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The Wightman function, the vacuum expectation values (VEVs) of the field squared, and the energy-
momentum tensor are investigated for a massive scalar field with general curvature coupling in a
spherically symmetric static background geometry described by two distinct metric tensors inside and
outside a spherical boundary. The exterior and interior geometries can correspond to different vacuum
states of the same theory. In the region outside the sphere, the contributions in the VEVs, induced by the
interior geometry, are explicitly separated. For the special case of the Minkowskian exterior geometry, the
asymptotics of the VEVs near the boundary and at large distances are discussed in detail. In particular, it
has been shown that the divergences on the boundary are weaker than in the problem of a spherical
boundary in Minkowski spacetime with Dirichlet or Neumann boundary conditions. As an application of
general results, de Sitter (dS) and anti–de Sitter (AdS) spaces are considered as examples of the interior
geometry. For AdS interiors there are no bound states. In the case of dS geometry and for nonminimally
coupled fields, bound states appear for a radius of the separating boundary sufficiently close to the dS
horizon. Starting from a critical value of the radius, the Minkowskian vacuum in the exterior region
becomes unstable. For small values of the AdS curvature radius, to the leading order, the VEVs in the
exterior region coincide with those for a spherical boundary in Minkowski spacetime with a Dirichlet
boundary condition. The exceptions are the cases of minimal and conformal couplings: for a minimal
coupling, the VEVs are reduced to the case with a Neumann boundary condition, whereas for a conformally
coupled field there is no reduction to Dirichlet or Neumann results.
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I. INTRODUCTION

In many physical problems, the model is formulated in
backgrounds having boundaries on which the dynamical
variables obey prescribed boundary conditions. The boun-
daries can have different physical origins, like interfaces
between two media with different electromagnetic proper-
ties in condensed matter physics, horizons in gravitational
physics, domain walls of various physical natures in the
theory of phase transitions and critical phenomena, and
branes in string theory and in higher-dimensional cosmol-
ogies. In quantum field theory, the imposition of boundary
conditions on a field operator gives rise to modifications of
the spectrum for the vacuum fluctuations of a quantum field
and, as a result, to the change of physical characteristics of
the vacuum state, such as the energy density and vacuum
stresses. As a consequence of this, vacuum forces arise,
acting on constraining boundaries. This is the familiar
Casimir effect, first predicted for the electromagnetic field
by Casimir in 1948 [1]. This effect can have important
implications on all scales, from subnuclear to cosmological,

and it has been investigated for various types of bulk and
boundary geometries (for reviews see [2]–[6]). The features
of the Casimir forces depend on the nature of a quantum
field, on the type of the spacetime manifold, on the
geometry of boundaries, and on the specific boundary
conditions imposed on the field. The explicit dependence
can be found for highly symmetric geometries only.
In consideration of the Casimir effect, usually, the boun-

daries separate the regions with different electromagnetic
properties (for example, media with different dielectric
permittivities). Another type of effect related to the
Casimir physics arises in a class of models with boundaries
separating the spatial regions with different gravitational
backgrounds. It can be referred to as gravitationally induced
Casimir effect. The different gravitational backgrounds on
both sides of the separating boundary can correspond to
different vacuum states of the same theory. For example, one
can consider a bubble of a false vacuum embedded in a true
vacuum or vice versa. Simple examples of vacuum bubbles
are de Sitter (dS) and anti–de Sitter (AdS) spacetimes
embedded in the Minkowski spacetime. In these examples,
a physical boundary separates two regions with different
values of the cosmological constant. It serves as a thin-wall
approximation of a domain wall interpolating between two
coexisting vacua (for a discussion, see [7]).
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In a configuration with coexisting gravitational back-
grounds, the geometry of one region affects the properties
of the quantum vacuum in the other region. Previously, we
have considered several examples of this type of vacuum
polarization. In [8], the Casimir densities are investigated
for a scalar field in the geometry of a cosmic string for a
core with finite support. In the corresponding model, the
cylindrical boundary separates two different background
geometries: the spacetime outside the boundary is
described by the idealized cosmic string geometry with a
planar angle deficit and for the interior geometry a general
cylindrically symmetric static model is employed. Two
specific models of the core have been considered: the
“ballpoint pen” model [9,10], with a constant curvature
interior metric, and the “flower pot” model [11] with an
interior Minkowskian spacetime. Similar problems for the
exterior geometry of a global monopole are discussed in
[12] and [13] for scalar and fermionic fields, respectively.
In the corresponding models the boundary separating
different spatial geometries is a sphere. The model with
a sphere as a boundary and with an exterior dS metric,
described in planar inflationary coordinates, has been
considered in [14]. The vacuum expectation values
(VEVs) of the field squared and the energy-momentum
tensor induced by a Z2-symmetric brane with finite thick-
ness located on the AdS background are evaluated in
[15,16] for a massive scalar field. The general case of a
static plane symmetric interior structure for the brane is
considered, and the exterior AdS geometry is described in
Poincaré coordinates. In the corresponding problem the
separating boundaries are plane symmetric.
In the present paper, we consider the vacuum densities

for a massive scalar field with a general curvature coupling
parameter in a spherically symmetric static geometry
described by two distinct metric tensors inside and outside
a spherical boundary. In addition, the presence of a surface
energy-momentum tensor located on the separating boun-
dary is assumed. Among the most important characteristics
of the quantum vacuum are the expectation values of the
field squared and the energy-momentum tensor. Although
the corresponding operators are local, due to the global
nature of the vacuum state, they carry important informa-
tion about the global properties of the bulk. Moreover, in
addition to describing the physical structure of the quantum
field at a given point, the VEV of the energy-momentum
tensor acts as a source of gravity in the quasiclassical
Einstein equations. Consequently, it plays a crucial role in
modeling a self-consistent dynamic of the background
spacetime. For the evaluation of the VEVs, we first
construct the positive frequency Wightman function by
the direct summation over a complete set of scalar modes.
This function also determines the excitation probability of a
Unruh-DeWitt detector (see, for instance, [17]). The
quantum effects induced by distinct geometries in the
exterior and interior regions should be taken into account,

in particular, in discussions of the dynamics of vacuum
bubbles during the phase transitions in the early Universe.
The organization of the paper is as follows. In the next

section we describe the background spacetime under
consideration and the matching conditions on a spherical
boundary separating the interior and exterior geometries. A
complete set of normalized mode functions for a scalar field
with a general curvature coupling parameter is constructed
in Sec. III. By using the mode functions, in Sec. IV we
evaluate the positive frequency Wightman function for the
general case of static spherically symmetric interior
and exterior geometries. This function is presented in the
form where the contribution induced by the interior
geometry is explicitly separated. A special case of the
exterior Minkowskian background is considered in Sec. V.
Explicit expressions for the VEVs of the field squared and
of the energy-momentum tensor are provided and their
behavior in asymptotic regions of the parameters is inves-
tigated. As an application of general results, in Sec. VI, two
special cases of the interior geometry are discussed
corresponding to maximally symmetric spaces with pos-
itive and negative cosmological constants (dS and AdS
spaces). Section VII summarizes the main results of the
paper. In Appendix A, the coefficient in the asymptotic
expansion of the logarithmic derivative of the hypergeo-
metric function is determined, which is used for the
evaluation of the leading terms in the asymptotic expan-
sions of the VEVs near the boundary for the cases of the
interior dS and AdS spaces.

II. BACKGROUND GEOMETRY

Consider a ðDþ 1Þ-dimensional spherically symmetric
static spacetime described by two distinct metric tensors
inside and outside of a spherical boundary of the coordinate
radius r ¼ a. In the interior region, r < a, the spacetime
geometry is regular with the line element

ds2i ¼ e2uiðrÞdt2 − e2viðrÞdr2 − e2wiðrÞdΩ2
D−1; (2.1)

where dΩ2
D−1 is the line element on a ðD − 1Þ-dimensional

sphere with a unit radius. The corresponding hyperspher-
ical angular coordinates will be denoted by
ðϑ;ϕÞ ¼ ðθ1;…; θn;ϕÞ, where n ¼ D − 2, 0 ≤ θk ≤ π,
k ¼ 1;…; n, and 0 ≤ ϕ ≤ 2π. The value of the radial
coordinate r corresponding to the center of the configura-
tion will be denoted by rc. Of course, we could rescale the
radial coordinate in order to have r ¼ 0 for the center, but
for the further discussion it is convenient to keep rc general.
Introducing a new coordinate,

r̄ ¼ ewiðrÞ; (2.2)

with the center at r̄ ¼ 0, the angular components of the
metric tensor coincide with the corresponding components
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in the Minkowski spacetime described in the standard
hyperspherical coordinates.
In the exterior region, r > a, the geometry has a similar

structure with different radial functions:

ds2e ¼ e2ueðrÞdt2 − e2veðrÞdr2 − e2weðrÞdΩ2
D−1: (2.3)

The metric tensor is continuous at the separating boundary
r ¼ a:

uiðaÞ¼ ueðaÞ; viðaÞ¼ veðaÞ; wiðaÞ¼weðaÞ: (2.4)

Although the scheme described below can be generalized
for metric tensors with horizons, for the sake of simplicity
we will assume that if the line elements (2.1) and (2.3) have
horizons at rHi and rHe, respectively, then rHe < a < rHi.
This means that the combined geometry contains no
horizons.
The Ricci tensors for the interior and exterior geometries

are diagonal with the mixed components (no summation
over l ¼ 2; 3;…; D):

R0
ðjÞ0¼−e−2vj ½u00j þu02j −u0jv

0
jþðnþ1Þu0jw0

j�;
R1
ðjÞ1¼−e−2vj ½u00j þu02j −u0jv

0
jþðnþ1Þðw00

j þw02
j −w0

jv
0
jÞ�;

Rl
ðjÞl¼−e−2vjðw00

j þw02
j þw0

ju
0
j−w0

jv
0
jþnw02

j Þþne−2wj ;

(2.5)

where j ¼ i and j ¼ e for the interior and exterior regions,
respectively, and the prime means the derivative with
respect to the radial coordinate r (we adopt the convention
of Ref. [17] for the curvature tensor). For the corresponding
Ricci scalars, we get the expression

RðjÞ ¼ −2e−2vj ½u00j þ u02j − u0jv
0
j þ nðnþ 1Þw02

j =2

þðnþ 1Þðw00
j þ w02

j þ w0
ju

0
j − w0

jv
0
jÞ�

þ nðnþ 1Þe−2wj : (2.6)

The energy-momentum tensors generating the line ele-
ments (2.1) and (2.3) are found from the corresponding
Einstein equations.
In general, we assume the presence of an infinitely

thin spherical shell at r ¼ a, having a surface energy-
momentum tensor τki with nonzero components τ00 and
τ22 ¼ � � � ¼ τDD. Let n

i, nini ¼ −1, be the normal to the shell
that points into the bulk on both sides. For the interior

(j ¼ i) and exterior (j ¼ e) regions, one has nðjÞi ¼
δðjÞδ1i e

vjðrÞ with δðiÞ ¼ 1 and δðeÞ ¼ −1. We denote by
hðjÞik the induced metric on the shell, hðjÞik ¼ gðjÞikþ
nðjÞi nðjÞk , and KðjÞik ¼ hlðjÞih

r
ðjÞk∇ln

ðjÞ
r is the extrinsic curva-

ture. In the geometry under consideration, for the nonzero
components of the latter, we obtain

K0
ðjÞ0 ¼ −δðjÞu0jðrÞe−vjðrÞ;

Kk
ðjÞl ¼ −δðjÞδkl w0

jðrÞe−vjðrÞ; r ¼ a − δðjÞ0; (2.7)

with l ¼ 2; 3;…; D.
From the Israel matching conditions on the sphere r ¼ a,

one has X
j¼i;e

ðKðjÞik − KðjÞhðjÞikÞ ¼ 8πGτik; (2.8)

whereG is the gravitational constant and KðjÞ ¼ Ki
ðjÞi is the

trace of the extrinsic curvature tensor. From these con-
ditions, by taking into account (2.7), we find (with no
summation over i ¼ 2; 3;…; D)

X
j¼i;e

δðjÞu0jða − δðjÞ0Þ ¼ 8πGeveðaÞ
�
τii −

D − 2

D − 1
τ00

�
;

X
j¼i;e

δðjÞw0
jða − δðjÞ0Þ ¼

8πG
D − 1

eveðaÞτ00; (2.9)

where f0ða� 0Þ is understood as the limit limr→a�0f0ðrÞ.
Note that from (2.9) the relation

X
j¼i;e

δðjÞ½u0jða−δðjÞ0ÞþðD−1Þw0
jða−δðjÞ0Þ�¼

8πG
D−1

eveðaÞτ

(2.10)

is obtained for the trace τ ¼ τ00 þ
P

D
i¼2 τ

i
i of the surface

energy-momentum tensor. For given interior and exterior
geometries, the relations (2.9) determine the surface
energy-momentum tensor needed for the matching of these
geometries.

