PHYSICAL REVIEW D 89, 105006 (2014)
Casimir densities from coexisting vacua
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The Wightman function, the vacuum expectation values (VEVs) of the field squared, and the energy-
momentum tensor are investigated for a massive scalar field with general curvature coupling in a
spherically symmetric static background geometry described by two distinct metric tensors inside and
outside a spherical boundary. The exterior and interior geometries can correspond to different vacuum
states of the same theory. In the region outside the sphere, the contributions in the VEVs, induced by the
interior geometry, are explicitly separated. For the special case of the Minkowskian exterior geometry, the
asymptotics of the VEVs near the boundary and at large distances are discussed in detail. In particular, it
has been shown that the divergences on the boundary are weaker than in the problem of a spherical
boundary in Minkowski spacetime with Dirichlet or Neumann boundary conditions. As an application of
general results, de Sitter (dS) and anti—de Sitter (AdS) spaces are considered as examples of the interior
geometry. For AdS interiors there are no bound states. In the case of dS geometry and for nonminimally
coupled fields, bound states appear for a radius of the separating boundary sufficiently close to the dS
horizon. Starting from a critical value of the radius, the Minkowskian vacuum in the exterior region
becomes unstable. For small values of the AdS curvature radius, to the leading order, the VEVs in the
exterior region coincide with those for a spherical boundary in Minkowski spacetime with a Dirichlet
boundary condition. The exceptions are the cases of minimal and conformal couplings: for a minimal
coupling, the VEVs are reduced to the case with a Neumann boundary condition, whereas for a conformally

coupled field there is no reduction to Dirichlet or Neumann results.
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I. INTRODUCTION

In many physical problems, the model is formulated in
backgrounds having boundaries on which the dynamical
variables obey prescribed boundary conditions. The boun-
daries can have different physical origins, like interfaces
between two media with different electromagnetic proper-
ties in condensed matter physics, horizons in gravitational
physics, domain walls of various physical natures in the
theory of phase transitions and critical phenomena, and
branes in string theory and in higher-dimensional cosmol-
ogies. In quantum field theory, the imposition of boundary
conditions on a field operator gives rise to modifications of
the spectrum for the vacuum fluctuations of a quantum field
and, as a result, to the change of physical characteristics of
the vacuum state, such as the energy density and vacuum
stresses. As a consequence of this, vacuum forces arise,
acting on constraining boundaries. This is the familiar
Casimir effect, first predicted for the electromagnetic field
by Casimir in 1948 [1]. This effect can have important
implications on all scales, from subnuclear to cosmological,
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and it has been investigated for various types of bulk and
boundary geometries (for reviews see [2]-[6]). The features
of the Casimir forces depend on the nature of a quantum
field, on the type of the spacetime manifold, on the
geometry of boundaries, and on the specific boundary
conditions imposed on the field. The explicit dependence
can be found for highly symmetric geometries only.

In consideration of the Casimir effect, usually, the boun-
daries separate the regions with different electromagnetic
properties (for example, media with different dielectric
permittivities). Another type of effect related to the
Casimir physics arises in a class of models with boundaries
separating the spatial regions with different gravitational
backgrounds. It can be referred to as gravitationally induced
Casimir effect. The different gravitational backgrounds on
both sides of the separating boundary can correspond to
different vacuum states of the same theory. For example, one
can consider a bubble of a false vacuum embedded in a true
vacuum or vice versa. Simple examples of vacuum bubbles
are de Sitter (dS) and anti—de Sitter (AdS) spacetimes
embedded in the Minkowski spacetime. In these examples,
a physical boundary separates two regions with different
values of the cosmological constant. It serves as a thin-wall
approximation of a domain wall interpolating between two
coexisting vacua (for a discussion, see [7]).
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In a configuration with coexisting gravitational back-
grounds, the geometry of one region affects the properties
of the quantum vacuum in the other region. Previously, we
have considered several examples of this type of vacuum
polarization. In [8], the Casimir densities are investigated
for a scalar field in the geometry of a cosmic string for a
core with finite support. In the corresponding model, the
cylindrical boundary separates two different background
geometries: the spacetime outside the boundary is
described by the idealized cosmic string geometry with a
planar angle deficit and for the interior geometry a general
cylindrically symmetric static model is employed. Two
specific models of the core have been considered: the
“ballpoint pen” model [9,10], with a constant curvature
interior metric, and the “flower pot” model [11] with an
interior Minkowskian spacetime. Similar problems for the
exterior geometry of a global monopole are discussed in
[12] and [13] for scalar and fermionic fields, respectively.
In the corresponding models the boundary separating
different spatial geometries is a sphere. The model with
a sphere as a boundary and with an exterior dS metric,
described in planar inflationary coordinates, has been
considered in [14]. The vacuum expectation values
(VEVs) of the field squared and the energy-momentum
tensor induced by a Z,-symmetric brane with finite thick-
ness located on the AdS background are evaluated in
[15,16] for a massive scalar field. The general case of a
static plane symmetric interior structure for the brane is
considered, and the exterior AdS geometry is described in
Poincaré coordinates. In the corresponding problem the
separating boundaries are plane symmetric.

In the present paper, we consider the vacuum densities
for a massive scalar field with a general curvature coupling
parameter in a spherically symmetric static geometry
described by two distinct metric tensors inside and outside
a spherical boundary. In addition, the presence of a surface
energy-momentum tensor located on the separating boun-
dary is assumed. Among the most important characteristics
of the quantum vacuum are the expectation values of the
field squared and the energy-momentum tensor. Although
the corresponding operators are local, due to the global
nature of the vacuum state, they carry important informa-
tion about the global properties of the bulk. Moreover, in
addition to describing the physical structure of the quantum
field at a given point, the VEV of the energy-momentum
tensor acts as a source of gravity in the quasiclassical
Einstein equations. Consequently, it plays a crucial role in
modeling a self-consistent dynamic of the background
spacetime. For the evaluation of the VEVs, we first
construct the positive frequency Wightman function by
the direct summation over a complete set of scalar modes.
This function also determines the excitation probability of a
Unruh-DeWitt detector (see, for instance, [17]). The
quantum effects induced by distinct geometries in the
exterior and interior regions should be taken into account,
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in particular, in discussions of the dynamics of vacuum
bubbles during the phase transitions in the early Universe.

The organization of the paper is as follows. In the next
section we describe the background spacetime under
consideration and the matching conditions on a spherical
boundary separating the interior and exterior geometries. A
complete set of normalized mode functions for a scalar field
with a general curvature coupling parameter is constructed
in Sec. III. By using the mode functions, in Sec. IV we
evaluate the positive frequency Wightman function for the
general case of static spherically symmetric interior
and exterior geometries. This function is presented in the
form where the contribution induced by the interior
geometry is explicitly separated. A special case of the
exterior Minkowskian background is considered in Sec. V.
Explicit expressions for the VEVs of the field squared and
of the energy-momentum tensor are provided and their
behavior in asymptotic regions of the parameters is inves-
tigated. As an application of general results, in Sec. VI, two
special cases of the interior geometry are discussed
corresponding to maximally symmetric spaces with pos-
itive and negative cosmological constants (dS and AdS
spaces). Section VII summarizes the main results of the
paper. In Appendix A, the coefficient in the asymptotic
expansion of the logarithmic derivative of the hypergeo-
metric function is determined, which is used for the
evaluation of the leading terms in the asymptotic expan-
sions of the VEVs near the boundary for the cases of the
interior dS and AdS spaces.

II. BACKGROUND GEOMETRY

Consider a (D + 1)-dimensional spherically symmetric
static spacetime described by two distinct metric tensors
inside and outside of a spherical boundary of the coordinate
radius r = a. In the interior region, r < a, the spacetime
geometry is regular with the line element

ds? = ) dp? — 2N dr? — 2% dQ2 (2.1)
where dQ3,_, is the line element on a (D — 1)-dimensional
sphere with a unit radius. The corresponding hyperspher-
ical angular coordinates will be denoted by
(8,¢) = (6y,...,0,,¢), where n=D -2, 0<6, <,
k=1,...,n, and 0 <¢ <2z The value of the radial
coordinate r corresponding to the center of the configura-
tion will be denoted by r.. Of course, we could rescale the
radial coordinate in order to have r = 0 for the center, but
for the further discussion it is convenient to keep r,. general.
Introducing a new coordinate,

F=e"il), (2.2)
with the center at 7 = 0, the angular components of the
metric tensor coincide with the corresponding components
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in the Minkowski spacetime described in the standard
hyperspherical coordinates.

In the exterior region, r > a, the geometry has a similar
structure with different radial functions:

ds2 = 2 Ndf? — 20 dr? — 2(dQ2 . (2.3)

The metric tensor is continuous at the separating boundary
r=a:
Wi(a) =W, (a) (2.4)
Although the scheme described below can be generalized
for metric tensors with horizons, for the sake of simplicity
we will assume that if the line elements (2.1) and (2.3) have
horizons at ry; and rye, respectively, then ry, < a < ry;.
This means that the combined geometry contains no
horizons.

