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In string bit models, the superstring emerges as a very long chain of “bits,” in which s fermionic degrees
of freedom contribute positively to the ground state energy in a way to exactly cancel the destabilizing
negative contributions of d ¼ s bosonic degrees of freedom. We propose that the physics of string
formation be studied nonperturbatively in the class of string bit models in which s > d, so that a long chain
is stable, in contrast to the marginally stable (s ¼ d ¼ 8) superstring chain. We focus on the simplest of
these models with s ¼ 1 and d ¼ 0, in which the string bits live in zero space dimensions. The string bit
creation operators are N × N matrices. We choose a Hamiltonian such that the large N limit produces a
string moving in one space dimension, with excitations corresponding to one Grassmann light-cone world
sheet field (s ¼ 1) and no bosonic world sheet field (d ¼ 0). We study this model at finite N to assess the
role of the large N limit in the emergence of the spatial dimension. Our results suggest that stringlike states
with large bit number M may not exist for N ≤ ðM − 1Þ=2. If this is correct, one can have finite chains of
string bits, but not a continuous string, at finite N. Only for extremely large N can such chains behave
approximately like a continuous string, in which case there will also be the (approximate) emergence of a
new spatial dimension. In string bit models designed to produce a critical superstring at N ¼ ∞, we can
then expect only approximate Lorentz invariance at finite N, with violations of order 1=N2.
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I. INTRODUCTION

String bit models [1] provide one approach to a funda-
mental formulation of string theory. For another approach,
see Ref. [2]. These models are motivated by interpreting the
light-cone Hamiltonian for a single string [3],

P− ¼ 1

2

Z
Pþ

0

dσ½p2 þ T2
0x

02�; (1)

as the large M limit of the Hamiltonian for a harmonic
chain of M ¼ Pþ=m string bits,1 where m is the funda-
mental unit of Pþ,

H ¼ 1

2m

XM
k¼1

½p2n þ T2
0ðxnþ1 − xnÞ2�: (2)

The idea is to take string bits as the fundamental degrees
of freedom of string theory. In this interpretation Lorentz
invariance is not built in a priori. Moreover, string bits
move about in the d ¼ D − 2 transverse space dimensions;
the spatial coordinate x− conjugate to Pþ is missing. It will
be regained for strings consisting of a very large number

of bits, provided that the excitation spectrum of H scales
like 1=M ¼ m=Pþ in the limit M → ∞. This is one of
the earliest implementations of ’t Hooft’s holography
hypothesis [6]. The normal mode frequencies of the
closed string bit chain are ωn ¼ ð2T0=mÞ sinðnπ=MÞ, with
n ¼ 0;…; ðM − 1Þ. Thus, all modes with finite n or finite
M − n as M → ∞ have the desired scaling behavior.
But the ground state energy of a bosonic closed string bit

chain is

EG ¼ 1

2

X
n

ωn ¼
dT0

m

XM−1

n¼1

sin
nπ
M

¼ dT0

m
cot

π

2M

¼ 2dT0M
mπ

−
πdT0

6Mm
þOðM−3Þ; (3)

where we have taken M → ∞ to regain the continuous
string. Since the string interactions conserve bit number,
the first term can be dropped [5], and the second term can
be identified as −πdT0=ð6PþÞ. For d ¼ 24 we obtain the
ground state mass squared of the bosonic string −8πT0.
This result is a version of the zero point energy calculation
of Brink and Nielsen [7]. Since the ground state is a
tachyon, it signals the instability of bosonic string theory.
Moreover, this instability is present at all finiteM, which is
immediately apparent from the monotonicity of the graph
of ground energy per bit number EGðMÞ=M as a function of
bit number shown in Fig. 1. For a fixed total number of bits,
this graph implies that the lowest energy configuration is
for the bits to arrange themselves into closed chains of least
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1The compatibility of such a discretization with string inter-

actions is supported by the success of a similar discretization of
Mandelstam’s interacting light-cone world sheet path integrals [4]
carried out in Ref. [5].
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possible bit number. In other words, if the interaction
between closed chains is weak, a closed chain of string bits
is unstable. Or when a number of bits is brought together,
the bits remain individual bits, never joining to form string.
In short, a string cannot be expected to emerge from the
bosonic string bit model.
This is hardly an unexpected conclusion, since the bosonic

string is widely believed to be unstable. This inevitable
instability is one motivation for introducing supersymmetry
[8]. One imagines that, in addition to the vibrational
excitations discussed above, there are also fermionic degrees
of freedom [9,10],which are properly thought of as “statistics
waves,” and which contribute to the ground energy with the
opposite sign, cancelling the negative 1=M term and leading
to massless ground states. Bergman and one of us invented
a superstring bit model which accomplishes this cancellation
at finite M [11]. The ground state energy of a chain of
superstring bits is strictly zero for all finite M.
Employing ’t Hooft’s large N limit [12] in its Fock space

formulation [13], as described in Ref. [1] for the bosonic
string, we introduced in Ref. [11] a superstring bit
annihilation operator

ðϕ½a1���an�ÞαβðxÞ; n ¼ 0;…; s; (4)

where each ai is a spinor index running over s values and
α; β ¼ 1;…N are color indices for the adjoint representa-
tion of the color group UðNÞ. Poincaré supersymmetry
dictates that s ¼ d ¼ 8 for the superstring. The ϕ’s are
bosonic if n is even and fermionic if n is odd. The square
brackets in the subscript remind us that the enclosed indices
are completely antisymmetric. Thus, at each transverse

space point x, there are 256 degrees of freedom, 128 each
of bosonic and fermionic type. We then constructed a
Hamiltonian operator which reproduced, in the ’t Hooft
limit, the mass spectrum of the free superstring when the
bit number becomes very large.2 The problem of devising
the correct superstring interactions, which should be con-
sistent with Lorentz invariance, was only partially resolved
in Ref. [11]. But temporarily setting aside Lorentz invari-
ance, we stress that our model did induce a (Lorentz
noninvariant) interacting superstring theory along with a
new dimension of space.
The ground state energy of a closed chain in this

superstring bit model is exactly zero for all M, but only
because of the cancellation between phonons and statistics
waves [14]. This cancellation does not occur if s ≠ d. In
this more general context, we can identify a stable regime
(s > d) and an unstable regime (s < d). The supersym-
metric case is at the boundary between these two regimes.
Here we are proposing that, since superstring theory
emerges from a very special, marginally stable, string bit
model, its underlying physics is better understood in terms
of the more general class of stable string bit models. Indeed,
we can regard holding d ¼ D − 2 < s as a physical infrared
cutoff, in the spirit of dimensional regularization.
In these stable models, the energy per bit curve gets

flipped and turns into Fig. 2. This figure shows that with
fixed M the lowest energy state is a single string, which
becomes a string moving in one space dimension when
M → ∞. If two closed strings are present, the lowest

FIG. 1 (color online). Energy per bit number vs bit number for
bosonic excitations (phonons).

FIG. 2 (color online). Energy per bit number vs bit number for
fermionic excitations (statistics waves).