III. MODE FUNCTIONS FOR A SCALAR FIELD

A. Modes of continuous spectrum

Having described the background geometry, now we
turn to the field content. Wewill consider a scalar field φðxÞ
with the curvature coupling parameter ξ on the background
described by (2.1) and (2.3). The corresponding field
equation reads

ð∇μ∇μ þm2 þ ξRÞφ ¼ 0; (3.1)

where ∇μ is the covariant derivative operator. The
most important special cases of the curvature coupling
parameter ξ ¼ 0 and ξ ¼ ξD ¼ ðD − 1Þ=ð4DÞ correspond
to minimally and to conformally coupled fields,
respectively.
In addition to the field equation in the regions r < a and

r > a, the matching conditions for the field should be
specified at r ¼ a. The field is continuous on the separating
surface: φjr¼a−0 ¼ φjr¼aþ0. In order to find the matching
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condition for the radial derivative of the field, we note that
the discontinuity of the functions u0ðrÞ and w0ðrÞ at r ¼ a
leads to the delta function term

2e−2veðaÞ
X
j¼i;e

δðjÞ½u0jða−δðjÞ0ÞþðD−1Þw0
jða−δðjÞ0Þ�δðr−aÞ

(3.2)

in the Ricci scalar and, hence, in the field equation (3.1), if
we require its validity everywhere in the space. The
expression (3.2) is given in terms of the trace of the surface
energy-momentum tensor by using the formula (2.10). As a
result of the presence of the delta function term in the field
equation, the radial derivative of the field has a disconti-
nuity at r ¼ a. The jump condition is obtained by integrat-
ing the field equation through the point r ¼ a. This gives

ð∂rφÞr¼aþ0 − ð∂rφÞr¼a−0 ¼
16πGξ
D − 1

eveðaÞτφjr¼a: (3.3)

For a minimally coupled field, the radial derivative is
continuous.
In what follows, we are interested in the VEVs of the

field squared and of the energy-momentum tensor induced
in the region r > a by the geometry in r < a. In the model
under consideration all the information about the properties
of the vacuum is encoded in two-point functions. As such,
we will use the positive frequency Wightman function
defined as the VEV Wðx; x0Þ ¼ h0jφðxÞφðx0Þj0i, where j0i
stands for the vacuum state. In addition to describing the
local properties of the vacuum, this function also deter-
mines the response of the Unruh-DeWitt type particle
detectors [17]. For the evaluation of the Wightman func-
tion, we will use the direct summation over a complete
set of positive- and negative-energy mode functions
fφαðxÞ;φ�

αðx0Þg, obeying the field equation (3.1) and the
matching conditions described above. Here, the set of
quantum numbers α specifies the solutions. Expanding
the field operator over the complete set fφαðxÞ;φ�

αðx0Þg and
using the standard commutation relations for the annihila-
tion and creation operators, the following mode-sum
formula is readily obtained:

Wðx; x0Þ ¼
X
α

φαðxÞφ�
αðx0Þ; (3.4)

where we assume summation over discrete quantum
numbers and integration over continuous ones.
In the problem under consideration, the mode functions

can be presented in the factorized form

φαðxÞ ¼ flðrÞYðmk; ϑ;ϕÞe−iωt; (3.5)

where l ¼ 0; 1; 2;…, Yðmk; ϑ;ϕÞ is the hyperspherical
harmonic of the degree l [18], mk¼ðm0≡l;m1;…;mnÞ,
with m1; m2;…; mn being integers such that

0 ≤ mn−1 ≤ mn−2 ≤ � � � ≤ m1 ≤ l;

−mn−1 ≤ mn ≤ mn−1: (3.6)

Presenting the radial function as

flðrÞ ¼
� fðiÞlðrÞ; r < a;

fðeÞlðrÞ r > a;
(3.7)

the equations for the exterior and interior functions are
obtained from (3.1):

f00ðjÞlðrÞ þ ½u0j − v0j þ ðD − 1Þw0
j�f0ðjÞlðrÞ

þ e2vj
�
ω2

e2uj
−m2 − ξRðjÞ −

lðlþ nÞ
e2wj

�
fðjÞlðrÞ ¼ 0; (3.8)

where the Ricci scalar is given by the expression (2.6).
From the matching conditions on the separating boundary,
given above, for the radial functions in the interior and
exterior regions, we find fðeÞlðaþ 0Þ ¼ fðiÞlða − 0Þ and

f0ðeÞlðaþ 0Þ − f0ðiÞlða − 0Þ ¼ 16πGξ
D − 1

eveðaÞτfðeÞlðaÞ: (3.9)

Note that, introducing a new radial coordinate, Eq. (3.8)
can be written in the Schrödinger-like form

∂2
ygðjÞlðyÞ þ ½ω2 − UðjÞlðyÞ�gðjÞlðyÞ ¼ 0; (3.10)

where

gðjÞlðyÞ¼ eðD−1Þwj=2fðjÞlðrÞ; y¼
Z

drevj−uj ; (3.11)

and for the potential function we have

UðjÞlðyÞ ¼ e2uj
�
m2 þ ξRðjÞ þ

lðlþ nÞ
e2wj

�

þD − 1

2

�
w00
j þ

D − 1

2
w02
j

�
: (3.12)

In what follows we assume that the interior geometry is
regular. In terms of the radial coordinate (2.2), from the
regularity of the Ricci scalar (2.6) at the center, r̄ ¼ 0, it
follows that

uiðr̄Þ; viðr̄Þ ∼ r̄2; r̄ → 0: (3.13)

Let fð1ÞðiÞlðr; λÞ, with λ2 ¼ ω2 −m2, be the solution of
Eq. (3.8) in the interior region that is regular at the origin.
It can be taken as a real function. In addition, by taking into
account that λ enters in the equation in the form λ2, without

loss of generality we can assume that fð1ÞðiÞlðr;−λÞ ¼
const · fð1ÞðiÞlðr; λÞ. From the regularity of the geometry at
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the center and from (3.8), it follows that near the center the

interior regular solution behaves as fð1ÞðiÞlðr; λÞ ∼ r̄l.
Now the radial parts of the mode functions are

presented as

flðrÞ ¼
8<
:

AðiÞf
ð1Þ
ðiÞlðr; λÞ; for r < a

AðeÞ1f
ð1Þ
ðeÞlðr; λÞ þ AðeÞ2f

ð2Þ
ðeÞlðr; λÞ; for r > a

;

(3.14)

where fð1ÞðeÞlðr; λÞ and fð2ÞðeÞlðr; λÞ are the two linearly

independent solutions of the radial equation in the
exterior region [Eq. (3.8) with j ¼ e]. We assume that

the functions fðjÞðeÞlðr; λÞ, j ¼ 1; 2, are taken to be real.

The coefficients in (3.14) are determined by the con-
tinuity condition for the radial functions and by the jump
condition (3.9) for their radial derivatives. From these
conditions, we get

AðeÞ1 ¼ AðiÞW
ð1Þ
l ; AðeÞ2 ¼ −AðiÞW

ð2Þ
l ; (3.15)

with the notations

Wð1Þ
l ¼ Wði2Þ

l ða; λÞ
Wð12Þ

l ðaÞ
−
16πGξ
D − 1

eveðaÞτ
fð1ÞðiÞlða; λÞ
Wð12Þ

l ðaÞ
fð2ÞðeÞlða; λÞ;

Wð2Þ
l ¼ Wði1Þ

l ða; λÞ
Wð12Þ

l ðaÞ
−
16πGξ
D − 1

eveðaÞτ
fð1ÞðiÞlða; λÞ
Wð12Þ

l ðaÞ
fð1ÞðeÞlða; λÞ:

(3.16)

In (3.16) we have defined the functions

WðijÞ
l ðr; λÞ ¼ Wffð1ÞðiÞlðr; λÞ; fðjÞðeÞlðr; λÞg; j ¼ 1; 2

Wð12Þ
l ðrÞ ¼ Wffð1ÞðeÞlðr; λÞ; fð2ÞðeÞlðr; λÞg; (3.17)

where WffðrÞ; gðrÞg ¼ fðrÞg0ðrÞ − f0ðrÞgðrÞ is the

Wronskian. The Wronskian Wð12Þ
l ðrÞ can be found from

Eq. (3.8) with j ¼ e:

Wð12Þ
l ðrÞ ¼ Ce−ueðrÞþveðrÞ−ðD−1ÞweðrÞ; (3.18)

where the constant C is determined by the choice of the

functions fð1ÞðeÞlðr; λÞ and fð2ÞðeÞlðr; λÞ. Here, we will assume

that the exterior metric is asymptotically flat at large
distances from the boundary, r → ∞. With this
assumption, we can see that for large r the solution
for the exterior equation is given by r−nZνlðλrÞ, where
ZνlðλrÞ is a cylinder function of the order

νl ¼ lþ n=2: (3.19)

If we take the functions fð1ÞðeÞlðr; λÞ and fð2ÞðeÞlðr; λÞ such

that fð1ÞðeÞlðr; λÞ ≈ r−n=2JνlðλrÞ, fð2ÞðeÞlðr;ωÞ ≈ r−n=2YνlðλrÞ,
for r → ∞, with JνðxÞ and YνðxÞ being the Bessel and
the Neumann functions, then for the constant in (3.18)
we find C ¼ 2=π. In what follows we will assume this
choice of the normalization for the exterior mode
functions. In this way, as a complete set of quantum
numbers specifying the mode functions, we can take the
set α ¼ ðλ; mkÞ. Here, we assume that λ is real. In
addition, bound states can be present with a purely
imaginary λ. These states are discussed below.
The remaining coefficient AðiÞ is determined by the

normalization condition for the mode functions given byZ
dDx

ffiffiffiffiffi
jgj

p
g00φαðxÞ∂

↔

tφ
�
α0 ðxÞ ¼ iδðλ − λ0Þδmkm0

k
: (3.20)

The integral over r ≤ a is finite and the divergence for
λ ¼ λ0 comes from the upper limit of the integration over r.
As a consequence of this, we can replace the functions

fð1ÞðeÞlðr;ωÞ and fð2ÞðeÞlðr;ωÞ by their asymptotics for r → ∞.

