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Perturbative corrections to the Casimir free energy due to macroscopic roughness of dielectric interfaces
are obtained in the framework of an effective low-energy field theory. It describes the interaction of
electromagnetic fields with materials whose plasma frequency ωp determines the low-energy scale. The
naïve perturbative expansion of the single-interface scattering matrix in the variance of the profile is
sensitive to short-wavelength components of the roughness correlation function. We introduce generalized
counterterms that subtract and correct these high-momentum contributions to the loop expansion. To
leading order, the counterterms are determined by the phenomenological plasmon model. The latter is
found to be consistent with the low-energy description. The proximity force approximation is recovered in
the limit of long correlation length and gives the upper limit for the roughness correction to the Casimir
force. The renormalized low-energy theory is insensitive to the high-momentum behavior of the roughness
correlation function. Predictions at zero temperature of the improved theory are compared with those of the
unrenormalized model and with experiment. The Casimir interaction of interfaces with low levels of
roughness is found to be well reproduced by that of flat parallel plates with the measured reflection
coefficients at a distance that is slightly less than the mean separation of the rough surfaces.
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I. INTRODUCTION

Casimir originally [1] obtained the force due to electro-
magnetic zero-point fluctuations between two large ideal
parallel metallic flat surfaces at vanishing temperature. His
approach was soon generalized to dielectric surfaces [2,3],
finite temperature [3,4], and experimentally more accessible
geometries [5]. Because it was unimportant in early Casimir
experiments [6], the influence of surface roughness was
investigated only later [7,8]. Once Casimir forces were
accurately measured with atomic force microscope tech-
niques [9] at plate separations of a few hundred nanometers,
this correction could no longer be ignored. Effects due to
surface roughness are even more important at the small
separations and higher accuracy of recent experiments
[10,11]. Increasing experimental [12,13] and theoretical
[13–23] effort has since been devoted to understanding this
correction. The only rigorous nonperturbative approach to
roughness currently is the Proximity Force Approximation
(PFA) (and some recent modifications thereof [13,20]). This
approximation is accurate when the correlation length lc of
the profile greatly exceeds the average plate separation a as
well as the inverse plasma frequency 1=ωp of the material
[14,20]. Most rigorous approaches consider perturbative
corrections to the Green’s function in powers of σ=a or a
derivative expansion of the roughness profile [21]. The limit
of very rough plates with a ≫ lc was first considered in
Ref. [7] using methods of stochastic calculus.
For stochastic roughness, all perturbative calculations to

date [7,8,13,17,18,23] show an increase in the magnitude
of the Casimir energy and force with decreasing correlation
length lc. They approach the PFA for lc ≫ a [20] as a lower

bound. This behavior corresponds to the dashed curves for
the ratio of the roughness correction to the Casimir energy
of flat plates shown in Fig. 10. As we have argued in
Ref. [22] for a scalar field, such a strengthening of the
Casimir force due to roughness is not just counterintuitive
but also unphysical. From the point of view of the multiple-
scattering expansion, decreasing the correlation length
decreases the magnitude of the Casimir force, since the
reflection coefficient for backscattering is reduced.
Corrections to the free energy of higher order in the loop
expansion for scalar fields are of similar magnitude [22,23]
at small lc. Assuming the scalar model to be valid at any
scale, the leading contributions in σ2=ðlcaÞ were resummed
[22]. In the Casimir energy, this effectively amounted to
reducing the separation between two flat plates. The
resummed Casimir energy in this approximation indeed
decreases with increasing roughness [22]. We will find a
similar behavior for the roughness correction to the
electromagnetic Casimir force with the present approach.
The perturbative analysis for electromagnetic fields in

Refs. [7,8,18] also predicts a strengthening of the Casimir
force with increasing roughness. This trend does not appear
to be supported by experiment [10,12]. Most experimental
investigations [24,25] using machined unidirectional sur-
faces are in a nonperturbative regime. However, a pertur-
bative analysis of roughness can be justified for some
investigations [11,12] that use relatively thin rough gold
coatings. The roughness correction compared to flat
plates observed at small separations in this case is of the
order of 30% only. These experiments appear to measure a
Casimir force that is smaller (not larger) than the PFA
estimate.

PHYSICAL REVIEW D 89, 105003 (2014)

1550-7998=2014=89(10)=105003(27) 105003-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.105003
http://dx.doi.org/10.1103/PhysRevD.89.105003
http://dx.doi.org/10.1103/PhysRevD.89.105003
http://dx.doi.org/10.1103/PhysRevD.89.105003


We here set out to extend the low-energy formalism we
developed for scalar fields to interactions of the electro-
magnetic field with matter. Apart from being more com-
plicated, the basic field-theoretic approach is similar.
However, there is a fundamental difference between the
effective low-energy theories for scalar and electromagnetic
fields: whereas one can pretend that the scalar theory is
valid at all length scales, this is not possible for the
electromagnetic model. The coupling to the roughness
profile sets the energy scale in the scalar model, whereas
this interaction for the electromagnetic case is dimension-
less. The scale of the low-energy effective electromagnetic
theory is the plasma frequency, ωp. The description of
electromagnetic interactions with materials by their dielec-
tric permittivity is not reasonable for momentum and
energy transfers much above ωp. Explicitly resumming
high-momentum contributions to the loop expansion thus
would be quite out of control in the low-energy effective
electromagnetic model.
Unfortunately, the roughness contribution to the low-

energy electromagnetic scattering matrix arises to a large
part from (loop) momenta q ∼ 1=lc ≳ ωp. Using the low-
energy theory to compute these high-momentum contribu-
tions is not justified. Instead of resumming high orders of
the loop expansion, we use generalized counterterms to
correct for the high-momentum contributions [26–28]. One
thus trades (wrong) high-momentum contributions to the
scattering matrix for a phenomenological description—in
this case, plasmon scattering.
The observation that UV-divergent vacuum energies

arise due to unphysical boundary conditions is quite old
[29]. Some UV divergences may be absorbed in the
renormalization of physical parameters [30]. Sometimes
they are avoided by a more realistic modeling of the
surface. However, this invariably gives results that are
sensitive to the modeling of the interactions with materials
at high energies. Here we address the related, but somewhat
different, issue that the low-energy description is not suited
for computing high-momentum contributions to physical
observables, whether they diverge or not. High-momentum
parts of loop integrals should not be viewed as reliable
predictions of an effective low-energy theory and generally
have to be corrected phenomenologically.
This article is organized as follows: In Sec. II, we present

Schwinger’s low-energy theory for electromagnetic inter-
actions with materials and derive the scattering matrix Th

for roughness corrections to the Casimir free energy. The
one-loop correction to Th is found to be UV sensitive in
Sec. III. We show that this problem may be solved by
subtraction and inclusion of a phenomenological plasmon
contribution. In Sec. IV, roughness corrections to the
Casimir free energy to the leading order of the variance
are derived. They differ from earlier results by the inclusion
of a counterterm that corrects uncontrolled high-momentum
contributions to loop integrals. We obtain the limits of very

large and very small correlation lengths as well as the ideal
metal limit, and we determine the plasmon coupling at low
energies by analyticity arguments. Section V develops the
low-energy effective field theory of electromagnetic inter-
actions with materials to one loop, including generalized
counterterms. We state the renormalization conditions that
determine them. Section VI presents our numerical results
and compares them to unrenormalized perturbation theory
and experiment. Section VII is a summary of the approach.
Basic ingredients and some detailed calculations are rel-
egated to four appendixes.

II. THE ELECTROMAGNETIC FREE ENERGY OF
A ROUGH AND A FLAT MATERIAL INTERFACE

The present approach is based on Schwinger’s low-
energy effective field theory [3] for electromagnetism. The
partition function in this model is a functional of the local
dielectric permittivity tensor εðζn;x; zÞ of the material and
of an external polarization source ~Pnð~xÞ ¼ ~Pðζn; ~xÞ. It is
the product of contributions from (independent) thermal
modes [31] of the electric field to theMatsubara frequency,1

ζn ¼ 2πjnjT ≥ 0 for all n ∈ Integers. (1)

The partition function formally is given by the functional
integral

ZT ½~P; ε� ∝
Y
n

Z
D½~En� exp

�
−

1

2T

Z
d3x~E†

nð~xÞ

×

�
εðζn; ~xÞ þ

1

ζ2n
∇ × ∇×

�
~Enð~xÞ

þ 2T ~Enð~xÞ · ~Pnð~xÞ
�
: (2)

Here ZT ½~P; ε� is the partition function of QED in axial gauge
A0 ¼ Φ ¼ 0 for a medium with local dielectric permittivity

εðζ; ~xÞ. In this gauge, ~En ¼ ζ~An, ~Bn ¼ ∇ × ~An, and the
current source ~jn ¼ ζ ~Pn.
We consider the standard Casimir configuration of two

parallel semi-infinite plates at an average separation a that
is much less than their transverse dimension [1]. In the
following, we restrict the discussion to the configuration
shown in Fig. 1 of two semi-infinite dielectric (metallic)
slabs of the same material separated by vacuum, only one
of which is rough:

ε3ðζÞ ¼ 1; ε2ðζÞ ¼ εðζÞ ¼ ε1ðζÞ: (3)

We forego the ability to address lateral Casimir forces,
which are finite and vanish if one of the interfaces is flat.

1We adopt natural units ℏ ¼ c ¼ kB ¼ 1 and suppress the
index n of ζn in summations

P
n over all Matsubara frequencies.
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Lateral Casimir forces depend on cross correlations of the
two profiles. At separations a ≫ σ, they are small and
involve only low momenta. For corrugated plates, they
have been computed in Ref. [32]. We here are interested in
the effect of profiles on the normal Casimir force. The
physical interpretation and consistent subtraction of (poten-
tially divergent) contributions will be our main concern.
The rough interface is assumed to be without enclosures,

and the deviation from a flat one at z ¼ 0 is described by a
single-valued function hðxÞ that satisfies2

hhi ≔ A−1
Z
A
drhðrÞ ¼ 0: (4)

The point of reference for defining the separation a of the
two slabs should be irrelevant. However, a consistent
perturbative expansion is feasible only in the absence of
so-called tadpole contributions. These vanish if the sepa-
ration a is such that Eq. (4) holds. Equation (4) in this sense
defines the distance a between the interfaces.
When the cross-sectional area A of the slab is taken to be

arbitrarily large, boundary effects can be ignored, and the
two-point correlation function

D2ðx − yÞ ¼ hhðxÞhðyÞi ≔ A−1
Z
A
drhðrþ xÞhðrþ yÞ

(5)

is invariant under transverse translations. The roughness
variance,

σ2 ¼ D2ð0Þ; (6)

is a measure for the roughness amplitude.
The dielectric permittivity function εðε; ~xÞ in this effec-

tive low-energy field theory is of the form

εðζ; ~xÞ ¼ 1½ε3ðζÞ þ ðε2ðζÞ − ε3ðζÞÞθðz − hðxÞÞ
þ ðε1ðζÞ − ε3ðζÞÞθð−z − aÞ�

¼ V∥ðζ; zÞ þ Vhðζ;x; zÞ; (7)

where

Vhðζ;x; zÞ ¼ 1½ðε2ðζÞ− ε3ðζÞÞðθðz−hðxÞÞ− θðzÞÞ� (8)

is the deviation due to the roughness profile hðxÞ from
the dielectric permittivity of a transversely homogeneous
medium given by

V∥ðζ; zÞ ¼ 1½ε3ðζÞ þ ðε2ðζÞ − ε3ðζÞÞθðzÞ
þ ðε1ðζÞ − ε3ðζÞÞθð−z − aÞ� þ δVhðζ; zÞ: (9)

We shall argue that the counterterm δVhðζ; zÞ to the
dielectric permittivity of three flat slabs is necessary for
a consistent perturbative expansion in the framework of a
low-energy theory. δVhðζ; zÞ depends on gross properties
of the profile hðxÞ, but not on the transverse position x, nor
on the separation of the two interfaces. This counterterm
ensures that the single-interface scattering matrix is repro-
duced by the low-energy theory. To leading order, δVhðζ; zÞ
is proportional to the variance σ2 of the rough interface. We
are thus calculating the perturbative expansion for the
rough interface at z ¼ 0 about an effective x-independent
(bare) permittivity,

εeffðζ; zÞ ¼ 1ε2ðζÞθðzÞ þ 1ε3ðζÞθð−zÞ þ δVhðζ; zÞ: (10)

δVhðζ; zÞ has support near the surface at z ∼ 0 only.3 To
approximate scattering off a rough interface by an effective
εeffðζ; zÞ is a conceptually appealing idea and not new
[33,34]. We develop a consistent low-energy approach in
which this is realized perturbatively. Contrary to commonly
used Ansätze for the effective εeff , δVhðζ; zÞ generally is not
isotropic.
The inherent limitations of the effective low-energy

description derive from the fact that electromagnetic
interaction with matter is encoded in the permittivity
function. They are not restricted to a perturbative analysis.
The dimensionless permittivity εðζÞ ¼ εðζ=ωpÞ depends
implicitly on a scale that can be identified with the plasma
frequency ωp of the material. For momentum or energy

FIG. 1 (color online). Two semi-infinite slabs of the same
material separated by vacuum. The low-energy electromagnetic
properties of the material are described by a bulk permittivity
εðζ ¼ iωÞ that only depends on the frequency of the electric field.
In Cartesian coordinates, the planar interface is at z ¼ −a, and the
mean separation of the two interfaces is a. The surface of the
rough slab is at z ¼ hðxÞ, where hðxÞ is a profile function that
generally depends on both transverse coordinates x ¼ ðx; yÞ. We
develop a perturbative expansion valid for jhðxÞj ≪ a with no
restrictions on the profile other than that it be single valued. hðxÞ
in particular need not be as smooth as shown here.

2A Cartesian coordinate system with the z axis normal to the
plates is used to describe this system. We use bold type x ¼ ðx; yÞ
for two-dimensional vectors perpendicular to the z axis, whereas
~v denotes an ordinary three-dimensional vector.

3To first order in the variance, we find in Eq. (43) of Sec. III
that δVhðζ; zÞ ∝ δðzÞ—that is, εeffðζ; zÞ differs from that of an
interface by the insertion of an arbitrarily thin plate.
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transfers (or temperatures) that are much larger than ωp, the
effective low-energy theory of Eq. (2) fails to incorporate
nonlinear effects or to account for the creation of free
charges. The Ansatz that the permittivity does not depend
on the profile, furthermore, is incorrect at wavelengths
comparable to the plasma wavelength lp ¼ 2π=ωp, and a
description in terms of the bulk permittivity of the homo-
geneous material is not warranted within the plasma-skin
depth of order lp. For gold surfaces commonly used,
ωp ∼ 0.046 nm−1 ∼ 9 eV. The low-energy description of
electromagnetic interactions with such materials by Eq. (7),
therefore, is already questionable at wave numbers q ≫
ωp ∼ 0.046 nm−1 that resolve less than 20 nm, or about 200
gold atoms. We will find that roughness corrections to the
Casimir force with correlation lengths lc ≲ 1=ωp depend on
momentum transfers q ≫ ωp that are inadequately
described by the low-energy theory. The conservative
approach is to use the effective low-energy theory to only
compute roughness corrections with lc ≫ 1=ωp ∼ 20 nm, a
regime where the PFA generally is quite accurate. We
improve on this by introducing phenomenological input.
It is interesting in this regard that many comparisons of

theory with experiments in the literature are for correlation
lengths lc ∼ 25 nm ∼ 1=ωpAu. The unimproved theory is
highly sensitive to lc in this regime and (re)produces
large variations with only small changes in parameters.
Roughness corrections computed with this unimproved
model for such short correlation lengths are uncontrolled,
and in fact physically untenable [22].
We here compute roughness corrections that are con-

sistent with the low-energy effective model by using low-
energy (experimental) data to systematically subtract and
correct high-momentum contributions to the loop expan-
sion. The method is quite general [26,27] and has been
successfully applied to low-energy effective field theories
as diverse as chiral perturbation theory [28] and (quantum)
gravity [27]. In our case, it yields a consistent expansion in
σ=a for any value of 0 < lcωp < ∞ at the expense that
the reflection of electromagnetic radiation perpendicular to
the rough plate has to either be measured or be reliably
modeled.

