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The gradient (Wilson) flow has been introduced recently in order to provide a solid theoretical
framework for the smoothing of ultraviolet noise in lattice gauge configurations. It is interesting to ask how
it compares with other, more heuristic and numerically cheaper smoothing techniques, such as standard
cooling. In this study we perform such a comparison, focusing on observables related to topology. We show
that, already for moderately small lattice spacings, standard cooling and the gradient flow lead to equivalent
results, both for average quantities and configuration by configuration.
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I. INTRODUCTION

At present, the lattice formulation represents the best
available tool for a gauge-invariant regularization [1] and a
systematic nonperturbative numerical study of strong
interactions and, more generally, of gauge theories. Like
for any regularized theory, one has to deal with unphysical
fluctuations at the scale of the ultraviolet (UV) cutoff
(which is set by the lattice spacing in the case of lattice
gauge theories), which must be properly treated. Over the
years, various techniques have been developed in this
sense. Where possible, proper prescriptions can be assigned
for a perturbative or nonperturbative renormalization of
physical quantities. Another widely used technique is
instead to apply some kind of smoothing procedure, in
order to dampen the fluctuations at the UV scale, while
hopefully leaving the physical content unchanged.
Typical examples of observables requiring renormaliza-

tion are the topological charge (winding number) and, more
generally, the observables related to topology, like the
topological susceptibility. Contrary to its continuum
counterpart, the lattice gluonic definition of the topological
charge is affected by UV fluctuations: it gets multiplica-
tively renormalized [2] and does not take integer values.
Further additive renormalizations, related to contact terms,
appear when defining the topological susceptibility [3].
Apart from switching to a fermionic definition of top-

ology, via the index theorem, various strategies have been
developed to successfully deal with such renormalizations,
going from a direct computation and subtraction of them
[4–10] to the application of smoothing methods to dampen
the UV fluctuations and recover an almost integer valued
observable. In this respect, cooling techniques [11], which
proceed through a local minimization of the gluonic action,
are particularly well suited since the topological content
of gauge configurations becomes quasistable against

minimization as one approaches the continuum limit, i.e.
as one recovers a proper definition of the gauge field
topology.
In this context, the recent introduction of the gradient

flow (also known as Wilson flow when used in connection
with the Wilson action) represents an important advance
[12,13]. The main difference with respect to previously
used smoothers is that in this case the elimination of UV
fluctuations is governed by a differential equation, thus
achieving a better analytical control of the smoothing
procedure.
An interesting and due question regards how the gradient

flow compares with other standard smoothing techniques.
The present study is a step in the direction of clarifying this
issue. In particular, we will compare standard cooling and
the gradient flow, for the determination of topological
observables, in the SUð3Þ lattice gauge theories discretized
with the Wilson action.
Such a question is of general interest since standard

smoothing techniques have been widely used in the
literature. But it is also of great practical interest.
Indeed, as we will clarify later, the application of the
gradient flow is much more computationally demanding
than standard cooling. It is therefore compelling to under-
stand what the effective differences are between the two
methods, depending on the chosen observable.
The paper is organized as follows. In Sec. II we provide a

brief description of the gradient flow and of standard
cooling and then compare them in the limit of smooth
fields. In Sec. III we first discuss the definition of a general
setting for the comparison of the two methods; then we
present our numerical results for topological quantities.
Finally, in Sec. IV we discuss our results and draw our
conclusions.

II. COOLING AND THE GRADIENT FLOW

In this section, for the benefit of the reader, we recall the
definitions of the gradient flow and of the cooling
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procedure, and present the details of our implementation.
We will limit ourselves to the case of the Wilson action for
SUðNÞ pure gauge theories [1], which is the one used in our
simulations, but the generalization to different discretiza-
tions does not present significant difficulties.
The Wilson action is written in terms of the product

of the link variables UμðxÞ along an elementary face
(plaquette) of the lattice, UμνðxÞ, in the form

S ¼ 2N
g20

X

x;μ<ν
μ;ν≥0

�
1 −

1

N
ReTrUμν

�
; (1)

where N is the number of colors. It is convenient to
introduce the staples as the (in general, nonunitary)
matrices WμðxÞ, defined by

WμðxÞ ¼
X

ν≥0;ν≠μ
½UνðxÞUμðxþ ν̂ÞU†

νðxþ μ̂Þ

þ U†
νðx − ν̂ÞUμðx − ν̂ÞUμðx − ν̂þ μ̂Þ�; (2)

the part of the action involving a given link variable UμðxÞ
is then simply written as −ð2=g20ÞReTr½UμðxÞW†

μðxÞ�.
To avoid confusion, in the following expressions we will
not make use of the implicit summation over repeated
indices.