In this way, for the normalization coefficient one finds

A2
ðiÞ ¼ λ

ðWð1Þ2
l þWð2Þ2

l Þ−1
2NðmkÞω

; (3.21)

with Wð1;2Þ
l given by (3.16). Hence, for the radial mode

functions, we get

flðr; λÞ ¼ AðiÞ

(
fð1ÞðiÞlðr; λÞ; for r < a

fðeÞlðr; λÞ; for r > a
; (3.22)

where the notation

fðeÞlðr; λÞ ¼ Wð1Þ
l fð1ÞðeÞlðr; λÞ −Wð2Þ

l fð2ÞðeÞlðr; λÞ; (3.23)

is introduced.
An equivalent form of the exterior mode functions is

given by

flðr; λÞ ¼ AðeÞglðr; λÞ; r > a; (3.24)

with the notation

glðr; λÞ ¼ f̄ð2ÞðeÞlða; λÞfð1ÞðeÞlðr; λÞ − f̄ð1ÞðeÞlða; λÞfð2ÞðeÞlðr; λÞ;
(3.25)

and with the normalization coefficient

A2
ðeÞ ¼ λ

½f̄ð1Þ2ðeÞl ða; λÞ þ f̄ð2Þ2ðeÞl ða; λÞ�−1
2NðmkÞω

: (3.26)

CASIMIR DENSITIES FROM COEXISTING VACUA PHYSICAL REVIEW D 89, 105006 (2014)

105006-5



Here, and in what follows, for a given function Fðr; λÞ, we
use the notation

F̄ðr; λÞ ¼ ∂rFðr; λÞ

−
�fð1Þ0ðiÞl ða; λÞ
fð1ÞðiÞlða; λÞ

þ 16πGξ
D − 1

eveðaÞτ
�
Fðr; λÞ; (3.27)

where fð1Þ0ðiÞl ða; λÞ ¼ ∂rf
ð1Þ
ðiÞlðr; λÞjr¼a−0. Note that one has

the relation

AðeÞ ¼ AðiÞ
fð1ÞðiÞlða; λÞ
Wð12Þ

l ðaÞ
(3.28)

for the coefficients in the exterior and interior regions.

B. Bound states

In the previous subsection we have considered the modes
with a real λ. In addition to them, the modes with an
imaginary λ can be present that correspond to possible
bound states. For these states, the exterior radial mode
functions in the region r → ∞ behave as r−n=2KνlðηrÞ,
where η ¼ jλj and KνðxÞ is the Macdonald function. In
order to have a stable vacuum state we will assume that
η < m. For the radial functions corresponding to the bound
states, one has

fblðr; λÞ ¼
�
AðibÞf

ð1Þ
ðibÞlðr; ηÞ; for r < a

AðebÞf
ð2Þ
ðebÞlðr; ηÞ; for r > a

; (3.29)

where fð2ÞðebÞlðr; ηÞ ≈ r−n=2KνlðηrÞ for r → ∞. The continu-
ity of the mode functions at r ¼ a leads to the relation

AðibÞf
ð1Þ
ðibÞlða; ηÞ ¼ AðebÞf

ð2Þ
ðebÞlða; ηÞ: (3.30)

From the jump condition for the radial derivative, we see
that the allowed values of η for bound states are solutions of
the equation

f̂ð2ÞðebÞlða; ηÞ ¼ 0; (3.31)

where for a function Fðr; ηÞ we define

F̂ðr;ηÞ¼ ∂rFðr;ηÞ−
"
fð1Þ0ðibÞlða;ηÞ
fð1ÞðibÞlða;ηÞ

þ16πGξ
D−1

eveðaÞτ
�
Fðr;ηÞ:

(3.32)

The possible solutions of Eq. (3.31) will be denoted by
η ¼ ηs, s ¼ 1; 2;….
The remaining coefficient in the mode functions (3.29) is

determined from the normalization condition for the bound
states

A−2
ðebÞ ¼2ωNðmkÞ

�Z
∞

a
dre−ueþveþðD−1Þwefð2Þ2ðebÞlðr;ηÞ

þ
fð2Þ2ðebÞlða;ηÞ
f2ðiÞlða;ηÞ

Z
a

rc

dre−uiþviþðD−1Þwifð1Þ2ðibÞlðr;ηÞ
�
;

(3.33)

with η ¼ ηs. In order to evaluate the integrals in this
formula, we note that for a solution fðjÞωlðrÞ to the radial
equation (3.8) the following formula can be proved:Z

dre−ujþvjþðD−1ÞwjfðjÞωlðrÞfðjÞω1lðrÞ

¼ euj−vjþðD−1Þwj

ω2
1 − ω2

½f0ðjÞωlðrÞfðjÞω1lðrÞ − fðjÞωlðrÞf0ðjÞω1l
ðrÞ�:

(3.34)

In particular, in the limit ω1 → ω, from here one can
obtainZ

dre−ujþvjþðD−1Þwjf2ðjÞωlðrÞ

¼ euj−vjþðD−1Þwj

2ω
½f0ðjÞωlðrÞ∂ωfðjÞωlðrÞ

− fðjÞωlðrÞ∂ωf0ðjÞωlðrÞ�: (3.35)

Applying to the integrals in Eq. (3.33) the formula (3.35)
with ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − η2

p
and using the continuity of the radial

eigenfunctions at r ¼ a, for the normalization coefficient
one finds

A−2
ðebÞ ¼ NðmkÞeuðaÞ−vðaÞþðD−1ÞwðaÞfð2ÞðebÞlða; ηÞ∂ωf̂

ð2Þ
ðebÞlða; ηÞ:

(3.36)

The coefficient AðiÞ is found from (3.30).
An equivalent expression for the normalization coeffi-

cient is obtained by using the Wronskian relation

fð2ÞðebÞlða; ηÞfð1Þ0ðebÞlða; ηÞ − fð1ÞðebÞlða; ηÞfð2Þ0ðebÞlða; ηÞ
¼ e−ueðaÞþveðaÞ−ðD−1ÞweðaÞ (3.37)

for two linearly independent solutions of the radial equation

in the exterior region. Here, the function fð1ÞðebÞlðr; ηÞ is

normalized by the relation fð1ÞðebÞlðr; ηÞ ≈ r−n=2IνlðηrÞ for

r → ∞, with IνðxÞ being the modified Bessel function.
From (3.37) we get

fð2ÞðebÞlða; ηÞf̂ð1ÞðebÞlða; ηÞ − fð1ÞðebÞlða; ηÞf̂ð2ÞðebÞlða; ηÞ
¼ e−ueðaÞþveðaÞ−ðD−1ÞweðaÞ: (3.38)
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By taking into account that for the bound states one has
Eq. (3.31), this gives

fð2ÞðebÞlða; ηsÞ ¼
e−ueðaÞþveðaÞ−ðD−1ÞweðaÞ

f̂ð1ÞðebÞlða; ηsÞ
:

Hence, the normalization constant for the exterior modes is
written in the form

A2
ðebÞ ¼ −

ηf̂ð1ÞðebÞlða; ηÞ
NðmkÞω∂ηf̂

ð2Þ
ðebÞlða; ηÞ

; (3.39)

with η ¼ ηs.

IV. WIGHTMAN FUNCTION

Having a complete set of modes, we can proceed to the
evaluation of the Wightman function by using the mode
sum formula (3.4). First, we consider the case with no
bound states. Substituting the functions (3.5) in (3.4), the
summation over mk is done by using the addition formula
for the hyperspherical harmonics [18]:

X
mk

Yðmk;ϑ;ϕÞ
NðmkÞ

Y�ðmk;ϑ
0;ϕ0Þ ¼ 2lþn

nSD
Cn=2
l ðcosθÞ; (4.1)

where θ is the angle between the directions determined
by the angles ðϑ;ϕÞ and ðϑ0;ϕ0Þ. In (4.1), SD ¼
2πD=2=ΓðD=2Þ is the surface area of the unit sphere in
D-dimensional space and Cp

l ðxÞ is the Gegenbauer poly-
nomial of degree l and order p. With the modes (3.24) and
the normalization coefficient (3.26), the expression for the
Wightman function in the exterior region reads

Wðx; x0Þ ¼
X∞
l¼0

lþ n=2
nSD

Cn=2
l ðcos θÞ

×
Z

∞

0

dλ
λ

ω

glðr; λÞglðr0; λÞe−iωΔt
f̄ð1Þ2ðeÞl ða; λÞ þ f̄ð2Þ2ðeÞl ða; λÞ

; (4.2)

where Δt ¼ t − t0 and the function glðr; λÞ is defined
by (3.25).
In order to separate from the Wightman function the

contribution induced by the interior geometry, first we
introduce the functions

fð�Þ
ðeÞlðr; λÞ ¼ fð1ÞðeÞlðr; λÞ � ifð2ÞðeÞlðr; λÞ: (4.3)

Note that, as the functions fð1ÞðeÞlðr; λÞ and fð2ÞðeÞlðr; λÞ are real,
one has fð−ÞðeÞlðr; λÞ ¼ fðþÞ�

ðeÞl ðr; λÞ. For these new functions, at

large distances, r ≫ a, one has the asymptotics

fðþÞ
ðeÞlðr; λÞ ≈ r−n=2Hð1Þ

νl ðλrÞ; fð−ÞðeÞlðr; λÞ ≈ r−n=2Hð2Þ
νl ðλrÞ;

(4.4)

with Hð1;2Þ
νl ðxÞ being the Hankel functions. Now it can be

seen that the following identity takes place:

glðr; λÞglðr0; λÞ
f̄ð1Þ2ðeÞl ða; λÞ þ f̄ð2Þ2ðeÞl ða; λÞ

¼ fð1ÞðeÞlðr; λÞfð1ÞðeÞlðr0; λÞ

−
1

2

X
j¼þ;−

f̄ð1ÞðeÞlða; λÞ
f̄ðjÞðeÞlða; λÞ

fðjÞðeÞlðr; λÞfðjÞðeÞlðr0; λÞ: (4.5)

By using the relation (4.5), the Wightman function from
(4.2) can be written in the decomposed form:

Wðx; x0Þ ¼ W0ðx; x0Þ þWcðx; x0Þ; (4.6)

with the functions

W0ðx; x0Þ ¼
X∞
l¼0

lþ n=2
nSD

Cn=2
l ðcos θÞ

×
Z

∞

0

dλ
λ

ω
fð1ÞðeÞlðr; λÞfð1ÞðeÞlðr0; λÞe−iωΔt; (4.7)

and

Wcðx; x0Þ ¼ −
X∞
l¼0

lþ n=2
2nSD

Cn=2
l ðcos θÞ

×
X
j¼þ;−

Z
∞

0

dλ
λ

ω

f̄ð1ÞðeÞlða; λÞ
f̄ðjÞðeÞlða; λÞ

fðjÞðeÞlðr; λÞfðjÞðeÞlðr0; λÞ

× e−iωΔt: (4.8)

The functionW0ðx; x0Þ is theWightman function in the case
of the background when the geometry is described by the
line element (2.3) for all values of the radial coordinate r.
As a radial function in the corresponding modes, the

function fð1ÞðeÞlðr; λÞ is taken. Recall that we have

fð1ÞðeÞlðr; λÞ ≈ r−n=2JνlðλrÞ for r → ∞ and, hence, for these

modes the vacuum state at asymptotic infinity coincides
with the Minkowskian vacuum. Thus, the function
Wcðx; x0Þ can be interpreted as the contribution to the
Wightman function induced by the geometry in the region
r < a with the line element (2.1).
If bound states are present, the contribution of the

corresponding modes to the Wightman function should
be added to (4.6). For this contribution, by using the mode
functions (3.29) with the normalization coefficient (3.39),
in the exterior region we get
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Wbsðx; x0Þ ¼ −
X∞
l¼0

2lþ n
nSD

Cn=2
l ðcos θÞ

X
η¼ηs

ηf̂ð1ÞðebÞlða; ηÞ
ω∂ηf̂

ð2Þ
ðebÞlða; ηÞ

× fð2ÞðebÞlðr; ηÞfð2ÞðebÞlðr0; ηÞe−iωΔt; (4.9)

where ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−η2

p
and η¼ ηs are solutions of Eq. (3.31).

