSMðμÞ≃ 0.13 at μ ¼ mH], in the
absence of new physics effects at intermediate scales, it
follows that λSMðμÞ would decrease through zero at a high
scale μ ∼ 1010�1 GeV, implying that the SM, by itself,
would be metastable above this scale [7–9].
In this paper we study renormalization-group flows in

Yukawa theories and assess the reliability of perturbative
calculations of these flows for a substantial range of
Yukawa and quartic scalar couplings. The method that
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we use for this purpose is to compare the properties of flows
that we obtain with the beta functions of these couplings
calculated to different orders in the loop expansion. In order
to focus on the essential features in as simple a framework
as possible, we study scalar-fermion models without any
gauge fields. We construct these models so that the global
symmetries forbid any Dirac or Majorana fermion mass
terms, and we also consider the limit where scalar masses
are negligibly small relative to the scales μ of interest.
These models depend on two dimensionless couplings, a
quartic self-coupling λ for the scalar field and a Yukawa
coupling y. The beta functions for these couplings comprise
a set of coupled first-order ordinary differential equations
describing how the couplings vary as functions of μ.
Integrating this set of differential equations, we determine
their renormalization-group flows as functions of μ. To do
this, we choose an initial scale, μ0, where the magnitudes of
the couplings are sufficiently small that perturbative cal-
culations may be reliable, and then perform the integration.
Our method is to compare RG flows calculated using
different loop orders for the two beta functions. We recall
the basic fact that in these theories the quartic scalar self-
coupling λ must be positive for the boundedness of the
energy and equivalently the stability of the theory. As will
be evident in our results, RG flows may take a theory with
positive λ to one with negative λ. In this case, two
comments are necessary. Strictly speaking, for a suffi-
ciently small range of negative λ the theory may still be
metastable, with a sufficiently long tunneling time that our
perturbative calculations may be physically meaningful.
However, for negative values of λ of sufficiently large
magnitude, the theory is simply unstable, and the pertur-
bative analysis is not applicable or meaningful. In most of
our analytic discussions, therefore, we will implicitly take λ
to be positive.
We remark on some earlier related work on Yukawa

models. As is well known, Yukawa proposed such models
[10] as an approach to understanding the binding of
nucleons in nuclei, and pion exchange between nucleons
does, indeed, play an important role in this binding. Of
course, the physics here involves the exchange of a light
approximate Nambu-Goldstone boson between two bary-
ons, with the baryons being much heavier than the
exchanged π meson, as indicated by the ratio of masses
mπ=mN ¼ 0.15. This is quite different from our models, for
which, by construction, a global chiral symmetry forbids
any fermion mass and the scalar mass is taken to be
negligibly small relative to the interval of Euclidean
momentum scales μ for which we integrate the beta
functions to calculate the RG flows. Some early studies
of perturbative RG equations for standard model Yukawa
couplings included Refs. [11,12]. It was recognized early
on that the one-loop beta function for a scalar theory
without fermions is positive, so this theory is, perturba-
tively, at least, IR free; that is, as μ → 0, λðμÞ → 0.

However, it was also recognized that if one adds fermions
to this scalar theory to get a full scalar-fermion Yukawa
theory, then the fermions contribute a negative term
proportional to y4 in the beta function dλ=d ln μ, and
hence, for sufficiently large y, this can reverse the sign
of the full one-loop term in this beta function and hence
possibly render the scalar coupling in the Yukawa theory
nontrivial [12]. This motivated fully nonperturbative stud-
ies, and these were carried out using lattice studies with
dynamical fermions [13] (some recent work includes [14]).
One may obtain a Yukawa theory starting from a full
gauge-fermion-Higgs theory by turning off the gauge
couplings. In this framework, a natural approach is to start
with a chiral gauge theory (exemplified by the standard
model), which forbids bare fermion masses in the
Lagrangian. However, owing to fermion doubling on the
lattice, it has been challenging to implement chiral gauge
theories on the lattice. We believe, therefore, that there is
continuing interest in pursuing analyses of renormalization-
group evolution of continuum Yukawa theories using
perturbatively calculated beta functions. Indeed, simple
scalar-fermion models have been of recent interest in
studies of quasiscale invariant behavior (e.g., [15]; see
also [9,16]).
This paper is organized as follows. In Sec. II we define

our notation for the relevant variables and beta functions. In
Sec. III we study a scalar-fermion model with an SUð2Þ ⊗
Uð1Þ global symmetry group. In Sec. IV we generalize this
analysis to a model with Nf copies (“flavors”) of fermions
and an SUðNÞ ⊗ SUðNfÞ ⊗ Uð1Þ global symmetry group.
Our conclusions are contained in Sec. V.

II. BETA FUNCTIONS

The Yukawa theories that we will study are defined
by the Lagrangians given in Eqs. (3.2) and (4.3) below.
These involve two interaction couplings, y and λ. The beta
functions describing the dependence of the running cou-
plings y ¼ yðμÞ and λ ¼ λðμÞ on the scale μ where they are
measured are

βy ≡ dy
dt

; βλ ≡ dλ
dt

; (2.1)

where dt ¼ d lnðμ=μ0Þ, where μ0 is an initial value of the
reference scale. (The μ dependence of y and λ is implicitly
understood below but the argument will often be sup-
pressed in the notation.) These beta functions can be
expressed as a sum of l-loop terms as

βy ¼
X∞
l¼1

bðlÞy

ð4πÞ2l ; βλ ¼
X∞
l¼1

bðlÞλ

ð4πÞ2l ; (2.2)

where bðlÞy =ð4πÞ2l and where bðlÞλ =ð4πÞ2l denote the
l-loop contributions to βy and βλ, respectively.