The Ricci tensors for the interior and exterior geometries
are diagonal with the mixed components (no summation
over [ =2,3,...,D):

0 _
Rijo=

1
Rin=
Réj)l = —e 2 (W] + W} + Wi, = Wi+ nw'?) + ne=",

(2.5)

—e 2! + Ut — w4+ (n 4 1)ujw/],
—e 2! + ut — w4+ (n 4 1) (W] +w?Z —win))],

J7J

where j = i and j = e for the interior and exterior regions,
respectively, and the prime means the derivative with
respect to the radial coordinate r (we adopt the convention
of Ref. [17] for the curvature tensor). For the corresponding
Ricci scalars, we get the expression

R = —2e72; [u’~’ + u’-2 — v +n(n+ 1)w}2/2
+(n 4+ )W) + Wi+ whu, = win')]

j J
+n(n+1)e™". (2.6)
The energy-momentum tensors generating the line ele-
ments (2.1) and (2.3) are found from the corresponding
Einstein equations.

In general, we assume the presence of an infinitely
thin spherical shell at r = a, having a surface energy-
momentum tensor r¥ with nonzero components 7§ and
73 =--- =17B.Letn’, n;n’ = —1, be the normal to the shell
that points into the bulk on both sides. For the interior
(j =1i) and exterior (j = e) regions, one has ngj) =
5(0te’i") with 5; =1 and §,) = —1. We denote by
h(jix the induced metric on the shell, A = g(jt

' )ni), and K )i =

ture. In the geometry under con51derat10n for the nonzero
components of the latter, we obtain

h< i h Vlnr is the extrinsic curva-
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K?j)o = _5(1') u}(r)e_”j(r)’
Kl = =88 wi(rne ), r=a-5;0, 27

with [ =2,3,...,D
From the Israel matching conditions on the sphere r = a,
one has

> (K = K(jyhi) = 872Gy (2.8)
Jj=i.e
where G is the gravitational constant and K ;) = K éj)i is the

trace of the extrinsic curvature tensor. From these con-
ditions, by taking into account (2.7), we find (with no
summation over i = 2,3, ..., D)

(. D=2
Z@j)u}(a—%)()):g”(;eu)<’ D-1" )

j=i.e

8zG .,
> _dywila=8;)0) = et

Jj=i.e

(2.9)

where f’(a 4+ 0) is understood as the limit lim,_, ,.qf" (7).
Note that from (2.9) the relation

> 6 luj(a=6;0)+

j=i.e

(D=1)W)(a—5(;)0)] = e

D-1
(2.10)

is obtained for the trace v =1+ >_?, 7! of the surface
energy-momentum tensor. For given interior and exterior
geometries, the relations (2.9) determine the surface
energy-momentum tensor needed for the matching of these
geometries.

III. MODE FUNCTIONS FOR A SCALAR FIELD

A. Modes of continuous spectrum

Having described the background geometry, now we
turn to the field content. We will consider a scalar field ¢(x)
with the curvature coupling parameter & on the background
described by (2.1) and (2.3). The corresponding field
equation reads

(V, V¥ +m? +ER)p =0, (3.1)
where V, is the covariant derivative operator. The
most important special cases of the curvature coupling
parameter ¢ =0 and £ = & = (D — 1)/(4D) correspond
to minimally and to conformally coupled fields,
respectively.

In addition to the field equation in the regions r < a and
r > a, the matching conditions for the field should be
specified at » = a. The field is continuous on the separating
surface: ¢|,_,_o = @|,_440- In order to find the matching
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condition for the radial derivative of the field, we note that
the discontinuity of the functions «/(r) and w/(r) at r = a
leads to the delta function term

207200 " 5 [u (a—5(;)0) + (D= 1)W(a—5;)0)|8(r —a)

j=ie

(3.2)

in the Ricci scalar and, hence, in the field equation (3.1), if
we require its validity everywhere in the space. The
expression (3.2) is given in terms of the trace of the surface
energy-momentum tensor by using the formula (2.10). As a
result of the presence of the delta function term in the field
equation, the radial derivative of the field has a disconti-
nuity at » = a. The jump condition is obtained by integrat-
ing the field equation through the point r = a. This gives

162GéE

D1 (3.3)

e’ Wrg|,_,.

(ar(ﬂ)r:aJrO - (arga)r:a—o =

For a minimally coupled field, the radial derivative is
continuous.

In what follows, we are interested in the VEVs of the
field squared and of the energy-momentum tensor induced
in the region r > a by the geometry in r < a. In the model
under consideration all the information about the properties
of the vacuum is encoded in two-point functions. As such,
we will use the positive frequency Wightman function
defined as the VEV W(x,x") = (0|p(x)¢p(x")|0), where |0)
stands for the vacuum state. In addition to describing the
local properties of the vacuum, this function also deter-
mines the response of the Unruh-DeWitt type particle
detectors [17]. For the evaluation of the Wightman func-
tion, we will use the direct summation over a complete
set of positive- and negative-energy mode functions
{pa(x), @5 (x')}, obeying the field equation (3.1) and the
matching conditions described above. Here, the set of
quantum numbers a specifies the solutions. Expanding
the field operator over the complete set {¢,(x), ¢}(x')} and
using the standard commutation relations for the annihila-
tion and creation operators, the following mode-sum
formula is readily obtained:

W x') = pu(x)ps(x), (3.4)

where we assume summation over discrete quantum
numbers and integration over continuous ones.

In the problem under consideration, the mode functions
can be presented in the factorized form

Pa(x) = f1(r)Y (my; 9, p)e™"",

where [ =0,1,2,..., Y(my;8,¢) is the hyperspherical
harmonic of the degree [ [18], my=(mg=1,m,,...,m,),
with m, m,, ..., m, being integers such that

(3.5)
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0<m,_1 <m,_,<---<m <,

—m,_ <m, <my_y. (36)
Presenting the radial function as
Fun(r), r<a,
filr) = { (3.7)
Fen(r) r>a,

the equations for the exterior and interior functions are
obtained from (3.1):

Flu(r) + [ = v + (D = Dwilf((r)
I(1+n)

eij

,[@?
+ 32bj [ﬁ — m2 - fR(j) - :|f(j)l(r) = O, (38)
where the Ricci scalar is given by the expression (2.6).
From the matching conditions on the separating boundary,
given above, for the radial functions in the interior and
exterior regions, we find f(,),(a +0) = f(;;(a — 0) and

162G¢ | (@)
pr— e e
D—-1

flepla+0)=fi(a=0) ofen(a). (3.9)

Note that, introducing a new radial coordinate, Eq. (3.8)
can be written in the Schrodinger-like form

K9 y) + [0 = Ui()]lggu(y) =0, (3.10)
where
g (y) = P2 f 5, (r), yZ/dre”f‘”f, (3.11)
and for the potential function we have
Ugn(y) = e {mz + &Ry + l(le;;jn)]
+? (wg’ +¥w}2). (3.12)

In what follows we assume that the interior geometry is
regular. In terms of the radial coordinate (2.2), from the
regularity of the Ricci scalar (2.6) at the center, 7 = 0, it
follows that

wi(7), vi(F)~7, F-0. (3.13)
Let f E;))I(r, 1), with 1> = @*> —m?, be the solution of
Eq. (3.8) in the interior region that is regular at the origin.
It can be taken as a real function. In addition, by taking into
account that A enters in the equation in the form A2, without

loss of generality we can assume that fgg))l(r, —A) =

const - fg))l(r, A). From the regularity of the geometry at
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the center and from (3.8), it follows that near the center the
interior regular solution behaves as f 8;1(1”, 1) ~ 7.

Now the radial parts of the mode functions are
presented as

A(i)fg;))l(r’ ), for r < a
fi(r) = 0 @ .
A (o (rA) + Aepf(r.4), forr>a
(3.14)

where fgl(r,/l) and fg;l(r,ﬂ) are the two linearly
independent solutions of the radial equation in the
exterior region [Eq. (3.8) with j = e]. We assume that

the functions fg))l(r, A), j=1,2, are taken to be real.

The coefficients in (3.14) are determined by the con-
tinuity condition for the radial functions and by the jump
condition (3.9) for their radial derivatives. From these
conditions, we get

(3.15)

with the notations

(i2) (1)
ng) = Wl(lzga’/l) - 16”G€ei'«(“)rf(iz11gl,/1) fg;z(“’l),
W, " (a b-1 W, " (a)
il (1)
W — wi'(a.2) 162GE W(a),f(i)z(“”l)fglgl(a 2
12 _ 12 e ’
W' (@) D-1 Wi (a)
(3.16)
In (3.16) we have defined the functions
Wi (r2) = WS (2. £ (r )} = 1.2
l r, f(i)l r’ ’f(e)l r’ ) J )
12 1 2
Wi (r) = W{f,(r.2), £, (r. )}, (3.17)
where

W{f(r),g(r)} =f(r)gd(r) = f(r)g(r) is the
Wronskian. The Wronskian ng(r) can be found from
Eq. (3.8) with j = e:

WD () = Comtelr)rn=D=1w.(), (3.18)

where the constant C is determined by the choice of the
functions fél;l(r, A) and fg;l(r,ﬂ). Here, we will assume
that the exterior metric is asymptotically flat at large
distances from the boundary, r — co. With this
assumption, we can see that for large r the solution
for the exterior equation is given by r~"Z, (Ar), where
Z,,(4r) is a cylinder function of the order

v =1+n)2. (3.19)
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If we take the functions fggl(r, A) and fg;l(r, 1) such

that f(1),(r.2) 720, (3r), £, (r.0) Y, (1),
for r — oo, with J,(x) and Y,(x) being the Bessel and
the Neumann functions, then for the constant in (3.18)
we find C = 2/z. In what follows we will assume this
choice of the normalization for the exterior mode
functions. In this way, as a complete set of quantum
numbers specifying the mode functions, we can take the
set a = (4,my). Here, we assume that A is real. In
addition, bound states can be present with a purely
imaginary A. These states are discussed below.