A. The Green’s function and Casimir energy
of two parallel flat interfaces

Schwinger obtained the free energy and the response to
an external polarization source ~Pnðx; zÞ ¼ ~Pðx; z; ζnÞ for
three parallel slabs in the framework of the low-energy
effective field theory given by Eq. (2). The free energy in
this case is [3]

F ∥
Tða; ~PÞ ¼ F∥

TðaÞ −
T2

2

X
n

f~PnjG∥ðnÞj~Png: (11)

Here F∥
T is the well-known Casimir free energy for three

parallel slabs,

F∥
TðaÞ ¼

AT
2

X
n

Z
dk

ð2πÞ2 ½lnð1 − r1r2e−2κ3aÞ

þ lnð1 − r̄1r̄2e−2κ3aÞ�; (12)

where the reflection coefficients at the ith interface of area
A for the TE and TM modes are

ri ¼ rTEi ¼ κ3 − κi
κ3 þ κi

and r̄i ¼ rTMi ¼ κ̄3 − κ̄i
κ̄3 þ κ̄i

; with

κi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ζ2εiðζÞ

q
and κ̄i ¼

κi
εiðζÞ

: (13)

The response to the nth Matsubara mode of an external
source of polarization is

f~PnjG∥ðnÞj~Png

¼
Z

dzdz0dxdy ~P†
nðx; zÞ ·G∥ðx; z; y; z0; ζn; aÞ · ~Pnðy; zÞ

(14a)

¼
Z

dk
ð2πÞ2dzdz

0 ~P†
nðk;zÞ ·G∥ðk;z;z0;ζn;aÞ · ~Pnðk;zÞ: (14b)

G∥ in Eq. (14a) is the Green’s dyadic solving,4�
V∥ðζ;zÞþ 1

ζ2
∇×∇×

�
G∥ðx;z;y;z0;ζ;aÞ¼1δðz−z0Þδðx−yÞ:

(15)

Due to translational invariance in transverse directions,
G∥ðx; z; y; z0; ζ; aÞ is a function of x − y, and the Fourier
representations in Eq. (14b) are

G∥ðx; z; y; z0; ζ; aÞ ¼
Z

dk
ð2πÞ2 e

ikðx−yÞG∥ðk; z; z0; ζ; aÞ

and ~Pnðk; zÞ ¼
Z

dxe−ikx ~Pnðx; zÞ: (16)

G∥ can be decomposed into a single-interface Green’s
dyadic Gjðx−y;z;z0;ζÞ¼G∥ðx;z;y;z0;ζ;a→∞Þ, where
the second interface has been removed, and the correction
Gjajðx − y; z; z0; ζ; aÞ is due to the presence of a second flat
interface at mean separation a. In momentum space, the
latter vanishes exponentially for a → ∞:

G∥ðk; z; z0; ζ; aÞ ¼ Gjðk; z; z0; ζÞ þGjajðk; z; z0; ζÞ: (17)

Explicit expressions for components of Gjðk; z; z0; ζÞ and
Gjajðk; z; z0; ζÞ when z and z0 are in slab #2 or slab #3 are
collected in Appendix A.

4G∥ðζÞ is related to Schwinger’s [3] dyadic ΓðωÞ at angular
frequency ω by G∥ðζÞ ¼ −ΓðiωÞ.
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B. Perturbative roughness correction to the Casimir
free energy: Green’s function formalism

A straightforward perturbative expansion in the rough-
ness potential Vh is possible only for media with
ε2 − ε3 ≪ 1. Since the Casimir free energy itself is rather
small, roughness corrections are not very important in this
weak coupling scenario. However, the support of Vh is
restricted to jzj ≤ maxx jhðxÞj ∼ σ ≪ a, and a perturbative
expansion in σ=a may exist even for media whose
permittivity is rather large. This expansion, in fact, is
possible even for ideal metals.
The part of the free energy that captures the dependence

on the average separation a of two interfaces is by definition
the Casimir free energy due to their interaction.5 In terms of
the Green’s dyadic G∥ of three parallel slabs satisfying
Eq. (15), the full Green’s dyadic G for the combination of a
rough and a flat interface formally is the solution of

½1þ VG∥�G∥−1G ¼ 1; (18)

with

V ¼ Vh þ δVh

¼ 1ðεðζÞ − 1Þðθðz − hðxÞÞ − θðzÞÞ þ δVhðζ; zÞ: (19)

The change in free energy due to the roughness of one
interface, therefore, is [32,35]

ΔFT ½h;a� ¼−
1

2
Tr lnðG∥−1GÞ¼ 1

2
Tr lnð1þVG∥Þ; (20)

where the trace includes a summation over Matsubara
frequencies and over a complete set of scattering states.
The expression in Eq. (20) is rather formal, because it
includes the change in free energy due to roughness in the
absence of the second (flat) interface. This infinite single-
body contribution to the free energy does not depend on the
mean separation a. Subtracting from ΔFT ½h; a� its value
when the two interfaces are infinitely far apart gives the
correction to the Casimir free energy due to the roughness of
an interface as

ΔFCas
T ½h; a� ≔ ΔFT ½h; a� − ΔFT ½h;∞�

¼ 1

2
Tr lnð1þ VG∥Þ − 1

2
Tr lnð1þ VGjÞ

¼ 1

2
Tr lnð1þ ThGjajÞ; (21)

where

Th ¼ V − VGjTh (22)

is the formal scattering matrix due to the roughness potential
V. Th does not depend on the separation a and describes
scattering due to roughness in the absence of the second
(flat) interface. Since high momenta are exponentially
suppressed in Gjaj, the Volterra series of ΔFCas

T ½h; a�
in powers of Th,

ΔFCas
T ½h; a� ¼ 1

2
Tr lnð1þ ThGjajÞ

∼
1

2
Tr½ThGjaj −

1

2
ThGjajThGjaj þ � � � ; (23)

converges when the norm of ThGjaj is bounded and
sufficiently small.

III. THE ROUGHNESS SCATTERING MATRIX Th

Noting that the component Gj
zzðk; z; y; z0; ζÞ in Eq. (A1)

includes a δ-function singularity, Eq. (22) can be rewritten

Th ¼ ~V − ~V ~GjTh (24)

in terms of the Green’s dyadic ~Gj with Fourier components,

~Gjðk; z; z0; ζÞ ¼ Gjðk; z; z0; ζÞ − diag

�
0; 0;

1

εz
δðz − z0Þ

�
;

(25)

and a new potential ~V. ~G is devoid of δ-function singu-
larities (but not continuous at z ¼ 0) with the components
given in Eq. (A7). To order σ2, the potential ~V is

~Vðx; z; ζÞ ¼ ~Vhðζ;x; zÞ þ δ ~Vhðζ; zÞ
¼ ðε − 1Þ½θðz − hðxÞÞ − θðzÞ�diag½1; 1; εθðzÞ

þ θð−zÞ=ε� þ δ ~Vhðζ; zÞ:
(26)

The reformulation of Eq. (22) in the form of Eq. (24)
resums local contributions of the same order in h. It allows
the formulations of a consistent perturbative expansion in σ
even in the ideal metal limit εðζÞ → ∞. Just as for V, the
support of ~V is restricted to the interval jzj < maxxjhðxÞj ∼
σ only. Since ~Gj is free of ultralocal δ-function singularities,
contributions to Th of nth order in ~V are at least of nth order
in the standard deviation σ of the profile h.
To second order in σ, we need only consider the first two

terms of the Volterra series,

Th ≈ ~V − ~V ~Gj ~V ≈ ~V − ~Vh ~Gj ~Vh ¼ Tð1Þ þ Tð2Þ; (27)

since the counterterm potential δ ~Vh is itself of order σ2

(as will be seen). The second-order contribution Tð2Þ of
Eq. (27) is at least of order σ2, and its integrated expectation
to this order is

5It vanishes in the limit a → ∞. At T ¼ 0, this “free energy” is
the Casimir energy and need not vanish.
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tð2Þðx − y; ζÞ ≔
�Z

dzdz0Tð2Þðx; z; y; z0; ζÞ
	

¼ −
�Z

dzdz0 ~Vhðx; z; ζÞ ~Gjðx − y; z; z0; ζÞ ~Vhðy; z0; ζÞ
	
þOðσ3Þ: (28)

Because
R
dz ~Vhðx; z; ζÞ already is of order σ, the Fourier components of tð2Þ are6

tð2Þxx ðk; ζÞ ¼ −ðε − 1Þ2
Z

dk0

ð2πÞ2
�
κ0κ0εcos2θ
κ0ε þ εκ0

þ ζ2sin2θ
κ0ε þ κ0

�
DðqÞ þOðσ3Þ;

tð2Þyy ðk; ζÞ ¼ −ðε − 1Þ2
Z

dk0

ð2πÞ2
�
κ0κ0εsin2θ
κ0ε þ εκ0

þ ζ2cos2θ
κ0ε þ κ0

�
DðqÞ þOðσ3Þ;

tð2Þzz ðk; ζÞ ¼ −ðε − 1Þ2
Z

dk0

ð2πÞ2
−k02

εκ0 þ κ0ε

�
εDþþðqÞ þD−þðqÞ þDþ−ðqÞ þ

1

ε
D−−ðqÞ

�
þOðσ3Þ;

tð2Þxz ðk; ζÞ ¼ −ðε − 1Þ2
Z

dk0

ð2πÞ2
ik0 cos θ
κ0ε þ εκ0

ðκ0εDþþðqÞ þ κ̄0εDþ−ðqÞ − εκ0D−þðqÞ − κ0D−−ðqÞÞ þOðσ3Þ;

tð2Þzx ðk; ζÞ ¼ −ðε − 1Þ2
Z

dk0

ð2πÞ2
−ik0 cos θ
κ0ε þ εκ0

ðκ0εDþþðqÞ − εκ0Dþ−ðqÞ þ κ̄0εD−þðqÞ − κ0D−−ðqÞÞ þOðσ3Þ; (29)

with q2 ¼ ðk − k0Þ2 ¼ k2 þ k02 − 2kk0 cos θ. Since the
~Gj
zx and ~Gj

zz components of the dyadic (see Appendix A)
are discontinuous at z ¼ 0, one has to separately consider
correlators of positive and negative components of
the roughness profile in Eq. (29). With h�ðxÞ ¼
hðxÞθð�hðxÞÞ, these signed correlators are

D�þðqÞ¼D∓−ðqÞ≔
Z

dxeiqðx−yÞhh�ðxÞhþðyÞi;

DðqÞ¼2DþþðqÞþ2Dþ−ðqÞ¼
Z

dxeiqðx−yÞhhðxÞhðyÞi:

(30)

DðqÞ is the Fourier transform of the two-point correlation
function D2ðx − yÞ of Eq. (60). As shown in Appendix B,
the signed correlators for a Gaussian generating functional
of roughness correlations are also related to the two-point
correlator D2 as

hhþðxÞhþðyÞi¼ hh−ðxÞh−ðyÞi¼
σ2

2π
ðsinϕþðπ−ϕÞcosϕÞ;

hhþðxÞh−ðyÞi¼ hh−ðxÞhþðyÞi¼
σ2

2π
ðϕcosϕ− sinϕÞ;

with 0≤ cosϕ¼D2ðx−yÞ=D2ð0Þ≤ 1 (31)

for a roughness correlation function D2ðrÞ that is positive
and monotonically decreasing with r ¼ jx − yj. The
signed correlators do not vanish and approach �σ2=ð2πÞ
for r → ∞ if D2ðr ∼∞Þ ∼ 0. At small separations,
r ¼ jx − yj ≪ lc, cosϕ ¼ D2ðrÞ=D2ð0Þ ∼ 1 − βrα. Thus,
ϕ ∝ rα=2 for r ∼ 0with an exponent α > 0. The expressions
of Eq. (31) for small ϕ then imply the behavior

hhþðxÞhþðyÞi¼hh−ðxÞh−ðyÞi∼
1

2
D2ðrÞ;

hhþðxÞh−ðyÞi¼hh−ðxÞhþðyÞi∼−
σ2

6π
ð2βrαÞ3=2 for r≪ lc:

(32)

After Fourier transformation, the asymptotic behavior at
large momenta qlc ≫ 1 of DþþðqÞ ¼ D−−ðqÞ is the same
as that of 1

2
Dðq ≫ 1=lcÞ, whereas the mixed correlations

Dþ−ðqÞ ¼ D−þðqÞ fall off more rapidly.
For lc ≪ 1=ωp, high-momentum contributions are appreci-

able or even dominate the one-loop corrections to the diagonal
components of the scattering matrix in Eq. (29). For example,

tð2Þxx ð0;ζÞ¼−ðε−1Þ2
Z

∞

0

kdk
4π

�
κκε

κεþεκ
þ ζ2

κεþκ

�
DðkÞ

⟶
lc∼0 −

ðε−1Þ2
1þε

Z
∞

0

kdk
4π

kDðkÞ: (33)

Whether or not loop integrals like Eq. (33) diverge depends on
the roughness correlation function. For Gaussian correlations,
the integral converges,

hhðxÞhðyÞi ¼ σ2e−
1
2
ðx−yÞ2=l2c ⇒ DGaussðqÞ ¼ 2πσ2l2ce−

1
2
q2l2c ;

with
Z

∞

0

kdk
4π

kDGaussðkÞ ¼
σ2

2lc

ffiffiffi
π

2

r
; (34)

but the roughness “correction” becomes (arbitrarily) large
for lc ∼ 0. This invalidates the perturbative expansion
in σ=a and, for sufficiently small lc, violates unitarity.
It furthermore is unphysical that roughness corrections to
the scattering matrix with profiles of fixed variance become
arbitrarily large as lc → 0.
For a scalar field and Gaussian roughness correlation, higher

orders in the loop expansion are of the same order in σ=lc in
this limit [22]. Assuming the scalar model is valid at all energy
scales, we resummed the leading σ=lc contributions to the

6k ¼ ðk; 0; 0Þ here defines the positive x axis, and ðk0; θÞ are
polar coordinates of k0. Note that a (randomly) rough profile
preserves translational (and rotational) invariance on average.
The average scattering matrix of Eq. (28), therefore, is diagonal
in transverse momentum space.
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scalar Casimir energy and found that they amount to a change
in the effective separation Δa ∼ σ2=lc of the two interfaces.
However, the effective low-energy electromagnetic

theory of Eq. (2) evidently is not valid for momenta that
far exceed the plasma frequency ωp. One furthermore is not
assured that summing incorrect higher-loop contributions
in this effective low-energy theory improves the situation.
We therefore will not follow that line and will proceed
differently in this case.
For correlation functions with nonvanishing slope at

r ¼ jx − yj ¼ 0—that is, D0
2ðr ¼ 0Þ ≠ 0—the situation is

even more serious. For instance, the two-dimensional
Fourier transform of an exponential correlation function,

hhðxÞhðyÞi ¼ σ2e−jðx−yÞj=lc ⇒ DExpðqÞ ¼
2πσ2l2c

ð1þ q2l2cÞ3=2
;