ESBEN MØLGAARD AND ROBERT SHROCK PHYSICAL REVIEW D 89, 105007 (2014)

105007-2



It will also be convenient to define the variables

ay ≡ y2

ð4πÞ2 ; aλ ≡ λ

ð4πÞ2 ; (2.3)

which will be used for the SUð2Þ ⊗ Uð1Þ model studied
below. For the SUðNÞ ⊗ SUðNfÞ ⊗ Uð1Þ model and, in
particular, for the limit (4.4), we define the variables

āy ≡ y2N
ð4πÞ2 ; āλ ≡ λN

ð4πÞ2 : (2.4)

Correspondingly, for the SUð2Þ ⊗ Uð1Þ model we
define the beta functions

βay ≡
day
dt

¼ 2y
ð4πÞ2 βy; βaλ ≡

daλ
dt

¼ 1

ð4πÞ2 βλ; (2.5)

with the series expansions

βay ¼
X∞
l¼1

bðlÞay ; βaλ ¼
X∞
l¼1

bðlÞaλ : (2.6)

From the relations above, it follows that

bðlÞay ¼ 2y

ð4πÞ2ðlþ1Þ b
ðlÞ
y ; bðlÞaλ ¼ 1

ð4πÞ2ðlþ1Þ b
ðlÞ
λ : (2.7)

We denote the n-loop (nl) beta functions as βay;nl
and βaλ;nl.
Similarly, for the SUðNÞ ⊗ SUðNfÞ ⊗ Uð1Þ model, we

define the beta functions

βāy ≡
dāy
dt

¼ 2yN
ð4πÞ2 βy (2.8)

and

βāλ ≡
dāλ
dt

¼ N
ð4πÞ2 βλ (2.9)

with series expansions analogous to those in Eq. (2.6) with
ay and aλ replaced by āy and āλ, respectively. In the latter
case, the largeN andNf (LNN) limit (4.4) will generally be
understood.
As discussed in the Introduction, these beta functions

form a set of two coupled differential equations. We
integrate these for each of the two models that we study
to calculate the resultant RG flows. A point in the
multidimensional space of couplings where all of the beta
functions vanish simultaneously is, formally, a renormal-
ization-group fixed point (FP). In general, RG flows may
include the presence of one or more ultraviolet (UV) fixed
point(s) if the beta functions vanish as μ → ∞ and/or
infrared (IR) fixed point(s), where the beta functions vanish

as μ → 0. In general, a fixed point may be stable along
some directions and unstable along others. If the particle
content of the theory does not change along the RG flow
from μ0 to the fixed point, then it is an exact UVor IR fixed
point. In the vicinity of a (formal) fixed point, the RG flows
are slow, so that the theories exhibit approximate scale
invariance.
For our comparative study we will perform the integra-

tions to calculate the RG flows with the beta functions βay
and βaλ calculated to various different loop orders. We
denote these as follows. For the SUð2Þ ⊗ Uð1Þ model, the
calculation using the βay;nl and βaλ;kl beta functions is
denoted ðn; kÞ. The specific cases for which we perform the
integrations are

(i) (1, 1), i.e., βay;1l and βaλ;1l
(ii) (1, 2), i.e., βay;1l and βaλ;2l
(iii) (2, 1), i.e., βay;2l and βaλ;1l
(iv) (2, 2), i.e., βay;2l and βaλ;2l.
We use the same notation to describe the four cases

for the SUðNÞ ⊗ SUðNfÞ ⊗ Uð1Þ model, so that in this
context, the case (1, 1) refers to an RG calculation using
βāy;1l and βāλ;1l and so forth for the other cases. Some
remarks are in order here. For a perturbative calculation of
quantities in a theory with multiple couplings, a general
procedure would be to calculate to similar orders in the
various couplings if they are equally large and significant
for the physics, and to calculate to higher order in a
coupling that is larger. Thus, for example, in a standard
model process, one may only need to calculate to lowest
order in electroweak couplings, but to higher order in the
QCD coupling. Such a calculation is consistent in the sense
that one has included higher-order terms in a larger
coupling. Reference [9] obtained the result that Weyl
consistency conditions are maintained only if one uses
the beta functions βag;ðnþ2Þl, βay;ðnþ1Þl, and βaλ;nl, where g
denotes a gauge coupling and ag ≡ g2=ð4πÞ2 ¼ α=ð4πÞ
(see also [17]).
In this type of study there are several obvious caveats.

First, clearly, as couplings increase in strength, perturbative
calculations become progressively less reliable. This is,
indeed, a motivation for our present work—to assess
quantitatively where this reduction in reliability occurs
in the case of scalar-fermion models depending on two
coupling constants. Second, higher-loop terms in beta
functions of multicoupling theories are generically scheme
dependent, and the positions of fixed points are hence also
scheme dependent. Indeed, scheme dependence is also
present in higher-loop calculations in quantum chromody-
namics (QCD). As in common practice in QCD, we use
results computed with the MS scheme [18]. One can assess
the effect of scheme dependence of RG flows and fixed
points by comparing these in different schemes [4].
However, many scheme transformations that are acceptable
in the vicinity of a fixed point at zero coupling (e.g., a
UVFP in an asymptotically free gauge theory, or an IRFP in
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an infrared-free theory) are not acceptable at a fixed point
that occurs at a moderately strong coupling, because they
produce various unphysical pathologies [6,19,20]. A third
caveat, related to the first, is that if one or more of the
couplings is (are) sufficiently large, the Yukawa and/or
quartic scalar self-interaction may lead to nonperturbative
phenomena such as the formation of a fermion condensate,
a vacuum expectation value (VEV) for the scalar field, and/
or fermion-fermion bound states (see, e.g., [16], [21]). In
the case where the coefficient of the quadratic term in the
scalar potential V is zero, there is the related possibility of a
nonperturbative generation of a nonpolynomial term in V,
whose minimum could lead to a nonzero VEV for the scalar
field [22]. Early studies of the stability of a theory in the
presence of this phenomenon and associated related bounds
on fermion and Higgs masses include [12,23].
If fermion condensation occurs at some scale μc (where