2This conclusion rigorously follows only when N → ∞ before
M becomes large.
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energy configuration shares M equally between the two
strings. Thus, models in the stable regime provide a sound
foundation for the emergence of a string, albeit without
Lorentz invariance. In the rest of this article, we analyze the
physics of the simplest of these stable models, with s ¼ 1
and d ¼ D − 2 ¼ 0. Holography is explicitly realized in
the ’t Hooft limit N → ∞. We will be particularly interested
in the physics of these models at finite N and whether
finite N can still support chains of an arbitrarily large bit
number. Indeed, we find indications, from our study of
low-dimension toy string bit models, that a stable string of
M bits requires at least N > ðM − 1Þ=2. If this is so, there
will be violations of the Lorentz invariant dispersion law
2PþP− − p2 ¼ m2 at finite N because Pþ would neces-
sarily remain discrete at finite N. These violations would
be present even if the degrees of freedom and interactions
are tuned to satisfy Lorentz invariance order by order in
the 1=N expansion, which these considerations suggest
has zero radius of convergence. One should then be able to
translate limits on the accuracy of tests of Lorentz invari-
ance to a lower bound on N, or, if a successful string bit
model of all physics could be devised, to an upper bound
on Newton’s gravitational constant, which is of order 1=N2

in these models.
The superstring bit model in zero space dimensions with

s ¼ 1, studied in the rest of this paper, is a far cry from a
successful model of all physics. Nonetheless, it is rich
enough to test the soundness of the physical ideas we are
advocating. In Sec. II we present the details of the model.
Among many possible choices for a Hamiltonian built of
single trace operators, we single out the one proposed in
Ref. [11] and discuss its N → ∞ limit. In Sec. III, we apply
the variational principle to obtain an upper bound on the
ground state energy. This bound can be proven only when
N > ðM − 1Þ=2. Then in Sec. IV, we explore the model at
finite N by studying states with a relatively low bit number
M. We find all energy eigenstates in the two bit caseM ¼ 2
and all color singlet and color adjoint states when M ¼ 3.
We also describe some results for M ¼ 4; 5, for which the
detailed analysis will appear in a separate article. We close
the paper in Sec. V with a discussion of the issues involved
with finding string bit models that produce a string in
higher dimensions. In the interests of keeping the paper
self-contained, we include an Appendix, which calculates
the exact energy eigenstates at N ¼ ∞ for the model
studied here. This is of course a special case of results
already obtained in Ref. [11] in a general context. However,
it includes two new aspects: (1) the explicit analysis of the
consequences of the cyclic symmetry of closed chains of
string bits and (2) the calculation of the N ¼ ∞ energy
eigenvalues of an open (color adjoint) chain, which
demonstrates color confinement in this toy string bit model.
The energy gap between adjoint and singlet sectors is of
order M times the energy scale set by the continuum limit.
We also include a second Appendix, which sketches a

systematic method to do variational calculations in these
models.

II. s ¼ 1, d ¼ 0 STRING BIT MODEL

The s ¼ 1, d ¼ 0 superstring bit model contains N2

bosonic (aβα) and N2 fermionic (bβα) string bits. We define
conjugate operators āβα ≡ ðaαβÞ† and b̄βα ≡ ðbαβÞ†, and these
operators satisfy the (anti)commutation relations,

½aβα; āδγ � ¼ δδαδ
β
γ ; fbβα; b̄δγg ¼ δδαδ

β
γ ; (5)

all others vanishing. Then we choose a Hamiltonian that is
a linear combination of the single trace operators

Trā2a2; Trb̄2b2; Trb̄2a2; Trā2b2;

Trā b̄ ba; Trā b̄ ab; Trb̄ ā ba; Trb̄ ā ab; (6)

with coefficients scaling as 1=N. All of these structures
conserve bit number and share the feature that the two
annihilation operators are consecutive in the trace as are the
two creation operators. This feature is necessary for the
term to survive the limitN → ∞. Terms without this feature
such as ð1=NÞTr∶āaāa∶ are suppressed at large N, so they
can also be included, if desired, without affecting the large
N limit. We do not include them here for simplicity only,
but in some models they may be necessary for stability
reasons.
For definiteness we choose H so that in the large N limit

the dynamics reduces to the superstring bit model invented
in Ref. [11]. In the large N limit, H maps single trace states
to single trace states. To describe these states in this toy
model, it is useful to define a supercreation operator,

ψðθÞ ¼ āþ b̄θ; b̄¼−
d
dθ

ψ ; ā¼
�
1− θ

d
dθ

�
ψ ; (7)

where θ is a Grassmann anticommuting number. Then a
basis of single trace states can be taken to be

jθ1θ2 � � � θMi ¼ Tr½ψðθ1Þψðθ2Þ � � �ψðθMÞ�j0i: (8)

Then it is straightforward to apply each of the candidate
terms in the Hamiltonian to such a basis state to get

1

N
Trā2a2jθ1θ2 ���θMi

¼
XM
k¼1

�
1−θk

d
dθk

��
1−θkþ1

d
dθkþ1

�
jθ1θ2 ���θMiþOðN−1Þ

(9)
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1

N
Trā b̄ bajθ1θ2 � � � θMi

¼
XM
k¼1

�
1 − θk

d
dθk

�
θkþ1

d
dθkþ1

jθ1θ2 � � � θMi þOðN−1Þ
(10)

1

N
Trb̄ ā abjθ1θ2 � � � θMi

¼
XM
k¼1

θk
d
dθk

�
1 − θkþ1

d
dθkþ1

�
jθ1θ2 � � � θMi þOðN−1Þ

(11)

1

N
Trb̄2b2jθ1θ2 � � � θMi

¼
XM
k¼1

θk
d
dθk

θkþ1

d
dθkþ1

jθ1θ2 � � � θMi þOðN−1Þ (12)

1

N
Trā b̄ abjθ1θ2 � � � θMi

¼
XM
k¼1

θk
d

dθkþ1

jθ1θ2 � � � θMi þOðN−1Þ (13)

1

N
Trb̄ ā bajθ1θ2 � � � θMi ¼

XM
k¼1

θkþ1

d
dθk

jθ1θ2 � � � θMi

þOðN−1Þ (14)

1

N
Trb̄2a2jθ1θ2 � � � θMi ¼

XM
k¼1

d
dθk

d
dθkþ1

jθ1θ2 � � � θMi

þOðN−1Þ (15)

1

N
Trā2b2jθ1θ2 � � � θMi ¼

XM
k¼1

θkþ1θkjθ1θ2 � � � θMi

þOðN−1Þ: (16)

The structure of the 1=N terms not shown involves two
traces rather than a single trace. The formulas (13), (14),
(15), and (16) show a unique correspondence between
single trace terms and Grassmann variable operations.
The remaining formulas possess some ambiguities in the
correspondence. Using Eq. (12) we can remove the quartic
term from Eqs. (9), (10) and (11):

1

N
Tr½ā2a2 − b̄2b2�jθ1θ2 � � � θMi

¼
XM
k¼1

�
1 − 2θk

d
dθk

�
jθ1θ2 � � � θMi þOðN−1Þ (17)

1

N
Tr½ā b̄ baþ b̄2b2�jθ1θ2 � � � θMi

¼
XM
k¼1

θk
d
dθk

jθ1θ2 � � � θMi þOðN−1Þ (18)

