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We consider quantum chromodynamics (QCD) with Nc colors and Nf quark flavors at finite quark
chemical potential μq or isospin chemical potential μI. We specifically address the nature of the “silver
blaze” behavior in the framework of 1=Nc expansions. Starting with the QCD partition function, we
implement Veneziano’s Nf=Nc expansion to identify the density onset. We find the baryon mass MB and
the pion mass mπ appearing from different orders of Veneziano’s expansion. We argue that the confining
properties are responsible for the silver blaze behavior in the region ofmπ=2 < μq < MB=Nc. We point out,
however, that Veneziano’s expansion brings about a subtlety along the same line as the baryon problem in
finite-density quenched lattice simulations. We emphasize that the large-Nc limit can allow for the physical
ordering ofMB andmπ thanks to the similarity between the large-Nc limit and the quenched approximation,
while unphysical ghost quarks contaminate the baryon sector if Nc is finite. We also discuss the
“orientifold” large-Nc limit that does not quench quark loops.
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I. INTRODUCTION

Understanding the phase diagram of quantum chromo-
dynamics (QCD) is one of the most pressing problems. It is
theoretically expected that the phase diagram has rich
structures as a function of the temperature T, the baryon
or quark chemical potential μB ¼ Ncμq, the isospin chemi-
cal potential μI, the external electromagnetic fields, and so
on. Hot and/or dense QCD phases such as a quark-gluon
plasma, color superconductivity, and the hadronic phase
where we live are supposed to have been realized in the
early Universe, inside of compact stellar objects, and in the
relativistic heavy-ion collisions (see [1] for recent reviews).
The theoretical understanding of a limited portion of the
phase diagram in the high-T and low-μq region has been
obtained by means of several techniques including lattice-
QCD simulations, effective model studies, and resummed
perturbation theories. In contrast, for the dense system at
small T, the understanding is far from satisfactory except
for normal nuclear matter where the traditional nuclear
theory can be applied, and for such high density that
perturbative QCD works once all gluons get screened by
the Meissner effect in color superconductivity [2,3]. Unlike
the case with μq ≪ T, lattice-QCD simulations based
on the Monte Carlo algorithm have a serious difficulty
called the sign problem due to a fluctuating phase of the
fermion (Dirac) determinant at μq ≠ 0 [4]. There are several
approaches to evade the sign problem: the Taylor expansion
[5], the reweighing method [6], the imaginary chemical
potential [7], and the complex Langevin equation [8],

but they are not yet well developed to go beyond the
small-μq=T regime.
In the T ¼ 0 limit, as long as μB is smaller than

the baryon mass minus the nuclear binding energy (i.e.
MB − B≃ 923 MeV), we can make a firm conclusion even
without tackling the sign problem. Trivially, no physical
excitation is allowed for μB < MB − B and none of
physical properties should depend on μB or μq then. It is
also the case for a system with a finite isospin chemical
potential μI if it is smaller than mπ=2. Even though physics
is transparent on the intuitive level, the microscopic origin
of μq independence or μI independence has a puzzling
character and still deserves theoretical investigations, as
first pointed out in Ref. [9]. Even with sufficiently small μq
or μI, since the Dirac operator and thus its eigenvalues have
explicit dependence on chemical potentials, one would
naively expect that the partition function depends on such
μq or μI, but physically it should not. Interestingly, thus, that
nothing happens trivially is a hint of nontrivial physics
inherent in the sign problem. This problem is often called
the “silver blaze” named after a famous detective story of
Sherlock Holmes [9].
In the case ofμI, it has been convincingly shownalready in