the subscript c is for condensate) in the vicinity of a formal
IR fixed point, then the originally massless fermions gain
dynamical masses, spontaneously breaking the approxi-
mate scale invariance in the theory near to an apparent RG
fixed point. In the low-energy effective field theory
applicable for scales μ < μc, one integrates these fermions
out, thereby obtaining different beta functions. Thus, in this
case, the formal fixed point would only be approximate
rather than exact, since after the fermion condensation, the
beta functions and flows would be different. This sponta-
neous symmetry breaking of the approximate scale invari-
ance generically leads to the appearance of a corresponding
Nambu-Goldstone boson, the dilaton. This dilaton is not
massless, since the beta functions in the vicinity of the fixed
point were small but not precisely zero.
If μ2ϕ < 0 so that there is a VEV for the scalar field,

then the Yukawa coupling leads to a mass for the fermion
field(s) of the form mf ∝ yv. However, since the VEV v ¼
ð−μ2ϕ=λÞ1=2 and since we assume that jμϕj is much smaller
than the reference scales μ over which we integrate the
renormalization-group equations, it follows that for mod-
erate values of the ratio y2=λ, the resultant fermion masses
mf ∝ yð−μ2ϕ=λÞ1=2 are negligible relative to the interval of
μ that we study.

III. SUð2Þ ⊗ Uð1Þ MODEL

A. Field content and symmetry group

The first model that we study is motivated by the leptonic
sector of the standard model, with the gauge interactions
turned off. It includes a fermion ψa

L which is a doublet
under SU(2) with weak hypercharge Yψ and a χR, which is
a singlet under SU(2) with weak hypercharge Yχ , together
with the usual scalar field ϕa transforming as a doublet
under SU(2) with weak hypercharge Yϕ. Here, a ¼ 1; 2 is
an SU(2) group index which will often be suppressed in the
notation. We assume that these hypercharges are nonzero
and that Yψ ≠ Yχ . Since we have set the gauge couplings to

zero, the SUð2Þ ⊗ Uð1Þ is a global symmetry group. As in
the standard model, we set

Yϕ ¼ Yψ − Yχ (3.1)

to ensure that the Yukawa interaction term is invariant
under the global symmetry. The Lagrangian for this
model is

L ¼ ψ̄Li∂ψL þ χ̄Ri∂χR − ½yψ̄LχRϕþ H:c:�
þ ∂μϕ

†∂μϕ − μ2ϕϕ
†ϕ − λðϕ†ϕÞ2: (3.2)

Without loss of generality, we can make yðμ0Þ real and
positive at a given value μ0 (by changing the phase of ψL or
χR or ϕ). We assume that this is done. We allow μ2ϕ of either
sign but assume that jμ2ϕj is negligibly small compared with
the range of μ2 of interest for our study of RG flows [24]
(see also the end of Sec. II). The global SU(2) symmetry
forbids the Majorana bilinear ψa

L
TCψb

L and the Dirac
bilinear ψ̄a;LχR from occurring in L. Since Yχ is taken
to be nonzero, the U(1) symmetry forbids the Majorana
bilinear χTRCχR (as well as ψa

L
TCψb

L and ψ̄a;LχR bilinears).
Thus, the condition that L be invariant under this global
symmetry group implies that the fermions are massless.

B. Beta functions

The one-loop and two-loop coefficients in the beta
functions βy and βλ can be extracted, with the requisite
changes to match our normalizations, from previous
calculations (which were done in the MS scheme)
[8,11,25]. They are

bð1Þy ¼ 5

2
y3; (3.3)

bð2Þy ¼ 3yð−y4 − 4y2λþ 2λ2Þ; (3.4)

bð1Þλ ¼ 2ð12λ2 þ 2y2λ − y4Þ; (3.5)

bð2Þλ ¼ −312λ3 − 48y2λ2 − y4λþ 10y6: (3.6)

In terms of the variables ay and aλ used for the figures,

bð1Þay ¼ 5a2y; (3.7)

bð2Þay ¼ 6ayð−a2y − 4ayaλ þ 2a2λÞ; (3.8)

bð1Þaλ ¼ 2ð12a2λ þ 2ayaλ − a2yÞ; (3.9)

bð2Þaλ ¼ −312a3λ − 48aya2λ − a2yaλ þ 10a3y: (3.10)

We comment on some properties of βy or equivalently,
βay . We recall that at the initial point μ0 where we start our
integrations of the renormalization group equations, we
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have, with no loss of generality, rendered y real and
positive. A first comment is that because βy has an overall
factor of y, and βay has an overall factor of ay, it follows that
the flow in y can never take y through zero to negative
values of y, and the flow in ay can never take ay through
zero to negative values of ay.
The fact that bð1Þay > 0means that for sufficiently small ay

and aλ, βay > 0, i.e., as μ decreases from the UV to the IR,
the Yukawa coupling y decreases. At the two-loop level,

bð2Þay > 0 if aλ > ð1þ
ffiffiffiffiffiffiffiffi
3=2

p
Þay ¼ 2.2247ay; (3.11)

to the given floating-point accuracy. If these conditions are
satisfied, then the two-loop coefficient contributes to βay
with the same sign as the one-loop coefficient and increases
the rate of change of ay as a function of μ. If, on the other

hand, aλ < ð1þ ffiffiffiffiffiffiffiffi
3=2

p Þay, then bð2Þay < 0, so bð2Þay contrib-

utes to βay with a sign opposite to that of b
ð1Þ
ay . In this case, it

is possible for βay to vanish at the two-loop level. The
condition for this to happen is that either ay ¼ 0 for some μ
or (again suppressing the argument, μ) that

5ay þ 6ð−a2y − 4ayaλ þ 2a2λÞ ¼ 0: (3.12)

Solving this equation for ay yields the physical solution

ay ¼
5

12
− 2aλ þ

1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
864a2λ − 240aλ þ 25

q
: (3.13)