The remaining coefficient A(;) is determined by the
normalization condition for the mode functions given by

[ XG9035, x) = 86 = 1. (320)

The integral over r < a is finite and the divergence for
A = A’ comes from the upper limit of the integration over r.
As a consequence of this, we can replace the functions

fgl(r, ) and f%l(r, ®) by their asymptotics for r — oo.

In this way, for the normalization coefficient one finds

(12 (2)2y-1
w
A% :/1( L W) (3.21)

) 2N(mp)w

with ng,z) given by (3.16). Hence, for the radial mode
functions, we get

f(;> (r,4), forr<a
filr2) = Ay "W . (322
fley(r,4), forr>a
where the notation
Fonr.2) =WV (r.2) = w2 (r.2)., (3.23)

is introduced.
An equivalent form of the exterior mode functions is
given by

fi(r,2) = Aygi(r.A), r>a, (3.24)
with the notation
e 1 -(1 2
ai(r.2) = T (@ D f ) (r. ) = T (a. )12 (. 2),
(3.25)
and with the normalization coefficient
2(1)2 7(2)2 -1
A2 :ﬂ[f(eﬂ (a,/l) +f(e)1 (‘1’/1)] (3.26)
(e) 2N(my)w ’
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Here, and in what follows, for a given function F(r, 1), we
use the notation

fin(@d) 162G
_ E1)< ) 16z 15 F(r,2), (3.27)
f(i)l(a’ A) -
where f (a,/l) =0 fE;)>l(r A)|,—4—0- Note that one has
the relat1on
(1)
f(l)z(a A)
Ay = A (3.28)
(e) (i) 12
W' (a)

for the coefficients in the exterior and interior regions.

B. Bound states

In the previous subsection we have considered the modes
with a real A. In addition to them, the modes with an
imaginary A1 can be present that correspond to possible
bound states. For these states, the exterior radial mode
functions in the region r — co behave as r=/2K, (nr),
where 7 = |A| and K, (x) is the Macdonald function. In
order to have a stable vacuum state we will assume that
n < m. For the radial functions corresponding to the bound
states, one has

forr<a

[ A ).
sz(r,ﬂ)—{A fEel)a)(”/])’ for r > a

where f Bb)l(r n) ~ r"2K, (nr) for r — co. The continu-
ity of the mode functions at r = a leads to the relation

, (3.29)

1 2
A f iy (@-n) = A f oy (@.m). (3.30)
From the jump condition for the radial derivative, we see
that the allowed values of 7 for bound states are solutions of

the equation

7 (am) =0, (3.31)
where for a function F(r,n) we define
Fram)  16xGe
F(rin) = 0,F (rn) = |~ ——+ = ez | F(r.p).
f(,'b)l(a’n) -
(3.32)

The possible solutions of Eq. (3.31) will be denoted by
n=mn,s=12...

The remaining coefficient in the mode functions (3.29) is
determined from the normalization condition for the bound
states
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- ® —Uptv —w, £(2)2
A<62b):2wN(mk) {L dretetvet(D=1) efEeZ)l(r,r])

fﬁ)f)z(av’?) @ (D1, £(1)2
+W[ dre—titvit(D l)w,f(ib)l(r,,,) ,
(3.33)

with 7 =1#,. In order to evaluate the integrals in this
formula, we note that for a solution f;),;(r) to the radial
equation (3.8) the following formula can be proved:

/dl‘e_”ijvf'jL(D_l)wjf(j)wl(r)f(j)wll(r)

elti—vj+(D=1)w;

=55 Gat(r) = F o1 (1)f{jm, (P

W] — o
(3.34)

In particular, in the limit @; - w, from here one can
obtain

/ dre_u‘/+yj+(D_l>ij<2j>a,[ (I")

euj—v,-+(D—l)wj

=5 L u(Nuf Gu(r)

- f(j)ml(r)awf/(j)wl(r>]'

Applying to the integrals in Eq. (3.33) the formula (3.35)

with @ = \/m? — 5? and using the continuity of the radial
eigenfunctions at » = a, for the normalization coefficient
one finds

(3.35)

2= N(my)e"

a)-v(a —1w(a) £(2 (2
A2 (@=rla)+(P=0w@) 20 (2.7, f'2) (a.1).

(3.36)

The coefficient A;) is found from (3.30).
An equivalent expression for the normalization coeffi-
cient is obtained by using the Wronskian relation

Fioptam iy (@n) = £, (@n)f e (a.n)

= e~ te(@)tve(a)=(D=1)w.(a) (3.37)

for two linearly independent solutions of the radial equation
l(r, n) is
(r.n) ~ r‘”/zlpl(r]r) for

r — oo, with 7,(x) being the modified Bessel function.
From (3.37) we get

in the exterior region. Here, the function f&)

normalized by the relation f&),

2 (1 1 ~
fgega)l(a’ n)fggg,)z(a’ n) — fE )) (a, W)fg )

— e te(@)Fve(a)=(D-N)w,(a)

bl (a, n)
(3.38)
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By taking into account that for the bound states one has
Eq. (3.31), this gives

~u,(a)+v,(a)=(D-1)w,(a)

2) ¢

72 fan) =< -
fgez,)l(a’ ’7s)

Hence, the normalization constant for the exterior modes is
written in the form

(1)
nf opi(@sn
)“”’f) , (3.39)

N(my)wd

2
Coyla.n)

with 7 = ;.

IV. WIGHTMAN FUNCTION

Having a complete set of modes, we can proceed to the
evaluation of the Wightman function by using the mode
sum formula (3.4). First, we consider the case with no
bound states. Substituting the functions (3.5) in (3.4), the
summation over m;, is done by using the addition formula
for the hyperspherical harmonics [18]:

(””k"9 ¢) A 20+n
D Ny Y ) =%

"/2 cos

4.1)

my

where 6 is the angle between the directions determined
by the angles (8,¢) and (&,¢'). In 4.1), Sp=
27P/2/T(D/2) is the surface area of the unit sphere in
D-dimensional space and C7(x) is the Gegenbauer poly-
nomial of degree / and order p. With the modes (3.24) and
the normalization coefficient (3.26), the expression for the
Wightman function in the exterior region reads

gi(r, 2)gi(r', 2) et
0 wf§2<aa>+fi< 2)

., 4.2)

where Ar=1t—1¢ and the function g;(r,1) is defined
by (3.25).

In order to separate from the Wightman function the
contribution induced by the interior geometry, first we
introduce the functions

FEra =D 2if ). @3

Note that, as the functions f El; I

one has f E;))l(r, A)

2)
(r.4) and £,

=f E:))l* (r,A). For these new functions, at

(r, ) are real,

large distances, r > a, one has the asymptotics
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D2y m P ), f () & P (),
4.4)

with Hi}'z) (x) being the Hankel functions. Now it can be
seen that the following identity takes place:

SO nr (). @s)

By using the relation (4.5), the Wightman function from
(4.2) can be written in the decomposed form:

W(x,x") = Wo(x,x) + W.(x,x'), (4.6)

with the functions

f(l) (I" /l)f(l) (I’ ﬂ) —uuAt, (47)

=0 2nSD
)
® ng 1(a1/1) i
x Z/ da =S (r (7 2)
j=+-70 f(e)l(a,ﬂ)
X eTIoAL 4.8)

The function Wy (x, x') is the Wightman function in the case
of the background when the geometry is described by the
line element (2.3) for all values of the radial coordinate r.
As a radial function in the corresponding modes, the
function f 8 ,(r,4) is taken.
f Ei;l(r A) ~ r~2], (Ar) for r - oo and, hence, for these
modes the vacuum state at asymptotic infinity coincides
with the Minkowskian vacuum. Thus, the function
W,(x,x") can be interpreted as the contribution to the
Wightman function induced by the geometry in the region
r < a with the line element (2.1).

If bound states are present, the contribution of the
corresponding modes to the Wightman function should
be added to (4.6). For this contribution, by using the mode
functions (3.29) with the normalization coefficient (3.39),
in the exterior region we get

Recall that we have
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.21
e LI

Wbs(x9x/)
=0 WD

nfih) (a.n)
9)2 (eb)l

~(2
=15 w@nfge;])l(a, 1)
X< f o (rmf oy (e, (4.9)

where w=+/m?—n* and 5 =, are solutions of Eq. (3.31).

The part W (x, x’) of the Wightman function, induced by
the interior geometry, can be further transformed by taking
into account that, for large values of 4, for the functions
fEQ)l(r, 1) in (4.8), one has ije))l(r, 1) ~ e/ By using this
property and under the condition |Af| < (r+ 1 —2a),
assuming that the function fgj))l(r, A) (fE;))l(r, A)) has no
zeros for 0 < argd < 7/2 (—n/2 < argA < 0), in (4.8) we
can rotate the integration contour in the complex plane 4 by
the angle 7/2 (—x/2) for the term with j = + (j = —). In
the presence of bound states, the integrands have simple
poles at A = 5,e/™/2, corresponding to the zeros of the

function ]_‘EQ )) ,(a, 2) on the imaginary axis. These poles have
to be circled on the right along contours with small radii. In
the integrals over the imaginary axis (A = ne*™/?), the
integrands are expressed in terms of the functions

1 i j
Flep (@ ne ) and f{1)

ing the asymptotics of the functions for » — oo, we can see
that the functions f Eje 3 .