1

N
Tr½b̄ ā abþ b̄2b2�jθ1θ2 � � � θMi

¼
XM
k¼1

θk
d
dθk

jθ1θ2 � � � θMi þOðN−1Þ: (19)

In the large N limit, we can make the ansatz

jEi ¼
Z

dMθjθ1θ2 � � � θMiΨðθ1θ2 � � � θMÞ (20)

for the N ¼ ∞ energy eigenstate. The function Ψ is the
wave function for one of the discretized Grassmann
variables of the superstring. Now by construction the states
jθ1θ2 � � � θMi possess cyclic symmetry:

jθ1θ2 � � � θMi ¼ jθMθ1 � � � θM−1i: (21)

On the other hand, the measure acquires a phase ð−ÞM−1

under a one step cyclic transformation. It follows that the
wave function can, without loss of generality, be taken to
satisfy

Ψðθ1θ2 � � � θMÞ ¼ ð−ÞM−1ΨðθMθ1 � � � θM−1Þ: (22)

Consulting Eq. (3.17) of Ref. [11], we see that the first
quantized Hamiltonian h should be

h¼
XM
k¼1

½−iSkSkþ1þi ~Sk ~Skþ1−iSkð ~Skþ1þ ~Sk−1−2~SkÞ�

¼
XM
k¼1

½−iSkSkþ1þi ~Sk ~Skþ1−iSk ~Skþ1−iSkþ1
~Skþ2iSk ~SkÞ�:

(23)

In these formulas it is understood that SMþ1 ≡ S1 and
S0 ¼ SM. Here the S; ~S satisfy the Clifford algebras,

fSk;Slg ¼ 2δkl; f ~Sk; ~Slg ¼ 2δkl; fSk; ~Slg ¼ 0; (24)

and have the representations

Sk ¼ θk þ
d
dθk

; ~Sk ¼ i

�
θk −

d
dθk

�
(25)

in terms of Grassmann variables. Then we can also write
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h ¼
XM
k¼1

�
−2iθkθkþ1 − 2i

d
dθk

d
dθkþ1

− 2θk
d

dθkþ1

− 2θkþ1

d
dθk

− 2þ 4θk
d
dθk

�
: (26)

Next we apply integration by parts to rewriteZ
dMθjθ1θ2 � � � θMihΨðθ1θ2 � � � θMÞ

¼
Z

dMθĥjθ1θ2 � � � θMiΨðθ1θ2 � � � θMÞ; (27)

where

ĥ ¼
XM
k¼1

�
−2iθkθkþ1 − 2i

d
dθk

d
dθkþ1

þ 2θk
d

dθkþ1

þ 2θkþ1

d
dθk

þ 2 − 4θk
d
dθk

�
: (28)

Now we compare the terms in ĥ to the dictionary, given in
Eqs. (9)–(16), to infer the Fock space Hamiltonian:

H¼ 2

N
Tr½iā2b2− ib̄2a2þ ā b̄abþ b̄ ābaþ ā2a2− b̄2b2�:

(29)

Without affecting the N → ∞ limit, we are free to add the
terms

ΔH ¼ 1

N
Tr½2ξ1ā b̄ baþ 2ξ2b̄ ā ab

þ ðξ1 þ ξ2Þðā2a2 þ b̄2b2 −MÞ� (30)

to H because this combination of terms only contributes at
orderN−1. The number of bits in the state is given by the bit
number operator M ¼ Trðāaþ b̄bÞ.
In the following we pick, for definiteness, ξ2 ¼ −ξ1 ¼ 1,

so we will be using the Fock space Hamiltonian:

H ¼ 2

N
Tr½ðā2 − ib̄2Þa2 − ðb̄2 − iā2Þb2 þ ðā b̄ þ b̄ āÞba

þ ðā b̄ − b̄ āÞab�: (31)

ThisHamiltonian is supersymmetric in that it commuteswith
the Grassmann odd operator Q ¼ Trðābeiπ=4 þ b̄ae−iπ=4Þ.
This Hamiltonian will be our paradigm for the rest of
the article. A couple of comments are in order. As
Appendix A explains, the spectrum of h is symmetric
about 0, before imposing the cyclic constraint, which
breaks this symmetry. This means that had we chosen
−H instead of H, the large N limit would still be
described by the Grassmann variables of the super-
string. However, in −H the negative coefficient of

Trā2a2 would cause a dangerous instability at finite
N because a is bosonic. One can add more terms to
make −H stable, but we choose þH as our paradigm, to
keep the Hamiltonian as simple as possible. The
negative coefficient of Trb̄2b2 in H is not a problem
because b is fermionic, and the exclusion principle
stabilizes the effects of this term.

III. VARIATIONAL ARGUMENT

In the previous section, we have designed a string bit
Hamiltonian that reproduces free superstring dynamics at
N ¼ ∞. In this section we seek finite N information via the
variational principle. Inspection of the Hamiltonian (31)
suggests that a low energy state should have a large number
of fermionic excitations. This encourages us to consider the
trial state jψi ¼ Trb̄Mj0i, which is nonzero only forM odd,
in the sector with bit number M, and evaluate

EðψÞ ¼ hψ jHjψi
hψ jψi : (32)

Since there are no ā excitations, the numerator is easily
evaluated

hψ jHjψi ¼ −
2

N
h0jTrbMTrb̄2b2Trb̄Mj0i

¼ −M
2

N
h0jTrbMb̄2bb̄M−1j0i

¼ −2Mh0jTrbMTrb̄Mj0i

−
2M
N

h0jTrbMTrb̄2
XM−2

k¼1

½ð−ÞkTrb̄k�b̄M−k−2j0i

¼ −2Mh0jTrbMTrb̄Mj0i

−
2M
N

h0jTrbM
XM−2

k¼1

½ð−ÞkTrb̄k�Trb̄M−kj0i: (33)

Now Trbn ¼ 0 for even n. Thus, only the terms with k odd
contribute to the sum on the right. But as already mentioned
we must takeM odd to get a nonzero trial, soM − k is even
implying Trb̄M−k ¼ 0. Thus, every term in the sum on the
right vanishes, and we have

hψ jHjψi ¼ −2Mh0jTrbMTrb̄Mj0i ¼ −2Mhψ jψi: (34)

So provided that hψ jψi ≠ 0, we get the variational estimate
EðψÞ ¼ −2M, so EG ≤ −2M.
It remains to calculate the norm of the trial state:

hψ jψi ¼ h0jTrbMTrb̄Mj0i ¼ Mh0jTrbM−1b̄M−1j0i: (35)

To evaluate the right side, we first derive a recursion
formula:
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h0jTrbM−1b̄M−1j0i ¼ h0jTrbM−2
�
Nb̄M−2 þ