A. Gradient flow

The gradient flow is defined (see [12,13]) by the solution
of the evolution equations

_Vμðx; τÞ ¼ −g20½∂x;μSðVðτÞÞ�Vμðx; τÞ
Vμðx; 0Þ ¼ UμðxÞ; (3)

where the link derivatives are defined by

∂x;μfðUÞ ¼ i
X

a

Ta d
ds

fðeisXa
UÞj

s¼0
≡ i

X

a

Ta∂ðaÞ
x;μfðUÞ:

(4)

In this expression Ta are the (Hermitian)1 generators of the
SUðNÞ algebra, with the normalization TrðTaTbÞ ¼ 1

2
δab,

and

Xaðy; νÞ ¼
�
Ta if ðy; νÞ ¼ ðx; μÞ
0 else:

(5)

If we introduce the notation Ωμ ¼ UμðxÞW†
μðxÞ we have

∂ðaÞ
x;μSðUÞ ¼ 2

g20
ImTr½TaΩμ�; (6)

and ∂x;μSðUÞ is given by

g20∂x;μSðUÞ ¼ 2i
X

a

TaImTr½TaΩμ�

¼ 1

2
ðΩμ −Ω†

μÞ − 1

2N
TrðΩμ − Ω†

μÞ: (7)

In practice, the gradient flow moves the gauge configu-
ration along the steepest descent direction in the configu-
ration space, i.e., along the gradient of the action (hence the
name gradient flow); in particular, the chosen sign in the
evolution equations leads to a minimization of the action.
Indeed, from the definition Eq. (3) and the previous
expressions, it is simple to show that

d
dτ

SðVðτÞÞ ¼ −g20
X

a;x;μ≥0
½∂ðaÞ

x;μSðVðτÞÞ�2 ≤ 0: (8)

Thus, SðVðτÞÞ is a monotonically decreasing function of
the flow time τ and the “evolved” variables Vμðx; τÞ can be
used as the smoothed version of the original link variables
UμðxÞ. From the explicit expression, Eq. (7), we can also
see that the gradient flow is just the flow generated by the
infinitesimal version of the isotropic stout smearing intro-
duced in Ref. [14]. It is important to stress at this point that
quantity τ, defined here and used in the following, is the
flow time in dimensionless units.
The integration of the flow in Eq. (3) can be performed

by using standard methods for ordinary differential equa-
tions; in particular, we adopted the third order Runge-Kutta
scheme described in Appendix C of Ref. [13]. We have
chosen an elementary integration step ϵ ¼ 0.02 and verified
that the integration error induced by this choice does not
significantly affect our results.2

B. Cooling

Also in the case of cooling, the idea is that of evolving
the gauge configuration so as to minimize the gauge action:
in fact, cooling has been one of the first procedures
introduced to get rid of UV artifacts by smoothing gauge
configurations [11]. However, while the gradient flow is
defined by an evolution equation, the cooling method
proceeds by discrete steps: in each step the action is
minimized with respect to a subset of configuration
variables (e.g., a single link or even a link subgroup),
and then the procedure is performed iteratively over all

1We would like to warn the reader that such a notation is
different from the one adopted in the literature where the gradient
flow has been originally discussed [12,13]. We follow here the
standard convention in which the generators of SUðNÞ are taken
to be Hermitian; e.g., for SUð3Þ, Ta ¼ λa=2 where λa are the
Gell-Mann matrices.

2In particular, results obtained on a subsample of configura-
tions by using a different integration step, ϵ ¼ 0.01, are indis-
tinguishable from those obtained at ϵ ¼ 0.02.
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variables, in order to achieve a global movement of the
configuration towards the minimum of the gauge action.
Many variants of cooling have been devised in which the

discrete steps are made more or less smooth [15,16]. Here
we will consider the simplest, original version, also known
as standard cooling:

(i) An elementary step of the algorithm consists in
replacing a given link variable UμðxÞ by the group
element which locally minimizes the action, while
all other link variables are kept fixed, i.e., by the
matrix M ∈ SUðNÞ which maximizes

Re Tr½MW†
μðiÞ�:

In the particular case of the SUð2Þ gauge theory, the
maximization step can be performed analytically, with
the result

M ¼ WμðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detWμðxÞ

p :

For SUðNÞ the maximization is performed by using
a Cabibbo-Marinari-like algorithm ([17]), i.e., by
iterating the maximization over a covering set of
SUð2Þ subgroups.

(ii) The procedure is then repeated iteratively by visiting
link variables on all sites and along all directions of
the lattice. In our implementation we will first sweep
lattice sites, following the standard lexicographic
order, and then link directions, starting with
x ¼ ð0; 0; 0; 0Þ and μ ¼ 0. Both the starting link
and the visiting order can be changed at will, leading
to slightly different cooling variants.

(iii) A complete sweep of the lattice is what is usually
called a cooling step. A cooling step can be iterated
nc times, thus generating a (discrete) flow in the
space of gauge configurations.