,(r.nel™/?), j = 4+, —. By compar-

(r,ne/™/?) are reduced to the

function f gl)j) l(r, 1), up to a coefficient, and the function

fEi;l(a,ne”i/z) is reduced to the function fgi)b)l(a,n). By
taking into account the normalization of the functions for
large r and the relations between the Bessel functions and
modified Bessel functions, we conclude that

2% o
e jwm/ZfEei)l(r’ I’[),

() ji _ .
f( )1(rv’7€j /2) =-J p

1 Tl — ju i
Flapaneiml?) = emil2fl) (a,n).

(4.10)
By using these relations, one can see that the integrals over
the regions (0, im) and (0, —im) cancel out, whereas the
integrals over small semicircles around the poles 7,e/%/?
combine in the residue at the point 7,e™/2. An interesting
fact is that the contribution of this residue to the part of the
Wightman function (4.8) exactly cancels the corresponding
contribution coming from the bound state [see (4.9)].
Finally, we get the following representation:

~>

2l +n
ﬂ'l’lSD

eb)l (a,ﬂ)

(
Wc(x7x/) = ]’}EZ
(

C';/z(cose)/ dmn
=0 m

o cosh(At+/n? — m?
\/ 1’] — m

[(a ’7)

( )( ’7>f( 3,)1<”/777)-

@.11)
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Recall that, in deriving this formula we have assumed that
|At| < (r + ' = 2a). In particular, this condition is obeyed
in the coincidence limit. An important advantage of the
representation (4.11), compared with (4.8), is that in the
upper limit of the integration the integrand decays expo-
nentially instead of the strongly oscillatory behavior
in (4.8).

With the known Wightman function, we can evaluate the
VEVs of the field squared and the energy-momentum
tensor by using the formulas below:

(0l?10) = lim W(x. ).
(OI7410) = im0, W (x. )

+ (= 1/4)guV\V! = EV,V — ER](0[¢?(0),

(4.12)

where R;; is the Ricci tensor for the background spacetime.
The expression for the energy-momentum tensor in (4.12)
differs from the standard one, given, for example, in [17],
by the term that vanishes on the mass shell (see [19]).
Similarly to the Wightman function, the VEVs are decom-
posed into two parts:

>0 + <(p2>c’
(Tie)o + (Tik)es

(0p*|0) = (¢*

(0]T|0) = (4.13)

where the parts (¢?), and (T;), are obtained from the
Wightman function W (x, x’). The contributions (¢?). and
(Ti). are induced by the geometry in the region r < a and
are given by formulas similar to (4.12) with W(x,x')
replaced by W (x, x').

Of course, the coincidence limits in (4.12) are divergent
and a renormalization procedure is necessary. An important
point to be mentioned here is that, for points r > a the local
geometry is not changed by the interior region and, as a
consequence, the divergences are contained in the parts
(¢*)o and (T;), and the parts (¢?). and (T;),. are finite.
Hence, providing an explicit decomposition of the
Wightman function in the form (4.11), we have reduced
the renormalization procedure for the VEVs to the one in
the case of the background where the geometry is described
by the line element (2.3) for all values of the radial
coordinate r.

In particular, by taking into account that

I'(l+n)

Ci (1) = r(mr(i+1)

(4.14)

for the contribution in the VEV of the field squared induced
by the interior geometry we get the expression

105006-8



CASIMIR DENSITIES FROM COEXISTING VACUA

(1 2)2

) r'(D/2) iD/ p Fonilamynf g (r.n)
@ = 1 n— )

2ﬂ.D/2+1 £ - f@ ( ) ]72 —m2
4.15)

where
(21 + n)T(1 + n)

D, = 4.16

Trp-nr{i+1 (4.16)

is the degeneracy of the angular mode with a given /. The
corresponding VEV of the energy-momentum tensor is
obtained from (4.12). The VEV (4.15), in general, diverges
on the boundary r = a. The leading term of the corre-
sponding asymptotic expansion over the distance from the
boundary depends on the specific interior and exterior
geometries and examples will be done below.

We have considered the Wightman function in the
exterior region. The mode sum for the corresponding
function in the interior region is obtained by using the
interior modes from (3.14) with the normalization coeffi-
cient (3.21). Subtracting from the mode sum the Wightman
function for the geometry described by the line element (2.1)
for all values of the radial coordinate, we can separate the
part induced by the exterior geometry. In what follows we
will be concerned with the VEVs in the exterior region.

V. MINKOWSKI SPACETIME AS AN
EXTERIOR GEOMETRY

A. Wightman function

As an application of general results given in previous
sections, here we assume that the exterior geometry is
described by the Minkowski spacetime. The corresponding
line element has the form

ds? = dr* —dr* — r*dQ;,_,, (5.1
with the functions appearing in (2.3):
u,(r)=wv,(r) =0, e"elr) = r, (5.2)

In this case, in the exterior region we have the radial
functions

F(r.2) =2, <zr>, Fon(r.2) =2y, r),
Fipr2) = 2 H )
(5.3)

For the corresponding functions on the imaginary axis,
we get

(5.4)

PHYSICAL REVIEW D 89, 105006 (2014)

In the special case under consideration, Wy(x, x") is the
Wightman function in the Minkowski spacetime. For
the contribution induced by the interior geometry, we have
the expression

i": (21 4 n)C}'*(cos 0)

n/2
‘— anSp(rr')

8 / ® dn ~y,(na)
m Ky,(ﬂ”)

K, (nr)K, (nr').  (5.5)

In this formula, for a given function F(z) we have defined

- 162G D
F(o) = 2P (2) - |awi(am) + 2% e+ 21| F(2),
D-1 2
(5.6)
with the notation
O,f 1) (r. in)
yilrn) = —gi——. (5.7)
f(,)l(r ”’l)
and with
871G
D”_lf:u;(a)+(D—1>[w;(a)—1/a}. (5.8)
Note that, for the exterior Minkowskian spacetime,

Eq. (3.31), defining the bound states, is written in the form

K, (na) =0, n<m. (5.9)
The existence of the solutions for this equation with # > m
leads to the instability of the exterior Minkowskian
vacuum. An example of this type will be discussed below
in Sec. VL.

The expression (5.5) differs from the corresponding
formula for the Wightman function outside a spherical
boundary in Minkowski spacetime with the Robin
boundary condition (fgr + 0,)¢ =0 at r = a (see [20])
by the replacement of the Robin coefficient:

162GéE
T.
D-1

Pr = —vi(a.n) - (5.10)
In the problem under consideration, the effective Robin
coefficient depends on both # and /. As it will be shown
below, this leads to the weakening of divergences in the
local VEVs on the boundary.

B. VEV of the field squared

The renormalization of the VEVs in the exterior region is
reduced to the subtraction of the corresponding VEVs in
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Minkowski spacetime. In this case the renormalized VEVs
of the field squared and the energy-momentum tensor
coincide with the parts (?). and (7). induced by the
interior geometry. For the renormalized VEV of the field
squared, we get

r(D/2) & 1,(an) K2 (rn)
<(/)2>c: 2 P/2+1 D~ QZDZ/ di/]"li{ (Cll’]) }’]2—m2‘
(5.11)

Let us discuss the behavior of this VEV in the asymptotic
regions of the parameters.

At large distances from the boundary and for a massive
field, assuming that mr > 1 for a fixed ma, the dominant
contribution to the integral in (5.11) comes from the region
near the lower limit of the integration. By using the
asymptotic formula for the Macdonald function for large
values of the argument, to the leading order we get
L(D/2)e™ & 1, (am)

8\ PHV/2\ fmrrP1 li(,,[(am)'

(9*)c~— (5.12)

Hence, at distances from the boundary larger than the
Compton wavelength, the VEV is exponentially sup-
pressed. For a massless field and for r > a, we introduce
in (5.11) a new integration variable y = rn and expand the
functions 1, (ya/r) and K, (ya/r). The contribution of
the leading term for a given I behaves as (a/r)**2P=3 and
the integral is evaluated by using the formula

Z(y)E/‘”dyyzsz(y):ﬂF(Zu—F1/2)F(1/—|—1/2). 5.13)

0 Ar'(v+1)

The dominant contribution comes from the term with the
lowest orbital momentum / = 0 with the leading term

<2>NLUZ—I—AWD—ZWQ)—W%F«D—lVﬂ
VDR T py 2(4n)PPTA(D/2)aP
x (a/r)*P=3, (5.14)
where
Po = ayo(a,0) + lgﬂ_Gfm +§— 1. (5.15)

If pop=D/2—1 or py=1—D/2, the next-to-leading
order terms should be kept in the expansions of the
functions 1, (ya/r) and K, (ya/r), respectively. Hence,
for a massless field the decay of the VEV at large distances
follows a power law.

The VEV of the field squared (5.11) diverges on the
boundary r = a. The surface divergences in the VEVs of
local physical observables are well known in the theory of
the Casimir effect and were investigated for various types
of boundary geometries. In the problem at hand, the
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appearance of divergences is related to the idealized model
of the zero thickness transition range between the interior
and exterior geometries. In order to find the leading term in
the asymptotic expansion over the distance from the
boundary, we note that for points near the boundary the
dominant contribution to the series in (5.11) comes from
large values of /. For these /, introducing a new integration
variable x = a#n/v;, we use the uniform asymptotic expan-
sions for the modified Bessel functions for large values of
the order (see, for instance, [21]). For the further evaluation
we also need the uniform asymptotic expansion of the
function y,(r, n). From Eq. (3.8) for the interior radial mode
function the following equation for the function (5.7) is
obtained:

yi(ron) +yi(ron) 4 [u; = v} + (D = Dwily,(r,n)
P2 —m

2 l(l+n)
—e? T 2+§R +

=0. (5.16)

From here it follows that for the leading term in the
asymptotic expansion of the function y,(r,v;x) for large
values of / one has

roux) & fuetin/ e it 4 =i,
Vi I !