XM−2

k¼1

ð−Þk½Trb̄k�b̄M−k−2
�
j0i

¼
�
N2 −

XM−2

k¼odd

k

�
h0jTrbM−3b̄M−3j0i þ h0jTrbM−3

�
N
XM−3

k¼1

ð−Þk½Trb̄k�b̄M−k−3 þ
XM−3

k¼1

½Trb̄k�bb̄M−k−2
�
j0i

h0jTrbM−1b̄M−1j0i ¼
�
N2 −

�
M − 1

2

�
2
�
h0jTrbM−3b̄M−3j0i

þ h0jTrbM−3
�
−N

XM−3

k¼odd

½Trb̄k�b̄M−k−3 þ N
XM−3

k¼odd

½Trb̄k�b̄M−k−3
�
j0i

− h0jTrbM−3
XM−3

k¼odd

½Trb̄k�
XM−k−3

l¼odd

½Trb̄l�b̄M−k−l−3j0i

¼
�
N2 −

�
M − 1

2

�
2
�
h0jTrbM−3b̄M−3j0i: (36)

The last line is reached by noting the cancellation of the
sums in the square brackets and noting that the double sum
in the previous line can be rearranged as

XM−3

k¼odd

½Trb̄k�
XM−k−3

l¼odd

½Trb̄l�b̄M−k−l−3j0i

¼
XM−3

n¼even;2

� Xn−1
k¼odd;1

Trb̄kTrb̄n−k
�
b̄M−n−3j0i; (37)

and the sum within square brackets is zero because the
terms cancel in pairs due to the fact that Trb̄k;Trb̄n−k are
fermionic operators. So we have proved the recursion
relation

h0jTrb2nb̄2nj0i ¼ ðN2 − n2Þh0jTrb2n−2b̄2n−2j0i

¼ N
Yn
k¼1

ðN2 − k2Þ: (38)

To apply the variational principle, we should restrict to
integer N so the Hamiltonian is truly Hermitian and require
N > n ¼ ðM − 1Þ=2 so that the norm of the state is positive.
With these restrictions we can then rigorously conclude
thatEG < −2M forM odd and allN > ðM − 1Þ=2. We gain
no information when N ≤ ðM − 1Þ=2. In Appendix B, we
explain an extension of this variational argument to more
general trial states.
The fact that the upper bound on the ground state energy

behaves like −2M is consistent with the ground state
having stringy properties similar to those seen at infinite
N. The ground energy of the latter has the largeM behavior
−8M=π, consistent with the variational bound. It is
interesting that the variational result only applies when
N > ðM − 1Þ=2, which suggests, but does not prove, that

high bit number stringy states may require very large N.
We shall find further support for these conclusions in the
study of low M energy eigenstates that follows.

IV. LOW M EXAMPLES

The eigenvalues and eigenstates of the Hamiltonian
(31) in the ’t Hooft limit N → ∞ are reviewed in
Appendix A. Before studying our model at finite N for
specific values of M, it is helpful to note that the case
N ¼ 1 is trivial to solve. Then there is just a single a and a
single b, and H reduces to

H1 ¼ 2½ā2a2 þ 2ā b̄ ba� ¼ 2ðM2 −MÞ; (39)

an explicit function of the bit number operator
M ¼ āaþ b̄b. Eigenstates of M are automatically eigen-
states of H. Indeed for fixed M there are only two states,

jM; bi ¼ āMj0i; jM;fi ¼ āM−1b̄j0i; (40)

the first a boson and the second a fermion. This energy
spectrum rules out the emergence of a string and
holography for N ¼ 1. There are no large bit number
states with excitations that scale as 1=M. Moreover, there
are no large bit number states with energies that grow
linearly with M. On the other hand, at N ¼ ∞, both of
these conditions are met. Clearly the energy spectrum
must exhibit dramatic qualitative changes, as a function
of N. It is likely that, at fixed N and large enough M,
there should be states with the qualitative behavior
E ∼M2 of the N ¼ 1 case, which would definitely not
be stringlike. But this does not by itself forbid the lowest
energy states from being stringlike.
In the following we shall mostly restrict our analysis

to the color singlet sector of state space, for which the
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multitrace Fock state basis introduced in Ref. [13] will be
exploited. This nonorthogonal basis gives a linearly inde-
pendent span of the sector with fixed bit number M,
provided that N is sufficiently large. Setting up the energy
eigenvalue problem in this basis enables a uniform treat-
ment for all continuous values of N, even noninteger ones.
In this formulation, the energy eigenvalues of H are
contained in the eigenvalues of a matrix HðNÞ that is
not Hermitian. This will allow us to explore systematically
how the energy spectrum changes as N changes. For
particular values of N, this basis set is not linearly
independent—it is overcomplete. Indeed, for N ¼ 1, this
overcompleteness is quite dramatic. In these cases the
matrix H is too big and determines more eigenvalues than
are physical, some of which can even be complex, because
H is not Hermitian. The overcomplete basis inherits a
metric from the original Fock space, which has non-
negative eigenvalues for integer N but may have some
negative eigenvalues (ghosts) for fractional N. At integer N
the eigenstates ofHwhich do not correspond to true energy
eigenstates must have zero norm under the inherited metric.
In the following we shall confirm this expectation for some
particular low values of M. Interestingly we also find that
even for noninteger N all eigenstates with complex energy
also have zero norm, although for some values of non-
integer N, there are negative norm eigenstates (ghosts).
In any case it is clear that to get a complete understanding
of the spectrum in this general formalism it is essential to
find not only the energy eigenvalues but also the norms of
their energy eigenstates.

A. Two bits

The one bit case M ¼ 1 is trivial. The only states are
āβαj0i and b̄βαj0i, and our selected Hamiltonian applied to
them both gives 0. The singlet states at M ¼ 1 are simply
Trāj0i and Trb̄j0i, with zero energy for all N.
The action of H on the two bit Fock space is not quite so

trivial:

Hāβαāδγ j0i ¼
2

N
½δβγ ½ā ā−ib̄ b̄�δα þ δδα½ā ā−ib̄ b̄�βγ �j0i (41)

Hb̄βαb̄δγ j0i ¼
2

N
½δβγ ½iā ā−b̄ b̄�δα − δδα½iā ā−b̄ b̄�βγ �j0i (42)

Hāβαb̄δγ j0i ¼
2

N
½δβγ ½ā b̄þb̄ ā�δα − δδα½ā b̄−b̄ ā�βγ �j0i: (43)

Tracing on βγ and on δα produces two color singlet energy
eigenstates:

HTrā ā j0i¼ 4Trā ā j0i; HTrā b̄ j0i¼ 4Trā b̄ j0i: (44)

The first is bosonic, and the second is fermionic, giving a
supersymmetric degeneracy. The norms of both states are
nonzero for all N, and since their energy eigenvalue is

independent of N, it must be equal to the known N ¼ 1
eigenvalue: 2ðM2 −MÞ → 4 for M → 2.
Tracing over αβ and γδ produces two more singlet states:

HTrāTrāj0i ¼ 4

N
Trā2j0i ¼ 1

N
HTrā2j0i (45)

HTrāTrb̄j0i ¼ 4

N
Trā b̄ j0i ¼ 1

N
HTrā b̄ j0i; (46)

from which we easily construct the zero energy color
singlet eigenstates�
TrāTrā−

1

N
Trā2

�
j0i;

�
TrāTrb̄−

1

N
Trā b̄

�
j0i; E¼0:

(47)

The squared norms of these two states are 2ðN2 − 1Þ and
ðN2 − 1Þ, respectively. They have zero norm at N ¼ 1, so
they will drop out of the spectrum at N ¼ 1 as they must.
Tracing only one pair of indices gives the simplified

action of H on color adjoint states:

H½ā ā�δαj0i ¼ 2½ā ā−ib̄ b̄�δα þ
2δδα
N

Tr½ā ā� (48)

H½b̄ b̄�δαj0i ¼ 2½iā ā−b̄ b̄�δα − i
2δδα
N

Tr½ā ā� (49)

H½ā b̄�δαj0i ¼ 2½ā b̄þb̄ ā�δα (50)

H½b̄ ā�δαj0i ¼ 2½b̄ ā−ā b̄�δα þ
4δδα
N

Trā b̄ : (51)

The eigenstates of this adjoint sector are

jE;Biβα ¼ ½ā ā�δαj0i − i
E − 2

2
½b̄ b̄�δαj0i −

δδα
N
Tr½ā ā�j0i;

E ¼ �2
ffiffiffi
2

p
(52)

jE;Fiβα ¼ ½ā b̄�δαj0i þ
E − 2

2
½b̄ ā�δαj0i −

Eδδα
2N

Tr½b̄ ā�j0i;
E ¼ �2

ffiffiffi
2

p
: (53)

The rest of the eigenstates, orthogonal to all these, are at
E ¼ 0. The total number of states in the two bit Fock space
is 2N4. All together there are two singlets with E ¼ 4,
4ðN2 − 1Þ adjoint states with E ¼ �2

ffiffiffi
2

p
states, and the

rest amount to 2ðN2 − 1Þ2 states with E ¼ 0.
Notice that the energy eigenvalues in the two bit sector

are actually independent of N. Only the degeneracies and
the eigenstates depend on N. This is very special to this
sector because of its tiny state space. At N ¼ ∞ it is even
smaller than the state space of the first quantized
Hamiltonian h, due to the cyclic symmetry constraint.
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For M ¼ 2 we have

h2 ¼ −4θ1
d
dθ2

− 4θ2
d
dθ1

− 4þ 4θ1
d
dθ1

þ 4θ2
d
dθ2

¼ 4ðθ2 − θ1Þ
�

d
dθ2

−
d
dθ1

�
− 4: (54)

The eigenfunctions and eigenvalues are

1; E ¼ −4; ðθ2 þ θ1Þ; E ¼ −4;

ðθ2 − θ1Þ; E ¼ þ4; θ1θ2; E ¼ þ4; (55)

but only the last two satisfy the cyclic symmetry constraint
Ψðθ1; θ2Þ ¼ −Ψðθ2; θ1Þ, which accords exactly with the
Fock space analysis.

B. Three bit singlets

The single trace states in the M ¼ 3 subspace of states
are

Trā3j0i; Trāb̄2j0i; Trā2b̄j0i; Trb̄3j0i; (56)

and their norms are

h0jTra3Trā3j0i ¼ 3h0jTra2ā2j0i ¼ 3N3 þ 3N

h0jTrb2aTrāb̄2j0i ¼ h0jTrb2b̄2j0i ¼ N3 − N

h0jTra2bTrb̄ā2j0i ¼ h0jTra2ā2j0i ¼ N3 þ N

h0jTrb3Trb̄3j0i ¼ 3h0jTrb2b̄2j0i ¼ 3N3 − 3N: (57)

For starters we work out the eigenstates at N ¼ ∞, where it
suffices to find the single trace eigenstates, because all
remaining color singlet energy eigenstates are tensor
products of these at infinite N. In addition, we can work
independently in the Bose and Fermi sectors. The action of
H on each basis state in the Bose sector is given by

HTrā3j0i ¼ 6

N
Trðā2 − ib̄2Þaā2j0i

¼ 6Trðā2 − ib̄2Þāj0i þ 6

N
Trðā2ÞTrāj0i (58)

HTrāb̄2j0i ¼ 2

N
Tr½ðā b̄þb̄ āÞbb̄2 þ ðā b̄−b̄ āÞaðb̄ ā−ā b̄Þ

− ðb̄2 − iā2Þbðb̄ ā−ā b̄Þ�j0i
¼ 2Tr½−ð3b̄2 − iā2Þā�j0i

þ 2

N
½−2Trðā b̄ÞTrb̄þTrð−iā2ÞTrā�j0i: (59)

Taking N → ∞, the eigenvalue equation becomes

ETrðc1ā3 þ c2āb̄2Þj0i
¼ Tr½6c1ðā2 − ib̄2Þāþ c2ð2iā3 − 6b̄2āÞ�j0i; (60)

which is easily solved:

jEbi∞ ¼ c1Tr

�
ā3 þ 1

2i
ðE − 6Þāb̄2

�
j0i; E ¼ �4

ffiffiffi
3

p
:

(61)

Next we move on to the Fermi sector, for which the action
of H gives

HTrb̄3j0i ¼ −6Trðb̄2 − iā2Þb̄j0i þ 6

N
Trðb̄2 − iā2ÞTrb̄j0i

(62)

HTrā2b̄j0i ¼ 2Tr½ð3ā2 − ib̄2Þb̄�j0i

þ 2

N
½Trā2Trb̄þ 2Trðā b̄ÞTrā�j0i: (63)

We next find the eigenstates at N ¼ ∞:

jEfi∞ ¼ c1Tr

�
b̄3 −

1

2i
ðEþ 6ÞTrā2b̄

�
j0i; E¼�4

ffiffiffi
3

p
:

(64)

The Fermi–Bose degeneracy here and at all levels is
due to the existence of the supercharge Q ¼
Tr½eiπ=4ābþ e−iπ=4b̄a�, which commutes with the
Hamiltonian. ½Q;H� ¼ 0.
To go beyond the N ¼ ∞ limit, we require the action of

H on the other states in the three bit Fock space. Staying
within the color singlet sector, we label the states as

j1i ¼ Trā3j0i (65)

j2i ¼ Trā2Trāj0i (66)

j3i ¼ TrāTrāTrāj0i (67)

j4i ¼ Trāb̄2j0i (68)

j5i ¼ Trā b̄Trb̄j0i: (69)

Then the result of applying the Hamiltonian on each state
can be expressed as

Hjii ¼
X
j

jjiHji; (70)

where the matrix H is
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H ¼

0
BBBBBB@

6 8
N 0 2i 0

6
N 4 12

N − 2i
N 0

0 0 0 0 0

−6i − 8i
N 0 −6 − 4

N

0 0 0 − 4
N 4

1
CCCCCCA

≠ H†: (71)

We show the eigenvalues of H plotted against 1=N in
Fig. 3. The eigenvalues ofH and their eigenstates will be in
one-to-one correspondence with the eigenvalues and eigen-
states of H in the three bit sector, provided the basis set jii
is linearly independent. If there are linear dependences
among the jii, the eigenstates of H will correspond to a
proper subset of those ofH. To assess linear independence,
we also need to calculate the metric Gij ¼ hijji, which is
given by