It is important to stress once more that, contrary to other
smoothing procedures such as smearing, a cooling sweep
proceeds iteratively; i.e., at each elementary step the cooled
link is substituted in the configuration before computing the
staple needed to cool the next link. If staples were all
computed before starting the cooling sweep, the decrease of
the action would not be guaranteed anymore, and insta-
bilities would appear, similar to those happening in the
repeated application of smearing when the smearing
parameter is too large (see, e.g., Ref. [18]). This iterative
nature of cooling will be important when discussing the
speed at which cooling proceeds, as compared with the
gradient flow.
It is interesting to notice that there is one variant of

cooling which resembles the gradient flow more closely,
namely, the controlled cooling introduced in Ref. [15]. In
that case, the elementary step of cooling consists in
minimizing the action under the constraint

1

N
TrfðU†

μ − U0
μ
†ÞðUμ −U0

μÞg ≤ δ2 (9)

whereUμ andU0
μ are, respectively, the old and the new link

variables. Also in this case, the configuration proceeds
towards a minimum, but with the constraint that at each
elementary step the new link variable does not differ much
from the old variable, depending on the value of the
controlling parameter δ. For small enough δ, the cooling
step effectively becomes an infinitesimal movement along
the steepest descent direction, i.e., it becomes a possible
integrator of the gradient flow. Indeed, the authors of
Ref. [15] verified that, for small enough δ, the order in
which the links are cooled becomes immaterial.

C. Perturbative relation between the two
smoothing procedures

As we have already stressed, both cooling and the
gradient flow evolve the gauge configuration towards a
minimum of the gauge action. In a perturbative approxi-
mation, in which all link variables are very close to the
identity element of the gauge group, the connection
between the two procedures can be investigated in more
detail, and a relation can be found between the speed at
which the two evolutions proceed. This relation will be
compared with the numerical results in Sec. III.
Let us assume, therefore, that UμðxÞ≃ 1þ i

P
au

a
μðxÞTa

for each link variable, so that the staple takes the simple
form WμðxÞ≃ 6þ i

P
aw

a
μðxÞTa, where both uaμðxÞ and

wa
μðxÞ are infinitesimal quantities. In this approximation,

one has

Ωμ ≃ 6þ i
X

a

½6uaμðxÞ − wa
μðxÞ�Ta

and Eq. (7) becomes

g20∂x;μSðUÞ ¼ i
X

a

½6uaμðxÞ − wa
μðxÞ�Ta: (10)

As a consequence, the evolution equation of the gradient
flow can be approximated as follows:

uaμðx; τ þ ϵÞ≃ uaμðx; τÞ − ϵ½6uaμðx; τÞ − wa
μðx; τÞ�: (11)

On the other hand, cooling acts so as to substitute UμðxÞ
with the projection of WμðxÞ over the gauge group. In the
perturbative approximation, this projection is simply
1þ i

P
aðwa

μðxÞ=6ÞTa, so that the elementary cooling step
corresponds to the substitution

uaμðxÞ →
wa
μðxÞ
6

: (12)

A naive comparison of Eqs. (11) and (12) would lead to
the conclusion that the instantaneous speed at which links
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evolve in the gradient flow is such that a whole cooling step
would be covered in a step ϵ ¼ 1=6 of gradient flow
evolution, i.e., that the approximate relation τ≃ nc=6
should hold between the gradient flow time and the number
of cooling steps. The factor 6 comes, given the normali-
zation chosen for the gradient, from the number of staples
around a given link; i.e., it is equal to 2ðD − 1Þ, where D is
the number of space-time dimensions.
However, such a conclusion is wrong by a factor 2, as is

clear from the following argument. The staple appearing in
the gradient flow is constructed with gauge links all
computed at the same flow time τ. On the contrary, in
the case of cooling, due to the iterative nature of the
process, some of the links used to construct the staple have
already undergone the cooling step under consideration,
and this results in an increase in the speed of cooling. For a
regular visiting order of the lattice links during the sweep,
one has that, on average, half of the neighboring links have
already been cooled one more time: that results in a speed
increase for cooling by a factor 2 with respect to the naive
expectation, as one can evince from the simple diffusive
model discussed in Appendix A.
Therefore, the predicted perturbative relation is actually

τ≃ nc=ðD − 1Þ ¼ nc=3. Such a relation is expected to
depend on the dimensionality of the system (and on the
normalization of the gradient, i.e., on the fact that we
actually take the gradient of g20S), but not on the number of
colors, at least in the limit of smooth fields.

D. Smoothing and the continuum limit

Let us now discuss how smoothing has to be tuned as the
continuum limit is approached. An important point is that
this tuning is independent of the particular kind of
smoothing, be it cooling, the gradient flow or something
else, once a precise correspondence has been found
between the different techniques, which is valid lattice
spacing by lattice spacing.
Smoothing is, in general, an arbitrary modification of the

theory in the UV, up to some length scale λS, with the only
requirement that it dampens the quantum fluctuations on
length scales smaller than λS. While smoothing changes the
theory up to λS, we have to ensure that this does not affect
our continuum results, i.e., that physics does not depend on
the choice of λS. If we are studying an observable which is
naturally defined for large distances only, an obvious
example being the effective mass extracted from the
expectation value of a correlator, then it is natural to keep
λS fixed in physical units: to avoid systematical depend-
ences on λS, it will be sufficient to use correlators defined at
distances r ≫ λS.
This possibility is particularly appealing in the gradient

flow setup since it can be shown that composite operators
defined at fixed physical flow time renormalize in a simple
way (see Ref. [19]). In particular, for the case of the
gradient flow one has