Ref. [9,10] that the Dirac determinant can be μI independent
due to a gap in the energy spectrum and this gap is given
precisely by mπ=2. The same argument can hold for the μq
independence as long as μq ≤ mπ=2. Thus, the silver blaze
problem remains profound for the specific window,
mπ=2 < μq < ðMB − BÞ=Nc. It is argued that the phase
fluctuation should be responsible for the μq independence
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in this region. In fact, there is a demonstration that the
average over the phase fluctuations of the Dirac
determinant may cancel the μq dependence [11]. Such a
physical mechanism with fluctuating phase ought to be
related to quark confinement [12]; indeed, quark excitation
isaveragedoutbytheZNc

-symmetricphasedistributioninthe
confined phase that is to be identified as the disordered
state [13].
The main purpose of this paper is to address the silver

blaze behavior within the framework of Veneziano’s Nf=Nc
expansion and also ’t Hooft’s 1=Nc expansion. To this end
we exploit the worldline formalism (or the canonical
ensemble representation) in order to expand the Dirac
determinant in powers ofNf=Nc [14] (see also arguments in
Ref. [12]). The leading orderOðN2

cÞ contribution to the free
energy is purely gluonic. We will focus on the subleading
OðNcNfÞ and the sub-subleading OðN2

f Þ contributions. At
OðNcNfÞ order, two theories, one with μI ≠ 0 and μq ¼ 0
and the other with μq ≠ 0 and μI ¼ 0, are equivalent to each
other in the C-even sector [14–16], as long as μI and μq are
small enough not to induce any finite baryon or isospin
density. When the next OðN2

f Þ contribution is added, the
equivalence between μI and μq no longer holds [15]. The
virtue of this Nf=Nc expansion lies in the clear separation
of the baryon and pion sectors that belong to the OðNcNfÞ
and the OðN2

f Þ contributions, respectively.
Although our formulation provides us with a useful

organization of different physics origins, Veneziano’s
expansion at finite density is a subtle expansion and we
should be cautious about the results. In fact, the Nf=Nc
expansion amounts to a series of Nf=Nc corrections around
the state at Nf=Nc → 0 that is nothing but the quenched
limit. It is known that the quenched simulation at finite
density1 sometimes leads to unphysical results; especially
the density onset seems to be set not by MB but by mπ,
which would cause additional subtlety in the argument on
the silver blaze puzzle in Veneziano’s expansion. We argue
that in the ’t Hooft limit of Nc → ∞ the formulation could
be put in a rather clean environment and our argument is
validated. With finite Nc or in the orientifold large-Nc limit
as we discuss later, it seems that the silver blaze puzzle still
remains quite nontrivial.
Our paper is organized as follows: in Sec. II, we review

the decomposition of the QCD partition function in the
Nf=Nc expansion with a chemical potential. In Sec. III,
with Nf ¼ 2 fixed, we analyze the expression for the free
energy at OðNcNfÞ and discuss the dependence of the free
energy on μI and μq. Next, in Sec. IV, we turn to the next-
order free energy at OðN2

f Þ. We briefly discuss a possible

situation in the orientifold large-Nc limit in Sec. V. Finally,
Sec. VI is devoted to discussions and conclusions.

II. VENEZIANO EXPANSION OF
THE FREE ENERGY

Let us consider QCD generalized for Nc colors and
degenerate Nf quark flavors with identical mass mq.
The partition function of this theory on R3 × S1 with the
antiperiodic boundary condition for quarks is expressed
in a form of the functional integration with respect to
the gauge fields Aμ. The integrand consists of the
weight factors from the Yang-Mills action [denoted by
exp½−SYMðAÞ�] and the fermionic Dirac determinant
[denoted by exp½ΓðμfÞ�]. The latter can be decomposed
generally in terms of the winding number ω as

ΓðμfÞ ¼ ln detðDþmq þ μfγ
0Þ

¼
X
f

X∞
ω¼−∞

ΓðωÞ
f ðμfÞ ¼

X
f

X∞
ω¼−∞

ΓðωÞ
f ð0Þeμfω=T: (1)