G¼

0
BBBBBBBB@

3þ 3
N2

6
N

6
N2 0 0

6
N 2þ 4

N2
6
N 0 0

6
N2

6
N 6 0 0

0 0 0 1− 1
N2 0

0 0 0 0 1− 1
N2

1
CCCCCCCCA

¼G†: (72)

The eigenvalues of G will be real and non-negative for
integer values of N because the state space acted on by H
is positive definite. But G will have a zero eigenvalue
corresponding to each linear dependence in the basis. When
N is not an integer, there can be both zero and negative
eigenvalues of G because there is no physical state space
for such values of N. If we write, for an eigenvector of H,

jEi ¼ P
ijiivi, its norm can be expressed in terms of the

matrix G:

hEjEi ¼
X
ij

vi�hijjivj ¼ v†Gv: (73)

For integer N this eigenvalue will be in the spectrum of
H provided hEjEi ≠ 0. In Fig. 4 we plot this norm for
each of the eigenvalues shown in Fig. 3. Whenever the
norm is zero, the eigenvalue E is not in the spectrum of
H, and in that case it need not even be real because H is
not Hermitian. However, it is not hard to see that H� is
similar to H, so that complex eigenvalues always occur
in complex conjugate pairs. This is what is happening
when two eigenvalue curves merge as seen in Fig. 3.
To the right of the merger, we plot only the real part of E,
and the two eigenvalues have equal and opposite imagi-
nary parts.
At N ¼ ∞, the energy eigenvalues are E ¼

�8 sinðπ=3Þ ¼ �4
ffiffiffi
3

p
, E ¼ 4, E ¼ 4, and E ¼ 0. The first

two eigenvalues come from the single trace states. The next
two come from the double trace states, which agree with
the two bit results, and the triple trace state TrāTrāTrāj0i
has zero energy.
Notice that atN ¼ 1 the five curves for the energies, Fig. 3,

approach distinct values. On the other hand, Fig. 4 shows that
the norms of the lowest four of them are 0 at N ¼ 1. These
states then disappear from the spectrum at N ¼ 1; only the
state evolving from Trā3j0i at N ¼ ∞ survives at this value
of N. Also at N ¼ 1,H1 ¼ 2ðM2 −MÞ ¼ 12, which agrees
with the top curve of Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−10

−5

0

5

10

15

1/N

E

Energy,M=3

FIG. 3 (color online). The energy eigenvalues of the three bit
system as a function of 1=N. The two energy curves which merge
into a single curve, for N a bit less than 1, actually become
complex conjugate pairs upon merging. As seen in the next
figure, those states have zero norm when they become complex.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−2

0

2

4

6

8

10

12

1/N

Norms of Energy Eigenstates,M=3

N
or

m

FIG. 4 (color online). The norms of the energy eigenstates of
the three bit system as a function of 1=N. The color of the norm
curve is the same as the corresponding energy curve. Note that all
states but the one with highest energy have zero norm at N ¼ 1.
This agrees with our exact treatment of that case. Note the
presence of negative norms (ghosts) when N < 2.
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At N ¼ 2 the norm of the state, which evolves from
TrāTrāTrāj0i, goes to zero, and between N ¼ 2 and
N ¼ 1, its norm goes negative for a while. The presence
of such a ghost state, which can happen only for noninteger
N, signals a violation of unitarity. Even though at M ¼ 3
this disappearing state is a rather trivial one with a zero
energy eigenvalue, we have found in higher M cases that
the norms of nontrivial states go to zero at integer N. This
suggests a pattern that as M goes up, the states start to
disappear at the higher integer N.
When M ¼ 3 no complex conjugate pair appears in the

range N ≥ 1. But as Fig. 3 shows, two curves do merge in
the region N < 1. At the merge point, the eigenvalues
become complex conjugate pairs. At higher M such
complex energies occur at higher N. In our detailed studies
at M ¼ 4 and M ¼ 5, we find that every eigenstate with
complex energy has zero norm, indicating that it disappears
from the spectrum, whether N is an integer or not. This has
to happen at integer N where H is manifestly Hermitian,
but not necessarily at unphysical fractional N. The fact
that it does indicates that unitarity may be possible for a
range of continuous N. In the string interpretation of these
models, 1=N acts as the string coupling constant, which
is not a priori quantized. So in this context continuous N
might have some physical meaning. Even so our studies do
find ranges of noninteger N with negative norm eigenstates
(ghosts), so unitarity is by no means assured at fractionalN.
We can see that the N dependence of the ground state

energy in the three bit sector is very flat from N ¼ ∞ to
N ¼ 2 and only goes up a little bit at N ¼ 1. This flatness
is also a feature of the M ¼ 5 case, suggesting that the
stringlike properties of this state may persist, to some
extent, as N decreases from ∞. For M ¼ 4 (and all even
M), this flat ground state is missing because it does not
satisfy the cyclic symmetry constraint. The detailed analy-
sis of the singlet spectrum for M ¼ 4, M ¼ 5 and higher
will appear in a separate article.

C. Three bit adjoints

We briefly consider the N dependence of the energy
spectrum in the color adjoint sector. In general an adjoint
state can be characterized by a monomial of creation
operators Āβ

α carrying free color indices. Then the adjoint
state would be

Āβ
αj0i − δβα

N
TrĀj0i: (74)

A convenient metric for these states can be taken to be

h0jTrBĀj0i − 1

N
h0jTrBTrĀj0i: (75)

Specializing to three bits (M ¼ 3), we can then form the
monomials

Ā1 ¼ ½ā ā ā�; Ā2 ¼ ½b̄ b̄ ā�;
Ā3 ¼ ½ā b̄ b̄�; Ā4 ¼ ½b̄ ā b̄� (76)

Ā5 ¼ ½ā ā�Tr½ā�; Ā6 ¼ ½ā�Tr½ā ā�; Ā7 ¼ ½b̄ b̄�Tr½ā�
(77)

Ā8 ¼ ½ā b̄�Tr½b̄�; Ā9 ¼ ½b̄ ā�Tr½b̄�; Ā10 ¼ ½b̄�Tr½ā b̄�;
(78)

where square brackets surround the monomial carrying the
free color indices. Then the analog of the multitrace basis is
just

jiiβα ¼ ðĀiÞβαj0i: (79)

The Hamiltonian matrix of the adjoint states in the three bit
sector is defined by

Hjii ¼
X
j

jjiHA
ji; (80)

with

HA ¼

0
BBBBBBBBBBBBBBBBBBBBB@

4 2i 2i 0 8
N

8
N 0 0 0 0

−2i −4 0 2 −4i
N −4i

N 0 0 0 − 4
N

−2i 0 0 2 −4i
N −4i

N
4
N − 4

N 0 4
N

0 2 2 0 0 0 4
N 0 4

N − 4
N

2
N 0 0 2i

N 2 0 2i 0 0 0

4
N −2i

N −2i
N 0 0 4 0 0 0 0

−2i
N 0 0 − 2

N −2i 0 −2 0 0 0

0 2
N − 2

N 0 0 0 0 2 2 0

0 − 2
N − 2

N 0 0 0 0 2 −2 0

0 4
N 0 − 4

N 0 0 0 0 0 4

1
CCCCCCCCCCCCCCCCCCCCCA

:

(81)

The details of the adjoint spectrum will be described in a
separate publication. Here we just show the gap between
adjoint and singlet states by plotting in Fig. 5 the lowest
energy eigenvalues in each of these color representations. It
is interesting that at least at M ¼ 3 there is no tendency for
the gap to close as N decreases from infinity. The cusp seen
in the lowest energy adjoint curve is the point at which the
next highest adjoint energy merges with the lowest adjoint
energy, and thereafter both energies become complex with
equal and opposite imaginary parts. To the right of the cusp,
the lowest real adjoint energy is yet higher.
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V. EXTENSIONS AND CONCLUDING REMARKS

In this article we have studied the simplest superstring
bit model, which underlies the s ¼ 1, d ¼ 0 superstring. As
mentioned in the introduction, the extension to a super-
string bit model underlying the s > 1, d ¼ 0 superstring is
straightforward. One simply enlarges the set of bit creation
operators to 128 bosonic and 128 fermionic ones,

aαβ; bαβ → ðϕ½a1;:::::;an�Þαβ; n ¼ 0;…; s; (82)

where each ak is a spinor index running over s values. The
appropriate Hamiltonian for which the ’t Hooft limit gives
the s ¼ 8, d ¼ 0 superstring can be obtained from the one
constructed in Ref. [11] by dropping all of the transverse
coordinate dependence,

H ¼ 1

N

Xs

n¼0

s − 2n
n!

Trϕ̄a1���anρϕa1���an

þ 1

N

Xs−1
n¼0

1

n!
Trϕ̄a1���anηbϕba1���an

þ 1

N

Xs−1
n¼0

1

n!
Trϕ̄ba1���an η̄bϕa1���an ; (83)

where we have defined

ρ ¼
Xs

k¼0

1

k!
ϕ̄b1���bkϕb1���bk (84)

ηb ¼
Xs−1
k¼0

ð−Þk
k!

ϕ̄bb1���bkϕb1���bk þ i
Xs−1
k¼0

ð−Þk
k!

ϕ̄b1���bkϕbb1���bk ;

η̄b ¼ −iηb: (85)

Of course when this expression is specialized to s ¼ 1, it is
just the Hamiltonian we have analyzed in this article. When
s ¼ 8 its large N limit just describes the spinor sector of the
critical superstring in the light-cone gauge. For any s > 0
the model can be analyzed in a manner exactly parallel to
the analysis in this article. We defer this generalization to a
future publication. Only one spatial coordinate, x−, will be
holographically generated in the large N limit, and the
excitations of the superstring will be described by s light-
cone world sheet Grassmann coordinates θa.
The task of constructing a superstring bit model that

underlies superstring theory with d > 0 calls for some
interesting choices. The model constructed in Ref. [11] to
describe the s ¼ 8, d ¼ 8 superstring addressed this prob-
lem by simply promoting the quantum mechanical varia-
bles ϕ → ϕðxÞ to fields on the d-dimensional transverse
space x. The Hamiltonian for that model included two
body terms, quartic in the ϕ’s and involving a potential
Vðx − yÞ. To exactly produce a harmonic superchain, in
the ’t Hooft limit, required a harmonic oscillator potential
V ¼ T0ðx − yÞ2. We regarded this long range potential as
unsatisfactory. After all, the transverse space for the bits
was identified with the transverse space after the holo-
graphic emergence of x−, and we felt locality in the
dynamics in the emergent dþ 2-dimensional space-time
would be unlikely unless the potential between bits was
short range. In subsequent papers [15] we struggled
mightily, without complete success, to build satisfactory
superstring bit models with a short range potential.
But in retrospect this effort seems philosophically mis-

guided. The principal motivation for string bit models is to
replace quantum field theory, with an infinite number of
degrees of freedom, with an underlying theory with a finite
number of degrees of freedom. Letting the string bits move
in transverse space reinserts an infinite number of degrees
of freedom in the underlying theory. It is philosophically
more coherent to seek a model in which all dimensions of
space emerge holographically. We can easily see how this
can happen. It has been known for a long time that the
Heisenberg chain of spins,

Hhei ¼ −
1

2

X
k

ðσ1kσ1kþ1 þ σ2kσ
2
kþ1 þ Δσ3kσ3kþ1Þ; (86)

describes in the continuum limit a spatial coordinate
compactified on a circle of radius R ¼ 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0ðπ − μÞp

,
where Δ ¼ − cos μ [16].
It is easy to incorporate this idea in string bit models.

Append a two valued “flavor index” for each transverse
dimension, ϕ½a1���an� → ϕf1���fd

½a1���an�, with fi ¼ 1; 2, and design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

1/N

E
Gap between Ground States of Adjoints and Singlets

FIG. 5 (color online). The lowest energies of the color adjoint
(top curve) and color singlet (bottom curve) states in the three bit
sector, showing a gap that persists in the entire range 1 ≤ N < ∞.
The cusp is really the point where two real energy curves merge,
and the energies to the right of the cusp have equal and opposite
imaginary parts.
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the string bit Hamiltonian to produce the Heisenberg
Hamiltonian on the long chains that naturally arise in
the limit N → ∞. Such a string bit model has 2s2dN2

[¼ ð256NÞ2 for the superstring bit model] degrees of
freedom. Pursuit of these ideas is an exciting project for
future investigation.
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APPENDIX A: DIAGONALIZING H IN THE
LARGE N LIMIT

1. Color singlets

We have shown that the action of H on single trace
singlet states can be described in the large N limit in terms
of the “first-quantized” Hamiltonian h. To find the eigen-
values of h, it is convenient to introduce Fourier transforms

αn ¼
1ffiffiffiffiffi
M

p
XM
k¼1

θke2πikn=M; βn ¼
1ffiffiffiffiffi
M

p
XM
k¼1

d
dθk

e2πikn=M

(A1)

θk ¼
1ffiffiffiffiffi
M

p
XM−1

n¼0

αne−2πikn=M;
d
dθk

¼ 1ffiffiffiffiffi
M

p
XM−1

n¼0

βne−2πikn=M

(A2)

fαn; βmg ¼ δmþn;M: (A3)

Then we can express h in terms of these:

h ¼ −2M þ 2
XM−1

n¼1

�
ðαnαM−n þ βnβM−nÞ sin

2πn
M

þ ðαnβM−n þ αM−nβnÞ
�
1 − cos

2πn
M

��

¼ −2M þ 4
XM−1

n¼1

sin
nπ
M

�
ðαnαM−n þ βnβM−nÞ cos

πn
M

þ ðαnβM−n þ αM−nβnÞ sin
πn
M

�
: (A4)

For n < M=2, we now diagonalize the operator in square
brackets, which we call ½�n. The functions αn and αM−n
are eigenfunctions of ½�n with eigenvalue sinðnπ=MÞ.
The remaining two eigenfunctions are of the form
aþ bαnαM−n:

½�nðaþ bαnαM−nÞ ¼ aαnαM−n cos
πn
M

þ b

�
cos

πn
M

þ 2αnαM−n sin
πn
M

�
¼ ϵnðaþ bαnαM−nÞ

b ¼ aϵn
cosðnπ=mÞ ;

cos2
πn
M

þ 2ϵn sin
πn
M

¼ ϵ2n

ϵn ¼ sin
πn
M

� 1: (A5)