λS ≃
ffiffiffiffi
8t

p
; (13)

where t ¼ a2τ is the flow time in physical units (see
Ref. [13]), a being the lattice spacing. This procedure
can now be simply translated in terms of cooling. Indeed,
from the argument of the previous section (i.e., τ≃ nc=3),
which will be accurately verified against numerical results
in the following sections, we expect for cooling the
analogous relation

λS ≃ a
ffiffiffiffiffiffiffiffiffiffiffiffi
8nc=3

p
; (14)

i.e., the number of cooling steps has to be scaled propor-
tionally to 1=a2 in order to keep λS fixed. Actually, this is
not a completely new result since it is already well known
that cooling acts like a diffusive process.
The situation can be less trivial for observables which are

not related to large distance correlators but are instead an
integral over all distances of some two-point function, like
a susceptibility. In this case it is not guaranteed a priori that
keeping λS fixed will not affect the continuum limit, and
one must look for the existence of a proper “safe scaling
window” for λS (see Ref. [20] for a discussion regarding the
gradient flow).
An example is the topological susceptibility, which is the

integral over all distances of the two-point correlator of the
topological charge density. In this case one can follow
different strategies to look for the safe scaling window. A
known procedure [21] is to look for a plateau in terms of λS
at every fixed lattice spacing and then perform the
continuum extrapolation of the plateau values. The exist-
ence of the plateau ensures that λS is small enough not to
affect the physical result and that, on the other hand, the
smoothing is effective in removing additive and multipli-
cative renormalizations.
Alternatively, one could perform the continuum limit of

results obtained at fixed λS and then look for a safe plateau,
in terms of λS, in the continuum extrapolated values. It is
not the purpose of this study to perform an accurate check
of the consistency of these two strategies. What we will
show, instead, is that two perfectly equivalent definitions of
λS exist at every fixed lattice spacing, Eq. (13) and Eq. (14),
defined by either cooling or the gradient flow, in terms of
which one can perform the preferred continuum
extrapolation.

III. NUMERICAL RESULTS

Most of the simulations have been performed on a 204

lattice at the bare coupling values 6=g20 ¼ 5.96, 6.07, 6.2,
corresponding to the lattice spacings reported in Table I and
to physical lattice sizes ranging from 2 fm to 1.4 fm. Here
we do not have the aim to keep finite size effects well under
control since our purpose is simply to check how cooling
and the gradient flow compare to each other, on the same
configuration sample, in the smoothing of fluctuations at
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the UV scale. However, a comparison with some simu-
lations performed on larger lattices shows that such effects
are not large and do not significantly affect our conclusions.
For each value of the bare coupling, we have generated

Oð104Þ configurations, each one separated from the next by
200 Monte Carlo steps, a single step consisting of a full
lattice update with 1 heatbath [23,24] and 5 over-relaxation
sweeps [25]. On these configurations, we have evaluated
the topological charge after smoothing, by using both
cooling (we have reached a maximum of 50 cooling
steps, with measurements taken after each step) and the
gradient flow (reaching a maximum flow time τ ¼ 10,
with measurements performed every Δτ ¼ 0.2). The
expression used for the discretization of the topological
charge density is

qLðxÞ ¼ −
1

29π2
X�4

μνρσ¼�1

~ϵμνρσTrðUμνðxÞUρσðxÞÞ; (15)

where ~ϵμνρσ ¼ ϵμνρσ for positive indices, while for the
negative directions the relation ~ϵμνρσ ¼ −~ϵð−μÞνρσ and the
complete antisymmetry are used.

A. Setting a common scale

The purpose of the present study is to compare how the
(continuous) gradient flow and the discrete flow generated
by cooling compare to each other. It is clear that, in order to
do that, we need to set a common scale, i.e., to fix a priori
what flow time τ is to be compared with nc cooling steps.
The simplest way to proceed is to set such a common scale
by using some standard observable, and the most natural
observable is given by the quantity whose minimization
defines both flows, that is, by the action itself. This is also
the strategy adopted in the past to compare different
versions of cooling [26].
In Fig. 1 we report the average plaquette (action density)

values as a function of nc (for cooling) and of 3τ (for the
gradient flow case). Such functions permit us to obtain the
desired correspondence: for each given value of the inverse
bare gauge coupling β, we define τðncÞ as the value of the
gradient time τ that changes the average action by the same
amount as nc cooling steps.
A plot of the functions τðncÞ, obtained for the different

exploredvaluesofβ, is shown inFig. 2: the agreement among
the different lattice spacings is striking and demonstrates

that the correspondence between cooling and the gradient
flow has a perfectly well-defined continuum limit. The
continuous line corresponds to the function τ ¼ nc=3. It is
clear that this function is a good approximation of τðncÞ for
all the lattice spacings used and becomes better and better as
nc increases: the agreement is at the level of 1% for nc ¼ 10
and of 0.1% (i.e., already within the precision of our
determination) for nc ¼ 20. In the following, for simplicity,
we will just use the approximation τðncÞ≃ nc=3, which is
equivalent to saying that one unit of gradient flow time
corresponds to three cooling steps; corrections to this
assumptions prove to be completely irrelevant to the follow-
ing analysis. Preliminary results show that the relation
τðncÞ≃ nc=3 holds true also for the gauge group SUð2Þ,
thus supporting the perturbative argument of the previous
section.