The partWcðx; x0Þ of the Wightman function, induced by
the interior geometry, can be further transformed by taking
into account that, for large values of λ, for the functions

fðjÞðeÞlðr; λÞ in (4.8), one has fðjÞðeÞlðr; λÞ ∼ ejiλr. By using this

property and under the condition jΔtj < ðrþ r0 − 2aÞ,
assuming that the function fðþÞ

ðeÞlðr; λÞ (fð−ÞðeÞlðr; λÞ) has no

zeros for 0 < arg λ < π=2 (−π=2 < arg λ < 0), in (4.8) we
can rotate the integration contour in the complex plane λ by
the angle π=2 (−π=2) for the term with j ¼ þ (j ¼ −). In
the presence of bound states, the integrands have simple
poles at λ ¼ ηsejπi=2, corresponding to the zeros of the

function f̄ðjÞðeÞlða; λÞ on the imaginary axis. These poles have

to be circled on the right along contours with small radii. In
the integrals over the imaginary axis (λ ¼ ηe�iπ=2), the
integrands are expressed in terms of the functions

fð1ÞðeÞlða; ηe�πi=2Þ and fðjÞðeÞlðr; ηejiπ=2Þ, j ¼ þ;−. By compar-

ing the asymptotics of the functions for r → ∞, we can see

that the functions fðjÞðeÞlðr; ηejπi=2Þ are reduced to the

function fð2ÞðebÞlðr; ηÞ, up to a coefficient, and the function

fð1ÞðeÞlða; ηeπi=2Þ is reduced to the function fð1ÞðebÞlða; ηÞ. By
taking into account the normalization of the functions for
large r and the relations between the Bessel functions and
modified Bessel functions, we conclude that

fðjÞðeÞlðr; ηejπi=2Þ ¼ −j
2i
π
e−jνlπi=2fð2ÞðebÞlðr; ηÞ;

fð1ÞðeÞlða; ηejπi=2Þ ¼ ejνlπi=2fð1ÞðebÞlða; ηÞ: (4.10)

By using these relations, one can see that the integrals over
the regions ð0; imÞ and ð0;−imÞ cancel out, whereas the
integrals over small semicircles around the poles ηsejπi=2

combine in the residue at the point ηseπi=2. An interesting
fact is that the contribution of this residue to the part of the
Wightman function (4.8) exactly cancels the corresponding
contribution coming from the bound state [see (4.9)].
Finally, we get the following representation:

Wcðx; x0Þ ¼ −
X∞
l¼0

2lþ n
πnSD

Cn=2
l ðcos θÞ

Z
∞

m
dηη

f̂ð1ÞðebÞlða; ηÞ
f̂ð2ÞðebÞlða; ηÞ

×
coshðΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 −m2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 −m2
p fð2ÞðebÞlðr; ηÞfð2ÞðebÞlðr0; ηÞ:

(4.11)

Recall that, in deriving this formula we have assumed that
jΔtj < ðrþ r0 − 2aÞ. In particular, this condition is obeyed
in the coincidence limit. An important advantage of the
representation (4.11), compared with (4.8), is that in the
upper limit of the integration the integrand decays expo-
nentially instead of the strongly oscillatory behavior
in (4.8).
With the known Wightman function, we can evaluate the

VEVs of the field squared and the energy-momentum
tensor by using the formulas below:

h0jφ2j0i ¼ lim
x0→x

Wðx; x0Þ;
h0jTikj0i ¼ lim

x0→x
∂i∂ 0

kWðx; x0Þ
þ ½ðξ − 1=4Þgik∇l∇l − ξ∇i∇k − ξRik�h0jφ2j0i;

(4.12)

where Rik is the Ricci tensor for the background spacetime.
The expression for the energy-momentum tensor in (4.12)
differs from the standard one, given, for example, in [17],
by the term that vanishes on the mass shell (see [19]).
Similarly to the Wightman function, the VEVs are decom-
posed into two parts:

h0jφ2j0i ¼ hφ2i0 þ hφ2ic;
h0jTikj0i ¼ hTiki0 þ hTikic; (4.13)

where the parts hφ2i0 and hTiki0 are obtained from the
Wightman function W0ðx; x0Þ. The contributions hφ2ic and
hTikic are induced by the geometry in the region r < a and
are given by formulas similar to (4.12) with Wðx; x0Þ
replaced by Wcðx; x0Þ.
Of course, the coincidence limits in (4.12) are divergent

and a renormalization procedure is necessary. An important
point to be mentioned here is that, for points r > a the local
geometry is not changed by the interior region and, as a
consequence, the divergences are contained in the parts
hφ2i0 and hTiki0 and the parts hφ2ic and hTikic are finite.
Hence, providing an explicit decomposition of the
Wightman function in the form (4.11), we have reduced
the renormalization procedure for the VEVs to the one in
the case of the background where the geometry is described
by the line element (2.3) for all values of the radial
coordinate r.
In particular, by taking into account that

Cn=2
l ð1Þ ¼ Γðlþ nÞ

ΓðnÞΓðlþ 1Þ ; (4.14)

for the contribution in the VEVof the field squared induced
by the interior geometry we get the expression
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hφ2ic ¼ −
ΓðD=2Þ
2πD=2þ1

X∞
l¼0

Dl

Z
∞

m
dη

f̂ð1ÞðebÞlða; ηÞ
f̂ð2ÞðebÞlða; ηÞ

ηfð2Þ2ðebÞlðr; ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 −m2

p ;

(4.15)

where

Dl ¼
ð2lþ nÞΓðlþ nÞ
ΓðD − 1ÞΓðlþ 1Þ (4.16)

is the degeneracy of the angular mode with a given l. The
corresponding VEV of the energy-momentum tensor is
obtained from (4.12). The VEV (4.15), in general, diverges
on the boundary r ¼ a. The leading term of the corre-
sponding asymptotic expansion over the distance from the
boundary depends on the specific interior and exterior
geometries and examples will be done below.
We have considered the Wightman function in the

exterior region. The mode sum for the corresponding
function in the interior region is obtained by using the
interior modes from (3.14) with the normalization coeffi-
cient (3.21). Subtracting from the mode sum the Wightman
function for the geometry described by the line element (2.1)
for all values of the radial coordinate, we can separate the
part induced by the exterior geometry. In what follows we
will be concerned with the VEVs in the exterior region.

V. MINKOWSKI SPACETIME AS AN
EXTERIOR GEOMETRY

A. Wightman function

As an application of general results given in previous
sections, here we assume that the exterior geometry is
described by the Minkowski spacetime. The corresponding
line element has the form

ds2e ¼ dt2 − dr2 − r2dΩ2
D−1; (5.1)

with the functions appearing in (2.3):

ueðrÞ ¼ veðrÞ ¼ 0; eweðrÞ ¼ r: (5.2)

In this case, in the exterior region we have the radial
functions

fð1ÞðeÞlðr; λÞ ¼ r−n=2JνlðλrÞ; fð2ÞðeÞlðr; λÞ ¼ r−n=2YνlðλrÞ;
fðþÞ
ðeÞlðr; λÞ ¼ r−n=2Hð1Þ

νl ðλrÞ; fð−ÞðeÞlðr; λÞ ¼ r−n=2Hð2Þ
νl ðλrÞ:
(5.3)

For the corresponding functions on the imaginary axis,
we get

fð1ÞðebÞlðr; ηÞ ¼ r−n=2IνlðηrÞ;
fð2ÞðebÞlðr; ηÞ ¼ r−n=2KνlðηrÞ:

(5.4)

In the special case under consideration, W0ðx; x0Þ is the
Wightman function in the Minkowski spacetime. For
the contribution induced by the interior geometry, we have
the expression

Wcðx; x0Þ ¼ −
X∞
l¼0

ð2lþ nÞCn=2
l ðcos θÞ

πnSDðrr0Þn=2

×
Z

∞

m
dηη

~IνlðηaÞ
~KνlðηaÞ

×
coshðΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 −m2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 −m2
p KνlðηrÞKνlðηr0Þ: (5.5)

In this formula, for a given function FðzÞ we have defined

~FðzÞ ¼ zF0ðzÞ −
�
aylða; ηÞ þ

16πGξ
D − 1

τaþD
2
− 1

�
FðzÞ;
(5.6)

with the notation

ylðr; ηÞ ¼
∂rf

ð1Þ
ðiÞlðr; iηÞ

fð1ÞðiÞlðr; iηÞ
; (5.7)

and with

8πG
D − 1

τ ¼ u0iðaÞ þ ðD − 1Þ½w0
iðaÞ − 1=a�: (5.8)

Note that, for the exterior Minkowskian spacetime,
Eq. (3.31), defining the bound states, is written in the form

~KνlðηaÞ ¼ 0; η < m: (5.9)

The existence of the solutions for this equation with η > m
leads to the instability of the exterior Minkowskian
vacuum. An example of this type will be discussed below
in Sec. VI.
The expression (5.5) differs from the corresponding

formula for the Wightman function outside a spherical
boundary in Minkowski spacetime with the Robin
boundary condition ðβR þ ∂rÞφ ¼ 0 at r ¼ a (see [20])
by the replacement of the Robin coefficient:

βR → −ylða; ηÞ −
16πGξ
D − 1

τ: (5.10)

In the problem under consideration, the effective Robin
coefficient depends on both η and l. As it will be shown
below, this leads to the weakening of divergences in the
local VEVs on the boundary.