Here, the index f runs over different quark flavors. The
explicit expression of ΓðωÞ

f as a function of Aμ can be found
in the literature, e.g. with use of the worldline formalism
[14]. We note that this decomposition with respect to ω can
translate into the canonical ensemble with ω identified as
the quark number [17,18]. Figure 1 shows an example of
the ω ¼ 2 case. We note that the configuration along S1

may be wandering, and a special straight configuration is
nothing but the Polyakov loop.
An important property of Γ is that the connected k-point

functionofΓ isdiagrammatically suppressedbyNf=Nc as [14]

hΓΓ � � �Γ|fflfflfflffl{zfflfflfflffl}
k times

ic;YM ∼ N2
c

�
Nf

Nc

�
k
: (2)

This N−k
c suppression appears from the gluon interaction

g2 ∼OðN−1
c Þ that connects Γ’s. The expansion of hexpðΓÞi

in terms of Γ (after taking the flavor sum) leads to an
expansion in powers of Nf=Nc, namely, the expansion in the
Veneziano limit. Here, we take the average in the vacuum at
Nf=Nc ¼ 0, i.e. the pure Yang-Mills theory whose weight
factor is expð−SYMÞ. The subscript “c” in the expectation

FIG. 1. Schematic picture of the decomposition of the Dirac
determinant according to the winding number ω that corresponds
to how many times the configuration wraps around S1. This
example shows a case of ω ¼ 3 − 1 ¼ 2.

1This may sound peculiar, as the Yang-Mills theory is density
free. Here, finite-density quenched simulations refer to taking the
expectation value of finite-density operators, which are typically
non-Hermitian, with the vacuum of the Yang-Mills theory.
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value denotes the contribution from the “connected” dia-
grams. Another important property of Γ is that it is
exponentially suppressed with ω at least as

ΓðωÞ
f ð0Þ ∼ exp

�
−
mq

T
jωj

�
(3)

with the bare quark mass mq [14]. The suppression could be
even faster with mq replaced with a dynamical Mq when we
take the expectation value, hΓðωÞ

f ð0Þi, which we will discuss
later. This property ensures the convergence of the expansion
in terms of ω up to a certain value of μf less than the
quark mass.
The free energy is then expressed in a form of an

expectation value as

F ¼ FYM − T ln heΓðμfÞiYM
¼ FYM þ Fð1Þ þ Fð2Þ þOðN−1

c N3
f Þ (4)

with

FYM ∼OðN2
cÞ; (5)

Fð1Þ ¼ −T
X
f

X∞
ω¼−∞

hΓðωÞ
f ð0ÞiYMeμfω=T ∼OðNcNfÞ; (6)

Fð2Þ ¼ −T
X
f;f0

X∞
ω;ω0¼−∞

× hΓðωÞ
f ð0ÞΓðω0Þ

f0 ð0Þic;YMeðμfωþμf0ω
0Þ=T ∼OðN2

f Þ; (7)

where FYM represents the pure gluonic energy of OðN2
cÞ,

the second Fð1Þ with hΓðωÞ
f ð0ÞiYM [in which we omitted “c”

that is irrelevant for the one-point function of ΓðωÞ
f ð0Þ] is of

OðNcNfÞ, and the expansion goes on as the third Fð2Þ with
hΓðωÞ

f ð0ÞΓðω0Þ
f0 ð0Þic;YM of OðN2

f Þ and so on, according to
Eq. (2). It is important to note that this is not yet a consistent
ordering of the 1=Nc expansion; our identification of Fð1Þ

and Fð2Þ is based on the power of Nf=Nc and each of Fð1Þ

and Fð2Þ contains subleading (nonplanar) contributions
suppressed by higher powers of 1=Nc.
In this paper we shall work only at sufficiently small

temperature, T ≪ ΛQCD, where the Yang-Mills vacuum
should be in the confined phase. (Otherwise, it is rather
trivial what is going on in the deconfined phase.) This
phase is characterized by the realization of ZNc