(The polynomial in the square root is positive definite.)
Equivalently, solving Eq. (3.12) for aλ yields

aλ ¼ ay þ
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ayð18ay − 5Þ

q
; (3.14)

which is physical if ay ≥ 5=18, i.e., y ≥ ð4π=3Þ×ffiffiffiffiffiffiffiffi
5=2

p ¼ 6.623. Evidently, this zero of βay;2l is only
possible for such large values of y that one must anticipate
significant corrections from higher-loop terms in βay . In
passing, we note that the other solution of Eq. (3.12) for λ
with a minus sign in front of the square root is unphysical,
since it can lead to a negative λ. (As noted before, we do not
attempt to consider a metastable situation with a negative λ
of small magnitude.) Also, the other solution of Eq. (3.12)
for ay with a minus sign in front of the square root in
Eq. (3.13) is unphysical because it can lead to a value of
ay < 5=18. Setting ay ¼ 5=18 in Eq. (3.14) yields
aλ ¼ ay ¼ 5=18, and similarly, setting aλ ¼ 5=18 in
Eq. (3.13) yields ay ¼ aλ ¼ 5=18.
We next remark on some properties of βaλ . We find that

bð1Þaλ ¼ 0 if aλ ¼
ð ffiffiffiffiffi

13
p

− 1Þ
12

ay ¼ 0.21713ay (3.15)

and

bð1Þaλ > 0 if aλ >
ð ffiffiffiffiffi

13
p

− 1Þ
12

ay; (3.16)

or equivalently, ay < ð1þ ffiffiffiffiffi
13

p Þaλ ¼ 4.60555aλ. The con-

dition that bð2Þaλ ¼ 0 is a cubic equation in aλ and separately
a cubic equation in ay. We find that if ay ¼ ð1þ ffiffiffiffiffi

13
p Þaλ,

so that bð1Þλ ¼ 0, then

bð2Þaλ ¼ 2ð13þ 55
ffiffiffiffiffi
13

p Þ
ð4πÞ6 λ3 ¼ ð1.073 × 10−4Þλ3: (3.17)

Hence, if the values of aλ and ay ≠ 0 are such that the one-
loop contribution to βaλ ¼ 0, then at the two-loop
level, βaλ > 0.
In the special case where ay ¼ 0, we find that if we

consider βaλ;2l, a nontrivial fixed point appears at

a�λ ¼
1

13
¼ 0.076923: (3.18)

This fixed point is repulsive in the ay direction, since for

lower values of aλ (while keeping ay ¼ 0), bð1Þaλ drives the

flow down, and for higher, bð2Þaλ drives it up.
We next give some illustrative numerical evaluations. Let

us consider that the theory is such that at some reference
scale μ0, yðμ0Þ and λðμ0Þ have the values yðμ0Þ ¼ 1 and
λðμ0Þ ¼ 1. If one were to consider turning on gauge fields
(and adding quarks so that this theory is free of gauge
anomalies), then these would be rather large physical
values of these couplings. For reference, considering only
the third generation in the standard model (SM) and using
the relation for a fermion mass in terms of the Yukawa
coupling and the Higgs vacuum expectation value, hϕi0,
namely

yfhϕi0 ¼ yf
vffiffiffi
2

p ¼ mf; (3.19)

where v ¼ 246 GeV, one has the rough values
yτ ≃ 1 × 10−2, yb ≃ 2 × 10−2, and yt ≃ 1. Further, using
the relation for the Higgs boson mass mH in the standard
model, namely,

mH ¼ ð2λÞ1=2v; (3.20)

one has λðμÞ ¼ 0.13 at μ ¼ mH ¼ 126 GeV, as noted
above. So the illustrative reference values yðμ0Þ ¼ λðμ0Þ ¼
1 that we have taken may be considered to be reasonably
large. Nevertheless, the variables that enter in the beta
functions are then rather small because they involve a factor
of 1=ð4πÞ2; ayðμÞ ¼ λðμÞ ¼ 1=ð4πÞ2 ¼ 0.6333 × 10−2. In
the beta function βay , the one-loop term bð1Þay ¼ 2.005×
10−4, and the two-loop term term bð2Þay ¼ −0.4571 × 10−5,
so that the ratio of the two-loop to one-loop terms is
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y ¼ λ ¼ 1 ⇒
bð2Þay

bð1Þay

¼ −0.02280: (3.21)

In the beta function βaλ , the one-loop term bð1Þaλ ¼ 1.043 ×
10−3 and baλ ¼ −0.89135 × 10−4, so that

y ¼ λ ¼ 1 ⇒
bð2Þaλ

bð1Þaλ

¼ −0.0855: (3.22)

We also note the values of the one-loop and two-loop beta
functions for ay and aλ:

y ¼ λ ¼ 1 ⇒
βay;1l
βaλ;1l

¼ bð1Þay

bð1Þaλ

¼ 0.1923 (3.23)

and

y ¼ λ ¼ 1 ⇒
βay;2l
βaλ;2l

¼ bð1Þay þ bð2Þay

bð1Þaλ þ bð2Þaλ

¼ 0.2055: (3.24)

Thus, for this illustrative case with yðμ0Þ ¼ λðμ0Þ ¼ 1, the
two-loop term in βay makes only a small contribution
relative to the one-loop term, so that the perturbative
expansion for βay is reasonably reliable to this two-loop
order, and similarly for βaλ.