B. VEV of the field squared

The renormalization of the VEVs in the exterior region is
reduced to the subtraction of the corresponding VEVs in
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Minkowski spacetime. In this case the renormalized VEVs
of the field squared and the energy-momentum tensor
coincide with the parts hφ2ic and hTikic induced by the
interior geometry. For the renormalized VEV of the field
squared, we get

hφ2ic¼−
ΓðD=2Þ

2πD=2þ1rD−2

X∞
l¼0

Dl

Z
∞

m
dηη

~IνlðaηÞ
~KνlðaηÞ

K2
νlðrηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2−m2

p :

(5.11)

Let us discuss the behavior of this VEV in the asymptotic
regions of the parameters.
At large distances from the boundary and for a massive

field, assuming that mr ≫ 1 for a fixed ma, the dominant
contribution to the integral in (5.11) comes from the region
near the lower limit of the integration. By using the
asymptotic formula for the Macdonald function for large
values of the argument, to the leading order we get

hφ2ic ≈ −
ΓðD=2Þe−2rm

8πðDþ1Þ=2 ffiffiffiffiffiffi
mr

p
rD−1

X∞
l¼0

Dl

~IνlðamÞ
~KνlðamÞ : (5.12)

Hence, at distances from the boundary larger than the
Compton wavelength, the VEV is exponentially sup-
pressed. For a massless field and for r ≫ a, we introduce
in (5.11) a new integration variable y ¼ rη and expand the
functions ~Iνlðya=rÞ and ~Kνlðya=rÞ. The contribution of
the leading term for a given l behaves as ða=rÞ2lþ2D−3 and
the integral is evaluated by using the formula

IðνÞ≡
Z

∞

0

dyy2νK2
νðyÞ¼

πΓð2νþ1=2ÞΓðνþ1=2Þ
4Γðνþ1Þ : (5.13)

The dominant contribution comes from the term with the
lowest orbital momentum l ¼ 0 with the leading term

hφ2ic ≈
D=2 − 1 − β0
D=2 − 1þ β0

ðD − 2ÞΓðD − 3=2ÞΓððD − 1Þ=2Þ
2ð4πÞD=2Γ2ðD=2ÞaD−1

× ða=rÞ2D−3; (5.14)

where

β0 ¼ ay0ða; 0Þ þ
16πGξ
D − 1

τaþD
2
− 1: (5.15)

If β0 ¼ D=2 − 1 or β0 ¼ 1 −D=2, the next-to-leading
order terms should be kept in the expansions of the
functions ~Iνlðya=rÞ and ~Kνlðya=rÞ, respectively. Hence,
for a massless field the decay of the VEVat large distances
follows a power law.
The VEV of the field squared (5.11) diverges on the

boundary r ¼ a. The surface divergences in the VEVs of
local physical observables are well known in the theory of
the Casimir effect and were investigated for various types
of boundary geometries. In the problem at hand, the

appearance of divergences is related to the idealized model
of the zero thickness transition range between the interior
and exterior geometries. In order to find the leading term in
the asymptotic expansion over the distance from the
boundary, we note that for points near the boundary the
dominant contribution to the series in (5.11) comes from
large values of l. For these l, introducing a new integration
variable x ¼ aη=νl, we use the uniform asymptotic expan-
sions for the modified Bessel functions for large values of
the order (see, for instance, [21]). For the further evaluation
we also need the uniform asymptotic expansion of the
function ylðr; ηÞ. From Eq. (3.8) for the interior radial mode
function the following equation for the function (5.7) is
obtained:

y0lðr; ηÞ þ y2l ðr; ηÞ þ ½u0i − v0i þ ðD − 1Þw0
i�ylðr; ηÞ

− e2vi
�
η2 −m2

e2ui
þm2 þ ξRðiÞ þ

lðlþ nÞ
e2wi

�
¼ 0: (5.16)

From here it follows that for the leading term in the
asymptotic expansion of the function ylðr; νlxÞ for large
values of l one has

ylðr; νlxÞ ≈�νlevi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2uix2 þ e−2wi

p
: (5.17)

For the function fðiÞlðr; iηÞ in (5.7), regular at the center, the
upper sign should be taken. By taking into account that
uiðaÞ ¼ viðaÞ ¼ 0 and e2wiðaÞ ¼ a2, the asymptotic expan-
sion at r ¼ a can be written as

ylða; νlxÞ ≈
νl
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2 þ 1

p �
1þ BðaxÞ

νl
þ � � �

�
; (5.18)

where the function BðaxÞ depends on the interior
geometry.
By making use of the uniform asymptotic expansions

for the modified Bessel functions, with the combination
of (5.18), we can see that the leading order contribution
to the function ~IνlðνlxÞ coming form the first term in
(5.18) is canceled by the leading term in the asymptotic
expansion of the function zI0νlðzÞ with z ¼ νlx. As a
result, for the ratio appearing in (5.11), in the leading
order, we get

~IνlðνlxÞ
~KνlðνlxÞ

≈
CðxÞ
2πl

e2lηðxÞ; (5.19)

with the function

CðxÞ¼BðxÞþ
�
16πGξ
D−1

τaþD
2
−1

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þx2
p þ x2=2

ð1þx2Þ3=2 ;

(5.20)

and with the standard notation (see [21])
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ηðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ ln

x

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p : (5.21)

The function BðxÞ for special cases of the interior dS and
AdS spaces will be given below.
Substituting (5.19) and the uniform asymptotic expan-

sion for the function K2
νlðνlxr=aÞ into (5.11), with a new

integration variable x ¼ aη=νl, in the leading order we use
the relations Dl ≈ 2lD−2=ΓðD − 1Þ and ηðxr=aÞ − ηðxÞ≈ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ðr=a − 1Þ. In the same order, by taking into

account that
P∞

l¼0 l
p−1e−αl ≈ ΓðpÞ=αp for α → 0, for the

leading term in the asymptotic expansion of the VEV for
the field squared near the boundary one gets

hφ2ic ≈ −
ΓðD=2Þðr − aÞ2−D
2DðD − 2ÞπD=2þ1a

Z
∞

0

dx
CðxÞ

ð1þ x2ÞðD−1Þ=2 :

(5.22)

Note that for a spherical boundary in Minkowski spacetime
on which the field operator obeys Dirichlet or Neumann

(or, in general, Robin) boundary conditions, the VEVof the
field squared diverges on the boundary as ðr − aÞ1−D and
the divergence is stronger.

C. Vacuum energy-momentum tensor

The VEV of the energy-momentum tensor is evaluated
by using the formula (4.12). The renormalization in the
exterior region is reduced to the subtraction of the part
that corresponds to the Minkowski spacetime for all
0 ≤ r < ∞. The VEV of the energy-momentum tensor is
diagonal. For the renormalized components we get (with no
summation over i)

hTi
iic ¼

ΓðD=2Þ
4πD=2þ1rD

X∞
l¼0

Dl

Z
∞

m
dηη

~IνlðaηÞ
~KνlðaηÞ

GðiÞ
νl ½KνlðrηÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 −m2

p ;

(5.23)

where for a given function fðyÞ we define

Gð0Þ
ν ½fðyÞ� ¼ ð4ξ − 1Þ

�
y2f02ðyÞ − nyfðyÞf0ðyÞ þ

�
ν2 −

ð1þ 4ξÞy2 − 2ðmrÞ2
1 − 4ξ

�
f2ðyÞ

�
;

Gð1Þ
ν ½fðyÞ� ¼ y2f02ðyÞ þ ξ1yfðyÞf0ðyÞ − ðy2 þ ν2 þ ξ1n=2Þf2ðyÞ;

GðjÞ
ν ½fðyÞ� ¼ ð4ξ − 1Þy2f02ðyÞ − ξ1yfðyÞf0ðyÞ þ

�
ð4ξ − 1Þy2 þ ν2ð1þ ξ1Þ þ ξ1n=2

nþ 1

�
f2ðyÞ; (5.24)

with j ¼ 2;…; D. In (5.24), the notation

ξ1 ¼ ðD − 1Þð4ξ − 1Þ þ 1 (5.25)

is introduced. In general, the vacuum stresses along the
radial and azimuthal directions are isotropic.
It can be checked that the VEV given by (5.23) obeys

the covariant conservation equation ∇khTk
i ic ¼ 0, which,

for the geometry under consideration, is reduced to a single
equation:

r∂rhT1
1ic þ ðD − 1ÞðhT1

1ic − hT2
2icÞ ¼ 0: (5.26)

We also have a trace relation:

hTi
iic ¼ ½Dðξ − ξDÞ∇l∇l þm2�hφ2ic: (5.27)

In particular, the vacuum energy-momentum tensor is
traceless for a conformally coupled massless scalar field.
Now let us investigate the behavior of the vacuum

energy-momentum tensor at large distances and near the
boundary. At large distances from the sphere and for a
massive field, similarly to (5.12), in the leading order
we get

hT0
0ic ≈ hT2

2ic ≈ −
2mr
D − 1

hT1
1ic

≈
ΓðD=2Þm2ðξ − 1=4Þ

2πðD−1Þ=2rD−1 ffiffiffiffiffiffi
mr

p
e2mr

X∞
l¼0

Dl

~IνlðamÞ
~KνlðamÞ : (5.28)

Note that in this region jhT1
1icj ≪ jhT0

0icj. For a massless
field, assuming that r ≫ a, we introduce a new integration
variable, y ¼ rη, in (5.23) and expand the integrand
over a=r. For a given l, the leading term behaves
like ða=rÞ2lþ2D−1 and it contains the integralsR∞
0 dyy2νlþ2FðiÞ

νl ½KνlðyÞ�. These integrals are evaluated by
using the relationsZ

∞

0

dyy2νþ1KνðyÞK0
νðyÞ ¼ −ðνþ 1=2ÞIðνÞ;Z

∞

0

dyy2νþ2K02
ν ðyÞ ¼

�
ν2 þ ðνþ 1=4Þ νþ 3=2

νþ 1

�
IðνÞ;

(5.29)

with the function IðνÞ defined by (5.13). These relations
are proved by making use of the well-known properties of
the Macdonald functions. The dominant contributions
come from the terms with l ¼ 0 and, to the leading order,
for the energy density we find
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hT0
0ic ≈ −

ðξ − ξDÞða=rÞ2D−1

2D−2πD=2aDþ1

D=2 − 1 − β0
D=2 − 1þ β0

×
ΓðD − 1=2ÞΓððDþ 1Þ=2Þ

ΓðD=2ÞΓðD=2 − 1Þ : (5.30)

The asymptotics of the radial and azimuthal stresses are
given by the relations

hT1
1ic ≈ −

D − 1

D
hT2

2ic ≈ −hT0
0ic: (5.31)

As is seen, for a massless field, at large distances from the
boundary the radial pressure, −hT1

1ic, is equal to the energy
density. For a conformally coupled field, the leading terms
vanish.
The asymptotic behavior of the VEV of the energy-

momentum tensor near the boundary r ¼ a is investigated
in a way similar to what we used for the field squared. By
using (5.19) and the uniform asymptotic expansions for the
Macdonald function and its derivative, in the leading order
we obtain

hT0
0ic ≈

ðD − 1ÞΓðD=2Þ
2Dþ2πD=2þ1aðr − aÞD

Z
∞

0

dx
4ξðx2 þ 1Þ − 1

ðx2 þ 1ÞðDþ1Þ=2 CðxÞ;

hT2
2ic ≈

ðD − 1ÞΓðD=2Þ
2Dþ2πD=2þ1aðr − aÞD

Z
∞

0

dx
CðxÞ

ð1þ x2ÞðDþ1Þ=2

×

�
ð4ξ − 1Þðx2 þ 1Þ þ 1

D − 1

�
; (5.32)

where the function CðxÞ, defined by (5.20), depends on
the specific geometry in the region r < a. The leading
term in the asymptotic expansion of the radial stress is
most easily found by making use of the continuity
equation (5.26):

hT1
1ic ≈ −

r − a
a

hT2
2ic: (5.33)

For a spherical boundary in Minkowski spacetime with
Dirichlet or Neumann boundary conditions on the field
operator, the leading terms have the form (with no
summation over i)

hTi
iic ≈� 2DΓððDþ 1Þ=2Þ

ð4πÞðDþ1Þ=2ðr − aÞDþ1
ðξ − ξDÞ; (5.34)

for i ¼ 0; 2;…; D, and for the radial stress one has

hT1
1ic ≈ −

D − 1

D
ðr=a − 1ÞhT2

2ic: (5.35)

In (5.34), the upper/lower sign corresponds to the
Dirichlet/Neumann boundary condition. The leading
terms for the case of the Robin boundary condition
coincide with those for the Neumann condition. Similarly

to the case of the field squared, the divergences in these
cases are stronger compared to those for the geometry
under consideration.