TABLE I. Values of the bare couplings used in this work,
of the corresponding Sommer scale (computed in Ref. [22]) and
of the lattice spacing, evaluated by using the reference value
r0 ¼ 0.5 fm.

β ¼ 6=g20 r0 a

5.95 4.898(12) 0.1021(25)
6.07 6.033(17) 0.08288(23)
6.2 7.380(26) 0.06775(24)

1 10 100

Cooling steps or 3×(flow time)

1-
〈P

〉

β=6.2

β=6.07

β=5.95

0.0001

0.001

0.01

0.1

FIG. 1 (color online). Behavior of one minus the average
plaquette as a function of the number of cooling steps (continuous
lines) and of (3 times) the gradient flow time (dashed lines).

0 5 10 15 20 25 30
nc

τ(
n c

)

β=5.95
β=6.07
β=6.2

0

2

4

6

8

10

FIG. 2 (color online). Behavior of τðncÞ as a function of the
number of cooling steps nc. The continuous line corresponds to
τ ¼ nc=3. Data points at different lattice spacings are hardly
distinguishable.
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B. Determination of the topological background

The lattice topological charge QL is defined as the sum
over all the lattice sites of the charge density given in
Eq. (15). Although QL is not exactly quantized, because of
lattice artifacts, sharp peaks appear in the topological
charge distribution, as the smoothing procedure goes on,
located at approximately integer values.
An example of the probability distribution PðQLÞ of QL

for β ¼ 6.2 is shown in Fig. 3, where the results obtained
both with cooling (nc ¼ 21) and the gradient flow (τ ¼ 7)
are shown. The fact that the two distributions perfectly
agree with each other is a first indication that, at least for the
computation of average quantities, the two considered
smoothing procedures are equivalent.
In order to reduce the lattice artefacts and improve the

convergence towards the continuum limit, the estimator Q
of the topological background that will be used in the
following analysis is defined by the procedure [27]

Q ¼ roundðαQLÞ; (16)

where roundðxÞ denotes the integer closest to x and the
rescaling factor α is determined in such a way to minimize

hðαQL − round½αQL�Þ2i: (17)

In this way, the distribution of αQL is such that the sharp
peaks visible in Fig. 3 move exactly onto integer values.
We emphasize that this procedure is not a renormaliza-

tion but just a redefinition of the observable in order to
obtain an integer-valued topological charge and to signifi-
cantly reduce lattice artefacts; see [21] for a discussion on
this point. On the other hand, as we will show in the
following (see Table II), cooling and the gradient flow lead

to perfectly equivalent results independently of the chosen
definition of topological charge. This is also manifest from
Fig. 3, where no rounding has been applied.
An example of the behaviour of the rescaling factor α is

reported in Fig. 4, for two different values of β. The
oscillations observed for a small number of cooling steps
(or equivalently for small values of the flow time) are due to
instabilities of the optimization procedure adopted to
minimize Eq. (17), and they disappear once the configu-
rations are smooth enough [i.e., once the peaks in PðQLÞ
are well defined]; in particular, they almost disappear by
reducing the lattice spacing.

C. Comparison for the average quantities:
The topological susceptibility

In this section we present our results for the topological
susceptibility obtained by using cooling or the gradient
flow as smoothers. The topological susceptibility is
defined by

χ ¼ hQ2i
V

¼ hQ2i
a4NtN3

s
; (18)

-5 -4 -3 -2 -1 0 1 2 3 4 5
QL

0

1

2

3

4
P(

Q
L
)

cooling
gradient flow

FIG. 3 (color online). Probability distribution of the topological
charge for β ¼ 6.2, evaluated after 21 cooling steps and after
gradient flow with τ ¼ 7. Due to the very good agreement, the
two distributions are hardly distinguishable in the figure. The
corresponding figures for the other β values are analogous.

TABLE II. Values of a4χ × 105 for the three explored values of
β and for a couple of corresponding pairs of cooling steps and
gradient flow time. If no rounding is applied to defineQ, one still
has perfect agreement between cooling and the gradient flow; for
instance, for β ¼ 6.2 one obtains a4χ × 105 ¼ 1.798ð26Þ and
1.799(26) for nc ¼ 21 and τ ¼ 7, respectively.