C. RG flows

To study the RG flows in this model, we begin by finding
the fixed points, that is, the solutions to the simultaneous
conditions βay;nl ¼ 0, βaλ;kl ¼ 0 for the values of loop
orders ðn; kÞ that we consider. We first note that the IR-free
(trivial) fixed point

a�y ¼ 0; a�λ ¼ 0 (3.25)

FIG. 1 (color online). The renormalization-group flows for the SUð2Þ ⊗ Uð1Þ model with 0 ≤ ay ≤ 1=ð4πÞ and 0 ≤ aλ ≤ 1=ð4πÞ. In
this and the other figures, the arrows for the flows point in the direction from the UV to the IR. The white square region is where
0 ≤ ay ≤ 0.04 and 0 ≤ aλ ≤ 0.04, and the gray region occupies the rest of the plot. The figures correspond to the following different
choices of loop order in the beta functions: (1, 1) (upper left); (1, 2) (upper right); (2, 1) (lower left); and (2, 2) (lower right). The red
flows for the cases (1, 2) and (2, 2) originate along the eigendirections of the fixed points.
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is a solution to the beta functions for any of our ðn; kÞ
cases. Beyond this IR-free fixed point, we find that the
choice of loop order ðn; kÞ in the beta functions is quite
important for the appearance and location of fixed points.
From Eqs. (3.7)–(3.10), we calculate the fixed point to be as
follows:

caseð1; 1Þ ⇒ no nonzero fixed points: (3.26)

caseð1; 2Þ ⇒ a�y ¼ 0; a�λ ¼
1

13
¼ 0.07692: (3.27)

caseð2; 1Þ ⇒ a�y ¼
5

318
ð13

ffiffiffiffiffi
13

p
− 17Þ ¼ 0.4697;

a�λ ¼
5

638
ð31 − 5

ffiffiffiffiffi
13

p
Þ ¼ 0.1020: (3.28)

caseð2; 2Þ ⇒ two fixed points :

a�y ¼ 0; a�λ ¼
1

13
¼ 0.07692 and

a�y ¼ 0.4104; a�λ ¼ 0.1247: (3.29)

The presence of a fixed point for such a low value of aλ
as 1=13 means that only a very small region of coupling
space is independent of the choice of ðn; kÞ. In Fig. 1, we
see that the flows change character based on ðn; kÞ when
both ay and aλ are larger than approximately 0.04. In this
and the other figures, our convention is to start the analysis
at a high value of μ in the UV, integrate the renormalization-
group equations for āy and āλ, and follow the flow from the
UV to the IR, and this is indicated by the direction of the
arrows. Note, in particular, that the plots where the two-
loop term bð2Þaλ is included in βaλ have, in the upper right-
hand area, concave flows towards the trivial fixed point,

FIG. 2 (color online). The renormalization-group flows for the SUð2Þ ⊗ Uð1Þ model with 0 ≤ ay ≤ 0.5 and −0.1 ≤ aλ ≤ 0.5. The
white region is where 0 ≤ ay ≤ 0.04 and −0.1 ≤ aλ ≤ 0.04; the light gray region is where 0.04 ≤ ay ≤ 0.2 and −0.1 ≤ aλ ≤ 0.2; and the
dark gray region occupies the rest of the figure. The figures correspond to the following different choices of loop order in the beta
functions: (1, 1) (upper left); (1, 2) (upper right); (2, 1) (lower left); and (2, 2) (lower right). The green flows are the stable manifolds in
coupling constant space which bound the basins of attraction of the fixed point at the origin. The red flows in (1, 2), (2, 1) and (2, 2)
originate along the eigendirections of the fixed points.
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whereas the ones where it is not have convex flows towards
the same in this region.
If we let ay and aλ increase beyond 1=ð4πÞ, changes

appear quite rapidly (see Fig. 2), which means that one
cannot trust the perturbative analysis to these orders in this
region of couplings. With this caveat in mind, we shall
proceed to describe the RG flows. The first striking
difference is that if the two-loop term βð2Þaλ in the beta
function βaλ is included, then the flow ending in the
partially attractive fixed point at a�y ¼ 0;, a�λ ¼ 1=13 is a
separatrix which divides a region where the flows end in the
trivial fixed point at the origin, from one where they
increase to large values of aλ. The plots in this and the
other figures were generated using the Mathematica
STREAMPLOT routine. (Because the integration routine
can lose some numerical accuracy when the beta functions
approach zero near fixed points, it does not show arrows
and associated RG flows very close to these fixed points.)
The second is that including the two-loop term in the

Yukawa beta function produces a fixed point where neither
of the couplings is zero. However, the impact that this has
on the flow is very different in the (2, 1) and (2, 2) cases. In
the (2, 1) case, the fixed point is partially attractive, and the
flow that reaches it from above forms a separatrix,
separating a region where the flows end at the origin from
a region where they move toward larger values of ay in the
IR. In the (2, 2) case, the fixed point is totally repulsive, and
the dominant term in the beta functions is the a3λ term in
Eq. (3.10). This term drives every flow, above the one
originating in the eigendirection of positive ay from the
fixed point (marked in red on Fig. 2), towards larger aλ in
the IR, which in turn means that the dominant term in βay;2l
will eventually be the aya2λ term, which drives ay → 0 in
the IR.
For the (2, 2) flows that originate at the totally repulsive

fixed point and go in the direction of negative aλ, there is a
delicate balance between terms driving them towards the
origin and terms driving them towards highly negative aλ in
the IR. This balance is manifested in the stable manifold
(marked in green on Fig. 2) which separates the regions of
convergence to the origin and flow to (unphysical) negative
values.

IV. SUðNÞ ⊗ SUðNf Þ ⊗ Uð1Þ MODEL

A. Field content, symmetry group, and LNN limit

In this section we study a model that is a twofold
generalization of the model in the previous section. First,
we construct the model so that it is invariant under a global
symmetry group

G ¼ SUðNÞ ⊗ SUðNfÞ ⊗ Uð1Þ; (4.1)

rather than the SUð2Þ ⊗ Uð1Þ group of the previous model.
We include an Nf-fold replication of the left-handed and
right-handed fermions. The fermion content consists of