For the function f;),(r, in) in (5.7), regular at the center, the
upper sign should be taken. By taking into account that
u;(a) = v;(a) = 0 and e*i(*) = 42, the asymptotic expan-
sion at r = a can be written as

v B(ax
ymmyﬂ)zgxhﬂﬁ+1[1+ g )+-~} (5.18)

l

(5.17)

where the function B(ax) depends on the interior
geometry.

By making use of the uniform asymptotic expansions
for the modified Bessel functions, with the combination
of (5.18), we can see that the leading order contribution
to the function I, (v;x) coming form the first term in
(5.18) is canceled by the leading term in the asymptotic
expansion of the function z/; (z) with z=ryx. As a
result, for the ratio appearing in (5.11), in the leading
order, we get

1
LACL _ngmn, (5.19)
K, ( x) 2=l
with the function
1672G¢ D 1 x%/2
=B —-1
C(x) (x)+<D_lra+2 )\/1—1——)(2+(1+x2)3/2’
(5.20)

and with the standard notation (see [21])
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=VIi+xX2+Inh—F—

5.21
1+V1+2 ( )

The function B(x) for special cases of the interior dS and
AdS spaces will be given below.

Substituting (5.19) and the uniform asymptotic expan-
sion for the function K2 (v;xr/a) into (5.11), with a new
integration variable x = an/v,, in the leading order we use
the relations D; ~2[°2/T(D — 1) and n(xr/a) —n(x)~
V1+x*(r/a—1). In the same order, by taking into
account that > % IP~le= ~T'(p)/a? for a — 0, for the
leading term in the asymptotic expansion of the VEV for
the field squared near the boundary one gets

PHYSICAL REVIEW D 89, 105006 (2014)

(or, in general, Robin) boundary conditions, the VEV of the
field squared diverges on the boundary as (r —a)'~? and
the divergence is stronger.

C. Vacuum energy-momentum tensor

The VEV of the energy-momentum tensor is evaluated
by using the formula (4.12). The renormalization in the
exterior region is reduced to the subtraction of the part
that corresponds to the Minkowski spacetime for all
0 < r < . The VEV of the energy-momentum tensor is
diagonal. For the renormalized components we get (with no
summation over i)

2 o LD/2)(r—a)>? /°° PR CIC)) (D)2) & i (an) G
- __Cw ,. /2) I, (an) YK, (m)]
(o) 2P(D - 2)zP*a ) x(l + x2)(P-D/2 (THe = 4”D/2+1rDZ / dmn i< P—m2
(5.22)
(5.23)
Note that for a spherical boundary in Minkowski spacetime
on which the field operator obeys Dirichlet or Neumann  where for a given function f(y) we define
|
1 +4&)y* =2 2
Gl 0)] = (e = 1) [32720) = myf ) + (2 = L2 gy
G0 = Y S20) + Erf O () = 07 + 22 + &n/2) ).
; (1 2
G110 = (4 = D2 70) = £ )/ 0) + | (4 = D2 4 ZEEE 2 sy
|
with j =2,...,D. In (5.24), the notation (T9), ~ (T2), ~ — 2"_11”1 (.
L =D-DA-1)+1 (5.25) C(D/2)m*(E = 1/4) & iyl
27Z(D 1)/2 D—-1 2mr;D i{ (5.28)

is introduced. In general, the vacuum stresses along the
radial and azimuthal directions are isotropic.

It can be checked that the VEV given by (5.23) obeys
the covariant conservation equation V,(T*). = 0, which,
for the geometry under consideration, is reduced to a single
equation:

rar<T%>c + (D - 1)(<T%>c - <T%>c) =0. (5.26)
We also have a trace relation:
(T))e = [D(& = &p)VIV! + m*)(¢?).. (5.27)

In particular, the vacuum energy-momentum tensor is
traceless for a conformally coupled massless scalar field.

Now let us investigate the behavior of the vacuum
energy-momentum tensor at large distances and near the
boundary. At large distances from the sphere and for a
massive field, similarly to (5.12), in the leading order
we get

Note that in this region [(T1).| < [(T{).|. For a massless
field, assuming that » > a, we introduce a new integration
variable, y = rn, in (5.23) and expand the integrand
over a/r. For a given [, the leading term behaves
like (a/r)?*2P=! and it contains the integrals
J& dyy* 2 F ) [K,,(y)]. These integrals are evaluated by
using the relations

A ® Ay K, ()KL() = —(v + 1/2)T(),

/ ® dy K2 = |2 1w+ 1/4) 22 1),

0 N v+1
(5.29)

with the function Z(v) defined by (5.13). These relations
are proved by making use of the well-known properties of
the Macdonald functions. The dominant contributions
come from the terms with / = 0 and, to the leading order,
for the energy density we find
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(E=¢p)(a/r)**"' D/2-1-p
2D=2;D/2,D1 D2 — 1 + B,
I(D - 1/2)T((D +1)/2)
I(D/2)[(D/2-1)

<T8>c R -

(5.30)

The asymptotics of the radial and azimuthal stresses are
given by the relations

D—-1
<T{>c R—— <T%>c ~ _<T8>C'

D (5.31)

As is seen, for a massless field, at large distances from the
boundary the radial pressure, —(T'1), is equal to the energy
density. For a conformally coupled field, the leading terms
vanish.

The asymptotic behavior of the VEV of the energy-
momentum tensor near the boundary r = a is investigated
in a way similar to what we used for the field squared. By
using (5.19) and the uniform asymptotic expansions for the
Macdonald function and its derivative, in the leading order
we obtain

_ o 2 _
(D 1)F(D/2)>D/O PRy lc(x),

(TO)e S DI
2D+27ZD/2+1LI( (x2 + 1)(D+1)/2

(D-Vr(D/2) [, Cl)
>D/o T

(T3)e ~ 5535 D7t
20224 q(r — a 1 4 x2)(P+D)/2

r—a

« | (e -1y + 1)+L], (532)

D-1
where the function C(x), defined by (5.20), depends on
the specific geometry in the region r < a. The leading
term in the asymptotic expansion of the radial stress is

most easily found by making use of the continuity
equation (5.26):

r—a

(Th)e w =——(T3).. (5.33)

For a spherical boundary in Minkowski spacetime with
Dirichlet or Neumann boundary conditions on the field
operator, the leading terms have the form (with no

summation over i)

2DT((D +1)/2)
(471’)(D+1>/2(r _ a)D-H

(The~ &

E-¢p). (534

for i =0,2,...,D, and for the radial stress one has

D-1
<Ti>cz_

(r/a—1)(T3).. (5.35)
In (5.34), the upper/lower sign corresponds to the
Dirichlet/Neumann boundary condition. The leading
terms for the case of the Robin boundary condition
coincide with those for the Neumann condition. Similarly

PHYSICAL REVIEW D 89, 105006 (2014)

to the case of the field squared, the divergences in these
cases are stronger compared to those for the geometry
under consideration.

VI. EXAMPLES OF THE INTERIOR METRIC:
dS AND AdS SPACES

In this section, as examples of the interior metric we
consider the maximally symmetric spacetimes with positive
and negative cosmological constants, namely, dS and AdS
spaces. As in the previous section, the exterior geometry is
described by the Minkowski spacetime with the exterior
line element (5.1). For the interior dS and AdS spaces, the
corresponding line element in static coordinates has the
form

ds? = (1 + ki?/a?)di* — (1 + ki?/a?) 7 d7* — PdQ3,_,,
6.1)

where k = —1 and k = 1 for dS and AdS spaces, respec-
tively. The parameter a is related to the cosmological
constant A through the expression a = D(D —1)/(2|A}).
In the case of dS space we assume that the boundary is
inside the dS horizon, corresponding to 7 = a.

We should transform the line element in the form that is
continuously glued with the exterior Minkowskian line
element at the boundary. To this aim, first we introduce a
new radial coordinate, r, in accordance with

F=aSi(x),  x=(r-r)/a 6.2)
where r, < r < a and
S (x) = sinx, k=-1 63)
Y Usinhx, k=1 '

The parameter r, will be determined below by the matching
conditions on the boundary. Note that in the case of dS
space the horizon corresponds to x = z/2 and, hence,
to the value of the new radial coordinate r = za/2 + r,.
With the coordinate transformation (6.2), the line element
takes the form

ds? = C3(x)dP* — dr* — oS3 (x)d©23,_,, (6.4)
where
Cy(x) {COSX’ L 6.5)
x) = .
k coshx, k=1

Now the component g;; of the metric tensor is continuous
at r = a. From (6.4) it follows that the coordinate r
measures the proper distance along the radial direction.

Next, we define a new time coordinate, ¢, in accordance
with
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~ t a—r,
f=—, X, = . 6.6
Ck (xa) ¢ a ( )

For the interior line element, we get

dSZ — C%(X)

dr* — dr* — a?S2(x)dQ3,_,.
i C%(Xa) r a k(x) 'D—1

(6.7)

In terms of the new coordinate ¢, at the boundary, the
component gg, is continuous as well. From (6.7), for the
interior functions in (2.1), one finds

") = aS,(x),

(6.8)

with x given by (6.2).