VI. EXAMPLES OF THE INTERIOR METRIC:
dS AND AdS SPACES

In this section, as examples of the interior metric we
consider the maximally symmetric spacetimes with positive
and negative cosmological constants, namely, dS and AdS
spaces. As in the previous section, the exterior geometry is
described by the Minkowski spacetime with the exterior
line element (5.1). For the interior dS and AdS spaces, the
corresponding line element in static coordinates has the
form

ds2i ¼ ð1þ k~r2=α2Þd~t2 − ð1þ k~r2=α2Þ−1d~r2 − ~r2dΩ2
D−1;

(6.1)

where k ¼ −1 and k ¼ 1 for dS and AdS spaces, respec-
tively. The parameter α is related to the cosmological
constant Λ through the expression α ¼ DðD − 1Þ=ð2jΛjÞ.
In the case of dS space we assume that the boundary is
inside the dS horizon, corresponding to ~r ¼ α.
We should transform the line element in the form that is

continuously glued with the exterior Minkowskian line
element at the boundary. To this aim, first we introduce a
new radial coordinate, r, in accordance with

~r ¼ αSkðxÞ; x ¼ ðr − rcÞ=α; (6.2)

where rc ≤ r ≤ a and

SkðxÞ ¼
�
sin x; k ¼ −1
sinh x; k ¼ 1

: (6.3)

The parameter rc will be determined below by the matching
conditions on the boundary. Note that in the case of dS
space the horizon corresponds to x ¼ π=2 and, hence,
to the value of the new radial coordinate r ¼ πα=2þ rc.
With the coordinate transformation (6.2), the line element
takes the form

ds2i ¼ C2
kðxÞd~t2 − dr2 − α2S2kðxÞdΩ2

D−1; (6.4)

where

CkðxÞ ¼
�
cos x; k ¼ −1
cosh x; k ¼ 1

: (6.5)

Now the component g11 of the metric tensor is continuous
at r ¼ a. From (6.4) it follows that the coordinate r
measures the proper distance along the radial direction.
Next, we define a new time coordinate, t, in accordance

with
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~t ¼ t
CkðxaÞ

; xa ¼
a − rc
α

: (6.6)

For the interior line element, we get

ds2i ¼
C2
kðxÞ

C2
kðxaÞ

dt2 − dr2 − α2S2kðxÞdΩ2
D−1: (6.7)

In terms of the new coordinate t, at the boundary, the
component g00 is continuous as well. From (6.7), for the
interior functions in (2.1), one finds

euiðrÞ ¼ CkðxÞ
CkðxaÞ

; viðrÞ¼ 0; ewiðrÞ ¼ αSkðxÞ; (6.8)

with x given by (6.2).
The metric tensor corresponding to (6.7) should be glued

at r ¼ a with the exterior Minkowski spacetime in spheri-
cal coordinates with the line element (5.1) and with the
functions (5.2). As we have already noticed, the compo-
nents g00 and g11 are continuous. From the continuity of the
components gll, l ¼ 2;…; D, we get

SkðxaÞ ¼ a=α; (6.9)

with xa defined by (6.6). For a given a and α, Eq. (6.9)
determines the value of the parameter rc. For dS space, rc is
negative (1 − π=2 ≤ rc < 0 for 0 ≤ a=α < 1) and for AdS
space it is positive. In the latter case and for large values of
a=α one has rc=α ≈ a=α − lnð2a=αÞ. From (6.9) it follows
that for the dS space the boundary near the dS horizon
(xa → π=2) corresponds to the limit a → α. Note that, by
taking into account (6.9), for CkðxaÞ in (6.7) one obtains

CkðxaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kða=αÞ2

q
: (6.10)

For the components of the surface energy-momentum
tensor, from (2.9), we get the expressions (with no
summation over i)

τ00 ¼
D − 1

8πGa
½CkðxaÞ − 1�;

τii ¼
D − 2

8πGa

�
ka2=α2

ðD − 2ÞCkðxaÞ
þ CkðxaÞ − 1

�
; (6.11)

with i ¼ 2;…; D. Note that the surface energy density is
negative for the interior dS space and is positive for the AdS
space. In the case of dS space, one has CkðxaÞ → 0 in the
limit; then the boundary tends to the dS horizon, a → α. In
this limit, the azimuthal stress in (6.11) diverges.
With the line element (6.7), Eq. (3.8) for the interior

radial functions takes the form

∂x½CkðxÞSD−1
k ðxÞ∂xfðiÞlðrÞ�

CkðxÞSD−1
k ðxÞ þ

�
α2ω2C2

kðxaÞ
C2
kðxÞ

−
lðlþD−2Þ

S2kðxÞ

−α2ðm2þξRðiÞÞ
�
fðiÞlðrÞ¼ 0; (6.12)

where the Ricci scalar is given by

RðiÞ ¼ −kDðDþ 1Þ=α2: (6.13)

The solution of Eq. (6.12), regular at the center, x ¼ 0,
is expressed in terms of the hypergeometric function as
(see also [22])

fð1ÞðiÞlðr; λÞ ¼
½tanhð ffiffiffi

k
p

xÞ= ffiffiffi
k

p �l
coshD=2þνð ffiffiffi

k
p

xÞ Fðb
ðþÞ
lλ ; bð−Þlλ ;

lþD=2; tanh2ð
ffiffiffi
k

p
xÞÞ; (6.14)

where we have introduced the notations

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=4þ kα2m2 −DðDþ 1Þξ

q
;

bð�Þ
lλ ¼ 1

2
½lþD=2þ ν�

ffiffiffi
k

p
αCkðxaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

p
�: (6.15)

For the dS interior, the parameter ν can be either real or
purely imaginary. In the AdS case and for the imaginary ν
the ground state becomes unstable [23,24]. By using
formula 9.1.70 from [21], it can be seen that in the limit

α → ∞ the function fð1ÞðiÞlðr; λÞ reduces to the function

r−n=2JνlðλrÞ, up to a constant coefficient. Note that in
the expressions of the VEVs in the exterior region the
function (6.14) enters in the form (5.7) and, hence, the
coefficient is not relevant. The second linearly independent
solution of (6.12) is given by the expression

fð2ÞðiÞlðr; λÞ ¼
½ ffiffiffi

k
p

cothð ffiffiffi
k

p
xÞ�lþD−2

coshD=2−νð ffiffiffi
k

p
xÞ Fð1 − bðþÞ

lλ ; 1 − bð−Þlλ ;

2 − l −D=2; tanh2ð
ffiffiffi
k

p
xÞÞ: (6.16)

By using the relation [21]

Fða; b; c; zÞ ¼ ð1 − zÞc−a−bFðc − a; c − b; c; zÞ; (6.17)

for the hypergeometric function, we can see that the
solutions (6.14) and (6.16) are symmetric under the change
ν → −ν. In particular, from here it follows that these
solutions are real for purely imaginary values of ν. We

also have the property fðjÞðiÞlðr; λeπiÞ ¼ fðjÞðiÞlðr; λÞ, j ¼ 1; 2.
Now, the Wightman function and the VEVs of the field

squared and of the energy-momentum tensor in the exterior
region are given by Eqs. (5.5), (5.11), and (5.23), where
now in the definition (5.6) one has
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8πG
D − 1

τa ¼ ka2=α2

CkðxaÞ
þ ðD − 1Þ½CkðxaÞ − 1�: (6.18)

In the expression of the logarithmic derivative of the radial
function (6.14) we use the following formula for the
derivative of the hypergeometric function:

ðc − nÞnzc−1−nFða; b; c − n; zÞ ¼ ∂n
z ½zc−1Fða; b; c; zÞ�;

(6.19)

where ðcÞn is Pochhammer’s symbol. Taking n ¼ 1, we get

∂zFða; b; c; zÞ
Fða; b; c; zÞ ¼ c − 1

z

�
Fða; b; c − 1; zÞ
Fða; b; c; zÞ − 1

�
: (6.20)

With the help of this formula, the expression of the
logarithmic derivative for the radial function (6.14) is
presented in the form

∂rf
ð1Þ
ðiÞlðr; λÞ

fð1ÞðiÞlðr; λÞ
¼ 1

α
ffiffiffiffiffi
kz

p
�
l − ðνl þ νþ 1Þzþ 2ð1 − zÞνl

×

�
FðbðþÞ

lλ ; bð−Þlλ ; νl; zÞ
FðbðþÞ

lλ ; bð−Þlλ ; νl þ 1; zÞ
− 1

��
; (6.21)

with the notation

z ¼ tanh2ð
ffiffiffi
k

p
xÞ; (6.22)

and with x defined in (6.2).
In the expression of the VEVs in the exterior region, the

logarithmic derivative (6.21) is evaluated at r ¼ a. In this
case

zjr¼a ¼ za ¼
1

1þ kα2=a2
; (6.23)

and in the notation (5.6) with a tilde, one has

ylða; ηÞ ¼
ðkzaÞ−1=2

α
fl − ðνl þ νþ 1Þza

þ 2ð1 − zaÞνl½Fνlðη; zaÞ − 1�g: (6.24)

Here, we have defined the function

Fνlðη; zaÞ ¼
Fðbþl ðηÞ; b−l ðηÞ; νl; zaÞ

Fðbþl ðηÞ; b−l ðηÞ; νl þ 1; zaÞ
; (6.25)

with

b�l ðηÞ ¼
1

2

h
νl þ νþ 1� i

ffiffiffi
k

p
αCkðxaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 −m2

q i
(6.26)

and with CkðxaÞ given by (6.10). Hence, for the interior dS
and AdS geometries, the VEVs of the field squared and the
energy-momentum tensor in the exterior Minkowskian

region are given by (5.11) and (5.23), where in the
expressions for ~IνlðaηÞ and ~KνlðaηÞ, defined by (5.6),
we should substitute (6.18) and (6.24).
The equation for bound states is obtained from (5.9) with

the same substitutions. By a numerical calculation, we have
seen that, for a given aη, the function j ~KνlðaηÞj increases
with increasing l and, hence, if there are no bound states for
l ¼ 0 the same will be the case for a higher l. For the
interior AdS geometry, the function ~KνlðaηÞ is always
negative and in this case there are no bound states. For the
dS interior the same is the case for a minimally coupled
field. The situation is changed in the case of dS interior
geometry for nonminimally coupled fields. We will discuss
the features on the example of a conformally coupled field.
If the dS horizon is not too close to the separating

boundary, once again, the function ~KνlðaηÞ is negative and
the bound states are absent. However, bound states appear
for α ¼ α1 > a, where α1 is some critical value sufficiently
close to a. With a further decrease of α, the value of aη
corresponding to the bound state increases and, starting
from the second critical value α ¼ α2, it becomes larger
than ma. This corresponds to the imaginary value of the
energy for the mode and signals the instability of the
exterior Minkowskian vacuum for a < α < α2. For a
massless field, any possible real solution of the equation
~KνlðaηÞ ¼ 0 leads to the instability of the exterior vacuum.
We have illustrated this type of situation for dS space in
Fig. 1, where for l ¼ 0 the function ~KνlðaηÞ is plotted
versus aη for a conformally coupled scalar field in D ¼ 3
spatial dimensions. For the left panel, we have taken ma ¼
1=4 and the right panel is for a massless field. The curves
on the left panel correspond to the values of the ratio
α=a ¼ 1.0018, 1.0025, 1.00281, 1.0035, 1.005, increasing
from top to bottom lines. For the first critical value,
corresponding to the appearance of the bound state, one
has α1=a ≈ 1.00281. The second critical value, starting
from which the vacuum becomes unstable, corresponds to
α2=a ≈ 1.0021. The left zero on the left panel corresponds
to a bound state (ηs < m), whereas the right zero corre-
sponds to an unstable mode (ηs > m). For the curves on
the right panel, we have α=a ¼ 1.002; 1.0025; 1.00305;
1.005; 1.1 (increasing from top to bottom lines). Here, any
solution of Eq. (5.9) corresponds to the instability, and for
the critical value of the dS curvature radius we
have α2=a ≈ 1.00305.
Now we turn to the investigation of the asymptotic

behavior of the VEVs. At large distances, the asymptotics
are given by (5.12), (5.28), and (5.14), (5.30) for massive
and massless fields, respectively. For the interior geom-
etries under consideration, the quantity β0, appearing in the
asymptotic for a massless field, is given by the expression