(35)

decays as a power law proportional to q−3 at large
momenta. The integral in Eq. (33) and other (diagonal)
components of the roughness correction tð2Þ in Eq. (29) to
the single-interface scattering matrix in this case are
logarithmic UV divergent for any correlation length lc > 0.
Experiment [19] does not distinguish Gaussian rough-

ness correlations,7 and roughness profiles with correlation
lengths lcωp ≪ 1 are readily manufactured. Restricting the
model to a particular form for the roughness correlation
would not address the fact that the effective low-energy
theory does not describe high-momentum contributions to
loop integrals correctly.
From a practical point of view, the problem is that

roughness corrections to the Casimir free energy and other
low-energy observables are exceptionally sensitive to high-
frequency components of the profile because Gjðk ∼
∞; 0; 0; ζÞ ∼ k at large momenta. Figure 2 depicts typical
roughness profiles to three different correlation functions
with the same correlation length and variance: (a) expo-
nential as in Eq. (35), (b) Gaussian as in Eq. (34), and
(c) rational asDRationalðrÞ ¼ σ2=ð1þ ðr=lcÞ2Þ2. It is evident
from Fig. 2 that the three profiles differ only in their high-
frequency components. However, to leading order in the
variance, corrections to the low-energy scattering matrix

are extremely different for the three types of profiles. The
roughness correction diverges in the exponential case (a)
but is finite for profiles (b) and (c). This sensitivity can be
traced to the UV behavior of the one-loop integrands like
that of Eq. (33). It is unphysical and an artifact of taking the
low-energy effective theory beyond its limits.
Analogous difficulties arise in any nonrenormalizable

low-energy effective field theory [27,28], and we here resort
to a similar cure: whereas high momenta may dominate loop
corrections to the scattering matrix, they generally are
sufficiently suppressed in differences thereof. Differences
of elements of the scattering matrix often can be reliably
estimated within the framework of the low-energy effective
field theory. However, phenomenological input is required to
determine high-momentum contributions to loop integrals
that are beyond the reach of the low-energy theory.
One, for instance, can rewrite tð2Þxx ðk; ζÞ of Eq. (29) in

the form

tð2Þxx ðk; ζÞ ¼ tð2Þxx ð0; ζÞ þ ðtð2Þxx ðk; ζÞ − tð2Þxx ð0; ζÞÞ

¼ tð2Þxx ð0; ζÞ − ðε − 1Þ2
Z

dk0

ð2πÞ2
�
κ0κ0εcos2θ
κ0ε þ εκ0

þ ζ2sin2θ
κ0ε þ κ0

�
ðDðjk0 − kjÞ −Dðk0ÞÞ

¼ tð2Þxx ð0; ζÞ − ðε − 1Þ2
Z

dq
ð2πÞ2

�
κ0κ0εðk̂ · k̂0Þ2
κ0ε þ εκ0

þ ζ2ð1 − ðk̂ · k̂0Þ2Þ
κ0ε þ κ0

−
κκεðk̂ · q̂Þ2
κε þ εκ

−
ζ2ð1 − ðk̂ · q̂Þ2Þ

κε þ κ

�
DðqÞ; (36)

FIG. 2 (color online). Typical cross sections of two-dimen-
sional profiles with different correlations (reproduced from
Ref. [36]). From the top: Profile with the exponential correlation
DExpðqÞ of Eq. (35), profile with the Gaussian correlation
DGaussðqÞ of Eq. (34), profile with a rational correlation (see
text). The correlation length and variance are the same for all
three profiles. For clarity, the average height of the profiles differs
by −0.4. Units are arbitrary. Note that only high-frequency
components of the profiles differ significantly.

7DGaussðqÞ ¼ D∞ðqÞ and DExpðqÞ ¼ D1=2ðqÞ in the class of L1 correlations fDsðqÞ ≔ 2πσ2l2cð1þ q2lc2

2s Þ−s−1, with s > 0g.
The corresponding coordinate-space correlation functions are DsðrÞ ¼ σ2 2ðr ffiffiffiffi

2s
p

=lcÞs
2sΓ½s� Ksðr

ffiffiffiffiffi
2s

p
=lcÞ. Reference [12] uses a correlation

in this affine class with s ¼ 0.9 for which the loop integral converges but is sensitive to contributions from high momenta.
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where q ¼ k0 − k, κ0ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ qÞ2 þ ζ2εðζÞ

p
and κε ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ζ2εðζÞ
p

in the last expression. The one-loop correc-

tion to tð2Þxx ð0; ζÞ in Eq. (36) converges for any DðqÞ for
which

hh2ðxÞi ¼
Z

∞

0

qdq
2π

DðqÞ ¼ σ2 < ∞: (37)

More importantly, the correction to tð2Þxx ð0; ζÞ in Eq. (36) is
of order ðkσÞ2 and is thus small at low transverse momenta
for any correlation length lc of the profile. This correction

to tð2Þxx ð0; ζÞ thus is reliably computed in the framework of
the low-energy theory.
It remains to estimate tð2Þð0; ζÞ. This is the correction

due to roughness to the (analytically continued) scattering
matrix of an electromagnetic wave of frequency ω ¼ iζ
incident perpendicular to the rough plate. tð2Þð0; ζÞ is a
single-interface low-energy characteristic that, at least in
principle, can be derived from ellipsometric measurements
of the rough interface. Instead of directly incorporating
such experimental data, we here model the corrections of
order σ2 to the low-energy scattering matrix by the coupling
to surface plasmons induced by roughness. We determine
the coupling by demanding that this phenomenological
description of tð2Þð0; ζÞ be consistent with the low-energy
field theory in the limit of large correlation length and that
the ideal metal limit exist at any correlation length.
Roughness couples electromagnetic radiation to surface

plasmons [37]. At low transverse wave numbers, this
coupling is of the order of the rms roughness σ. To order
σ2, the corresponding tree-level correction to the scattering
matrix is schematically shown in Fig. 3. The diagram
depicts the creation, propagation, and subsequent annihi-
lation of a surface plasmon by an incident electromag-
netic wave.
For k → 0, a surface plasmon on the interface of a flat

plate at z ¼ 0 propagates with the dyadic

Gplasmonðk ∼ 0; ζÞ ¼ ~Gjðk ¼ 0; z ¼ z0 ¼ 0; ζÞ

∼
ζ

1þ ffiffiffiffiffiffiffiffiffi
εðζÞp diagð1; 1; 0Þ: (38)

To second order in σ, the correction tð2Þð0; ζÞ to the
scattering matrix at vanishing momentum transfer from
surface plasmons thus is

tð2Þðk ¼ 0; ζÞ ≈ tð2ÞPlasmonðk ¼ 0; ζÞ

¼ −σ2g2
ζðεðζÞ − 1Þ2
1þ ffiffiffiffiffiffiffiffiffi

εðζÞp diagð1; 1; 0Þ; (39)

where gðζ=ωp; lcωpÞ is a dimensionless coupling that
depends only on the frequency of the plane wave inci-
dent perpendicular to the rough plate. The coupling
gðζ=ωp; lcωpÞ in general is not calculable within this low-
energy effective model and has to be determined phenom-
enologically. We argue below that g2 ∼ 1 at low energies.
Since gðζ=ωp; lcωpÞ is a phenomenological function

rather than just a constant, one could have directly modeled
tð2Þðk ¼ 0; ζÞ. However, the Ansatz of Eq. (39) is consistent
with the low-energy scattering theory in the sense that
roughness correlation functions for large correlation lengths
lcωp ≫ 1 approach representations of the δ distribution8

lim
lc→∞

Dðq; lcÞ ¼ ð2πÞ2σ2δðqÞ: (40)

Loop integrals in the limit lc → ∞ become trivial, and
furthermore, involve only momenta q ≪ ωp. Predictions of
the low-energy theory, therefore, should be reliable in the
limit lc → ∞. Evaluating the loop integrals of Eq. (29) for
k → 0 using Eq. (40) and comparing with the plasmon
contribution of Eq. (39), this requires that

gðζ=ωp; lcωp ∼∞Þ ¼ 1: (41)

We will find that Eq. (41) ensures not only consistency, but
also the existence of an ideal metal limit. It in addition
ensures that the PFA to the Casimir free energy is recovered
in the limit lcωp → ∞.
At finite lcωp ≲ 1, the coupling gðζ=ωp; lcωp ≲ 1Þ in

principle has to be determined phenomenologically.
However, the coupling is severely constrained if we impose

FIG. 3 (color online). The counterpotential ~Vh includes two contributions of order σ2. It subtracts the one-loop contribution to the
average scattering matrix at vanishing (transverse) momentum and replaces it with the phenomenological one. The latter is modeled by
the tree-level plasmon contribution at vanishing transverse momentum. The plasmon couples to radiation due to the roughness of the
surface only, and its coupling g2σ2 to this order is proportional to the variance of the roughness profile. The plasmon propagator (dashed)
is the one-interface Green’s function ~Gðz ¼ z0 ¼ k ¼ 0Þ. We show in the text that g2ðζ=ωp; lcωpÞ ¼ 1 at low frequencies.

8On the space of measurable L0 test functions. The subtracted
loop integrand is in this class.
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some theoretical requirements. Since the range of frequen-
cies ζ that contribute to the Casimir energy satisfy
ζa ≲ 1 ≪ ωpa, and the plasmon coupling does not diverge
at low frequencies, we in the following ignore the ζ
dependence of gðζ=ωp; lcωpÞ, and for low frequencies
approximate

gðζ=ωp; lcωpÞ ∼ gðlcωpÞ ≲ 1 (42)

in Eq. (39). Equation (42) assumes that the plasmon
coupling is strongest for an ideal metal lcωp ≫ 1. Note
that the fact that g is dimensionless links the ideal metal to
the large-lc limits.
To order σ2, the subtraction of the one-loop contribution

tð2Þðk ¼ 0; ζÞ and its replacement by phenomenological
plasmon scattering is implemented by a (local in transverse
coordinates) counterterm potential δ ~Vðζ; zÞ of the form

δ ~Vh ¼ diagðδVh
xxðζ; zÞ; δVh

yyðζ; zÞ;
�
εθðzÞ þ 1

ε
θð−zÞ

�
δVh

zzðζ; zÞ; with

δVh
xxðζ; zÞ ¼ δVh

yyðζ; zÞ ¼ δðzÞðε − 1Þ2
�
−g2σ2ζ
1þ ffiffiffi

ε
p þ

Z
∞

0

kdk
4π

DðkÞ
�

κκε
εκ þ κε

þ ζ2

κ þ κε

��
;

δVh
zzðζ; zÞ ¼ −δðzÞðε − 1Þ2

Z
∞

0

kdk
2π

DðkÞ k2

ðεκ þ κεÞ
: (43)

Note that the support of δVhðζ; zÞ is in the immediate
vicinity of z ¼ 0 only. Due to rotational and translational
symmetry of the rough plate, this “counterpotential” is
local and diagonal but anisotropic.9

As mentioned in Sec. II, the counterpotential may be
interpreted as the modification of the dielectric permittivity
(to order σ2) in the vicinity of the flat interface necessary to
describe the rough interface with permittivity ε and rough-
ness correlation D2ðx − yÞ. There is no compelling reason
for perturbing about a flat interface with the same permit-
tivity as the rough one. We have seen that the expansion
about a flat plate with the same permittivity is not
consistent with the low-energy description, since it implies
unacceptably high momenta in the loop integrals.
Expanding instead about the bare permittivity function
of Eq. (9) yields a better controlled approximation, and
Eq. (43) strongly suppresses high-momentum contributions
to one loop.

IV. ROUGHNESS CORRECTION TO THE
CASIMIR FREE ENERGY OF ORDER σ2

We now evaluate the roughness correction to the Casimir
free energy within the framework of the improved low-
energy effective field theory. From Eqs. (23) and (27), we
have altogether four contributions to order σ2:

ΔFCas
T ½a� ¼ 1

2
hTr ~VhGjaji− 1

2
hTr ~Vh ~Gj ~VhGjaji

þ 1

2
Trδ ~VhGjaj −

1

4
hTr ~VhGjaj ~VhGjaji þOðσ3Þ:

(44)

We consider them in turn.

A. The seagull contribution 1
2 hTr ~VhGjaji

The first is the seagull contribution of Fig. 4(a), given by

1

2
hTr ~VhGjaji ¼ −

AT
2

X
n

ðε − 1Þ
�Z

∞

0

kdk
2π

Z
hðxÞ

0

dzðGjaj
xx ðk; z; z; ζÞ þGjaj

yy ðk; z; z; ζÞ þ
�
εθðzÞ þ θð−zÞ

ε

�
Gjaj

zz ðk; z; z; ζÞÞ
	

¼ −AT
X
n

Z
∞

0

kdk
π

κκε

�
r̄2

e2aκ − r̄2
þ r2

e2aκ − r2

��Z
hðxÞ

0

zdz

	
þOðσ3Þ

¼ −ATσ2
X

ζ∈fζng

Z
∞

0

kdk
2π

κκε

�
r̄2

e2aκ − r̄2
þ r2

e2aκ − r2

�
þOðσ3Þ: (45)

The expressions of Eq. (A8) in Appendix VII have been
expanded here for small z. There are (as expected)
no corrections of order σ, and the final line exhibits
equally weighted contributions from both polarizations. Note

that this remarkable simplification occurs only upon summa-
tion of all δ-function contributions to G∥

zz—which gives an
expansion in ~Vh [defined in Eq. (26)], rather than in the
original Vh.
This roughness contribution to the free energy is entirely

local and does not depend on the correlation length lc. The
loop integral over transverse momenta and the sum over
Matsubara frequencies are exponentially restricted to
momenta 2aκ ≲ 1, and the evaluation of the seagull diagram

9The product of distributions in δ ~Vhðζ; zÞ ∝ δðzÞðεðζÞθðzÞ þ
ε−1ðζÞθð−zÞÞ here means that integration with a test
function fðzÞ ∈ L0 gives

R
dzðεθðzÞ þ ε−1θð−zÞÞδðzÞfðzÞ ≔

1
2
ðεlimz→0þ þ ε−1limz→0−

ÞfðzÞ.
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using the low-energy propagators should be accurate for all
aωp ≫ 0.5—that is, for a≳ 12 nm in the case of gold plates.
Due to the κε factor of the integrand, the contribution of

Eq. (45) is proportional to ωpσ
2=a4 for aωp ≫ 1 ≫ Ta

and diverges in the ideal metal limit. Fortunately, the
seagull is not the whole story to order σ2.