The metric tensor corresponding to (6.7) should be glued
at r = a with the exterior Minkowski spacetime in spheri-
cal coordinates with the line element (5.1) and with the
functions (5.2). As we have already noticed, the compo-
nents gq, and g;; are continuous. From the continuity of the
components g, [ =2, ..., D, we get

Si(x,) =a/a, (6.9)
with x, defined by (6.6). For a given a and a, Eq. (6.9)
determines the value of the parameter r.. For dS space, r,. is
negative (1 —z/2 <r, <0 for 0 <a/a < 1) and for AdS
space it is positive. In the latter case and for large values of
a/aone has r./a~ a/a —In(2a/a). From (6.9) it follows
that for the dS space the boundary near the dS horizon
(x, = 7/2) corresponds to the limit a — a. Note that, by
taking into account (6.9), for C(x,) in (6.7) one obtains

Ci(xy) =1/ 1+ k(a/a)* (6.10)

For the components of the surface energy-momentum
tensor, from (2.9), we get the expressions (with no
summation over i)

D -1
78 - 87TGa {Ck('xa> - 1]’
; D=2 ka®/a?

+Cpx,)=1],  (6.11)

"1~ 82Ga (D =2)Cy(x,)

with i = 2,..., D. Note that the surface energy density is
negative for the interior dS space and is positive for the AdS
space. In the case of dS space, one has C;(x,) — 0 in the
limit; then the boundary tends to the dS horizon, a — a. In
this limit, the azimuthal stress in (6.11) diverges.

With the line element (6.7), Eq. (3.8) for the interior
radial functions takes the form
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D[Ch(x)SP () f (171 (1)] [aza)zC%(xa) _l(I+D=-2)

Ci(x)SP™ (%) Cilx) Si(x)
—a*(m? +§R(i))] Flin(r)=0, (6.12)
where the Ricci scalar is given by
R = —kD(D +1)/a?. (6.13)

The solution of Eq. (6.12), regular at the center, x = 0,
is expressed in terms of the hypergeometric function as
(see also [22])

), gy - Lenh (Vi) VR o,
f(,')l(rv )= D2+ (b " by
cosh?/2+ (\/kx)
[+ D/2;tanh?(Vkx)), (6.14)
where we have introduced the notations
v = \/D*/4+ kaPm? = D(D + 1)z,
1
b = (14 D/2 + v+ VkaCy(x,)V 22+ m?.  (6.15)

2

For the dS interior, the parameter v can be either real or
purely imaginary. In the AdS case and for the imaginary v
the ground state becomes unstable [23,24]. By using
formula 9.1.70 from [21], it can be seen that in the limit
a — oo the function f g;))l(r, A) reduces to the function

r™/2J, (4r), up to a constant coefficient. Note that in
the expressions of the VEVs in the exterior region the
function (6.14) enters in the form (5.7) and, hence, the
coefficient is not relevant. The second linearly independent
solution of (6.12) is given by the expression

[k coth(v/kx)]!+P=2
cosh?/27(\/kx)
2 — [ — D/2;tanh?(Vkx)).

2 _
fEi))l(r’/l): F(l_bgj)’l_bg/l);

(6.16)
By using the relation [21]
F(a,b;c;z) = (1=2)%PF(c—a,c—b;c;z), (6.17)

for the hypergeometric function, we can see that the
solutions (6.14) and (6.16) are symmetric under the change
v — —v. In particular, from here it follows that these
solutions are real for purely imaginary values of v. We

also have the property fg))l(r, de™) = fg))l(r, 1), j=1,2.

Now, the Wightman function and the VEVs of the field
squared and of the energy-momentum tensor in the exterior
region are given by Egs. (5.5), (5.11), and (5.23), where
now in the definition (5.6) one has
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87G ka*/a?

T =
D-1 Ck (Xa)

+ (D - 1D[Ci(x,) = 1].  (6.18)

a

In the expression of the logarithmic derivative of the radial
function (6.14) we use the following formula for the
derivative of the hypergeometric function:

(¢ =n),z'"""F(a,b;c — n;z) = 0%z 'F(a, b; c; 7)],
(6.19)

where (c),, is Pochhammer’s symbol. Taking n = 1, we get

—-1].

8ZF(a,b;c;z)_c—1[F(a,b;c—l;z) 6.20)

F(a,b;c;z) 2 F(a,b;c;z)
With the help of this formula, the expression of the

logarithmic derivative for the radial function (6.14) is
presented in the form

O iy(rA) 1
fq) (r,4) avkz

(i)l

() (=), .

F

[ )
F(bu abu ;l/l+1;Z>

{l— (vi+v+1Dz+2(1-2)y

with the notation

z = tanh?(Vkx),

and with x defined in (6.2).

In the expression of the VEVs in the exterior region, the
logarithmic derivative (6.21) is evaluated at r = a. In this
case

6.22)

1
L, ==, 6.23
and in the notation (5.6) with a tilde, one has
kz,)~'/?
yi(a,n) :L{z_ (m+v+1)z,
+ 2(1 - Za)l/l[Fu,(rla Za) - 1]} (624)
Here, we have defined the function
F(b (1), b7 (n);v: 2,
Fon.z) = oL Db (6.25)

F(bf(n). by ()iv; + 1:2,)°

with

bi(n) = % [1/1 + v+ 1+ ivkaCi(x,)\/n* - mz} (6.26)

and with Cy(x,) given by (6.10). Hence, for the interior dS
and AdS geometries, the VEVs of the field squared and the
energy-momentum tensor in the exterior Minkowskian
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region are given by (5.11) and (5.23), where in the
expressions for I, (an) and K, (an), defined by (5.6),
we should substitute (6.18) and (6.24).

The equation for bound states is obtained from (5.9) with
the same substitutions. By a numerical calculation, we have
seen that, for a given ar, the function |K, (an)| increases
with increasing / and, hence, if there are no bound states for
[ =0 the same will be the case for a_higher /. For the
interior AdS geometry, the function K, (an) is always
negative and in this case there are no bound states. For the
dS interior the same is the case for a minimally coupled
field. The situation is changed in the case of dS interior
geometry for nonminimally coupled fields. We will discuss
the features on the example of a conformally coupled field.

If the dS horizon is not too close to the separating
boundary, once again, the function K, (an) is negative and
the bound states are absent. However, bound states appear
for a = a; > a, where «a; is some critical value sufficiently
close to a. With a further decrease of «, the value of an
corresponding to the bound state increases and, starting
from the second critical value @ = a,, it becomes larger
than ma. This corresponds to the imaginary value of the
energy for the mode and signals the instability of the
exterior Minkowskian vacuum for a < a < a,. For a
massless field, any possible real solution of the equation
K,,(an) = 0 leads to the instability of the exterior vacuum.
We have illustrated this type of situation for dS space in
Fig. 1, where for / =0 the function K, (an) is plotted
versus an for a conformally coupled scalar field in D = 3
spatial dimensions. For the left panel, we have taken ma =
1/4 and the right panel is for a massless field. The curves
on the left panel correspond to the values of the ratio
a/a = 1.0018, 1.0025, 1.00281, 1.0035, 1.005, increasing
from top to bottom lines. For the first critical value,
corresponding to the appearance of the bound state, one
has a;/a~ 1.00281. The second critical value, starting
from which the vacuum becomes unstable, corresponds to
a,/a ~ 1.0021. The left zero on the left panel corresponds
to a bound state (y, < m), whereas the right zero corre-
sponds to an unstable mode (n, > m). For the curves on
the right panel, we have a/a = 1.002, 1.0025, 1.00305,
1.005, 1.1 (increasing from top to bottom lines). Here, any
solution of Eq. (5.9) corresponds to the instability, and for
the critical value of the dS curvature radius we
have a,/a ~ 1.00305.

Now we turn to the investigation of the asymptotic
behavior of the VEVs. At large distances, the asymptotics
are given by (5.12), (5.28), and (5.14), (5.30) for massive
and massless fields, respectively. For the interior geom-
etries under consideration, the quantity f,, appearing in the
asymptotic for a massless field, is given by the expression

1 2
bo = m{%(a/a) (§ = bo) +n[F(z,) = 1]}

+28(D = 1)[Ci(x,) = 1] + /2, (6.27)
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FIG. 1. The function K ,,(an) in the equation of the bound states for / = 0 versus a7 in the case of a conformally coupled fieldin D = 3
spatial dimensions. The left panel corresponds to a massive field with ma = 1/4 and the right panel presents the case of a massless field.
For the graphs on the left panel, a/a = 1.0018, 1.0025, 1.00281, 1.0035, 1.005, and, for the right panel, a/a = 1.002, 1.0025, 1.00305,

1.005, 1.1 (increasing from top to bottom lines in both cases).

where by = D/4 + v/2 and we have defined the function

F( )_F(bo,bo,D/z—l,Za)
wal F(by, bo; D/2;2,)

(6.28)

For a minimally coupled field, for this function one has

kD d>

Fl) =145 50

(6.29)
and from (6.27) we get fy = D/2 — 1. Now, from (5.14)
and (5.30), we see that the leading terms in the asymptotic
expansion of the VEVs at large distances vanish and the
decay for this case is stronger. For a conformally coupled
field and for D = 3, one has b, = 1, and the function F(z)
in (6.28) is reduced to

a’ /

ala
F(z,) =k—+ : (6.30)
a A (1/+/a?/a* + k)
with
arcsinhx, k= -1
Aylx) = {arcsinx, k=1~ 6.31)

With the function (6.30) in (6.27), one has (n —2p;)/
(n + 2p,) > 0 for all values of a/a in the AdS case and for
a/a < a/a, for the dS interior. In the latter case a/a, ~
0.997 is the critical value for the vacuum instability (see the
right panel in Fig. 1). Now, from (5.14) it follows that the
corresponding VEV of the field squared is positive at large
distances.