β 5.95 6.07 6.2

nc ¼ 9 10.91(17) 4.644(83) 1.998(30)
τ ¼ 3 10.91(18) 4.653(84) 1.999(30)
nc ¼ 21 10.68(17) 4.554(81) 1.985(29)
τ ¼ 7 10.74(17) 4.566(82) 1.987(29)

0 10 20 30

Cooling steps or 3×(flow time)

α

cooling β=5.95
cooling β=6.2
gradient flow β=5.95
gradient flow β=6.2

0.8

1

1.2

FIG. 4 (color online). Plot of the rescaling factor α to be used in
the definition of the topological charge, Eq. (16), for β ¼ 5.95
and β ¼ 6.2, when using cooling and gradient flow.
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where Nt and Ns are the temporal and spatial extents of the
lattice and Q is given by Eq. (16).
In the continuum limit, topological sectors become

strictly separated and the topological charge Q is stable
under any smoothing procedurewhich minimizes the action.
On the other hand, at finite lattice spacing, Q is, in general,
only quasistable, and topological backgrounds can be even-
tually washed out by a prolongated smoothing. However, the
two time scales, at which the UV fluctuations or the
topological background are respectively affected, become
rapidly well separated as the lattice spacing is reduced. That
results in the appearance of a well-defined and extended
plateau, as a function of the amount of smoothing, for
topological quantities, like the susceptibility χ.
All this is well known for cooling and, for the reason

previously explained, the plateau value is the one typically
used in computations. Our purpose is now to check if,
under the gradient flow, the topological susceptibility
behaves in a similar fashion and, more generally, to
compare its behavior with the one obtained by cooling.
To this aim we have computed χ for the three different
lattice spacings adopted, using configurations smoothed
both with cooling and the gradient flow. In Fig. 5 and Fig. 6
the values of χ obtained for β ¼ 5.95 and β ¼ 6.2 are
plotted against the deviation of the average plaquette from
unity, which is proportional to the action density, i.e., the
variable that we have established as a “thermometer” to
compare cooling and the gradient flow.
Apart from small deviations at the very beginning of the

smoothing, the two determinations are completely equiv-
alent: the agreement is perfect starting from nc ¼ 8 on the
coarsest and starting from nc ¼ 3 on the finest explored
lattice; see also Table II for some representative numerical
values. On the other hand, such an agreement was already
expected from the superposition of the two topological
charge distributions, shown in Fig. 3, since χ is just one of

the moments of this distribution. On a larger 264 lattice, the
value of a4χ × 105 for nc ¼ 21 and β ¼ 6.2 is 1.983(17), in
perfect agreement with the one reported in the table,
obtained by using a 204 lattice.
A nice scaling of the topological susceptibility to the

continuum limit is observed in both cases (i.e., both for
cooling and the gradient flow); see Figs. 7 and 8 for the case
of the gradient flow, with extended plateaux around
χ1=4 ∼ 195 MeV, even if an accurate estimate of the finite
size and UV cutoff systematic effects is not the purpose of
this study.

D. Comparison configuration by configuration

We have shown that cooling and the gradient flow
provide perfectly equivalent results for average topological
quantities, such as the topological susceptibility. Here we
want to make a more stringent test, comparing the outcome
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FIG. 5 (color online). Topological susceptibility computed for
β ¼ 5.95 after cooling or gradient flow. The average plaquette
hPi is used to set a common scale.
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FIG. 6 (color online). Topological susceptibility computed for
β ¼ 6.2 after cooling or gradient flow. The average plaquette hPi
is used to set a common scale.
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FIG. 7 (color online). Behavior of the topological susceptibility
under the gradient flow for the different lattice spacings adopted.
The black filled triangle denotes a check for finite size effects
performed on a 264 lattice for the bare coupling value β ¼ 6.2.
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of the gradient flow and of cooling configuration by
configuration.
First, we have determined the percentage of configura-

tions where cooling and the gradient flow obtain different
results for the global topological contentQ. This is reported
in Fig. 9: the topological charges were estimated after 21
cooling steps and after 7 units of flow time, respectively;
however, results are stable in a wide range of nc. The
percentage is around 40% on the coarsest lattice (β ¼ 5.95)
and it rapidly decreases, seemingly exponentially in β,
reaching around 1% on the finest lattice (β ¼ 6.2).

One could suspect that this strong decrease is related to
the variation of the physical volume; however, the effect of
the volume change is in fact just a small contribution to this
decrease. To check this point, we have performed simu-
lations on a 304 lattice at bare coupling β ¼ 6.2 (which is
approximately of the same physical size as the 204 lattice
with β ¼ 5.95), and we have found that the percentage of
configurations on which cooling and the gradient flow do
not agree in the determination ofQ is about 3%. Therefore,
also at constant volume this quantity strongly decreases
with the lattice spacing.
It is interesting to compare this rate of different deter-

minations of Q with the analogous rate obtained by
comparing two slightly different versions of cooling, the
one used in this paper and a simple variation, in which we
just move the starting point of the cooling sweep from the
origin to the middle of the lattice. Results are reported in
Fig. 9 as well and are completely equivalent with the
previous ones, showing that the differences between cool-
ing and the gradient flow are perfectly explainable in terms
of the normal variations between different smoothing
techniques, which take place when the starting configura-
tion presents some degree of coarseness and rapidly
disappear as one approaches the continuum limit.
A slightly different question is how much the different