(i) ψa
j;L, transforming as a ð□;□Þ representation of

SUðNÞ ⊗ SUðNfÞ, where a is an SUðNÞ group index
taking on the values a ¼ 1;…; N, and j is a copy (“flavor”)
index, taking on the values j ¼ 1;…; Nf; and (ii) χj;R, with
j ¼ 1;…; Nf, transforming as a ð1;□Þ representation of
SUðNÞ ⊗ SUðNfÞ. The model also has a scalar field ϕa

transforming as a ð□; 1Þ representation of SUðNÞ ⊗
SUðNfÞ. The hypercharges are again taken to be nonzero
and to satisfy the conditions that Yψ ≠ Yχ and Eq. (3.1).
The transformations of ψa

j;L and χj;R under SUðNfÞ are

ψa
j;L →

XNf

k¼1

Ujkψ
a
k;L; χj;R →

XNf

k¼1

Ujkχk;R; (4.2)

where U ∈ SUðNfÞ.
The Lagrangian of this model is

L ¼
XNf

j¼1

½ψ̄ j;Li∂ψ j;L þ χ̄j;Ri∂χj;R�

− y
XNf

j¼1

½ψ̄ j;Lχj;Rϕþ H:c:�

þ ∂μϕ
†∂μϕ − μ2ϕϕ

†ϕ − λðϕ†ϕÞ2; (4.3)

where we have suppressed SUðNÞ indices in the notation.
The SUðNÞ ⊗ Uð1Þ symmetry forbids the fermion bilin-
ears ψaT

j;LCψ
b
k;L, χ

T
j;RCχk;R, and ψ̄a;j;Lχk;R, so the fermions

are massless. Our requirement of SUðNfÞ invariance
restricts the Yukawa coupling to the form given in
Eq. (4.3). As before, we allow either sign of μ2ϕ and impose
the condition that jμϕj be negligibly small relative to the
range of μ over which we calculate the RG flows (see also
the end of Sec. II).
One of the motivations for this generalization is that it

enables us to take the combined limit

N → ∞; Nf → ∞ with r≡ Nf

N
fixed

y → 0; λ → 0 with āy and āλ being

finite functions of μ: (4.4)

Wewill use the symbol limLNN for this limit, where “LNN”
stands for “large N and Nf.”

B. Beta functions

To simplify the analysis, we take the LNN limit (4.4). In
this limit, from [25] (see also [8]) we find

bð1Þāy ¼ ð1þ 2rÞā2y; (4.5)

bð2Þāy ¼ −3rā3y; (4.6)
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bð1Þāλ ¼ 2ð2ā2λ þ 2rāyāλ − rā2yÞ; (4.7)

and

bð2Þāλ ¼ rāyð−8ā2λ − 3āyāλ þ 2ā2yÞ: (4.8)

We remark on some general properties of these terms.
First, because βāy has an overall factor of āy, it follows that
the flow in āy can never take āy through zero to negative
values of āy. For y ≠ 0, the one-loop term in βāy , namely
bð1Þāy , is positive definite and independent of āλ. Hence,
provided that the initial values of y and λ at the starting
point of the integration are such that one can apply these
perturbative calculations, āy decreases toward zero as μ
decreases from the UV to the IR. Since for y ≠ 0, the two-
loop term, bð2Þāy , is negative, it follows that the full two-loop
beta function, βāy;2l ¼ ā2y½ð1þ 2rÞ − 3rāy� has a zero,
which occurs at

ā�y ¼
1þ 2r
3r

; (4.9)

independent of āλ. For weaker Yukawa couplings, i.e.,
āy < ā�y, βāy;2l > 0, so the UV to IR flow is to still weaker
Yukawa couplings, while for āy > ā�y, βāy;2l < 0, so that
the direction of the UV to IR flow is to larger āy. Note that
as r decreases toward 0, ā�y get sufficiently large that one
cannot trust the perturbative calculations, so this discussion
is restricted to moderate values of r. These results are
shown in Fig. 3. For the range of r shown in Fig. 3, ā�y ∼ 1.
As is evident from Eq. (4.9), as r → ∞, āy approaches the
limit 2=3 from above.
We next discuss the one-loop and two-loop terms in βāλ .

The analysis here is more complicated than that for βāy,
because whereas the one-loop and two-loop terms in βāy
depended only on āy, the one-loop and two-loop terms in
βāλ depend on both āλ and āy. We find that the one-loop

term bð1Þāλ is positive (negative) if āλ is larger (smaller) than
the value

āλ ¼
1

2
½−rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 2Þ

p
�āy (4.10)

and zero if the equality in Eq. (4.10) holds. The condition in
Eq. (4.10) is equivalent to āy ¼ ½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2=rÞp �āλ. The
solution for āλ in Eq. (4.10) is one of the two solutions of
the quadratic equation bāλ ¼ 0; the solution with the minus
sign in front of the square root is unphysical because it
leads to a negative λ, and similarly in the equivalent
solution for āy, the other root with the minus sign in front

of the square root is unphysical. The fact that bð1Þāλ > 0 for
āλ larger than the value on the right-hand side of Eq. (4.10)
means that if the initial value of āλ satisfies this condition,
then in the RG flow from the UV to the IR, āλ decreases,
and similarly, if the initial value of āλ is smaller than the

value on the right-hand side of Eq. (4.10), then āλ increases
in the RG flow from the UV to IR.
We come next to the two-loop term in βāλ , namely bð2Þāλ .

Because this factorizes into a linear times a quadratic factor
in the LNN limit that we consider here, it is somewhat
simpler to analyze than bð2Þaλ for the SUð2Þ ⊗ Uð1Þ model.
We find that bð2Þāλ is negative (positive) if āλ is larger
(smaller) than the value

āλ ¼
1

16
ð−3þ

ffiffiffiffiffi
73

p
Þāy ¼ 0.34650āy: (4.11)

(The solution of the quadratic with the opposite sign in front
of the square root is unphysical, since it renders λ negative.)

The two-loop term bð2Þāλ vanishes if āy ¼ 0 or if the condition
in Eq. (4.11) is satisfied. Thus, for large āλ relative to āy, as
least to the extent that our perturbative calculations still
apply, we thus find that the one-loop and two-loop terms in

the βāλ;2l have the opposite signs; b
ð1Þ
āλ > 0, while bð2Þāλ < 0.