In order to find the leading terms in the asymptotic
expansions of the VEVs near the boundary by using the
general formulas (5.22) and (5.32), we need the function
B(x) in the asymptotic expansion (5.18) for the interior
spaces under consideration. This function is found in

Appendix A. By using the expression for the function
C(x) from (A10), the integral in (5.22) is expressed in terms
of the gamma functions and for the VEV of the field
squared one gets

(@)
o (E=&p)T((D-1)/2) Cilx,) — 1 1
- 2D71'(D+1)/2(D_2)a (r_a)D—Z |:D+Ck(xa):|.
(6.32)

This leading term does not depend on the mass of the field.
For a conformally coupled field it vanishes and the next-to-
leading order term should be kept. For a minimally coupled
field, near the boundary the VEV of the field squared is
negative for the interior dS space and positive for the
AdS space.

In Fig. 2, for the dS interior geometry, we have plotted
the VEV of the field squared in the exterior region,
aP~(@?)., in D = 3 spatial dimensions, as a function of
the ratio r/a. The numbers near the curves are the values of
a/a. The left and right panels correspond to minimally
(¢ = 0) and conformally (¢ = 1/6) coupled massless sca-
lars. Similar graphs for the AdS interior geometry are
presented in Fig. 3.

In a similar way, from (5.32) for the VEVs of the energy
density and the azimuthal stress near the boundary we
obtain

L((D +1)/2)[Ci(xa) = 1]

<T8>C ~ 2D—17[(D+1)/2a(’, _ a)D
X {(f -¢&p) [D(f —-&p) + Ckfx )}
(E=¢pin)
) Tk } (6.33)
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FIG. 2 (color online).
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VEV of the field squared, a?~!(¢?),, for the interior D = 3 dS geometry as a function of the rescaled radial

coordinate for several values of a/a (with numbers near the curves). The left and right panels correspond to minimally and conformally

coupled massless scalar fields.
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FIG. 3 (color online).

and
o T((D+1)/2)[Clx,) —1
SYLTIRETIOS
E-1/4 E—Epy
. {(HD) {D(‘f‘fl)) " ck<xa>} +41)c,f<)x§>}’
(6.34)

where &, = (D +1)/(4(D +2)). The leading term in
the asymptotic expansion of the radial stress is found by
using the relation (5.33). For a minimally coupled field, the
energy density, (7)), and azimuthal stress, (73)., are
negative near the boundary for the dS interior space and
are positive for the AdS interior. The expressions (6.33) and
(6.34) are further simplified for a conformally coupled field

(T3) m -5 (T9)
DD + 1)/2)[1/Culx) ~ 1]

~ 2D+3”(D+1)/2D2(D +2)a(r— a)D :

(6.35)

0.0 1 1 T
1.5 2.0 2.5 3.0

rla

The same as Fig. 2 but in the case of the interior AdS space.

In this case, near the boundary the vacuum energy and the
azimuthal pressure (—(73),) are negative for the interior dS
space and are positive for the AdS space.

Figure 4 displays the VEV of the energy density,
aP+H(TY)., induced by the interior D = 3 dS (left panel)
and AdS (right panel) geometries, for a conformally
coupled massless scalar field, as a function of the rescaled
radial coordinate. The numbers near the curves correspond
to the values of the parameter a/a. The corresponding
graphs for a massless minimally coupled scalar field show
similar behavior.

It is also of interest to consider the dependence of the
VEVs on the mass of the field. In Fig. 5 we have plotted the
VEV of the energy density in the exterior region as a
function of ma, for fixed values a/a = 0.5, r/a = 1.5, in
the cases of minimally (left panel) and conformally (right
panel) coupled fields in D = 3 spatial dimensions. The full
and dashed curves correspond to interior dS and AdS
spaces. As is seen from the graphs, the VEV is not a
monotonic function of the mass.

In the investigation of the VEVs for the case of the
interior dS space, we have assumed that a/a > 1. For the
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FIG. 4 (color online). VEV of the energy density a1 (T{), for a conformally coupled massless field, induced by the interior D = 3
dS space (left panel) and AdS (right panel) spaces, versus r/a. The numbers near the curves correspond to the values of the ratio a/a.
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FIG. 5.
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VEV of the energy density in the exterior region as a function of ma for fixed a/a = 0.5 and r/a = 1.5. The left and right

panels correspond to minimally and conformally coupled scalar fields in D = 3 spatial dimensions and the full and dashed curves

correspond to dS and AdS interiors.

interior AdS space, the value of this ratio can be arbitrary.
In this case, it is of interest to consider the behavior of the
VEVs for small values of the AdS curvature radius,
a/a < 1, corresponding to a strong gravitational field
in the interior region. In this limit, the argument of
the hypergeometric functions in (6.25) is close to 1;
(I —z,) < 1. By using the formula 15.3.6 from [21], to
the leading order we get

F,(n.2,) = (a/a) v/, (6.36)
The coefficient of the function F(z) in (5.6) becomes
(a/a)V with the notation v/ = v + 26D — D/2. For V/ # 0,
in the limit under consideration, this coefficient is large
and, in the leading order, the VEVs in the exterior region
coincide with the corresponding VEVs for a spherical
boundary in Minkowski spacetime with the Dirichlet
boundary condition. For v/ = 0, the next-to-leading term
in the expansion over a/a should be taken into account.
Keeping this term, we can see that the VEVs are reduced to

those for a spherical shell with Dirichlet and Neumann
boundary conditions in the cases v < 1/2 and v > 1/2,
respectively. The case v/ = 0 with v = 1/2 corresponds to a
conformally coupled massless scalar field and in this case
the VEVs are not reduced to Dirichlet or Neumann results.
If, in addition, we assume that am < 1, then the condition
v =0 is satisfied for the special cases of minimally and
conformally coupled fields. We expect that, for small
values of the AdS curvature radius, the VEVs in the
interior region will be suppressed. This sort of suppression
in the boundary-induced local VEVs for the geometry of
parallel plates in AdS bulk, described in Poincaré coor-
dinates, has been discussed in [25-27] for scalar and
fermionic fields.

We have considered the VEVs in a combined geometry
with interior dS or AdS and exterior Minkowski space-
times. It would be interesting to generalize the correspond-
ing results for the exterior Schwarzschild solution of the
Einstein equations. The possibility that the interior geom-
etry of a black hole could be constituted by a dS region has
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been discussed in the literature (see [28]-[33] and refer-
ences therein). However, in the Schwarzshild geometry the
equation for the radial part of the scalar mode functions is
not exactly solvable and numerical or approximate results
only can be provided.

VII. CONCLUSION

In the present paper we have considered the Casimir
densities for a scalar field with a general curvature coupling
parameter, induced by a spherical boundary separating the
spacetime backgrounds with different geometries. The
latter are described by spherically symmetric static line
elements (2.1) and (2.3) for the interior and exterior
regions, respectively. Additionally, the presence of an
infinitely thin spherical shell with a surface energy-
momentum tensor ¥ is assumed. The interior and exterior
metric tensors are continuous on the separating boundary
and their radial derivatives are related by the Israel
matching conditions. The latter lead to the relations (2.9)
for the functions in the expressions of the metric tensor
components. The matching conditions for a scalar field are
obtained from the corresponding field equation: the field is
continuous on the separating surface and the jump in the
radial derivative is given by the relation (3.3). The jump
comes from the nonminimal coupling of the field and is a
consequence of the delta function term in the Ricci scalar
located on the separating boundary.

For the investigation of the exterior vacuum properties
induced by the interior geometry, first we evaluate the
positive frequency Wightman function with the help of the
direct summation over a complete set of field modes. In
Sec. III, for the general cases of interior and exterior
geometries, we have constructed a complete set of nor-
malized mode functions obeying the matching conditions.
In addition to the modes with a continuous energy
spectrum, depending on background geometry, the modes
describing the bound states can be present. For these
modes, the quantum number A is purely imaginary and
the corresponding eigenvalues for 7 = |4| are solutions of
the equation (3.31) with the notation (3.32). The Wightman
function in the exterior region is given by the expression
(4.2) for the modes with a continuous energy spectrum and
by (4.9) for the contribution coming from the bound states.
In order to separate from the expression of the Wightman
function the part induced by the interior geometry, we use
the identity (4.5). Then, by using the asymptotic properties
of the radial parts in the mode functions, we rotate the
contours of the integration in the complex plane 1. As a
result, the Wightman function in the exterior region is
presented in a decomposed form (4.11). In this representa-
tion, the function Wy (x, x’) is the Wightman function in the
case of the background described by the line element (2.3)
for all values of the radial coordinate r and the contribution
W.(x,x") is induced by the geometry (2.1) in the region
r < a. Compared with the initial form, the representation
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(4.11) of the Wightman function has two important
advantages. First of all, in the part induced by the interior
geometry the integrand is an exponentially decreasing
function at the upper limit of the integration, instead of
highly oscillatory behavior in the initial representation.
And, second, for points outside the boundary, the diver-
gences arising in the coincidence limit of the arguments are
contained in the part W (x, x'), whereas the part induced by
the interior geometry is finite in the coincidence limit. With
this property, the renormalization of the VEVs for the field
squared and the energy-momentum tensor is reduced to the
renormalization for the background (2.3) for all values of r.
Hence, the contributions to the VEVs coming from the
interior geometry are directly obtained from the corre-
sponding part of the Wightman function without any
additional subtractions.