β0 ¼
1

CkðxaÞ
f2kða=αÞ2ðξ − b0Þ þ n½FðzaÞ − 1�g

þ 2ξðD − 1Þ½CkðxaÞ − 1� þ n=2; (6.27)
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where b0 ¼ D=4þ ν=2 and we have defined the function

FðzaÞ ¼
Fðb0; b0;D=2 − 1; zaÞ
Fðb0; b0;D=2; zaÞ

: (6.28)

For a minimally coupled field, for this function one has

FðzaÞ ¼ 1þ kD
D − 2

a2

α2
; (6.29)

and from (6.27) we get β0 ¼ D=2 − 1. Now, from (5.14)
and (5.30), we see that the leading terms in the asymptotic
expansion of the VEVs at large distances vanish and the
decay for this case is stronger. For a conformally coupled
field and for D ¼ 3, one has b0 ¼ 1, and the function FðzÞ
in (6.28) is reduced to

FðzaÞ ¼ k
a2

α2
þ a=α

Akð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2=a2 þ k

p
Þ
; (6.30)

with

AkðxÞ ¼
�
arcsinhx; k ¼ −1
arcsin x; k ¼ 1

: (6.31)

With the function (6.30) in (6.27), one has ðn − 2β0Þ=
ðnþ 2β0Þ > 0 for all values of a=α in the AdS case and for
a=α < a=α2 for the dS interior. In the latter case a=α2 ≈
0.997 is the critical value for the vacuum instability (see the
right panel in Fig. 1). Now, from (5.14) it follows that the
corresponding VEVof the field squared is positive at large
distances.
In order to find the leading terms in the asymptotic

expansions of the VEVs near the boundary by using the
general formulas (5.22) and (5.32), we need the function
BðxÞ in the asymptotic expansion (5.18) for the interior
spaces under consideration. This function is found in

Appendix A. By using the expression for the function
CðxÞ from (A10), the integral in (5.22) is expressed in terms
of the gamma functions and for the VEV of the field
squared one gets

hφ2ic
≈ −

ðξ − ξDÞΓððD − 1Þ=2Þ
2DπðDþ1Þ=2ðD − 2Þa

CkðxaÞ − 1

ðr − aÞD−2

�
Dþ 1

CkðxaÞ
�
:

(6.32)

This leading term does not depend on the mass of the field.
For a conformally coupled field it vanishes and the next-to-
leading order term should be kept. For a minimally coupled
field, near the boundary the VEV of the field squared is
negative for the interior dS space and positive for the
AdS space.
In Fig. 2, for the dS interior geometry, we have plotted

the VEV of the field squared in the exterior region,
αD−1hφ2ic, in D ¼ 3 spatial dimensions, as a function of
the ratio r=a. The numbers near the curves are the values of
a=α. The left and right panels correspond to minimally
(ξ ¼ 0) and conformally (ξ ¼ 1=6) coupled massless sca-
lars. Similar graphs for the AdS interior geometry are
presented in Fig. 3.
In a similar way, from (5.32) for the VEVs of the energy

density and the azimuthal stress near the boundary we
obtain

hT0
0ic ≈

ΓððDþ 1Þ=2Þ½CkðxaÞ − 1�
2D−1πðDþ1Þ=2aðr − aÞD

×

�
ðξ − ξDÞ

�
Dðξ − ξDÞ þ

ξ

CkðxaÞ
�

− ξD
ðξ − ξDþ2Þ
CkðxaÞ

�
: (6.33)
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FIG. 1. The function ~KνlðaηÞ in the equation of the bound states for l ¼ 0 versus aη in the case of a conformally coupled field inD ¼ 3
spatial dimensions. The left panel corresponds to a massive field withma ¼ 1=4 and the right panel presents the case of a massless field.
For the graphs on the left panel, α=a ¼ 1.0018, 1.0025, 1.00281, 1.0035, 1.005, and, for the right panel, α=a ¼ 1.002, 1.0025, 1.00305,
1.005, 1.1 (increasing from top to bottom lines in both cases).
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and

hT2
2ic ≈

ΓððDþ 1Þ=2Þ½CkðxaÞ− 1�
2D−1πðDþ1Þ=2aðr− aÞD

×

�
ðξ− ξDÞ

�
Dðξ− ξDÞ þ

ξ− 1=4
CkðxaÞ

�
þ ξ− ξDþ2

4DCkðxaÞ
�
;

(6.34)

where ξDþ2 ¼ ðDþ 1Þ=ð4ðDþ 2ÞÞ. The leading term in
the asymptotic expansion of the radial stress is found by
using the relation (5.33). For a minimally coupled field, the
energy density, hT0

0ic, and azimuthal stress, hT2
2ic, are

negative near the boundary for the dS interior space and
are positive for the AdS interior. The expressions (6.33) and
(6.34) are further simplified for a conformally coupled field

hT2
2ic ≈ −

1

D − 1
hT0

0i

≈
ΓððDþ 1Þ=2Þ½1=CkðxaÞ − 1�

2Dþ3πðDþ1Þ=2D2ðDþ 2Þaðr − aÞD : (6.35)

In this case, near the boundary the vacuum energy and the
azimuthal pressure (−hT2

2ic) are negative for the interior dS
space and are positive for the AdS space.
Figure 4 displays the VEV of the energy density,

αDþ1hT0
0ic, induced by the interior D ¼ 3 dS (left panel)

and AdS (right panel) geometries, for a conformally
coupled massless scalar field, as a function of the rescaled
radial coordinate. The numbers near the curves correspond
to the values of the parameter a=α. The corresponding
graphs for a massless minimally coupled scalar field show
similar behavior.
It is also of interest to consider the dependence of the

VEVs on the mass of the field. In Fig. 5 we have plotted the
VEV of the energy density in the exterior region as a
function of mα, for fixed values a=α ¼ 0.5, r=a ¼ 1.5, in
the cases of minimally (left panel) and conformally (right
panel) coupled fields in D ¼ 3 spatial dimensions. The full
and dashed curves correspond to interior dS and AdS
spaces. As is seen from the graphs, the VEV is not a
monotonic function of the mass.
In the investigation of the VEVs for the case of the

interior dS space, we have assumed that α=a > 1. For the

2

0.1

1

1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r a

10
3

2
2

C

0.5

0.6

2

1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r a

10
5

2
2

C

FIG. 3 (color online). The same as Fig. 2 but in the case of the interior AdS space.
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FIG. 2 (color online). VEV of the field squared, αD−1hφ2ic, for the interior D ¼ 3 dS geometry as a function of the rescaled radial
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coupled massless scalar fields.
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interior AdS space, the value of this ratio can be arbitrary.
In this case, it is of interest to consider the behavior of the
VEVs for small values of the AdS curvature radius,
α=a ≪ 1, corresponding to a strong gravitational field
in the interior region. In this limit, the argument of
the hypergeometric functions in (6.25) is close to 1;
ð1 − zaÞ ≪ 1. By using the formula 15.3.6 from [21], to
the leading order we get

Fνlðη; zaÞ ≈ ðα=aÞ−2ν=νl: (6.36)

The coefficient of the function FðzÞ in (5.6) becomes
ða=αÞν0 with the notation ν0 ¼ νþ 2ξD −D=2. For ν0 ≠ 0,
in the limit under consideration, this coefficient is large
and, in the leading order, the VEVs in the exterior region
coincide with the corresponding VEVs for a spherical
boundary in Minkowski spacetime with the Dirichlet
boundary condition. For ν0 ¼ 0, the next-to-leading term
in the expansion over α=a should be taken into account.
Keeping this term, we can see that the VEVs are reduced to

those for a spherical shell with Dirichlet and Neumann
boundary conditions in the cases ν < 1=2 and ν > 1=2,
respectively. The case ν0 ¼ 0with ν ¼ 1=2 corresponds to a
conformally coupled massless scalar field and in this case
the VEVs are not reduced to Dirichlet or Neumann results.
If, in addition, we assume that αm ≪ 1, then the condition
ν0 ¼ 0 is satisfied for the special cases of minimally and
conformally coupled fields. We expect that, for small
values of the AdS curvature radius, the VEVs in the
interior region will be suppressed. This sort of suppression
in the boundary-induced local VEVs for the geometry of
parallel plates in AdS bulk, described in Poincaré coor-
dinates, has been discussed in [25–27] for scalar and
fermionic fields.
We have considered the VEVs in a combined geometry

with interior dS or AdS and exterior Minkowski space-
times. It would be interesting to generalize the correspond-
ing results for the exterior Schwarzschild solution of the
Einstein equations. The possibility that the interior geom-
etry of a black hole could be constituted by a dS region has
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0ic for a conformally coupled massless field, induced by the interior D ¼ 3

dS space (left panel) and AdS (right panel) spaces, versus r=a. The numbers near the curves correspond to the values of the ratio a=α.
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been discussed in the literature (see [28]–[33] and refer-
ences therein). However, in the Schwarzshild geometry the
equation for the radial part of the scalar mode functions is
not exactly solvable and numerical or approximate results
only can be provided.