(center)
symmetry, so that the expectation value of a center non-
symmetric operator vanishes, namely,

hΓðωÞic;YM ¼
�

nonzero for ω ¼ 0modNc

0 otherwise
: (8)

It should be mentioned that the expansion is made around
the vacuum of the pure Yang-Mills theory, so that confine-
ment can bear a well-defined meaning and the above
expectation value can be strictly vanishing except for
ω ¼ 0; Nc; 2Nc;…. Physically speaking, one winding cor-
responds to a single-quark excitation (see Fig. 1), and each
time the winding number reaches Nc, a color singlet is
formed out of Nc quarks. We shall thus call such a
configuration with ω ¼ Nc a baryonic configuration. We
can easily extend the above to more general correlations in
the confined phase as

hΓðω1ÞΓðω2Þ � � �ΓðωkÞic;YM ¼
�
nonzero for ω1 þ ω2 þ � � � þ ωk ¼ 0modNc

0 otherwise
: (9)

Then, in the confined phase at low T, nonvanishing terms out of Eqs. (6) and (7) turn out to be

Fð1Þ ¼ −T
X
f

X∞
ω̄¼−∞

hΓðω̄NcÞ
f ð0ÞiYMeω̄Ncμf=T; (10)

Fð2Þ ¼ −T
X
f;f0

X∞
n¼−∞

�
hΓðnÞ

f ð0ÞΓð−nÞ
f0 ð0Þic;YMeðμf−μf0 Þn=T þ hΓðnþNcÞ

f ð0ÞΓð−nÞ
f0 ð0Þic;YMe½μfðnþNcÞ−μf0n�=T þ � � �

�
; (11)

where the ellipsis represents other contributions such as
ðω ¼ nþ 2Nc;ω0 ¼ −nÞ, ðω ¼ nþ 3Nc;ω0 ¼ −nÞ, and
so on.
In the hadron language, intuitively, Fð1Þ above corre-

sponds to a “multibaryon contribution” with ω̄ baryons.
The first term in the next contribution, Fð2Þ, corresponds to
a “mesonic contribution” and the second in the parentheses
is a mixed correlation of baryons and mesons. As long as μf

is small enough as compared to the baryonic scale of Fð1Þ,
these mixed-type contributions are always more suppressed
than the pure mesonic contribution. Thus, we can safely
neglect the mixed-type term when we discuss the density
region up to the onset as in what follows.
Here, let us emphasize that this procedure to take the

ZNc
-symmetric average is a vital step to understand the

silver blaze problem for the baryon density onset. As we
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mentioned, one must take account of the phase fluctua-
tions of the Dirac determinant in this density region of
mπ=2 < μq < MB=Nc, and we effectively do this by
dropping center nonsymmetric operators. Indeed, as
argued in Ref. [18], fractional (not a multiple of Nc)
excitations of quarks that break center symmetry explicitly
are closely related to the sign problem. Usually, in the
thermodynamic (i.e. infinite volume) limit in particular,
the canonical ensemble becomes quite singular and it loses
the strength to solve the sign problem practically. In our
present formulation, however, we combine it with the Nf=Nc
expansion, so that unwanted quark excitations diminish and
the whole machinery is under theoretical control.

III. LARGE-Nc COUNTING OF Fð1Þ

In this section, we consider Fð1Þ in an SUðNcÞ theory
with Nf ¼ 2 fixed, and denote corresponding chemical
potentials by μ1 and μ2. In this way we can introduce a
quark (baryon) chemical potential as μ1 ¼ μ2 ¼ μq ¼
μB=Nc or an isospin chemical potential as μ1 ¼ −μ2 ¼ μI.
Then, up to this order of NcNf , the free energy reads

Fð1Þ=T ¼ −
X∞
ω̄¼−∞

hΓðω̄NcÞ
1 ð0ÞiYMeω̄Ncμ1=T

−
X∞
ω̄¼−∞

hΓðω̄NcÞ
2 ð0ÞiYMeω̄Ncμ2=T: (12)