Similarly, for sufficiently small āλ relative to āy, these terms

again have opposite signs; bð1Þāλ < 0, while bð2Þāλ > 0. It is
thus plausible that the full two-loop βāλ;2l would have a
zero, where these terms cancel each other.
In Fig. 3 we show our solutions for the value of the fixed

point in the variable āλ as a function of r. (Here and
elsewhere, it is implicitly understood that the LNN limit has
been taken.) The value of r determines the value of the
fixed point in āy, the existence or nonexistence of a fixed
point in āλ, and, in the former case, its value. The solutions
that yield a fixed point ā�λ at negative values are only
formal, since the theory is unstable for āλ < 0, i.e., λ < 0. If
āλ is negative but jāλj is sufficiently small, the theory may
be metastable, but considerations of metastability and

0.2 0.4 0.6 0.8 1.0 1.2
r

1.5

1.0

0.5

0.5

1.0

1.5
a

FIG. 3 (color online). The fixed point values of (i) āy, denoted
as ā�y and shown as the red, dot-dashed curve, and (ii) āλ, denoted
as ā�λ and shown as the green solid curve for the case (2, 1) and
green dashed curve for the (2, 2) case, plotted as functions of
r ¼ Nf=N (with the LNN limit understood). The curve for ā�y is
the same for the (2, 1) and (2, 2) cases, since, as discussed in the
text, βāy is independent of āλ to two-loop order. The curves with
āλ negative are only formal, since the theory is unstable for
āλ ≤ 0, i.e., λ ≤ 0.
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estimates of tunneling times are beyond the scope of our
present analysis. Thus, as regards āλ, there is only a single
physical fixed point, ā�λ , and the calculation for the (2, 1)
case yields a value of ā�λ ≃ 0.5 in the range of r shown, for
which perturbation theory may be reliable down to r≃ 0.2.
As r → ∞, this curve for ā�λ approaches the limit 1=3. For
the (2, 2) case, if r < 1.0, there is also only one physical
(positive) fixed point, ā�λ , but its value grows more rapidly
as r decreases, so that one anticipates significant correc-
tions to the two-loop perturbative result already for r
decreasing below r≃ 0.4. In the narrow interval of r
between r ¼ 1.0 and the value

rð2;2Þmerger ¼ 31þ 12
ffiffiffi
3

p

46
¼ 1.12575; (4.12)

there are two physical fixed points for āλ. We shall refer to
these as the upper and lower fixed points. As r increases

through the value rð2;2Þmerger, the upper and lower fixed points

in āλ merge and disappear. This happens when the solution
to the equation βāy;2l ¼ βāλ;2l ¼ 0 becomes complex,

which happens at r ¼ rð2;2Þmerger.

C. RG flows

Here we present the results of our integration of the beta
functions calculated to various loop orders. In Fig. 4 we
plot the RG flows for r ¼ 0.5 and

āy <
1

4π
; āλ <

1

4π
; i:e:;

y2N
4π

< 1;
λN
4π

< 1:

(4.13)

We find that for this value of r and range of āy and āλ, the
theory has only the IR fixed point at the IR-free point

ðā�y; ā�λÞ ¼ ð0; 0Þ: (4.14)

This can be understood as a result of the fact that the one-
loop expression for βay, namely, βay;1l, is positive and

FIG. 4 (color online). The renormalization-group flows for r ¼ 0.5 with 0 ≤ āy ≤ 1=ð4πÞ and 0 ≤ āλ ≤ 1=ð4πÞ. The figures
correspond to the following choices of inclusion of different-loop terms in the beta functions: upper left (1, 1); upper right (1, 2); lower
left (2, 1); lower right (2, 2). The red flows in the (2, 1) and (2, 2) cases originate along the eigendirection of the upper fixed point
(see Fig. 3).

ESBEN MØLGAARD AND ROBERT SHROCK PHYSICAL REVIEW D 89, 105007 (2014)

105007-10



independent of aλ, so as μ decreases from the UV to the IR,
āy always decreases. Although the one-loop result for βāλ,
namely βāλ;1l, could initially be negative if the initial value
of āy is such that āy > ð1þ ffiffiffiffiffi

13
p Þāλ, as discussed above,

βāλ;1l will eventually pass through zero and become
positive as āy decreases through this zero, and as the flow
continues toward the IR thereafter, βāλ;1l will remain
positive. This causes āλ to vanish in the IR.
These results also provide an answer to a question that

we posed at the beginning, namely how robust the
perturbative calculation of the RG flows are to the inclusion
of higher-loop terms in the beta function. For this range
(4.13) of āy and āλ, all four cases (1, 1), (1, 2), (2, 1), and
(2, 2) yield qualitatively similar flows. This serves as a
strong indication that for this range (4.13), our perturbative
calculations are reliable.
Next, we increase r from 0.5 to 1.1. The results are

shown in Fig. 5. We reach the same qualitative conclusions
for this case r ¼ 1.1 as for r ¼ 0.5.

We next study a larger range of āy and āλ, namely 0 <
āy < 1.5 and 0 < āλ ≤ 1.5. We show the RG flows for
r ¼ 0.5 and r ¼ 1.1 in Figs. 6 and 7.
For reference, in these plots we distinguish three regions:

(i) a white square region where 0 ≤ āy ≤ 1=ð4πÞ and
0 ≤ āλ ≤ 1=ð4πÞ; (ii) a light gray region where 1=ð4πÞ ≤
āy ≤ 1 and 1=ð4πÞ ≤ āλ ≤ 1 [1=ð4πÞ ≤ āy ≤ 0.75 and
1=ð4πÞ ≤ āλ ≤ 0.75 in Fig. 7]; and (iii) a dark gray region
where 1 ≤ āy ≤ 1.5 and 1 ≤ āλ ≤ 1.5 [0.75 ≤ āy ≤ 1.5 and
0.75 ≤ āλ ≤ 1.5 in Fig. 7]. In the case where r ¼ 0.5
(Fig. 6), the four light gray regions are still quite similar,
but now the inclusion of the two-loop term in βāλ has a
significant effect. In the left-hand plots where this term is
not included, we note that the flows that reach the fixed
points seem to be attracted to a central flow, which, in the
(2, 1) (lower left) plot is identified with the one flowing in
the eigendirection from the upper fixed point. In the right-
hand plots that include the two-loop term in βāλ , this
behavior is reversed for relatively large values of āy.