VII. CONCLUSION

In the present paper we have considered the Casimir
densities for a scalar field with a general curvature coupling
parameter, induced by a spherical boundary separating the
spacetime backgrounds with different geometries. The
latter are described by spherically symmetric static line
elements (2.1) and (2.3) for the interior and exterior
regions, respectively. Additionally, the presence of an
infinitely thin spherical shell with a surface energy-
momentum tensor τki is assumed. The interior and exterior
metric tensors are continuous on the separating boundary
and their radial derivatives are related by the Israel
matching conditions. The latter lead to the relations (2.9)
for the functions in the expressions of the metric tensor
components. The matching conditions for a scalar field are
obtained from the corresponding field equation: the field is
continuous on the separating surface and the jump in the
radial derivative is given by the relation (3.3). The jump
comes from the nonminimal coupling of the field and is a
consequence of the delta function term in the Ricci scalar
located on the separating boundary.
For the investigation of the exterior vacuum properties

induced by the interior geometry, first we evaluate the
positive frequency Wightman function with the help of the
direct summation over a complete set of field modes. In
Sec. III, for the general cases of interior and exterior
geometries, we have constructed a complete set of nor-
malized mode functions obeying the matching conditions.
In addition to the modes with a continuous energy
spectrum, depending on background geometry, the modes
describing the bound states can be present. For these
modes, the quantum number λ is purely imaginary and
the corresponding eigenvalues for η ¼ jλj are solutions of
the equation (3.31) with the notation (3.32). The Wightman
function in the exterior region is given by the expression
(4.2) for the modes with a continuous energy spectrum and
by (4.9) for the contribution coming from the bound states.
In order to separate from the expression of the Wightman
function the part induced by the interior geometry, we use
the identity (4.5). Then, by using the asymptotic properties
of the radial parts in the mode functions, we rotate the
contours of the integration in the complex plane λ. As a
result, the Wightman function in the exterior region is
presented in a decomposed form (4.11). In this representa-
tion, the functionW0ðx; x0Þ is the Wightman function in the
case of the background described by the line element (2.3)
for all values of the radial coordinate r and the contribution
Wcðx; x0Þ is induced by the geometry (2.1) in the region
r < a. Compared with the initial form, the representation

(4.11) of the Wightman function has two important
advantages. First of all, in the part induced by the interior
geometry the integrand is an exponentially decreasing
function at the upper limit of the integration, instead of
highly oscillatory behavior in the initial representation.
And, second, for points outside the boundary, the diver-
gences arising in the coincidence limit of the arguments are
contained in the partW0ðx; x0Þ, whereas the part induced by
the interior geometry is finite in the coincidence limit. With
this property, the renormalization of the VEVs for the field
squared and the energy-momentum tensor is reduced to the
renormalization for the background (2.3) for all values of r.
Hence, the contributions to the VEVs coming from the
interior geometry are directly obtained from the corre-
sponding part of the Wightman function without any
additional subtractions.
For a given Wightman function, the VEVs of the field

squared and the energy-momentum tensor are evaluated by
formulas (4.12). They are decomposed as (4.13), where the
second terms in the right-hand sides are induced by the
geometry (2.1) in the region r < a. These terms are
obtained from the corresponding part in the Wightman
function without additional renormalization. For example,
the VEV of the field squared is given by (4.15).
A special case, with the Minkowski spacetime as an

exterior geometry, is discussed in Sec. V. In this case the
expression for the Wightman function in the exterior region
is reduced to (5.5). The latter differs from the correspond-
ing expression for a spherical boundary with the Robin
boundary condition by the replacement (5.10) of the Robin
coefficient. In the geometry under consideration, the
“effective” Robin coefficient depends on the quantum
numbers specifying the scalar field modes and this leads
to important modifications in the behavior of the VEVs
near the boundary. For the exterior Minkowskian geometry,
the VEVs of the field squared and the energy-momentum
tensor are given by the expressions (5.11) and (5.23). For a
massive field, at distances from the boundary larger than
the Compton wavelength, the VEVs are exponentially
suppressed. For a massless field, the decay of the VEVs
at large distances is a power law: it goes like r3−2D for the
field squared and like r1−2D for the energy-momentum
tensor. The exponents in the power-law decay are different
in the special cases β0 ¼ �ðD=2 − 1Þ with β0 defined by
(5.15). The VEVs diverge on the boundary separating the
interior and exterior geometries. The leading terms in the
asymptotic expansions over the distance from the boundary
are given by (5.22) for the field squared and by (5.32) for
the energy density and the azimuthal stress. For the radial
stress near the boundary, one has (5.33). The function CðxÞ
in the expressions for the leading terms is determined
from the uniform asymptotic expansion of the interior
radial mode function for large values of the orbital
momentum and it depends on the specific interior geom-
etry. The VEVof the field squared diverges on the boundary
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as ðr=a − 1Þ2−D and the VEVs of the energy density and
the azimuthal stress diverge as ðr=a − 1Þ−D. In the case of a
spherical boundary in Minkowski spacetime with Dirichlet
and Neumann (or, in general, Robin) boundary conditions,
the surface divergences are stronger.
As an application of general results, in Sec. VI we have

considered dS and AdS spaces as examples of the interior
geometry. First, we have transformed the corresponding
line elements to the form (6.7), which is continuously
matched with the exterior Minkowskian geometry. The
components of the corresponding surface energy-momen-
tum tensor are given by (6.11). The radial parts of the
interior mode functions are expressed in terms of the
hypergeometric function [(6.14) and (6.16) for regular
and irregular modes, respectively]. The VEVs of the field
squared and the energy-momentum tensor in the exterior
Minkowskian region are determined by the formulas (5.11)
and (5.23), where in the expressions for ~IνlðaηÞ and
~KνlðaηÞ, defined by (5.6), the functions (6.18) and
(6.24) should be substituted. In the case of the interior
AdS geometry, there are no bound states. For the dS
interior, the same holds for a minimally coupled field. In the
case of the dS interior geometry and for nonminimally
coupled fields, bound states are absent if the radius of the
separating boundary is not too close to the dS horizon
radius. When the boundary becomes closer to the horizon,
bound states appear. With the further increasing of the
boundary radius, the energy of the bound state decreases,
and for some critical value it becomes zero. The further
increase leads to imaginary values of the energy thus
signaling the exterior Minkowski vacuum instability.
In the cases of dS and AdS interior spaces, we have

specified the general formulas for the asymptotics of the
VEVs. The parameter β0, determining the large distance
behavior of the VEVs for massless fields, is given by the
expression (6.27). For a minimally coupled field, one has
β0 ¼ D=2 − 1, and the leading terms in the asymptotic
expansion of the VEVs at large distances vanish. The
leading terms in the expansions near the boundary are given
by the expressions (6.32), (6.33), and (6.34). For a
conformally coupled field, the leading term in the VEV
of the field squared vanishes. In this case, near the
boundary the vacuum energy and the azimuthal pressure
are negative for the interior dS space and are positive for the
AdS space. For a minimally coupled field and near the
boundary, the VEVs of the field squared, energy density,
and azimuthal stress are negative for the interior dS space
and positive for the AdS space. In the latter case and for
small values of the AdS curvature radius (the strong
gravitational field in the interior region), α ≪ a;m−1; for
the curvature coupling parameter ξ ≠ 0; ξD, the VEVs in
the exterior region, to the leading order, coincide with
the corresponding VEVs for a spherical boundary in
Minkowski spacetime with the Dirichlet boundary con-
dition. For a minimally coupled field, the VEVs are

reduced to those for a spherical shell with the Neumann
boundary condition. In the special case of the conformal
coupling, the VEVs are not reduced to Dirichlet or
Neumann results.
The results given above for gravitational backgrounds

may have applications in effective field theoretical models
of some condensed matter systems formulated on curved
backgrounds (see, for example, [7,34]). Important exam-
ples of this sort are graphene-made structures. The long-
wavelength description of the graphene excitations can be
formulated in terms of the effective field theory in ð2þ 1Þ-
dimensional spacetime. In the geometry of a single-walled
carbon nanotube, which is generated by rolling up a
graphene sheet to form a cylinder, the background space
is flat and has the topology R1 × S1. For nanotubes with
open ends, the Casimir densities induced by the nontrivial
topology and by the edges have been discussed in [35–37].
However, the end of the nanotube can be closed with a
hemispherical cap. In this case the geometry for the
corresponding effective field theory is of the type discussed
above with the interior constant curvature space.
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APPENDIX: ASYMPTOTIC OF THE
HYPERGEOMETRIC FUNCTION

As it has been shown in Sec. V, the leading terms of the
asymptotic expansions for the VEVs near the spherical
boundary, separating the regions with different geometries,
are expressed in terms of the function CðxÞ given by (5.20).
In this expression, BðxÞ is defined by the asymptotic
expansion of the function ylða; νlηÞ for the large νl [see
(5.18)]. In order to find the function BðxÞ for the special
cases of the interior geometry corresponding to dS and AdS
spaces, in accordance with (6.21), we need the asymptotic
of the function Fνlðνlλ; zaÞ for large values of νl. The
leading term is obtained from the general consideration
given above, and for the determination of the function BðxÞ
we need the next-to-leading term. In the limit under
consideration, all the parameters of the hypergeometric
functions in (6.25) are large. The corresponding asymp-
totics have been recently investigated in [38,39]. By using
the expansion (2.8) from [39], for large jμj the following
result can be obtained:

Fðaþ ε1μ; bþ ε2μ; cþ μ − 1; zÞ
Fðaþ ε1μ; bþ ε2μ; cþ μ; zÞ

∼
1 − ε1
1 − ts

�
1þ hðtsÞ

μ
þ � � �

�
; (A1)

where 0 < ε1 ≤ ε2 < 1 and (in notations of [39])
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ts ¼
Δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − 4ε1ð1 − ε2Þz

p
2ð1 − ε2Þz

; Δ ¼ 1þ ðε1 − ε2Þz:
(A2)

In (A1), we have defined the function

hðtÞ ¼ ðc − 1Þε1 − a
1 − ε1

−
t

h1ðtÞ
�
½ðc − 3Þε2 − b�tþ bε1

− ε2ða − 1Þ þ 1

h1ðtÞ
½ðε22 − 1Þðt − 3ε1Þt2

þ 3ε1ðε22 − ε1Þtþ ε1ðε21 − ε22Þ�
�
; (A3)

with

h1ðtÞ ¼ ε1ðε2 − ε1Þ þ tð2ε1 − tÞð1 − ε2Þ: (A4)

In order to apply (A1) to the function Fνlðνlη; zaÞ
[defined by (6.25)] with μ ¼ νl, we assume for the moment
that k ¼ −1. In this case the parameters εj corresponding to
(A1) are real. We are interested in the term of the order 1=νl,
and, to this order, the mass term in (6.26) does not
contribute. Assuming that the parameters are in the range
required for the validity of (A1), we take in this expansion

a ¼ b ¼ 1

2
ð1þ νÞ; c ¼ 1;

ε1 ¼
1

2
ð1 − γÞ; ε2 ¼

1

2
ð1þ γÞ; (A5)

with

γ ¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − a2

p
: (A6)

For these values of the parameters, one has

2
1 − ε1
1 − ts

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=α2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2η2

q
: (A7)

In the leading order this gives

2Fνlðνlη; zaÞ ∼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=α2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2η2

q
: (A8)

Substituting into (6.24), we obtain the leading term for the
expansion of the function ylða; νlλÞ, which agrees with the
result (5.18) obtained directly from the differential equation
for ylða; ηÞ.
Evaluating the function hðtÞ for special values of the

parameters (A5), (A6) and substituting the corresponding
expansion (A1) into the expression (6.24) with η → νlη,
after long calculations we find the expansion (5.18) with
the function

BðuÞ ¼ ð1þ u2Þ−1 − ðD − 1Þð1 − a2=α2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=α2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; (A9)

and u ¼ ηa. Although we have obtained the formula (A9)
in the range of parameters assumed for the validity of (A1),
the corresponding formula for other values of ηa is
obtained by a simple analytic continuation. Moreover,
the result can also be generalized for the case of AdS
space by the replacement α → iα. Having the expression
for the function BðuÞ, the function CðuÞ is found from
(5.20):

CðuÞ ¼ 2
CkðxaÞ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

�
Dðξ − ξDÞ þ

ξ

CkðxaÞ
−
ð1þ u2Þ−1
4CkðxaÞ

�
:

(A10)

With this function, the integrals in the expressions (5.22)
and (5.32) of the leading terms in the VEVs of the field
squared and the energy-momentum tensor are expressed in
terms of the gamma function.
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