It is crucially important to note that no difference arises at
this order for μ1 ¼ μ2 ¼ μq and μ1 ¼ −μ2 ¼ μI. In other
words, the system at finite quark chemical potential is
equivalent to the system at finite isospin chemical potential
at OðNcNfÞ because there is no correlation function
involving different flavor sectors. The two flavor sectors
do not talk to each other, so to speak [15,19].
Specifically in this section, we shall use a collective

notation μ not distinguishing μq and μI. As we already
discussed in the previous section, in the tree level,
Γðω̄NcÞð0Þ ∼ expð−jω̄jNcmq=TÞ implies that the free energy
in the limit of T ¼ 0 becomes independent of μ if μ < mq.
When we perform the functional integration over the gauge
fields, this exponential factor would decrease faster;
jω̄jNcmq should be replaced with the baryonic-dressed
mass ω̄MB (where we picked up only the contribution from
ω baryons but neglected any “composite-baryon” possibil-
ity, which should be empirically reasonable). This means
that

Γðω̄NcÞð0Þ ∼ expð−jω̄jNcmq=TÞ
→ hΓðω̄NcÞð0ÞiYM ∼ expð−ω̄MB=TÞ: (13)

In other words we can state that this is our definition of the
baryon mass. In fact, together with Eq. (10), we can see that
the expansion takes a form of

Fð1Þ=T ∼ −
X∞
ω̄¼−∞

exp½ω̄ðNcμ −MBÞ=T� (14)

apart from prefactors that are not in our interest to locate
the density onset. It is obvious that the free energy should
not change with μ until μ hits the onset at μc ¼ MB=Nc
[which should be corrected by the binding energy B of
nuclear matter that is incorporated, in principle, in the
definition (13) for large ω] because no particle can excite
at T ¼ 0. Thus, from this point of view of the density
onset, our definition makes sense to characterize the
baryon mass.
In the context of the silver blaze problem, a more

nontrivial question is whether our MB can behave differ-
ently from the pion mass mπ or not. The main concern
regarding the silver blaze problem lies in the observation
that the lowest excitation energy even in the baryonic sector
seems to be governed by mπ. We therefore need to treat our
MB very carefully and should clarify ifMB ≃ ðNc=2Þmπ or
not. If this happened, unfortunately, the results are unphys-
ical and any useful information on the silver blaze puzzle in
the most nontrivial region is not available at all. As a matter
of fact, in the realistic world with Nc ¼ 3, it is often the
case that MB ≃ ðNc=2Þmπ is concluded.
For the case with Nc ¼ 3 we can have a valuable hint

from lattice-QCD simulations. Along the line of the lattice-
QCD setup, it would be instructive to rewrite our Fð1Þ in a
slightly different form using the quark number operator
NðμÞ. It is easy to confirm the following expression,

Fð1Þ ¼ −ThΓðμÞiYM ¼ −T
Z

μ
dμ0

�
dΓðμ0Þ
dμ0

�
YM

¼ −Nf

Z
μ
dμ0hNðμ0ÞiYM; (15)

up to a μ-independent constant. In the final form hNðμÞiYM
is the same quantity as the quark number expectation value
measured in the quenched simulation. We note that this
expectation value contains all gluonic loops, i.e., not only
planar diagrams but also higher genus diagrams, but no
quark loops. Surprisingly, the results from lattice simu-
lations and also from the random matrix model imply
that hNðμÞiYM becomes nonzero when μ exceeds mπ=2
[20–22]. Strictly speaking, this mπ is not necessarily the
physical pion mass, but the quenched pion mass, mquench

π . It
is still possible to distinguish mquench

π from the physical
baryon mass by looking at how they behave with decreas-
ing mq; in the mq → 0 limit mπ or m

quench
π goes to zero but

the physical baryon mass should not. If one finds MB
approaching zero in the chiral limit, MB should be more
like the pion mass rather than the physical baryon mass.
Such a striking observation was established first in the

so-called “phase quenched” simulation, in which the
fluctuating phase of the Dirac determinant is neglected
and its modulus, j exp½ΓðμÞ�j2, is implemented in the