FIG. 5 (color online). The renormalization-group flows for r ¼ 1.1 with 0 ≤ āy ≤ 1=ð4πÞ and 0 ≤ āλ ≤ 1=ð4πÞ. The figures
correspond to the following choice of inclusion of different loop-order terms in the beta functions: upper left (1, 1); upper right (1, 2);
lower left (2, 1); lower right (2, 2). The red flows in the (2, 1) and (2, 2) cases originate along the eigendirection of the upper fixed point
(see Fig. 3).
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In (1, 1) and (2, 1) cases, theRG flows in the light gray region
where āy ≤ 1 and āλ ≤ 1, look similar to the flows in the
white square region where āy ≤ 1=ð4πÞ and āλ ≤ 1=ð4πÞ.
The largest changes in the flowsoccur in thedarkgray area

where āy and āλ are largest. When considering this region, it
is important to recall that this iswhereweexpect perturbation
theory to break down, partly because higher-order terms in
the beta functions are of comparable size compared with
lower-order terms, and partly because completely nonper-
turbative effects such as fermion condensates can appear for
such strong values of the couplings. However, continuing in
the context of the perturbative analysis, we see that fixed
points appear in the (2, 1) and (2, 2) plots, and correspond-
ingly the flows are changed by their presence.
The inclusion of the two-loop term in βāλ fundamentally

changes the nature of the fixed points. In the (2, 1) plot, we
see that the nontrivial fixed point is attractive along the
vertical direction, and repulsive along the approximately
horizontal direction, but the fixed point in the (2, 2) case

occurs at a roughly similar position, it is now repulsive in
all directions.
In Fig. 7, we note that (1, 1), (1, 2), and (2, 1) plots are

similar to those in Fig. 6, except that the fixed point in the
(2, 1) plot now occurs at a value of āy < 1. However, in the
(2, 2) plot, the flows are very different. Most dramatically,
the lower fixed point (see Fig. 3) has become positive, and
is very close to merging with the upper one.
Thus, our comparative calculations of RG flows for these

(1, 1), (1, 2), (2, 1), and (2, 2) cases in this model show that
a perturbative calculation of the RG flows and fixed points
is reasonably reliable for the region 0 ≤ āy ≲ 1=ð4πÞ and
0 < āλ ≲ 1=ð4πÞ but is unreliable when these variables
increase to sizes of order 1 or greater.

V. CONCLUSIONS

In summary, in this paper we have calculated
renormalization-group flows and resultant fixed points in

FIG. 6 (color online). The renormalization-group flows for r ¼ 0.5 with 0 ≤ āy ≤ 1.5 and 0 ≤ āλ ≤ 1.5. The white square region is
where 0 ≤ āy ≤ 1=ð4πÞ and 0 ≤ āλ ≤ 1=ð4πÞ; the light gray region is where 1=ð4πÞ ≤ āy ≤ 1 and 1=ð4πÞ ≤ āλ ≤ 1; and the dark gray
region occupies the rest of the plot. The figures correspond to the following choices of inclusion of different loop-order terms in the beta
functions: (1, 1) (upper left); (1, 2) (upper right); (2, 1) (lower left); and (2, 2) (lower right). The red flows in (2, 1) and (2, 2) originate
along the eigendirections of the fixed points.
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scalar-fermion theories depending on two couplings, a
Yukawa coupling y and a quartic scalar self-coupling λ.
We have addressed a fundamental question pertaining to the
RG flows in these theories, namely the question of the range
of values of y and λ for which these flows can be determined
reliably using the beta functions βy and βλ calculated up to
various respective loop orders. To investigate this, we have
focusedon twomodels andhave calculated these flowsusing
the n-loop beta function βy;nl and the k-loop beta function
βλ;kl with ðn; kÞ ¼ ð1; 1Þ, (1, 2), (2, 1), (2, 2). We have
presented our results in a set of convenient variables, ay and
aλ for amodel with a global SUð2Þ ⊗ Uð1Þ symmetry group
and āy and āλ in the limit (4.4) of a model with a SUðNÞ ⊗
SUðNfÞ ⊗ Uð1Þ global symmetry group. As discussed in
detail in the text, although fixed points away from y ¼ λ ¼ 0
can occur in the RG flows, we find that their existence and
positions are dependent uponwhich orders ðn; kÞ of the loop
expansion we use for the beta functions and hence are not
robust predictions. In the regime of weak couplings where

the perturbative calculations are most reliable, we find that
the theories have no nontrivial fixed points, and the flow is
toward a free theory in the infrared. Our results provide a
quantitative answer to this question. In futurework, it would
be worthwhile to extend the perturbative calculations of the
beta functions to higher loop orders, to include gauge
couplings, and to investigate connections between semi-
perturbative properties at moderately strong coupling and
nonperturbative phenomena in the scalar and fermion sectors
of the models.
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FIG. 7 (color online). The renormalization-group flows for r ¼ 1.1 with 0 ≤ āy ≤ 1.5 and 0 ≤ āλ ≤ 1.5. The white square region is
where 0 ≤ āy ≤ 1=ð4πÞ and 0 ≤ āλ ≤ 1=ð4πÞ; the light gray region is were 1=ð4πÞ ≤ āy ≤ 0.75 and 1=ð4πÞ ≤ āλ ≤ 0.75; and the dark
gray occupies the rest of the plot. The figures correspond to the following choices of inclusion of different loop-order terms in the beta
functions: (1, 1) (upper left); (1, 2) (upper right); (2, 1) (lower left); and (2, 2) (lower right). The red flows in (2, 1) and (2, 2) originate
along the eigendirections of the fixed points.
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