B. The single diffusive scattering contribution
hTr ~Vh ~Gj ~VhGjaji

The other contribution to the Casimir free energy of
order σ2 from a single scattering off the rough interface
corresponds to the diagram of Fig. 4(b). This unsubtracted
two-loop contribution is formally given by

−
1

2
hTr ~Vh ~Gj ~VhGjaji ¼ −

AT
2

X
n

Z
dkdk0

ð2πÞ4 Tr½DþþðqÞ ~GjðnÞ
þþðk0ÞVðnÞ

þ GjajðnÞ
þþ ðkÞVðnÞ

þ

þD−−ðqÞ ~GjðnÞ
−− ðk0ÞVðnÞ

− GjajðnÞ
−− ðkÞVðnÞ

− þD−þðqÞ ~GjðnÞ
−þ ðk0ÞVðnÞ

þ GjajðnÞ
þ− ðkÞVðnÞ

−

þDþ−ðqÞ ~GjðnÞ
þ− ðk0ÞVðnÞ

− GjajðnÞ
−þ ðkÞVðnÞ

þ �; (46)

with q ¼ jk − k0j and the interaction vertices

VðnÞ
þ ¼ ðεðζnÞ − 1Þdiagð1; 1; εðζnÞÞ;

VðnÞ
− ¼ ðεðζnÞ − 1Þdiagð1; 1; 1=εðζnÞÞ:

(47)

GðnÞ
�∓ðkÞ ≔ Gðk; z ¼ 0�; z0 ¼ 0∓; ζnÞ denote one-sided

limits of propagators. Explicit expressions are given

in Eq. (A9). The correlation functions D�∓ðqÞ of
positive and negative components of the roughness
profile are defined in Eq. (30) and computed in
Appendix B.
A lengthy but otherwise straightforward evaluation of

Eq. (46) using the expressions of Eq. (A9) and Eq. (A3)
yields

−
1

2
hTr ~Vh ~Gj ~VhGjaji ¼ −

AT
2

X
n

ðε − 1Þ2
Z

∞

0

kdk
2π

Z
∞

0

k0dk0

ð2πÞ2
Z

π

−π
dθD


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 − 2kk0 cos θ

p �

×

�
rð1 − r2Þζ2

2ðe2aκ − r2Þκε

�
κ0κ0εsin2θ
εκ0 þ κ0ε

þ ζ2cos2θ
κ0 þ κ0ε

�

þ r̄ð1 − r̄2Þ
2ðe2aκ − r̄2Þε

�
εk2k02 − κ2εκ

0κ0εcos2θ
κεðεκ0 þ κ0εÞ

− kk0r̄0 cos θ −
κεζ

2sin2θ
ðκ0 þ κ0εÞ

��
: (48)

The signed correlation functions in Eq. (46) combine, and
Eq. (48) depends on the roughness correlation Dðjk − k0jÞ
only. In Appendix C, the integral over θ in Eq. (48) is
performed analytically for the class of correlations DsðqÞ,

but this angular integral in general has to be evaluated
numerically. More importantly, the leading term of order
ωp in the limit ωp → ∞ of Eq. (48) cancels the leading
asymptotic behavior ∝ ωp of the seagull term in Eq. (45).

FIG. 4 (color online). Feynman diagrams for the contributions of order σ2 to the roughness correction of the Casimir free energy of a
rough and a flat interface. (a) and (b) give corrections from a single scattering off the rough surface and include only one factor of Gjaj.
(c) gives the contribution from the counterpotential defined in Eq. (43) whose two terms are shown in Fig. 3. This contribution eliminates
the uncontrolled high-momentum contributions to the loop integral of (b) in favor of a phenomenological (plasmon) description. (d) is the
2-scattering contribution of order σ2 and includes two factors ofGjaj. The momenta in either loop of this term are exponentially restricted to
k; k0 ≲ 1=ð2aÞ ≪ ωp, and no subtraction is required. Wavy lines denote photon propagators for a single flat interface, ~Gjðk0Þ, or their
correction, GjajðkÞ, due to the presence of a second flat interface at a mean distance a. Solid lines represent the Fourier transform
Dðk − k0Þ of the roughness correlation function. A (red) dot indicates the effective anisotropic interaction potential ~Vh due to the roughness
profile defined in Eq. (26). Combinatorial factors are shown, but traces and momentum integrals have been suppressed.

HUA YAO WU AND MARTIN SCHADEN PHYSICAL REVIEW D 89, 105003 (2014)

105003-10



The limit of Eq. (48) for large correlation lengths lc ≫
1=ωp is found using Eq. (40) to trivially evaluate the k0
integrals. Some algebraic manipulations simplify the
expression in this limit to

−
1

2
hTr ~Vh ~Gj ~VhGjaji ⟶lc→∞

ATσ2
X
n

Z
∞

0

kdk
2π

κðκε − κÞ

×

�
r2

e2aκ − r2
þ r̄2

e2aκ − r̄2

�
: (49)

C. The counterterm correction

As for tð2Þ in Eq. (29), the loop integral of Eq. (48)
generally includes high-momentum contributions k0 ≫ ωp

for which the low-energy description is not justified. The
same one-loop counterpotential of Eq. (43) that corrects
roughness corrections to the scattering matrix to one loop
also removes the uncontrolled high-momentum contribu-
tions to the Casimir free energy and replaces them with the
phenomenological plasmon contribution.
The correction of the Casimir free energy by this

counterpotential is shown diagrammatically in Fig. 4(c),
and the two Feynman diagrams of this counterterm
are depicted in Fig. 3. To order σ2, the contribution to
the Casimir free energy from the counterpotential δ ~V of
Eq. (43) is

1

2
Trδ ~VGjaj ¼ AT

2

X
n

ðε − 1Þ2
Z

∞

0

kdk
2π

Z
∞

0

k0dk0

2π
Dðk0Þ

�
r̄ð1 − r̄2Þk2

2ðe2aκ − r̄2Þκε
k02

ðεκ0 þ κ0εÞ

þ
�

rð1 − r2Þζ2
2ðe2aκ − r2Þκε

−
r̄ð1 − r̄2Þκε
2ðe2aκ − r̄2Þε

��
κ0κ0ε=2
εκ0 þ κ0ε

þ ζ2=2
κ0 þ κ0ε

−
g2ζ

1þ ffiffiffi
ε

p
��

: (50)

This correction to the Casimir free energy remains finite in the ideal metal limit when Eq. (41) is satisfied. The existence of
this limit is assured by the consistency of the low-energy theory in the limit lc ≫ 1=ωp. Using Eq. (40), the counterterm
correction of Eq. (50) for lc ≫ ωp becomes

1

2
Trδ ~VGjaj ⟶

lc→∞
ATσ2

X
n

ðg2 − 1Þζð ffiffiffi
ε

p
− 1Þ

Z
∞

0

kdk
2π

κ

�
r2

e2aκ − r2
þ r̄2κ2ε
ðe2aκ − r̄2Þðεk2 þ κ2εÞ

�
⟶
g2→1

0 (51)

and vanishes when Eq. (41) is enforced. This should be
expected of a model that is valid at low energies. Note that
the reason magnetic and electric modes do not enter the
counterterm correction symmetrically even at large corre-
lation lengths is that we subtracted at k ¼ 0: the factor
κ2ε=ðεk2 þ κ2εÞ in Eq. (51) differs from unity in order
k2=ωp

2 only.

D. Contributions of second order in the roughness
scattering matrix

Both loop integrals of this contribution [represented in
Fig. 4(d)] to the Casimir free energy are exponentially
constrained to low momenta k, k0 ≲ 1=ð2aÞ ≪ ωp—a
regime in which the low-energy description is expected
to hold. We find that

−
1

4
hTr ~Vh ~Gjaj ~VhGjaji ¼ −

AT
16

X
n

ðε − 1Þ2
Z

∞

0

kdk
2π

Z
∞

0

k0dk0

ð2πÞ2
Z

π

−π
dθD


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 − 2kk0 cos θ

p �

×

�
rð1 − r2Þζ2
ðe2aκ − r2Þκε

�
r0ð1 − r02Þζ2cos2θ
ðe2aκ0 − r02Þκ0ε

−
2r̄0ð1 − r̄02Þκ0εsin2θ

ðe2aκ0 − r̄02Þε

�

þ r̄r̄0ð1 − r̄2Þð1 − r̄02Þ
ðe2aκ − r̄2Þðe2aκ0 − r̄02Þ

�
k2k02

κεκ
0
ε
þ 2kk0 cos θ

ε
þ κεκ

0
εcos2θ
ε2

��
: (52)

For profiles with large correlation lengths lc ≫ 2a≳ 1=ωp, Eq. (52) simplifies to

−
1

4
hTr ~Vh ~Gjaj ~VhGjaji ⟶lc→∞

− ATσ2
X
n

Z
∞

0

kdk
2π

κ2
�

r4

ðe2aκ − r2Þ2 þ
r̄04

ðe2aκ0 − r̄02Þ2
�
; (53)

when Eq. (40) holds.

E. The limit lc ≫ maxð1=ωp;aÞ: the Proximity
Force Approximation

Although lc ≫ a is a necessary condition for the PFA,
the limiting expressions of Eqs. (49) and (51) evidently

hold only when lc is large compared to a and 1=ωp. The
latter restriction arises because the scattering matrix locally
can be approximated by a flat surface only if the plasma
length is shorter than the typical length scale of the surface
structure.
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For a rough profile with lc ≫ maxð1=ωp; aÞ, Eqs. (49), (51), and (53) should all be reasonable approximations. Including
the seagull term of Eq. (45), the roughness correction to the Casimir free energy of Eq. (44) in the limit of large correlation
length lc ≫ maxð1=ωp; aÞ is

ΔFCas
T ½a� ⟶lc→∞

− ATσ2
X
n

Z
∞

0

kdk
2π

κ2
�

r4

ðe2aκ − r2Þ2 þ
r2

e2aκ − r2
þ r̄04

ðe2aκ0 − r̄02Þ2 þ
r̄2

e2aκ − r̄2

�

¼ 1

2
σ2

∂2

∂a2
AT
2

X
n

Z
∞

0

kdk
2π

ln ð1 − r2e−2aκÞ þ ln ð1 − r̄2e−2aκÞ ¼ 1

2
σ2

∂2

∂a2 F
∥
TðaÞ; (54)

where F∥
TðaÞ is the Casimir free energy for two flat, parallel

semi-infinite slabs at a separation a given by Eq. (12). This
is precisely the roughness correction in PFA for a rough
surface with hhðxÞi ¼ 0 and hh2ðxÞi ¼ σ2. Although it is
trivial, one should note that the PFA here emerges in the
limit of large lc from requiring consistency of the low-
energy effective field theory. It is due to the absence of
high-momentum contributions in this limit and does not
require any additional phenomenological input.

F. Ideal metal limit ε → ∞
It perhaps is remarkable that the requirement of Eq. (41)

not only guarantees that the PFA is recovered in the lc → ∞
limit, but it also ensures the existence of an ideal metal
limit. If g2 is analytic at ζ ¼ 0, one can argue that ζ=ωp and
1=ðlcωpÞ [see Eq. (58)] corrections are absent and g2 for
large ωp has the expansion g2 ¼ 1þOðζ2=ωp

2Þ. The ideal
metal limit in this case is uniquely given by

1

2
hTr ~VhGjaji − 1

2
hTr ~Vh ~Gj ~VhGjaji ¼ −AT

X
n

Z
∞

0

kdk
2π

Z
∞

0

k0dk0

ð2πÞ2
Z

π

−π
dθD


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 − 2kk0 cos θ

p �

×

�ðζ2 þ kk0 cos θÞ2 þ κ2κ02

κκ0ðe2aκ − 1Þ −
4kζ2ðk − k0 cos θÞe2κa

κ2ðe2aκ − 1Þ2
�
; (55a)

−
1

4
hTr ~Vh ~Gjaj ~VhGjaji ¼ −AT

X
n

Z
∞

0

kdk
2π

Z
∞

0

k0dk0

ð2πÞ2
Z

π

−π
dθD


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 − 2kk0 cos θ

p �

×
ðζ2 þ kk0 cos θÞ2 þ κ2κ02

ðe2aκ − 1Þðe2aκ0 − 1Þκκ0 ; (55b)

1

2
Trδ ~VGjaj ¼ AT

X
n

Z
∞

0

kdk
2π

Z
∞

0

k0dk0

2π
Dðk0Þ

�
2k2k02 þ ðκ2 þ ζ2Þðκ0 − ζÞ2

2ðe2aκ − 1Þκκ0
�
: (55c)

Note that the counterterm contribution of Eq. (55c) does
not vanish and cancels the contribution from high-k0

momenta in Eq. (55a) also for the ideal metal. High-
momentum contributions to the roughness correction thus
persist in the ideal metal limit. Without the counterterm,
this perturbative correction would diverge for lc → 0 (and
for some correlations would diverge for all lc). This
apparently is at odds with exact calculations for square-
wave profiles [16] and demands an explanation. The reason
for convergence of the exact calculations in the limit lc → 0

(and divergence of the unsubtracted perturbation theory)
for such profiles is subtle and related to the fact that for
lc ≪ σ, the leading term in the exact calculation is OðσÞ
and not Oðσ2Þ as perturbation theory suggests [16]. The
nonanalytic dependence on σ for lc → 0 arises due to an
effective UV cutoff in the exact calculation of OðσÞ—there
is no other scale to compare with in this limit. Ignoring this
effective cutoff (as a perturbative expansion in σ does) leads

to an UV-divergent expression in the limit lc → 0. The
nonanalyticity of the exact result for σ=a ≪ 1 in the limit
lc → 0 is only possible if wave numbers of order 1=σ of the
profile contribute significantly. The nonanalyticity in σ in
this sense implies that high-momenta 1=a < k0 < 1=σ must
dominate the exact Casimir energy calculation for an ideal
metal in the limit 0 ≤ lc < σ ∼ 0. A simple model that
qualitatively reproduces this explanation of the nonanalytic
dependence onσ is obtainedby replacing lc → lc þ γσ in the
Gaussian correlation function ofEq. (34),where the constant
γ is of Oð1Þ. For lc ≫ σ, one recovers the quadratic
perturbative dependence on σ in leading order, but for
0 ≤ lc ≪ σ → 0, the k0 integral of Eq. (55a) is of order

σ2=ðlc þ γσÞ →lc≪σ
σ=γ, as in the exact calculation. The UV

divergence ∝ 1=σ3 of the k0 integral that gives this leading
(nonanalytic) behavior is due to momenta k0 ∼ 1=σ ≫ 1=a.
Although the exact evaluation of such high-momentum
contributions is of itself correct, the low-energy description
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used to compute them is not justified. The fact that the
plasmon contributes—and the counterterm of Eq. (55c)
removes—high-momentum contributions even for an ideal
metal indirectly supports the assertion that roughness cor-
rections of real materials in fact remain analytic in the
variance σ2 even in the limit of uncorrelated roughness.