For a given Wightman function, the VEVs of the field
squared and the energy-momentum tensor are evaluated by
formulas (4.12). They are decomposed as (4.13), where the
second terms in the right-hand sides are induced by the
geometry (2.1) in the region r < a. These terms are
obtained from the corresponding part in the Wightman
function without additional renormalization. For example,
the VEV of the field squared is given by (4.15).

A special case, with the Minkowski spacetime as an
exterior geometry, is discussed in Sec. V. In this case the
expression for the Wightman function in the exterior region
is reduced to (5.5). The latter differs from the correspond-
ing expression for a spherical boundary with the Robin
boundary condition by the replacement (5.10) of the Robin
coefficient. In the geometry under consideration, the
“effective” Robin coefficient depends on the quantum
numbers specifying the scalar field modes and this leads
to important modifications in the behavior of the VEVs
near the boundary. For the exterior Minkowskian geometry,
the VEVs of the field squared and the energy-momentum
tensor are given by the expressions (5.11) and (5.23). For a
massive field, at distances from the boundary larger than
the Compton wavelength, the VEVs are exponentially
suppressed. For a massless field, the decay of the VEVs
at large distances is a power law: it goes like 73~2? for the
field squared and like r'~2” for the energy-momentum
tensor. The exponents in the power-law decay are different
in the special cases fy = +(D/2 — 1) with f, defined by
(5.15). The VEVs diverge on the boundary separating the
interior and exterior geometries. The leading terms in the
asymptotic expansions over the distance from the boundary
are given by (5.22) for the field squared and by (5.32) for
the energy density and the azimuthal stress. For the radial
stress near the boundary, one has (5.33). The function C(x)
in the expressions for the leading terms is determined
from the uniform asymptotic expansion of the interior
radial mode function for large values of the orbital
momentum and it depends on the specific interior geom-
etry. The VEV of the field squared diverges on the boundary
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as (r/a—1)*P and the VEVs of the energy density and
the azimuthal stress diverge as (r/a — 1)~P. In the case of a
spherical boundary in Minkowski spacetime with Dirichlet
and Neumann (or, in general, Robin) boundary conditions,
the surface divergences are stronger.

As an application of general results, in Sec. VI we have
considered dS and AdS spaces as examples of the interior
geometry. First, we have transformed the corresponding
line elements to the form (6.7), which is continuously
matched with the exterior Minkowskian geometry. The
components of the corresponding surface energy-momen-
tum tensor are given by (6.11). The radial parts of the
interior mode functions are expressed in terms of the
hypergeometric function [(6.14) and (6.16) for regular
and irregular modes, respectively]. The VEVs of the field
squared and the energy-momentum tensor in the exterior
Minkowskian region are determined by the formulas (5.11)
and (5.23), where in the expressions for I, (an) and
K, (an), defined by (5.6), the functions (6.18) and
(6.24) should be substituted. In the case of the interior
AdS geometry, there are no bound states. For the dS
interior, the same holds for a minimally coupled field. In the
case of the dS interior geometry and for nonminimally
coupled fields, bound states are absent if the radius of the
separating boundary is not too close to the dS horizon
radius. When the boundary becomes closer to the horizon,
bound states appear. With the further increasing of the
boundary radius, the energy of the bound state decreases,
and for some critical value it becomes zero. The further
increase leads to imaginary values of the energy thus
signaling the exterior Minkowski vacuum instability.

In the cases of dS and AdS interior spaces, we have
specified the general formulas for the asymptotics of the
VEVs. The parameter f3), determining the large distance
behavior of the VEVs for massless fields, is given by the
expression (6.27). For a minimally coupled field, one has
Po=D/2—1, and the leading terms in the asymptotic
expansion of the VEVs at large distances vanish. The
leading terms in the expansions near the boundary are given
by the expressions (6.32), (6.33), and (6.34). For a
conformally coupled field, the leading term in the VEV
of the field squared vanishes. In this case, near the
boundary the vacuum energy and the azimuthal pressure
are negative for the interior dS space and are positive for the
AdS space. For a minimally coupled field and near the
boundary, the VEVs of the field squared, energy density,
and azimuthal stress are negative for the interior dS space
and positive for the AdS space. In the latter case and for
small values of the AdS curvature radius (the strong
gravitational field in the interior region), a < a, m™'; for
the curvature coupling parameter & # 0, &p, the VEVs in
the exterior region, to the leading order, coincide with
the corresponding VEVs for a spherical boundary in
Minkowski spacetime with the Dirichlet boundary con-
dition. For a minimally coupled field, the VEVs are
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reduced to those for a spherical shell with the Neumann
boundary condition. In the special case of the conformal
coupling, the VEVs are not reduced to Dirichlet or
Neumann results.

The results given above for gravitational backgrounds
may have applications in effective field theoretical models
of some condensed matter systems formulated on curved
backgrounds (see, for example, [7,34]). Important exam-
ples of this sort are graphene-made structures. The long-
wavelength description of the graphene excitations can be
formulated in terms of the effective field theory in (2 4 1)-
dimensional spacetime. In the geometry of a single-walled
carbon nanotube, which is generated by rolling up a
graphene sheet to form a cylinder, the background space
is flat and has the topology R' x S'. For nanotubes with
open ends, the Casimir densities induced by the nontrivial
topology and by the edges have been discussed in [35-37].
However, the end of the nanotube can be closed with a
hemispherical cap. In this case the geometry for the
corresponding effective field theory is of the type discussed
above with the interior constant curvature space.
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APPENDIX: ASYMPTOTIC OF THE
HYPERGEOMETRIC FUNCTION

As it has been shown in Sec. V, the leading terms of the
asymptotic expansions for the VEVs near the spherical
boundary, separating the regions with different geometries,
are expressed in terms of the function C(x) given by (5.20).
In this expression, B(x) is defined by the asymptotic
expansion of the function y,(a,v;n) for the large v, [see
(5.18)]. In order to find the function B(x) for the special
cases of the interior geometry corresponding to dS and AdS
spaces, in accordance with (6.21), we need the asymptotic
of the function F, (v4,z,) for large values of v;. The
leading term is obtained from the general consideration
given above, and for the determination of the function B(x)
we need the next-to-leading term. In the limit under
consideration, all the parameters of the hypergeometric
functions in (6.25) are large. The corresponding asymp-
totics have been recently investigated in [38,39]. By using
the expansion (2.8) from [39], for large |u| the following
result can be obtained:

Fla+ eu,b+eu,c+pu—1;2)
F(a+ e, b+ ep;c+u;z)

1-—
~ (31 |:1+h(ts>+:|’
l_ts H

(AL)

where 0 < £ <&, < 1 and (in notations of [39])
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A= /A —de (1 —gy)z

t 30— ez , A=1+ (e —&)z.
(A2)
In (A1), we have defined the function
_(c=lg—a t

h(t) = T {[(c—3)ez—b]t+b€,

~ex(a= 1)+ (= Dl 3e)r

3 (- e+ e - )] (a3
with

hi(t) = e1(e; — &) + 1(2e; —1)(1 — &3). (A4)

In order to apply (Al) to the function F, (v, z,)
[defined by (6.25)] with u = v;, we assume for the moment
that k = —1. In this case the parameters ¢; corresponding to
(A1) are real. We are interested in the term of the order 1/v,,
and, to this order, the mass term in (6.26) does not
contribute. Assuming that the parameters are in the range

required for the validity of (A1), we take in this expansion

1
a=bz§(1+v), c=1,
1 1
€ :E(I—Y)v 8225(1+7)7 (AS)
with
y =nVva*—a. (A6)
For these values of the parameters, one has
l—¢ 27,2 2,2
21 t:1+\/1—a/a\/1+a77. (A7)
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In the leading order this gives

2F, (wm.z) ~ 141 —a/a\[1+af. (A8

Substituting into (6.24), we obtain the leading term for the
expansion of the function y,(a,v;4), which agrees with the
result (5.18) obtained directly from the differential equation
for y,(a.n).

Evaluating the function h(¢) for special values of the
parameters (AS), (A6) and substituting the corresponding
expansion (Al) into the expression (6.24) with n — v,
after long calculations we find the expansion (5.18) with
the function

(A +u) = (D-1)(1-a*/a?)
Blu)= 2¢/1-a*/®V1 +u? ’

(A9)

and u = na. Although we have obtained the formula (A9)
in the range of parameters assumed for the validity of (A1),
the corresponding formula for other values of na is
obtained by a simple analytic continuation. Moreover,
the result can also be generalized for the case of AdS
space by the replacement a — ia. Having the expression
for the function B(u), the function C(u) is found from
(5.20):

Cr(x,) =1 B ¢ (+w)!
Clu) =2 V1 +u? D(E=o) + Ci(x,)  4Ck(x,) |
(A10)

With this function, the integrals in the expressions (5.22)
and (5.32) of the leading terms in the VEVs of the field
squared and the energy-momentum tensor are expressed in
terms of the gamma function.
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