determinations of Q between the two methods are relevant
with respect to the global topological activity taking place
on a given lattice at a given β value. In order to answer this
question, we have measured the quantity

hδQ2i≡ hðQðcÞ −QðgfÞÞ2i; (19)

where QðcÞ and QðgfÞ are the corresponding (i.e., at
nc ¼ 3τ) estimates of the topological charge obtained by
cooling and by the gradient flow, and we have normalized it
by the corresponding value of hQ2i: in this way we
normalize with respect to possible variations of the topo-
logical activity due, for instance, to the different physical
volumes. Numerical results for hδQ2i=hQ2i are shown in
Fig. 10: also in this case, it is clear that the differences
rapidly disappear as one approaches the continuum limit.
Finally, it is interesting to ask whether the observed

agreement between cooling and the gradient flow is some-
thing that regards only the global topological charge of
gauge configurations, or whether the agreement holds true
also at a local level. The latter, of course, is a much stronger
statement. In Fig. 11 we report the topological charge
density, projected on the z − t plane, obtained on a typical
configuration where QðgfÞ ¼ QðcÞ ¼ 2 (with β ¼ 6.2,
nc¼21 and τ¼nc=3). As one can appreciate, the agreement
is also very good at a local level. Such a result may give
hints that for observables not directly related to topology,
one could also obtain similar results when adopting cooling
or the gradient flow; however, a systematic investigation of
this possibility is left to future studies.
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FIG. 9 (color online). Fraction of the configurations for which
different results are obtained, for the topological charge, using
two different procedures. Circles refer to the comparison between
cooling and gradient flow, while triangles refer to different
cooling implementations (data points have been slightly shifted
horizontally in order to distinguish them). The square dot is the
result of the comparison between cooling and the gradient flow
on a 304 lattice, i.e., at fixed physical volume with respect to the
204 lattice at β ¼ 5.95.
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FIG. 8 (color online). Behavior of the topological susceptibility
under cooling and the gradient flow (zoom of the plateau
region) as a function of the smoothing length λS defined by
Eqs. (13) and (14).
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IV. DISCUSSION AND CONCLUSIONS

The purpose of this study was to compare the gradient
flow and the discrete flow generated by standard cooling,
with respect to the determination of the topological proper-
ties of non-Abelian gauge theories on a lattice, with
particular reference to the case of the SUð3Þ pure gauge
theory.
To that aim we have first established a relation between

the gradient flow time τ and the number of cooling steps nc,
so that the plaquette action density, which is the quantity
minimized by both flows, coincides. The relation τ≃ nc=3
holds within a good precision and already after a few
cooling steps; such a relation is also in agreement with a
perturbative estimate, which is expected to be valid in the
limit of smooth fields and to depend on the dimensionality
of the system [τ ¼ nc=ðD − 1Þ, where D is the number of
space-time dimensions] but not on the details of the
gauge group.
We have proven that, after very few transient cooling

steps, the two flows lead to equivalent results, the transient

region rapidly decreasing as the continuum limit is
approached. This assertion is true at various degrees of
strength. It is true for average quantities: we have checked
this assertion with some accuracy for the topological
susceptibility; however, given the superposition of the
two probability distributions (see Fig. 3), we expect this
to be true also for the higher order moments, which are
needed to specify the θ dependence of the theory
[21,27–30].
This expectation is also supported by the fact that, at a

stronger level, even the discrepancies in the determination
of Q, which are found configuration by configuration,
rapidly become irrelevant as the continuum limit is
approached, and already for a ∼ 0.1 fm. Moreover, the
local profiles of topological charge densities, obtained by
the two smoothing methods on sample configurations, are
also very close to each other.
It is important, at this point, to stress that these

conclusions do not depend on the specific prescriptions
adopted to define the lattice topological charge or to
perform the continuum limit. The outcome of this study
is that, at every fixed lattice spacing, cooling and gradient
flow give the same result, provided the number of cooling
steps nc and the flow time τ are related by τ ¼ nc=3 [or,
equivalently, the smoothing cutoff λS is chosen according to
Eq. (13) and Eq. (14)].
Given the equivalence of the two procedures from a

practical point of view, and at least regarding topological
quantities, the choice of the method to be used in future
simulations relies on the computational efficiency.
While for some applications the computational cost of

both cooling and the gradient flow is negligible (like, e.g.,
for scale setting by the t0 parameter [13]), there are cases in
which this is not true. As a typical example we mention the
evaluation of the higher momenta of the topological charge
and, in particular, the computation of the renormalization
group invariants commonly denoted by b2n (see, e.g., [21]),
whose determination requires Oð105 − 106Þ independent
determinations of Q. This makes even the pure gauge
simulations far from trivial, and the computational effi-
ciency of the method used to estimate the topological
charge becomes a crucial ingredient.
In particular, using the established relation τ≃ nc=3, we

can compare the execution time of three cooling steps with
the time needed to perform a unity of gradient flow time
evolution, obtaining cputimeðτ¼1Þcputimeðnc¼3Þ≃130.
Clearly these estimates depend on the specific integrator
adopted for the gradient flow and, in particular, adaptive
integrators make it possible to obtain anOð10Þ speedup with
respect to the third order Runge-Kutta solver (see
Refs. [31,32]). Nevertheless, cooling remains about 1 order
of magnitude cheaper than the gradient flow.
Of course, one should consider that the gradient flow has

advantages with respect to techniques like cooling, related
to the fact that it has an associated differential equation,