G. The limit of uncorrelated roughness
and the plasmon coupling g2

The high-roughness limit lc ≪ 1=ωp is obtained by
examining the loop integrals in Eqs. (45), (48), and (50)
at large momentum transfers q ¼ jk0 − kj. In the limit of
uncorrelated roughness lc → 0, the correction is

ΔFCas
T ½a� →lc→0

− ATσ2
X
n

Z
∞

0

kdk
2π

�
r̄2κκεð2 ε−1

εþ1
k2 þ κ2ε − g2ð ffiffiffi

ε
p

− 1ÞζκεÞ
ðe2aκ − r̄2Þðk2εþ κ2εÞ

þ r2κðκε − g2ð ffiffiffi
ε

p
− 1ÞζÞ

e2aκ − r2

�
: (56)

Note that the correction to the Casimir free energy for
lc ¼ 0 is strictly negative when g2 ≤ 1. The Casimir free
energy of a rough interface thus is always larger in
magnitude than that of a flat one at the same average
separation. We believe this is the result of two opposing
effects. The specular reflection off a rough surface with
vanishing lc but finite σ never is quite the same as that off a
flat interface with the same bulk permittivity: the situation
is analogous to the change in bulk permittivity due to the

inclusion of subwavelength spheres of a different material.
Since the included “material” in this case is vacuum, with
ε ¼ 1, the effective reflection coefficient decreases com-
pared to that for the flat plate. This effect by itself would
tend to decrease the Casimir free energy in magnitude for
lc → 0. However, this decrease is more than compensated
for by the reduced separation to this effective interface.
The ideal metal limit of Eq. (56) exists only for g2 → 1

and is analytically given by

ΔFCas
T ½a; lc ≪ 1=ωp → 0� ¼ −ATσ2

X
n

Z
∞

0

kdk
2π

ζðκ2 þ ζ2Þ
κðe2aκ − 1Þ ⟶

T→0
−

9Aσ2

32π2a5
ζð5Þ ≈ −0.02955

Aσ2

a5
: (57)

The ideal metal and lc → 0 limits, in fact, commute, and
g2 → 1 is required for the ideal metal limit to exist.
Assuming that g2ðζlc; lcωpÞ is analytic in both arguments,
the existence of an ideal metal limit implies

1 ¼ lim
ωp→∞
lcωp¼β

g2ðζlc; lcωpÞ ¼ g2ð0; βÞ: (58)

We therefore have that g2 ¼ 1 at low frequencies for any value
of lc and ωp. We in the following, therefore, consider only

g2 ¼ 1: (59)

V. THE EFFECTIVE LOW-ENERGY FIELD
THEORY OF ELECTROMAGNETIC

INTERACTIONS WITH ROUGH SURFACES

Although we obtained a roughness correction that is
compatible with the low-energy theory of Schwinger by a

Green’s function approach, it is instructive to construct the
effective low-energy field theory from which these correc-
tions derive. The effective field theory allows one to, in
principle, explore other approximations and corrections. It
also provides a general framework for systematically taking
into account higher orders or for including other inter-
actions. In this formulation, the necessity of counterterms,
furthermore, is readily apparent.

A. The generating functional of roughness correlations

The construction of the field theory is based on the
generating function of the roughness correlation functions
rather than the roughness correlations themselves. This
approach was already used in the scalar case [22]. The n-
point roughness correlation functions for an interface of
(large) area A with a particular profile hðxÞ are the
averages

D1 ¼ hhðx1Þi ≔ A−1
Z
A
hðxþ x1Þdx;

D2ðx1 − x2Þ ¼ hhðx1Þhðx2Þi ≔ A−1
Z
A
hðxþ x1Þhðxþ x2Þdx;

..

. ..
.

Dnðx1 − x2;…;xn−1 − xnÞ ¼ hhðx1Þ…hðxnÞi ≔ A−1
Z
A
hðxþ x1Þ…hðxþ xnÞdx: (60)

PERTURBATIVE ROUGHNESS CORRECTIONS TO … PHYSICAL REVIEW D 89, 105003 (2014)

105003-13



The interface is assumed to be large enough for boundary
effects to be negligible. Transverse translational invari-
ance then implies that these correlations depend only on
differences of the transverse coordinates.10 Isotropy
of the roughness profile yields further restrictions:
the n-point correlation function in this case depends
only on distances between the points. We assume that
the profile, and therefore all n-point correlation functions
of Eq. (60), can, at least in principle, be measured when
the rough interface is far removed from the other. The
mean separation a between the two interfaces is deter-
mined so that Eq. (4) holds—that is, the (constant) one-
point function D1 vanishes. We formally collect all
roughness correlation functions of Eq. (60) for a particular
profile hðxÞ in a single generating functional Zh½α�:

Zh½α� ¼
X∞
n¼2

1

n!

ZZ
αðx1Þαðx2Þ…αðxnÞ

×Dnðx1;…;xnÞdx1dx2…dxn: (61)

Note that Zh depends on a particular profile hðxÞ.
None of the Dn are averages over different profiles.
For another profile, some or all of the correlations
defined by Eq. (60) change, and so does the func-
tional Zh½α�.
However, for constructing the field theory, it is expedient

to directly model Zh½α� instead of computing the individual
correlation functions of a given profile hðxÞ. With the
restriction of Eq. (4) that the one-point function vanishes,
the simplest model of a rough interface is entirely deter-
mined by its two-point correlation D2. The generating
functional of such a (quadratic) Gaussian model is of
the form

ZG
h ½α� ¼ exp

1

2
ðαjD2jαÞ; (62)

with

ðαjD2jαÞ ≔
ZZ

αðxÞD2ðx − yÞαðyÞdxdy: (63)

In general, Eq. (62) is only the leading quadratic term
in a cumulant expansion of Zh. A Gaussian generating
functional relates all higher-order correlations to the
two-point function. In Appendix B, for instance, we
determine signed correlation functions in terms of D2

for such a model. Stochastic roughness is fully described
by the covariance of the profile, and a Gaussian model
by definition is exact in this case. A Gaussian model
for the generating functional also suffices to obtain cor-
rections to the free energy and the scattering matrix
to leading order in the variance of the roughness
profile. To order σ2, the correlations of a periodic one-
dimensional profile hωðxÞ ¼ σ sinðωxÞ can be found
using a Gaussian model, but the four-point correlation
function in this case is only half of what the Gaussian
model asserts,

Dω
2 ðx − yÞ ¼ σ2

2
cosðωðx − yÞÞ; but

Dω
4 ðx1;x2;x3;x4Þ ¼

1

2
ðDω

2 ðx1 − x2ÞDω
2 ðx3 − x4Þ

þDω
2 ðx1 − x3ÞDω

2 ðx2 − x4Þ
þDω

2 ðx1 − x4ÞDω
2 ðx2 − x3ÞÞ: (64)

To correctly obtain effects due to a periodic profile to
order σ4 requires the inclusion of a fourth-order cumulant.
Note that the two-point correlation Dω

2 in Eq. (64) of a
periodic corrugated profile is not positive definite and has
no probabilistic interpretation. However, in momentum
space, it is proportional to the sum of two δ functions
and is therefore positive semidefinite.
The basis for a field-theoretic approach to roughness is

that any analytic functional R½h� of the profile hðxÞ with
translation-invariant coefficients can be evaluated using
Zh½α�. To show this, consider a typical monomial in the
Taylor expansion of R½h� for small profiles:

ZZ
dx1dx2…dxnRnðx1 − x2;…;xn−1 − xnÞhðx1Þhðx2Þ…hðxnÞ

¼ 1

A

Z
A
dx

ZZ
dx1dx2…dxnRnðx1 − x2;…;xn−1 − xnÞhðxþ x1Þhðxþ x2Þ…hðxþ xnÞ

¼
ZZ

dx1dx2…dxnRnðx1 − x2;…;xn−1 − xnÞDnðx1 − x2;…;xn−1 − xnÞ

¼
Z Z

dx1dx2…dxnRnðx1 − x2;…;xn−1 − xnÞ
δ

δαðx1Þ
δ

δαðx2Þ
…

δ

δαðxnÞ
Zh½α�

����
α¼0

: (65)

10For exact translational invariance, the finite, parallel flat surfaces could be replaced by two concentric two-dimensional tori of
area A.
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The first equality in Eq. (65) is due to the translational
invariance of the coefficient functions Rn [but it does not
assume any regularity of the profile hðxÞ itself]. No further
assumptions are required to show that Eq. (65) holds for
any profile of a sufficiently large interface. The second
equality in Eq. (65) implies that the result is proportional to
the area A. Assuming that all coefficient functions Rn in the
Taylor expansion of R½h� are translation invariant and that
the expansion converges for the particular profile, Eq. (65)
implies that one may evaluate R½h� for any particular
profile hðxÞ by applying the corresponding functional
derivative operator on Zh½α�,

R½h� ¼ R

�
δ

δα

�
Zh½α�jα¼0: (66)

B. The partition function of the low-energy
effective field theory

In the presence of external sources of polarization
~Pnðx; zÞ ¼ ~Pðx; z; ζnÞ, Schwinger’s free energy for two
parallel interfaces is given by Eq. (11). The partition
function for a flat and a rough interface described by the
profile hðxÞ corresponding to the potential Vðζ; hðxÞ; zÞ of
Eq. (19), therefore, formally is

ZT ½~P; h� ¼ exp

�
−
1

T
ðF∥

TðaÞ þ δF½h�Þ
�

×
Y
n

exp

�
−
1

T
ðVn½h� þ δVh

nÞ
�

× exp

�
T
2
f~PnjG∥ðnÞj~Png

�
; (67)

where Vn½h� is the functional derivative operator,

Vn½h�¼−
1

2

Z
dx

Z
hðxÞ

0

dz
δ

δ~Pnðx;zÞ
·ðεðζnÞ−1Þ · δ

δ~P†
nðx;zÞ

;

(68)

representing the interaction of the nth Matsubara mode
with the roughness profile hðxÞ.

C. Counterterms of the low-energy effective field theory

The counterpotential of Eq. (43) corresponds to a func-
tional derivative operator of the form

δVh
n¼

1

2

Z
dz

Z
dx

δ

δ~Pnðx;zÞ
·δVhðζn;zÞ ·

Z
dy

δ

δ~P†
nðy;zÞ

:

(69)

It corrects for polarization effects due to surface roughness.
Note that the counterpotential of Eq. (43) in Eq. (69) has
support in the immediate vicinity of the plane at z ¼ 0 only

and does not depend on the transverse position x or on the
mean separation a of the two interfaces. The counter-
potential δVhðζÞ should ensure that the scattering of
electromagnetic waves incident perpendicular to the rough
surface is reproduced.
We in addition have to include a counterterm δF½h� to the

free energy that is a functional of the profile hðxÞ. It
vanishes for hðxÞ ¼ 0 and has the expansion

δF½h� ¼ c0 þ
Z

dxhðxÞc1ða; TÞ

þ 1

2

ZZ
dxdyc2ðx − yÞhðxÞhðyÞ

þ 1

6

ZZZ
dxdydzc3ðx − z; y − zÞhðxÞhðyÞhðzÞ

þ � � � ; (70)

with translation-invariant n-point coefficient functions cn
that depend only on transverse coordinate differences.
These coefficient functions are used to systematically
remove corrections to the correlation functions of the
profile hðxÞ in the presence of electromagnetic interactions.
The constant one-point counterterm c1ða; TÞ ensures that
hhðxÞi ¼ 0 at any separation a and temperature T. c1ða; TÞ
is the only coefficient that may depend on a and T, because
its contribution to the free energy in fact vanishes for
profiles that satisfy Eq. (4). The higher-order terms of δF½h�
are constructed so that connected correlation functions of
the profile at T ¼ 0 are the prescribed ones when the
second flat interface is removed. They do not depend on the
temperature T or on the separation a. This ensures that

∂
∂T δF½h� ¼ ∂

∂a δF½h� ¼ 0

for any profile for which
Z
A
dxhðxÞ ¼ 0:

(71)

This counterterm to the free energy, therefore, does not
affect thermodynamic state functions like the entropy or
pressure. It cancels loop contributions to the energy
(at T → 0) when the flat interface is removed (a → ∞).
The Casimir free energy remains (its finite, a-dependent
value at T ¼ 0 is the Casimir energy).
In obtaining the Casimir free energy by the Green’s

function method, the contribution to the free energy from
the counterterm coefficient c2ðx − yÞ was implicitly taken
into account by subtracting ΔFT ½h;∞� in Eq. (21).
Requiring the absence of one-loop corrections to the
two-point roughness correlation at large separation a and
temperature T ¼ 0 determines c2ðqÞ. The Feynman dia-
grams involved in this condition are shown in Fig. 5. The
counterterm c2 also ensures that there is no single-interface
correction to the Casimir energy at T ¼ 0. For T > 0, a
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finite a-independent contribution to the single-interface
free energy remains that we have not calculated here.
The Green’s function approach implicitly also accounts

for contributions of c1ða; TÞ by simply assuming that
Eq. (4) holds to order σ2. c1ða; TÞ cancels tadpole
contributions to the scattering matrix (see Fig. 6), and

one-particle reducible contributions to the Casimir free
energy like those of Fig. 7 vanish in this case.
We define the mean separation a by Eq. (4), and

demanding that corrections to hh�ðxÞi vanish determines
c1ða; TÞ to one loop. The diagrammatic form of this
condition is shown in Fig. 6 and evaluates to

c1ða; TÞ ¼
T

Dð0Þ
X
n

Z
dk

ð2πÞ2 ½D�þð0ÞTrVðnÞ
þ ð ~GjðnÞ

þþðkÞ þGjajðnÞ
þþ ðkÞÞ þD�−ð0ÞTrVðnÞ

− ð ~GjðnÞ
−− þGjajðnÞ

−− ðkÞÞ�

¼ c1ð∞; TÞ − T
X
n

Z
∞

0

kdk
2π

κ

�
r̄2

e2κa − r̄2
þ r̄2

e2κa − r̄2

�

¼ c1ð∞; TÞ − ∂
A∂aF

∥
TðaÞ; (72)

where c1ð∞; TÞ is the (infinite) one-interface contribution
that does not depend on the separation a. The interpretation
of Eq. (72) is straightforward and could have been
anticipated: for hhi ≠ 0, the separation a is redefined at
one loop, since

F∥
TðaÞ −

Z
A
dxhðxÞ ∂

A∂aF
∥
TðaÞ ≈ F∥

Tða − hhiÞ: (73)

To leading order in hhi, the c1 counterterm arises from the
free energy of two parallel flat interfaces at separation aB,
where a ¼ aB þ hhi is the separation at which Eq. (4)
holds.
The a-independent but temperature-dependent contribu-

tion from c1ð∞; TÞ, similarly, is the difference in free
energy due to a shift of a flat interface by −hhi. The
bulk contribution to the free energy density thereby
increases by

c1ð∞;TÞ¼−
T
4

X
n

Z
∞

0

kdk
2π

TrðVðnÞ
þ ~GjðnÞ

þþðkÞþVðnÞ
−

~GjðnÞ
−− ðkÞÞ

¼−
T
2

X
n

ðεðζnÞ−1Þ
Z

∞

0

kdk
2π

�
κεκ−k2

εκþκε
þ ζ2

κεþκ

�

¼T
X
n

Z
∞

0

kdk
2π

ðκ−κεÞ¼
1

V
ðFγ

T ½1�−Fγ
T ½ε�Þ;

(74)

where Fγ
T ½ε�=V is the free energy density of a photon gas in

a homogeneous medium with permittivity εðζÞ. The differ-
ence in free energy density in the dielectric and in vacuum
depends on the permittivity εðζÞ. For the plasma model
with εðζÞ ¼ 1þ ðωp=ζÞ2, this separation-independent
contribution to the free energy is

ðFγ
T ½1� − Fγ

T ½ε�Þ
Ahhi
V

¼ Ahhi
�
c1ð∞; 0Þ − T4π2

45

þ T2ωp
2

π2
X∞
n¼1

K2ðnωp=TÞ
n2

�
; (75)

where the modified Bessel function K2ðxÞ is normalized to
K2ðx ∼ 0Þ ∼ 2=x2. The generally infinite constant c1ð∞; 0Þ
does not depend on temperature or on the separation a. It is
sensitive to the behavior of εðζÞ at energies ζ ≫ ωp.
Estimating this contribution to the free energy in the
framework of the low-energy effective theory is

FIG. 5 (color online). One-loop Feynman diagrams for the counterterm c2ðqÞ. c2ðqÞ is determined by demanding that the (prescribed)
two-point roughness correlation of a single plate at T ¼ 0 is not corrected. We here consider one-loop contributions only.