When M is even, there is a term with n ¼ M=2 for which
the operator in square brackets is simply

½�M=2 ¼ 2αM=2βM=2; (A6)

for which the eigenfunctions are 1 with value 0 ¼
sinðπ=2Þ − 1 and αM=2 with value 2 ¼ sinðπ=2Þ þ 1. If
we take the common term sinðnπ=MÞ for each eigenvalue,
we see that it contributes

4
XM−1

n¼1

sin2ðnπ=MÞ ¼ 2M (A7)

to the eigenvalue of h. This simply cancels the −2M term in
h. Thus, we may write the general eigenvalue of h as

EðfηngÞ ¼ 8
X

n<M=2

ηn sin
nπ
M

þ 4ηM=2 (A8)

ηn ¼ þ1; 0; 0;−1; for n ≠
M
2
; ηM=2 ¼ �1: (A9)

Clearly the smallest and largest eigenvalues are

Emax ¼ 4
XM−1

n¼1

sin
nπ
M

¼ 4 cot
π

2M
; Emin ¼ −Emax:

(A10)

In the limit of many bits, M → ∞, we have the behavior

Emax ¼
8M
π

−
2π

3M
þOðM−3Þ (A11)

Emin ¼ −
8M
π

þ 2π

3M
þOðM−3Þ: (A12)

The term linear inM can be cancelled against a counterterm
in the Hamiltonian of the form ð8=πÞTr½āaþ b̄b�. Then
interpreting M as a discretized Pþ ¼ Mm and identifying
P− ¼ ET0=m, we see that the spectrum is relativistic in the
limit M → ∞.
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Finally we consider the cyclic symmetry requirements.
Under a single step cycle, αn → e2inπ=Mαn, so the product
αnαM−n is invariant. WhenM is odd, the states are supposed
to be invariant under such a cycle. This is realized when the
values of ηn are restricted to �1 or, more generally when a
number of the ηk ¼ 0 for which

P
k;ηk¼0k ¼ M. WhenM is

even, the states must change sign under a single step cycle.
This means that the M=2 wave function must be αM=2, so
ηM=2 ¼ þ1 and all the other ηn ¼ �1, or for those with
ηk ¼ 0,

P
kk ¼ M. In particular the eigenvalue Emin would

be excluded forM even but allowed forM odd. For very large
M, so the chains behave as a continuous string, the gap
between the even and odd M sectors becomes large com-
pared to the excitation energies of the odd M sector. This
means that only the odd M closed chains will participate
in the continuum physics. This implies a multiplicatively
conserved parity symmetry that forbids an odd number of
chains transforming into an even number of chains. In
particular a single chain could not decay into two chains.
On the other hand, Emax is allowed for allM. If we want a

system for which the ground energy at infinite N is allowed
for all M, we could choose its Hamiltonian to be −h rather
than h. But this would make the coefficient of the Trā2a2

term negative, which threatens a dangerous instability
since this implies attractive interactions between bosons.
In Ref. [1] we noted that adding a term Trāaāa with a
positive coefficient could stabilize the theory at the expense
of complicating the large N analysis. In h the attractive
interactions are between fermions which are tamed by the
exclusion principle, without such complications.

2. Color adjoints

For completeness, we also consider the color adjoint
states in the large N limit. In this case we apply H to states
of the form

jθ1; � � � θMiβα ¼ ½ψðθ1Þ � � �ψðθMÞ�βαj0i (A13)

and determine in the large N limit the first quantized hA
such that

H
Z

dMθjθ1; � � � θMiβαΨðθ1; � � � θMÞ

¼
Z

dMθjθ1; � � � θMiβαhAΨðθ1; � � � θMÞ þOðN−1Þ:
(A14)

Following similar steps as for the singlets, we find

hA ¼
XM−1

k¼1

�
−2iθkθkþ1 − 2i

d
dθk

d
dθkþ1

− 2θk
d

dθkþ1

− 2θkþ1

d
dθk

− 2þ 4θk
d
dθk

�
: (A15)

We note that, in comparison to h, the only change is the
deletion of the term k ¼ M. This breaks the closed chain of
bits to form an open chain of bits. To diagonalize hA, we
replace periodic boundary conditions with the ones implied
by the absence of this term. The net effect of this change
of boundary conditions is to change the mode energies
from 4 sinðnπ=MÞ to 4 sinðnπ=2MÞ. Correspondingly, the
ground state energy in the adjoint sector at N ¼ ∞ is

EA ¼ −4
XM−1

n¼1

sin
nπ
2M

¼ −2 cot
π

4M
þ 2

¼ −
8M
π

þ 2þ π

6M
þOðM−3Þ: (A16)

The second term on the right shows that the large N
dynamics leads to color confinement The energy gap
between the adjoint and singlet sectors at N ¼ ∞ is

EA − EG ¼ 2 − 2 tan
π

4M
¼ 2 −

π

2M
þOðM−3Þ: (A17)

In Fig. 6 we plot this energy gap as a function of M. The
gap remains finite as M → ∞. But the 1=M terms set the
scale of energy of the continuum string excitations. Thus,
the energy gap between adjoint and singlet sectors becomes
infinitely large in comparison to this string energy scale
whenM → ∞. Note that “perfect” confinement depends on
M → ∞. If M is simply extremely large rather than ∞, the
mass gap is of order M times the scale set by the 1=M
excitations.
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FIG. 6 (color online). The energy gap between color adjoint and
color singlet sectors at N ¼ ∞.
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APPENDIX B: TRUNCATION TO
SINGLE TRACE STATES

We mention here an extension of the variational method
described in Sec. III. One can take a trial state to be any
linear combination of single trace states and vary the energy
function with respect to the coefficients in this linear
combination. Requiring that the energy function is sta-
tionary then implies that the coefficient functions satisfy the
eigenvalue equationX

j

hkjHjjicj ¼ E
X
j

hkjjicj; (B1)

where j is summed over the selected states and E is the
energy function.
As a simple example, consider the three bit case in the

boson sector. Then there are only two single trace states,

j1i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3NðN2 þ 1Þ

p Trā3j0i;

j2i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ

p Trāb̄2j0i; (B2)

which we normalized and happen to be orthogonal. Thus,
the factor hkjji ¼ δkj and E is then just one of the
eigenvalues of the 2 × 2 matrix:

H ¼

0
B@ 6 N2þ3

N2þ1
−2i

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffi
N2−1
N2þ1

q
2i

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffi
N2−1
N2þ1

q
−6

1
CA: (B3)

The eigenvalues are the roots of a quadratic polynomial:

E ¼ 6

N2 þ 1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48þ 36

ðN2 þ 1Þ2 þ
48

N2 þ 1

s
: (B4)

We plot these eigenvalues as a function of 1=N in Fig. 7.
Of course the curves go to the exact eigenvalues at N ¼ ∞.
It is evident that the lowest of these estimates varies more
steeply than the exact eigenvalue as N decreases from ∞.
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