FIG. 11 (color online). Projection on the z − t plane of the
topological charge density for a β ¼ 6.2 configuration of total
charge Q ¼ 2 after 21 cooling steps (continuous line) or after 7
units of gradient flow time (dotted line).
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FIG. 10 (color online). Plot of hδQ2i=hQ2i as a function of the
number of cooling steps. See Eq. (19) for definitions.
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which clearly appear whenever an analytical treatment of
the smoothing process is required, like, for instance, in the
analysis of the renormalization properties of the smoothed
fields [19]. Moreover, the gradient flow can be consistently
extended to the presence of dynamical fermion fields [33].
We refer to [20] for a recent review of present and future
perspectives of the gradient flow.
Finally, given the agreement of the topological charge

density also at a local level, in the future one should better
investigate the relation between the two smoothing proce-
dures for other physical quantities as well.
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APPENDIX: A SIMPLE DIFFUSIVE MODEL

Let us consider a massless real scalar field, ϕðnÞ,
on a three-dimensional isotropic cubic lattice, where
n≡ ðnx; ny; nzÞ, and with the associated action

S ¼
X

n;ĵ

1

2
½ϕðnþ ĵÞ − ϕðnÞ�2

where ĵ runs over the three positive directions and nþ ĵ
indicates, as usual, the lattice site which is the nearest
neighbor of n in the forward ĵ direction. We will now
consider the gradient flow for such a theory, as well as the
differential equation obtained by it in the limit of smoothly
varying fields. Then we will do the same in the case of
cooling and compare the two differential equations.
The gradient flow is defined by adding a dependence of

ϕ on a fictitious time τ and letting

∂ϕðn;τÞ
∂τ ¼−

∂SðτÞ
∂ϕðn;τÞ

¼
X

ĵ

½ϕðnþ ĵ;τÞþϕðn− ĵ;τÞ�−6ϕðn;τÞ: (A1)

In the limit of smoothly varying fields, we can take a
continuum description and, letting xj ≡ anj, where a is the
lattice spacing, change the notation ϕðn; τÞ → ϕðx; τÞ. The
field on nearest neighbor sites can be Taylor expanded,

ϕðnþ ĵ; τÞ≃ ϕðx; τÞ þ a
∂ϕ
∂xj þ

a2

2

∂2ϕ

∂x2j ;

so that the flow equation, Eq. (A1), takes the simple form of
a diffusive (heat) equation:

∂ϕðx; τÞ
∂τ ≃ a2∇2ϕðx; τÞ (A2)

where ∇2 is the 3D Laplacian operator.
Let us now consider cooling, in which the field is

evolved by local minimization steps, which are iterated
by sweeping all lattice sites at each cooling step. Let us call
ϕðn; ncÞ the field obtained after nc steps. If the lattice sites
are visited in the positive lexicographic order, then it is easy
to verify that the cooling equation is

ϕðn;ncþ1Þ¼1

6

X

j

½ϕðnþ ĵ;ncÞþϕðn− ĵ;ncþ1Þ�; (A3)

where we have taken into account that part of the nearest
neighbor sites have already undergone the cooling step
under consideration. In order to write a corresponding
differential equation, we now consider that, in the limit of
smoothly varying fields, the evolution generated by cooling
is also smooth, so we can Taylor expand in terms of a
cooling time as well, defined by τc ≡ aτnc, where aτ is a
fictitious temporal spacing that will be eventually set to 1.
We can therefore substitute

ϕðn; nc þ 1Þ≃ ϕðx; τcÞ þ aτ
∂ϕ
∂τc

ϕðn − ĵ; nc þ 1Þ≃ ϕðx; τcÞ þ aτ
∂ϕ
∂τc þ a

∂ϕ
∂xj þ

a2

2

∂2ϕ

∂x2j
ϕðnþ ĵ; ncÞ≃ ϕðx; τcÞ þ a

∂ϕ
∂xj þ

a2

2

∂2ϕ

∂x2j :

We notice that, since we are dealing with a diffusion
process, in which spatial distances scale like the square root
of the diffusion time, it is consistent to Taylor expand at the
linear order in time and at the quadratic order in spatial
derivatives. Putting everything together, Eq. (A3) becomes

aτ
∂ϕðx; τcÞ

∂τc ≃ 1

3
a2∇2ϕðx; τÞ; (A4)

which after setting aτ ¼ 1, teaches us that the relation
between the cooling time τc and the gradient flow time τ is

τc ¼ nc ≃ 3τ;

meaning that three cooling steps correspond to 1 unit of
gradient flow time. It should be clear that the factor 3 would
have been a factor 6 had we not taken into account the
additional cooling time dependence of half of the nearest
neighbor fields.
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