FIG. 6 (color online). Cancellation of tadpoles by the counter-
term c1ða; TÞ at one loop. Summation to all orders of the δ-
function contribution to G∥

zz replaces G∥ with ~Gj þGjaj and Vh

by ~Vh.
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meaningless, since the loop integral is dominated by
momenta and energies k; ζ ≫ ωp. For the sake of com-
pleteness, this formal contribution with a proper time cutoff
β is

c1ða ∼∞; T ¼ 0Þ ¼ −
1

16π2

Z
∞

β

dλ
λ3

ð1 − e−λωp
2Þ: (76)

It is a quadratically and logarithmically UV-divergent
constant contribution to the total energy of the system. It
may be absorbed in the counterterm c0 and in the absence
of gravitational interactions has no physical implications.

D. The complete low-energy effective field theory

Since the Green’s function G∥ of parallel interfaces, as
well as the counterterms, are invariant under transverse
translations, the partition function ZTð~P ¼ 0; hÞ defined in
Eq. (67) for vanishing polarization sources is a functional
of the roughness profile hðxÞ with translation-invariant
coefficients. We thus can use Eq. (66) to evaluate it using
the correlation functions of the profile hðxÞ rather than the
profile itself. We therefore have that

ZT ½~P ¼ 0; h� ¼ ZT

�
~P ¼ 0;

δ

δα

�
Zh½α�jα¼0; (77)

with Zα½h� defined by Eq. (61). The complete generating
functional of the Gaussian model we are considering thus is

ZT ½~P; α� ≔ exp

�
−
1

T
ðF∥

TðaÞ þ δF½δ=δα�Þ
�

×
Y
n

exp
�
−
1

T
ðVn½δ=δα� þ δVh

nÞ
�

× exp

�
T
2
f~PnjG∥ðnÞj~Png þ

1

2
ðαjD2jαÞ

�
; (78)

with ðαjD2jαÞ given by Eq. (63). The partition function of
Eq. (77) is justZT ½~P ¼ 0; α ¼ 0�. From the point of view of
Euclidean field theory, Eq. (78) promotes the roughness
profile hðxÞ to a field on the two-dimensional (planar)
subspace that is coupled to a vector field in R3 × S1.
Correlation functions of hðxÞ are obtained by functional
differentiation of Eq. (78) with respect to the scalar source
α, and Z defines the loop expansion in the usual manner.
The main difference from ordinary field theory is that all
correlation functions of hðxÞ are prescribed, and counter-
functions enforce the absence of any corrections to them at
T ¼ 0 and a ∼∞. The low-energy effective field theory

encoded by Eq. (78) evidently is not renormalizable—new
counterterms (functions) are required at each order of the
loop expansion. The three counterterms c1, c2 of δF½h�
and δVh suffice at the one-loop level, since only the
connected two-point functions and hhi are superficially
UV dominated if D2ð0Þ ¼ σ2 is finite.
Instead of employing the Green’s function approach, one

can derive the loop corrections to the free energy from
Eq. (78). The Casimir free energy to one loop is the same in
both approaches. However, the generating functional
Eq. (78) of the low-energy effective theory has conceptual
and methodical advantages: once the set of counterterms is
determined, the field theory yields consistent low-energy
results not just for the Casimir energy, but for the scattering
matrix as well. No ad hoc arguments or procedures are
required to cancel uncontrolled high-energy loop correc-
tions, and the necessity of the counterterms and their
interpretation is readily apparent.

VI. NUMERICAL INVESTIGATIONS

We numerically investigated the correction ΔFCas
T ðaÞ to

the Casimir free energy given in Eq. (44) due to the
roughness of an interface. To order σ2, this correction is
linear in the roughness correlation function, and one may
define [17] a response function RTðq; aÞ,

ΔFCas
T ðaÞ ¼

Z
∞

0

qdq
2π

RTðq; aÞDðqÞ; (79)

that does not depend on DðqÞ. Analytical expressions for
RTðq; aÞ are obtained by changing the integration variable
from k0 to q ¼ k0 − k in Eqs. (45), (48), (50), and (52). The
corresponding expressions are given in Appendix D. For
clarity, and to compare with earlier investigations, we in the
following present numerical results for T ¼ 0 only.
Temperature corrections are sizable only when 2πaT ≳ 1.
For gold surfaces at 300 °K, temperature corrections become
important at separations of the order of microns—a distance
at which perturbative roughness is irrelevant.

A. The response with and without the counterterm

Figure 8 gives the normalized response when the
counterterm of Eq. (50) is omitted as a function of the
dimensionless variable q=ωp. The low-energy theory is in
the shaded momentum region q=ωp < 1. Note the linear
rise of the low-energy response function for all separations
a in the uncontrolled region q=ωp ≫ 1. The integration
weight qDðqÞ for Gaussian and exponential roughness

FIG. 7 (color online). One-particle reducible dumbbell contributions to the free energy that are canceled by the c1 counterterm given in
Eq. (72). One-particle reducible contributions to the free energy are of order 1=T at low temperatures and would violate Nernst’s theorem.
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correlation with a typical correlation length lc ∼ 1=ωp is
superimposed. A sizable contribution to the roughness
correction in Eq. (79) evidently is due to loop momenta
q > ωp, for which low-energy expressions are unreliable.
Inclusion of the counterpotential gives a constant

high-momentum response. Figure 9 shows the response
functions with and without the counterterm contribution of
Eq. (50). With the same model for the bulk permittivity of
gold, the response function shown in Fig. 3 of Ref. [17] is
reproduced when the counterpotential is omitted. Inclusion
of the counterpotential gives a constant high-momentum
response, and the correction to the Casimir (free) energy is
of order σ2. Note that with g2 ¼ 1, the response at q ¼ 0
does not change.
The correction to the Casimir energy at T ¼ 0 for

Gaussian roughness with and without inclusion of the
counterterm of Eq. (50) is shown in Fig. 10. Whereas the
PFA limit lc → ∞ coincides for both cases, the behavior is
remarkably different at finite lc. Including the counterterm
of Eq. (50), the roughness correction to the Casimir energy
decreases in magnitude for decreasing correlation length
and approaches a finite (uncorrelated) limit for lc → 0.
Roughness increases the Casimir force, but the PFA is an

upper bound in this case. The ratio of the roughness
correction to the PFA furthermore approaches a constant,
lc-dependent value with increasing separation rather than
increasing indefinitely as in the unsubtracted case [for
exponential roughness, the roughness correction without
the counterterm of Eq. (50) would diverge at any separation
and for all lc]. Let us also note that for lc ≲ 1=ωp, the
roughness correction at large separations is less than 50%
of the PFA prediction. Although we here are considering
only perturbative roughness corrections, the suppression at
large separations for lc ≲ 1=ωp is of a similar magnitude to
that observed [25] for machined profiles with correlation
length lc ∼ 1=ωp.

B. (In)sensitivity on high-momentum components
of the roughness correlation

The counterpotential δVh was introduced to correct for
uncontrolled high-momentum contributions to loop inte-
grals with the help of phenomenological input. We therefore
investigated the sensitivity of the roughness correction to the
correlation function DðqÞ numerically. Figure 11 shows the
ratio of the correction for Gaussian and for exponential
roughness of the same correlation length lc. The two are
identical for lc ¼ 0 and lc ∼∞ (PFA) at any aωp. The
(dimensionless) ratio of these corrections never drops below
85% for any separation aωp and correlation length lcωp.
Without counterpotential, this ratio is infinite. Exponential
roughness always gives a smaller correction than Gaussian

FIG. 8 (color online). The dimensionless normalized response
ρðq; aÞ ¼ RTðq; aÞ=RTð0; aÞ without counterpotential δVh ¼ 0
for the permittivity εðζÞ ¼ 1þ ðωp=ζÞ2 to leading order in σ2 at
T ¼ 0. The dependence on q=ωp of this ratio of the roughness
response function RTðq; aÞ [defined by Eq. (79)] is shown for
aωp ¼ 2.31 ð−−Þ, 9.24 ð· · · · ·Þ, and 18.48 ð−−−−Þ. For the
plasma frequency ωp ¼ ωpðAuÞ ∼ 0.046 nm−1, this normalized
response without counterpotential is identical to that obtained by
Ref. [17]. (For ωp ¼ 0.046 nm−1, the curves here correspond to
those of Fig. 4 in Ref. [17] at separations a ¼ 50, 100, and
200 nm.) Note the change in behavior and the subsequent linear
rise in the region qωp ≳ 1. The region qωp ≲ 1, where the
effective low-energy theory is valid, is shaded light green. We
superimpose typical integration densities for the response function
in Eq. (79): the momentum-space function qDðqÞ for Gaussian and
exponential two-point roughness correlation with lc ¼ 1=ωp. The
roughness correction to the Casimir energy with exponential
correlation diverges logarithmically, and even for Gaussian rough-
ness correlation, the (unshaded) region q=ωp > 1 contributes
significantly in this uncorrected case. Note that for a gold surface,
the correlation length here is lc ¼ 1=ωpðAuÞ ∼ 21 nm.

FIG. 9 (color online). The ratio RTðq; aÞ=F∥
TðaÞ of the rough-

ness response function to the Casimir energy of flat parallel plates
at T ¼ 0 with (solid) and without (dashed) counterpotential δVh

with g2 ¼ 1. The permittivity εðζÞ ¼ 1þ ðωp=ζÞ2 is character-
ized by the plasma frequency ωp. The dependence on q=ωp of the
ratio is shown for aωp ¼ 2.31 (top, red), 9.24 (middle, blue), and
18.48 (bottom, black). For ωp ¼ 0.046 nm−1 ∼ ωpðAuÞ, the
normalized response without counterpotential (dashed) is iden-
tical to that of Fig. 3 in Ref. [17] at separations of a ¼ 50, 100,
and 200 nm. Note that the renormalized roughness response is
monotonically decreasing and approaches a constant at large
momenta that are a factor of 2–3 smaller than the response at
q ¼ 0. Most of the correction to the Casimir energy in this case
arises from the shaded integration region q=ωp < 1, where the
low-energy description is valid.
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FIG. 10 (color online). The dimensionless ratio ða2=σ2ÞΔFCas
T ðaÞ=F∥

TðaÞ of the roughness correction to the Casimir energy of two
parallel flat interfaces at T ¼ 0. The calculation is to leading order in σ2=a2 for a plasma-model permittivity with plasma frequency ωp
for Gaussian roughness with correlation length lc. Dashed curves give the ratio as a function of aωp without the counterterm
contribution of Eq. (50), whereas solid curves give the ratio when this counterterm with g2 ¼ 1 is included. Curves of the same color
correspond to the same value of lcωp. From the top: lcωp ¼ 1 (green, dashed), 3 (black, dashed), 8 (blue, dashed),∞ (orange), 8 (blue,
solid), 3 (black, solid), 1 (green, solid), and 0 (red, solid). Note that the lc → 0 curve (red) is a lower bound that exists only in the
renormalized case. The counterterm vanishes in the PFA limit lc → ∞ (orange), and this limit is the same for both. Whereas the PFA is
an upper bound for the magnitude of the roughness correction when the counterpotential is included, it is a lower bound without. The
ratio of the roughness correction to the PFA at finite lc approaches a finite value at large separations when the counterterm is included,
whereas it otherwise increases indefinitely. The roughness correction in the subtracted case at large separations is less than 50% of the
PFA prediction when lc ≲ 1=ωp. Except for lc ¼ 0, the roughness correction approaches the PFA estimate at sufficiently small
separation, but it quickly decreases and approaches the lower bound for lcωp < 1.

FIG. 11 (color online). The dimensionless ratio ΔFE
TðaÞ=ΔFG

T ðaÞ of the roughness correction to the Casimir energy for exponential
(E) and Gaussian (G) roughness with the same correlation length lcωp as a function of the dimensionless separation aωp. g2 ¼ 1, and a
plasma-model permittivity characterized by the single plasma frequency ωp was assumed. The roughness correlation functions are those
of Eq. (35) (E) and Eq. (34) (G). In the PFA (lc → ∞) and uncorrelated (lc → 0) limits, the corrections coincide but differ by up to 15%
at some separations. For the same variance σ2 and correlation length lc, the roughness correction with exponential correlation is always
smaller than with Gaussian correlation. Note that the two types of roughness correlation approach the PFA quite differently: at large
separations the corrections still differ by over 5% even for lcωp ∼ 100.
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roughness of the same correlation length and variance. The
two correlation functions provide rather similar descriptions
of low-energy scattering, and the low-energy effective
theory with counterpotential depends only weakly on their
(very different) behavior at high momenta.

C. Comparison with experiment

The low-energy theory for electromagnetic interactions
with rough surfaces ultimately must be compared to experi-
ment. Unfortunately, very few studies are dedicated to the
systematic investigation of Casimir forces between rough
surfaces.Many employ nonisotropicmachined surfaces with
rather large σ=a ratios [24,25] that are not accessible pertur-
batively. Nevertheless, these experiments qualitatively con-
tradict the predictions of exact calculations, that essentially

any kind of roughness tends to increase the Casimir force
above the PFA estimate. A notable exception is a series of
investigations of isotropically rough surfaces by Palasantzas
et al. [11,12]. For sufficiently rough surfaces, this group does
observe (see Fig. 3 of Ref. [12]) an increase of the Casimir
force by 200%–400% at small separations. This sharp
increase in the forcewas attributed toparticularly high islands
of the surface profile that can alsobe seen in someof theAFM
scans of the gold surfaces. The pronounced effect of such
islands is beyond the scope of a perturbative analysis andwas
explainedbyasemiempiricalapproach[13]basedonthePFA.
However, gold films with 100 nm and 200 nm thickness

and relatively low roughness appear to be almost free of
such buildup effects. At small separations, the force in these
cases is smaller than the PFA prediction. In Fig. 12, we

FIG. 12 (color online). The dimensionless ratio ρðaÞ defined in Eq. (82) of the Casimir force between a rough gold-coated sphere and a
rough gold-coated plate to the Casimir energy between ideal dielectric flat plates. The experimental data is from Ref. [12]. The thickness of
the gold coating on the flat plate is 100 nm (upper graphs) and 200 nm (lower graphs). An exponential roughness correlation and a Drude
parametrization of the permittivity is assumed. The standard deviation and correlation length for the sphere’s profile are σSph ∼ 8 nm and
lSphc ∼ 33 nm. (a) The ratio of the force on the rough plate to the Casimir force between a gold-coated flat plate and a smooth sphere at the
same mean separation. A Drude parametrization of the permittivity with ωp ¼ 9 eV, γ ¼ 0.045 eV was used. (Red) dots denote the ratio
for the experimental data of Ref. [12]. The measured force on the 100 nm thick plate was multiplied by a correction factor of 0.94 (see text
for details). The solid (blue) line is our best theoretical fit to this ratio with the indicated parameters for the roughness correlation function of
the plate in Eq. (80). Note that the ∼30% enhancement at separations a ∼ 20 nm is well reproduced for both films. The dashed line gives
the PFA for roughness of the same total variance. (b) The ratio of the force on the rough plate to that between a smooth sphere and a flat
plate at the separation a − δa. The indicated ωpeff for the effective permittivity of the flat plate was obtained from ellipsometric
measurements [12] on the rough ones. We assumed the same effective plasma frequency ωp

Sph
eff ¼ 7.5 eV for the sphere as for the (similarly

rough) 200 nm film. The solid (blue) line gives the ratio to the force on the effective flat plate and sphere for the same force including the
roughness corrections shown in (a). Note that this ratio of the force with roughness corrections to that between a flat plate and smooth
sphere with the measured reflection coefficients at a reduced separation is close to unity for all separations.
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compare the low-energy theory to the measurements of
Ref. [12] on these thin films. The experiments measure the
force between a gold-coated sphere and a gold-coated plate.
Both surfaces are rough, but their profiles are uncorrelated.
For two parallel rough gold-coated plates, the correction to
the Casimir energy to leading order in σ=a is that for a
single rough plate with a roughness correlation that is the
sum of the roughness correlations functions of the sphere
and the flat plate,

DðqÞ ¼ DplateðqÞ þDsphereðqÞ: (80)

We use Derjaguin’s PFA approximation [5] to correct for
the curvature of the sphere of radius R ¼ 100 μm ≫ a. The
force fTðaÞ at temperature T between the sphere and a plate
with (closest) separation a in this approximation is

fTðaÞ ¼ 2πRFCas
T ½a�=A; (81)

where FCas
T ½a�=A is the Casimir free energy per unit area

(not the pressure) of two parallel rough plates. Due to the
large radius of the sphere, this is an excellent approxima-
tion for separations a < 200 nm ∼ R=500. Fig. 12(a) gives
the ratio ρðaÞ of this force to the Casimir energy per unit
area F∥

T=A of two flat parallel gold plates with separation a,

ρðaÞ ≔ fTðaÞA
2πRF∥

T

¼ FCas
T ½a�
F∥
T

¼ 1þ ΔFCas
T ½a�
F∥
T

; (82)

at T ¼ 0. The experimental Casimir force for the rough
sphere and plate at separations σ ≪ a < lc is up to 30%
greater than the Casimir energy for flat plates.
Since we do not differentiate between contributions from

high and low peaks of the roughness profile and only use a
single correlation function, all standard deviations of
Ref. [12] were multiplied by a factor of 1.7. We used
σSph ¼ 8 nm, σ100 ¼ 2.6 nm, and σ200 ¼ 4.3 nm for the
coatings of the sphere, 100 nm and 200 nm thick films,
respectively. These standard deviations also approximately
correspond to those estimated from the AFM scans of these
surfaces (see Fig. 1 in Ref. [12]). The correlation lengths
lSphc ¼ 33 nm, l100c ¼ 21 nm, and l200c ¼ 25 nm are those of
Ref. [12]. The ratio ρðaÞ for the 200 nm thick film is well
reproduced by the low-energy theory with exponential as
well as with Gaussian correlations. We only show the result
for exponential roughness in Fig. 12, but the fit for
Gaussian roughness is of similar quality. For comparison,
we show the roughness correction in PFA for the same
standard deviations.
The ratio ρðaÞ is close to unity at larger separations

100 nm < a < 150 nm, where roughness corrections are
relatively small. While this on average is approximately
observed for the 200 nm film, the ratio for the 100 nm film
is systematically about 6% above unity at larger distances.
To correct for this (unexplained) discrepancy, we multiplied

the force observed on the 100 nm thick film by 0.94
before11 comparing with theory.
From a practical point of view, the comparison in

Fig. 12(b) with the Casimir energy of two parallel flat
plates at a slightly smaller separation aeff ¼ a − δa perhaps
is more useful. The Drude model permittivity describing
reflection off these effective flat plates in Ref. [12]
was obtained from ellipsometric measurements on the
rough surfaces. We merely adjusted δa for the best fit.
Figure 12(b) shows that effective flat surfaces at a reduced
separation a − δa reproduce the low-roughness data
remarkably well. [The force data of the 100 nm film
was multiplied by the same correction factor of 0.94 as
in the graph of Fig. 12(a).] Since ellipsometric measure-
ments on thin films are quite standard, this observation
essentially reduces low-roughness corrections to Casimir
energies to a determination of the optimal shift δa. Instead
of measuring the absolute average distance between the
profiles of two rough surfaces (in itself a delicate procedure
that involves a number of corrections), we suggest that
precision Casimir studies with low-roughness surfaces
simply determine an effective separation for flat plates
with the measured (perpendicular) reflection coefficients.
Figure 12(b) is evidence that the data at small separations
robustly determines this distance to better than 1 nm, at the
same time all but eliminating the need for roughness
corrections.

VII. CONCLUSION

We obtained roughness corrections to low-energy scat-
tering and the Casimir free energy in the framework of
Schwinger’s effective theory of low-energy electrodynam-
ics. The energy scale in this theory is the plasma frequency
ωp ∼ 0.046 nm−1 ∼ 9 eV of typical materials like gold. We
found that roughness corrections generally include large
contributions from high-momentum excitations. Evaluating
them in the low-energy framework is inconsistent and
notoriously unreliable. We emphasize that this is not a
limitation of the perturbative approach developed here:
exact (numerical) solutions of a model can also only be as
accurate as the model itself. The Casimir energy of short-
wavelength periodic rectangular profiles, for instance,
involves momenta at which a description in terms of the
bulk permittivity of the material breaks down, and the
mathematically exact analysis of such a model can lead to
physically erroneous conclusions. Using the bulk permit-
tivity to describe scattering off profile structures with sizes
of the order of the inverse plasma frequency or smaller
(about 25 nm for gold) is not justified. Effects due to

11While this correction factor is ad hoc, we would like to point
out that the ratios of Fig. 12 are less forgiving than logarithmic
depictions of the data. The experimental error probably increases
sharply at larger separations simply because the force is rapidly
decreasing in magnitude.
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roughness on the scale of the plasma frequency generally
are grossly overestimated by the uncorrected low-energy
theory. This has been experimentally verified for machined
profiles with a period λ≲ 2π=ωp: the exact calculations
[38,39] for such profiles tend to overestimate the observed
[25] Casimir force by factors of 2–3.
We presented a perturbative analysis of roughness

corrections based on a low-energy effective field theory
that employs counterterms to correct for uncontrolled
high-momentum contributions. The counterterms subtract
high-momentum contributions to loop integrals at the cost
of phenomenological input. Apart from correlations of the
roughness profile itself, we in addition modeled the
averaged single-interface scattering matrix at vanishing
transverse momentum by the plasmon contribution. To
leading order in the roughness variance σ2, this semi-
empirical Ansatz depends on a single coupling constant g2.
Consistency of the low-energy theory and the existence of
an ideal metal limit at any correlation length constrains this
dimensionless coupling to g2 ¼ 1 at low energies
[see Eq. (59)]. The resulting low-energy theory is free
of high-momentum contributions to one-loop integrals,
approaches the PFA for lc ∼∞ and has a finite ideal metal
limit for any lc. It is relatively insensitive to the high-
momentum behavior of the roughness correlation function
and has a drastically different but more transparent
dependence on lc than the uncorrected model. Instead
of large (infinite) differences, roughness correlation func-
tions that differ only at high momenta now give similar
low-energy predictions. Roughness of shorter correlation
length no longer increases the Casimir force (indefinitely).
Instead, the magnitude of the force decreases with decreas-
ing correlation length and approaches a finite lower bound
for uncorrelated roughness.
Although the coupling g2 in the plasmon contribution

to the counterterm potential Eq. (43) was constrained to
g2 ¼ 1 by self-consistency and the existence of certain
limits of the effective low-energy theory, this is a model for
the roughness contribution to the average scattering matrix
at low transverse momenta. It may be phenomenologically
preferable to parameterize empirical data for this compo-
nent of the scattering matrix instead. However, there is
some evidence that the plasmon describes low-energy
scattering due to roughness reasonably well. In this sense,
it is a reasonable model for the leading roughness
correction that is relatively simple and consistent with
the low-energy theory.
Interestingly, the PFA is accurate at small separations

only for lc ≳ 1=ωp, and at large separations it may
overestimate the correction to the force by up to 250%
(see Fig. 10). For lc ≲ 1=ωp, the roughness correction to
the Casimir energy is significantly (a factor ∼1=2–1=3)
below the PFA prediction at all but the smallest

separations. The ratio remains approximately constant
for a ∼∞ and does not increase with increasing separation
as in the uncorrected model. Although we considered only
isotropic roughness profiles, it perhaps is interesting that
the reduction of the correction compared to the PFA
prediction by a factor of 2 for lc ∼ 1=ωp is of the same
order of magnitude as the experimental reduction in the
overall force observed [25] by experiments with corru-
gated rectangular wave profiles.
The Casimir energy of low-roughness profiles was found

to be essentially that of flat plates with the measured
reflection coefficients at a distance that is slightly smaller
than the mean separation of the interfaces. The change in
separation is less than the standard deviation of the rough
profile. Although the precise value of this shift depends on
properties of the profile, this observation enables one to
empirically correct for (low-level) roughness and accu-
rately calibrate the effective separation in the plate-sphere
geometry.
For conceptual reasons, we here derived all expressions

for the Casimir free energy at finite temperature, but
we only investigated implications of this theory at
T ¼ 0. We intend to extend the numerical investigations
to finite temperature in the future. Although the roughness
correction at finite temperature is not expected to change
at small separations, the regime 1 < a=lc < aT, where
temperature and roughness corrections are of similar
importance, could be of some interest. At this point, we
only wish to observe that the summands in all expressions
at finite temperature are finite when ζ → 0 for any
reasonable permittivity function (Drude or plasma model).
Predictions of this low-energy effective field theory at
temperatures 2πT > ωp ∼ 2 × 104 °K nevertheless would
be meaningless.
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APPENDIX A: THE GREEN’S DYADIC FOR
THREE FLAT DIELECTRIC SLABS

In Schwinger’s formalism [3], the parallel-plate
Green’s dyadic is determined by reduced electric and
magnetic Green’s functions. In the coordinate system
in which k ¼ ðk; 0Þ points along the þx axis, this
Green’s dyadic is
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G∥ðk; z; z0; ζ; aÞ ¼

2
6664
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where gE and gH solve the differential equations
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�
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∂
∂zþ

k2

εz
þ ζ2

�
gHðk; z; z0; ζÞ ¼ δðz − z0Þ: (A2)

One recovers the Green’s function for arbitrary transverse momentum k by rotation about the z axis:

G∥ðk; z; z0; ζ; aÞ ¼ R ·G∥ðk ¼ jkj; z; z0; ζ; aÞ ·RT;

R ¼ 1

k

0
B@

kx −ky 0

ky kx 0

0 0 k

1
CA: (A3)

The solution to Eq. (A2) in different regions of z and z0 will be denoted

giðk; z; z0; ζÞ ¼
"
gþþ
i ðk; z > 0; z0 > 0; ζÞ gþ−

i ðk; z > 0; z0 < 0; ζÞ
g−þi ðk; z < 0; z0 > 0; ζÞ g−−i ðk; z < 0; z0 < 0; ζÞ

#
with i ¼ E or H. (A4)

We divide the reduced Green’s functions into gji for a single flat plate and its correction g
jaj
i due to the presence of a parallel

flat plate at a distance a:

giðk; z; z0; ζ; aÞ ¼ gjiðk; z; z0; ζÞ þ gjaji ðk; z; z0; ζ; aÞ; (A5)

gjEðk; z; z0; ζÞ ¼
"

1
2κ2

ðe−κ2jz−z0j − r2e−κ2ðzþz0ÞÞ 1
κ2þκ3

eκ3z
0−κ2z

1
κ2þκ3

eκ3z−κ2z
0 1

2κ3
ðe−κ3jz−z0j þ r2eκ3ðzþz0ÞÞ

#
;

gjHðk; z; z0; ζÞ ¼
"

1
2κ̄2

ðe−κ2jz−z0j − r̄2e−κ2ðzþz0ÞÞ 1
κ̄2þκ̄3

eκ3z
0−κ2z

1
κ̄2þκ̄3

eκ3z−κ2z
0 1

2κ̄3
ðe−κ3jz−z0j þ r̄2eκ3ðzþz0ÞÞ

#
;

gjajE ðk; z; z0; ζ; aÞ ¼ r1
e2aκ3 − r1r2

"
1
2κ2

ð1 − r22Þe−κ2ðzþz0Þ 1
κ2þκ3

ðe−κ2z−κ3z0 þ r2e−κ2zþκ3z0 Þ
1

κ2þκ3
ðe−κ2z0−κ3z þ r2e−κ2z

0þκ3zÞ 1
2κ3

ðe−κ3z þ r2eκ3zÞðe−κ3z0 þ r2eκ3z
0 Þ

#
;

gjajH ðk; z; z0; ζ; aÞ ¼ r̄1
e2aκ3 − r̄1r̄2

"
1
2κ̄2

ð1 − r̄22Þe−κ2ðzþz0Þ 1
κ̄2þκ̄3

ðe−κ2z−κ3z0 þ r̄2e−κ2zþκ3z0 Þ
1

κ̄2þκ̄3
ðe−κ2z0−κ3z þ r̄2e−κ2z

0þκ3zÞ 1
2κ̄3

ðe−κ3z þ r̄2eκ3zÞðe−κ3z0 þ r̄2eκ3z
0 Þ

#
: (A6)

Note that continuity of Ex, Ey, and εEz across the flat interface implies that gE, gH, and
1
εz

∂
∂z

1
εz0

∂
∂z0 gH are continuous as well.

The components of Eq. (A1) in different regions’ domains of z and z0 are
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~Gj
xxðk; z; z0; ζÞ ¼ −

1

εz

∂
∂z

1

εz0
∂
∂z0 g

j
H ¼ 1

2

"
κ̄2ðe−κ2jz−z0j þ r̄2e−κ2ðzþz0ÞÞ κ̄3ð1 − r̄2Þe−κ2zþκ3z0

κ̄3ð1 − r̄2Þe−κ2z0þκ3z κ̄3ðe−κ3jz−z0j − r̄2eκ3ðzþz0ÞÞ

#
;

~Gj
yyðk; z; z0; ζÞ ¼ ζ2gjE ¼ ζ2

"
1
2κ2

ðe−κ2jz−z0j − r2e−κ2ðzþz0ÞÞ 1
κ2þκ3

eκ3z
0−κ2z

1
κ2þκ3

eκ3z−κ2z
0 1

2κ3
ðe−κ3jz−z0j þ r2eκ3ðzþz0ÞÞ

#
;

~Gj
zzðk; z; z0; ζÞ ¼ −

k2

εzεz0
gjH ¼ −k2

"
1

2ε2κ2
ðe−κ2jz−z0j − r̄2e−κ2ðzþz0ÞÞ 1

ε3κ2þε2κ3
eκ3z

0−κ2z

1
ε3κ2þε2κ3

eκ3z−κz2z
0 1

2ε3κ3
ðe−κ3jz−z0j þ r̄2eκ3ðzþz0ÞÞ

#
;

~Gj
xzðk; z; z0; ζÞ ¼ −

ik
εzεz0

∂
∂z g

j
H ¼ ik

2

"
1
ε2
ðsgnðz − z0Þe−κ2jz−z0j − r̄2e−κ2ðzþz0ÞÞ 1

ε3
ð1 − r̄2Þe−κ2zþκ3z0

− 1
ε2
ð1þ r̄2Þe−κ2z0þκ3z 1

ε3
ðsgnðz − z0Þe−κ3jz−z0j − r̄2eκ3ðzþz0ÞÞ

#
;

~Gj
zxðk; z; z0; ζÞ ¼ ik

εzεz0
∂
∂z0 g

j
H ¼ ik

2

"
1
ε2
ðsgnðz − z0Þe−κ2jz−z0j þ r̄2e−κ2ðzþz0ÞÞ 1

ε2
ð1þ r̄2Þe−κ2zþκ3z0

− 1
ε3
ð1 − r̄2Þe−κ2z0þκ3z 1

ε3
ðsgnðz − z0Þe−κ3jz−z0j þ r̄2eκ3ðzþz0ÞÞ

#
: (A7)

The corresponding separation-dependent part is

Gjaj
xx ðk; z; z0; ζ; aÞ ¼ −r̄1

2ðe2aκ3 − r̄1r̄2Þ

"
κ̄2ð1 − r̄22Þe−κ2ðzþz0Þ κ̄3ðe−κ2z − r̄2e−κ2zÞðe−κ3z0 − r̄2eκ3z

0 Þ
κ̄3ðe−κ2z0 − r̄2e−κ2z

0 Þðe−κ3z − r̄2eκ3zÞ κ̄3ðe−κ3z − r̄2eκ3zÞðe−κ3z0 − r̄2eκ3z
0 Þ

#
;

Gjaj
yy ðk; z; z0; ζ; aÞ ¼ ζ2r1

e2aκ3 − r1r2

2
4 1

2κ2
ð1 − r22Þe−κ2ðzþz0Þ 1

κ2þκ3
ðe−κ2z−κ3z0 þ r2e−κ2zþκ3z0 Þ

1
κ2þκ3

ðe−κ2z0−κ3z þ r2e−κ2z
0þκ3zÞ 1

2κ3
ðe−κ3z þ r2eκ3zÞðe−κ3z0 þ r2eκ3z

0 Þ

3
5;

Gjaj
zz ðk; z; z0; ζ; aÞ ¼ −k2r̄1

e2aκ3 − r̄1r̄2

2
4 1

2ε2κ2
ð1 − r̄22Þe−κ2ðzþz0Þ 1

ε3κ2þε2κ3
ðe−κ2z−κ3z0 þ r̄2e−κ2zþκ3z0 Þ

1
ε3κ2þε2κ3

ðe−κ2z0−κ3z þ r̄2e−κ2z
0þκ3zÞ 1

2ε3κ3
ðe−κ3z þ r̄2eκ3zÞðe−κ3z0 þ r̄2eκ3z

0 Þ

3
5;

Gjaj
xz ðk; z; z0; ζ; aÞ ¼ ikr̄1

2ðe2aκ3 − r̄1r̄2Þ

2
4 1

ε2
ð1 − r̄22Þe−κ2ðzþz0Þ 1

ε3
ðe−κ2z − r̄2e−κ2zÞðe−κ3z0 þ r̄2eκ3z

0 Þ
1
ε2
ðe−κ3z − r̄2eκ3zÞðe−κ2z0 þ r̄2e−κ2z

0 Þ 1
ε3
ðe−κ3z − r̄2eκ3zÞðe−κ3z0 þ r̄2eκ3z

0 Þ

3
5;

Gjaj
zx ðk; z; z0; ζ; aÞ ¼ −ikr̄1

2ðe2aκ3 − r̄1r̄2Þ

2
4 1

ε2
ð1 − r̄22Þe−κ2ðzþz0Þ 1

ε2
ðe−κ2z þ r̄2e−κ2zÞðe−κ3z0 − r̄2eκ3z

0 Þ
1
ε3
ðe−κ2z0 − r̄2e−κ2z

0 Þðe−κ3z þ r̄2eκ3zÞ 1
ε3
ðe−κ3z þ r̄2eκ3zÞðe−κ3z0 − r̄2eκ3z

0 Þ

3
5: (A8)

The limits of these propagators as z and z0 approach 0 are of particular interest. In this case, the components of the

matrices ~Gjðk; ζÞ ≔ ~Gjðk; 0; 0; ζÞ and Gjajðk; ζ; aÞ ≔ Gjajðk; 0; 0; ζ; aÞ simplify to

~Gj
xxðk; ζÞ ¼ κ2κ3

ε2κ3 þ ε3κ2

�
1 1

1 1

�
; Gjaj

xx ðk; ζ; aÞ ¼ −r̄1ð1 − r̄22Þκ2
2ðe2aκ3 − r̄1r̄2Þε2

�
1 1

1 1

�
;

~Gj
yyðk; ζÞ ¼ ζ2

κ2 þ κ3

�
1 1

1 1

�
; Gjaj

yy ðk; ζ; aÞ ¼ r1ð1 − r22Þζ2
2ðe2aκ3 − r1r2Þκ2

�
1 1

1 1

�
;

~Gj
zzðk; ζÞ ¼

−k2

ε2κ3 þ ε3κ2

�
ε3=ε2 1

1 ε2=ε3

�
; Gjaj

zz ðk; ζ; aÞ ¼ −r̄1ð1 − r̄22Þk2
2ðe2aκ3 − r̄1r̄2Þκ2ε3

�
ε3=ε2 1

1 ε2=ε3

�
;

~Gj
xzðk; ζÞ ¼ ik

ε2κ3 þ ε3κ2

�
ε3κ̄2 κ2

−κ3 −ε2κ̄3

�
; Gjaj

xz ðk; ζ; aÞ ¼ ir̄1ð1 − r̄22Þk
2ðe2aκ3 − r̄1r̄2Þ

�
1=ε2 1=ε3
1=ε2 1=ε3

�
;

~Gj
zxðk; ζÞ ¼ −ik

ε2κ3 þ ε3κ2

�
ε3κ̄2 −κ3
κ2 −ε2κ̄3

�
; Gjaj

zx ðk; ζ; aÞ ¼ −ir̄1ð1 − r̄22Þk
2ðe2aκ3 − r̄1r̄2Þ

�
1=ε2 1=ε2
1=ε3 1=ε3

�
: (A9)
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APPENDIX B: SIGNED CORRELATORS OF THE
ROUGHNESS PROFILE

We here obtain the correlation functions of positive
and negative components of the roughness profile for a
Gaussian generating functional of roughness correlation
functions,

he
R

dxαðxÞhðxÞi ¼ e
1
2

R
dxdyαðxÞD2ðx−yÞαðyÞ; (B1)

that is fully determined by the two-point correlation
function hhðxÞhðyÞi ¼ D2ðx − yÞ. We in the following
assume that D2ð0Þ ≥ D2ðx − yÞ > 0.
Exploiting an integral representation of the xθðxÞ

distribution, one has that

h�ðxÞ ¼ hðxÞθð�hðxÞÞ

¼ � 1

2π
lim
ε→0þ

Z
∞

−∞

dβ
ðβ − iεÞ2 e

�iβhðxÞ

¼ � lim
ε→0þ

Z
∞

0

λdλe−ελ
Z

∞

−∞

dβ
2π

e−iλβe�iβhðxÞ: (B2)

We use Eq. (B2) to write

hhþðxÞh�ðyÞi ¼ � lim
ε→0þ

Z
∞

0

λ1dλ1

Z
∞

0

λ2dλ2e−εðλ1þλ2Þ

×
Z

dβ
ð2πÞ2 e

−iλ·βheiðβ1hðxÞ�β2hðyÞÞi:
(B3)

The expectation in Eq. (B3) is of the form given in Eq. (B1)
with αðx0Þ ¼ iðβ1δðx0 − xÞ � β2δðx0 − yÞÞ, and therefore
evaluates to

heiðβ1hðxÞ�β2hðyÞÞi ¼ e−
1
2
βT ·M�·β; (B4)

where the symmetric, real, and positive 2 × 2 matrix

M� ¼
�

D2ð0Þ �D2ðx − yÞ
�D2ðx − yÞ D2ð0Þ

�
(B5)

has the determinant detM� ¼ D2
2ð0Þ −D2

2ðx − yÞ > 0 for
jx − yj > 0. Performing the two-dimensional Gaussian
integral in β ¼ ðβ1; β2Þ (for jx − yj > 0) gives

hhþðxÞh�ðyÞi ¼ � ðdetM�Þ−1=2
2π

Z
∞

0

dλ1

×
Z

∞

0

dλ2λ1λ2e−
1
2
λT ·M−1

� ·λ: (B6)

Converting to polar coordinates ðλ1; λ2Þ ¼ λðcos θ; sin θÞ
and noting that the integral extends over the first quadrant
with 0 < θ < π=2 only,

hhþðxÞh�ðyÞi ¼ � ðdetM�Þ−1=2
2π

Z
π=2

0

dθ
sinð2θÞ

2

Z
∞

0

λ3dλe−
1
2
λ2ðD2ð0Þ∓sinð2θÞD2ðx−yÞÞ= detM�

¼ � ðdetM�Þ3=2
4π

Z
π

0

dθ
sin θ

ðD2ð0Þ ∓ D2ðx − yÞ sin θÞ2

¼ �D2ð0Þ
2π

�
sinϕþ

�
π

2
� π

2
− ϕ

�
cosϕ

�
; (B7)

with cosϕ ¼ D2ðx − yÞ=D2ð0Þ, 0 < ϕ < π=2. This result
is reproduced in Eq. (31). The last expression uses the fact
that the lengths D2ð0Þ, D2ðx − yÞ, and detM� can be
interpreted as the sides of a right triangle with hypotenuse
D2ð0Þ.

APPENDIX C: ANGULAR INTEGRALS

For the class of correlation functions

DsðqÞ¼ 2πσ2l2cð1þq2l2c=ð2sÞÞ−1−s with s> 0; (C1)

the angular integrals of Eqs. (48), (52), (55a), and (55b) are
all of the form

AnðsÞ ¼
Z

π

−π

dθcosnθ
ð1þ a − b cos θÞsþ1

¼ Γðsþ 1 − nÞ
Γðsþ 1Þ

∂n

∂bn
2π

ð1þ aþ bÞsþ1−n

× 2F1

�
1

2
; sþ 1 − n; 1;

2b
1þ aþ b

�
; (C2)

with a ¼ 1
2
ðk2 þ k02Þl2c=s ≥ b ¼ kk0l2c=s > 0 and n ¼ 0, 1,

2. They are given by values of the generalized hyper-
geometric function 2F1ð12 ; ν; 1; xÞ for any s > 0.
The exponential roughness correlation DExp of Eq. (35)

corresponds to s ¼ 1=2, and the relevant angular integrals
in this case are complete elliptic integrals:
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A0ð1=2Þ ¼
4

ð1þ a − bÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aþ b

p E

�
2b

1þ aþ b

�
;

A1ð1=2Þ ¼
4

ð1þ a − bÞb ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aþ b

p
�
ð1þ aÞE

�
2b

1þ aþ b

�
− ð1þ a − bÞK

�
2b

1þ aþ b

��
;

A2ð1=2Þ ¼
4

ð1þ a − bÞb2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aþ b

p
�
ð2ð1þ aÞ2 − b2ÞE

�
2b

1þ aþ b

�
− 2ð1þ aÞð1þ a − bÞK

�
2b

1þ aþ b

��
; (C3)

with a ¼ ðk2 þ k02Þl2c and b ¼ 2kk0l2c.
The limit s → ∞ of the Gaussian correlation in Eq. (34)

is best obtained directly. The angular integrals in this
limit are

Anð∞Þ ¼ e−l
2
cðk2þk02Þ=2

Z
π

−π
dθcosnθel

2
ckk0 cos θ

¼ 2πe−l
2
cðk2þk02Þ=2 ∂n

∂αn I0ðαÞjα¼l2ckk0
; (C4)

where I0ðxÞ is the modified Bessel function of the first kind
of zeroth order. The relevant angular integrals for Gaussian
roughness correlation thus are

A0ð∞Þ ¼ 2πe−l
2
cðk2þk02Þ=2I0ðl2ckk0Þ;

A1ð∞Þ ¼ 2πe−l
2
cðk2þk02Þ=2I1ðl2ckk0Þ;

A2ð∞Þ ¼ πe−l
2
cðk2þk02Þ=2ðI0ðl2ckk0Þ þ I2ðl2ckk0ÞÞ: (C5)

APPENDIX D: THE RESPONSE FUNCTION

The roughness correction to the Casimir free energy of
order σ2 is given in Eq. (44). This correction is linear in
DðqÞ, and one may define [17] the response function
RTðq; aÞ of Eq. (79) by

ΔFCas
T ½a� ¼ 1

2
hTr ~VhGjaji − 1

2
hTr ~Vh ~Gj ~VhGjaji

þ 1

2
Trδ ~VhGjaj −

1

4
h ~VhGjaj ~VhGjaji

¼
Z

∞

0

qdq
2π

DðqÞRTðq; aÞ: (D1)

To obtain RTðq; aÞ, we change the integration variable from
k0 to q ¼ k0 − k in Eqs. (45), (48), (50), and (52) and choose
k ¼ ðk; 0Þ to define the positive x axis. In these coordinates,
k0x ¼ kþ q cos θ, k0y ¼ q sin θ, and explicit expressions for
the response function RTðq; aÞ can be read off from

1

2
hTr ~VhGjaji ¼

Z
∞

0

qdq
2π

DðqÞ
X
n

ð−ATÞ
Z

∞

0

kdk
2π

κκε

�
r̄2

e2aκ − r̄2
þ r2

e2aκ − r2

�
; (D2a)

−
1

2
hTr ~Vh ~Gj ~VhGjaji ¼

Z
∞

0

qdq
ð2πÞ2DðqÞ

X
n

ð−ATÞðε − 1Þ2
Z

∞

0

kdk
2π

Z
π

−π
dθ

�
rð1 − r2Þζ2

4ðe2aκ − r2Þκε

�
κ0κ0ε

εκ0 þ κ0ε

�
k0y
k0

�
2

þ ζ2

κ0 þ κ0ε

�
k0x
k0

�
2
�
þ r̄ð1 − r̄2Þ
4ðe2aκ − r̄2Þε

�
εk2k02

κεðεκ0 þ κ0εÞ
− kk0xr̄0 −

κεκ
0κ0ε

εκ0 þ κ0ε

�
k0x
k0

�
2

−
κεζ

2

κ0 þ κ0ε

�
k0y
k0

�
2
��

;

(D2b)

−
1

4
hTr ~Vh ~Gjaj ~VhGjaji ¼

Z
∞

0

qdq
ð2πÞ2DðqÞ

X
n

ð−ATÞðε − 1Þ2
Z

∞

0

kdk
2π

Z
π

−π
dθ

�
rð1 − r2Þζ2

16ðe2aκ − r2Þκε

�
r0ð1 − r02Þζ2
ðe2aκ0 − r02Þκ0ε

�
k0x
k0

�
2

−
2r̄0ð1 − r̄02Þκ0ε
ðe2aκ0 − r̄02Þε

�
k0y
k0

�
2
�
þ r̄r̄0ð1 − r̄2Þð1 − r̄02Þ
16ðe2aκ − r̄2Þðe2aκ0 − r̄02Þ

�
k2k02

κεκ
0
ε
þ 2kk0x

ε
þ κεκ

0
ε

ε2

�
k0x
k0

�
2
��

; (D2c)

1

2
Trδ ~VGjaj ¼

Z
∞

0

qdq
2π

DðqÞ
X
n

ATðε − 1Þ2
Z

∞

0

kdk
2π

�
r̄ð1 − r̄2Þ

4ðe2aκ − r̄2Þ
k2q2

κεðεκ0 þ κ0εÞ

þ
�

rð1 − r2Þζ2
4ðe2aκ − r2Þκε

−
r̄ð1 − r̄2Þκε
4ðe2aκ − r̄2Þε

��
κ0κ0ε=2
εκ0 þ κ0ε

þ ζ2=2
κ0 þ κ0ε

−
g2ζ

1þ ffiffiffi
ε

p
��

: (D2d)

In the last (counterterm) expression of Eq. (D2d), κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ζ2

p
and κ0ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ζ2εðζÞ

p
. Note that the angular integration

in these coordinates cannot be performed analytically.
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