ADI ARMONI AND KENJI FUKUSHIMA PHYSICAL REVIEW D 89, 105001 (2014)

105001-4



simulation. It is understood today that such an approxi-
mation is equivalent to replacing the chemical potential
with the isospin one, μI, so that the onset is determined
not by MB=Nc but by mquench

π =2. Later on, it was
recognized that the same conclusion was drawn for the
quenched simulation in which the whole Dirac determi-
nant is neglected, which is much more nontrivial to
understand.
The onset at mquench

π =2 in the quenched simulation is
caused by the condensation of an “unphysical bound state”
of a quark and a conjugate antiquark called the baryonic
pion [20,23,24] as sketched in Fig. 2(a). Let us explain
what is happening using the language of the so-called
partially quenched chiral perturbation theory [25]. In the
quenched limit all quark loops should be removed, and we
can formulate this by introducing a ghost field ϕ. To cancel
the Dirac determinant exactly, ϕ should be a bosonic quark
(but should satisfy the antiperiodic boundary condition
along the thermal S1) that yields an inverse of the Dirac
determinant. We must utilize such a formulation with
quarks and ghosts to deal correctly with the computation
of non-Hermitian expectation value like Eq. (15). Because
such bosonic ghosts are abundant at finite density, a quark
can easily pick an anti-ϕ up and form a bound state q-ϕ̄ or
the baryonic pion, the mass of which is denoted here as
mqϕ̄. In this setup of the quenched limit, if we have a
configuration with ω quarks, as is depicted in Fig. 2(b),
they turn into ω baryonic pions rather than physical
hadrons. Thus, we trivially have mquench

π ¼ 2mqϕ̄, and for
the baryonic configuration with Nc quarks, MB does not
access the genuine baryonic sector but simply MB ¼
Ncmqϕ̄, which immediately leads to the funny observation,
MB ¼ ðNc=2Þmquench

π . In this way we can understand the
subtle nature of the quenched limit when involving non-
Hermitian operators.2

From the above argument it is highly conceivable that
taking the large-Nc limit may cure the subtle situation. The
essential point is that the large-Nc limit already encom-
passes the quenched limit and no quark loops appear. This
means that we do not have to introduce the ghost field ϕ to
cancel the Dirac determinant. Then, because there is no ϕ,
the theory does not have the unphysical baryonic pion. Of
course, one can still keep introducing ϕ, but its excitations
are negligible as compared to the gluon excitation that is of
OðN2

cÞ. In other words, forming an unphysical bound state
is regarded as the screening effect or the QCD-string
breaking. In the large-Nc limit the QCD string extends,
so that the linear potential and thus confinement can persist
strictly. Because there is no ϕ-induced screening in the

large-Nc limit, the baryonic configuration couples to the
physical baryon excitation.
To strengthen our argument, let us attempt to confirm

explicitly thatMB=Nc is certainly heavier thanmπ=2within
the framework based on the large-Nc limit. As we already
mentioned, Fð1Þ contains all the subleading terms in the
large-Nc counting, while it is a leading-order contribution
in the Veneziano expansion. Here, because we are inter-
ested in the behavior of MB only, it is sufficient for us to
focus on the analysis of hΓðNcÞð0ÞiYM. Then, let us pay
close attention to the large-Nc expansion of this quantity
that consists of Nc quarks propagating in the same
direction.
In each quark propagation the self-energy insertion from

the interaction with gluons may appear and this is not
suppressed by 1=Nc as is illustrated in Fig. 3(a). We can
also think of higher-order planar diagrams of the self-
energy (typically represented by a rainbow-type resumma-
tion), which eventually leads to the dynamical quark mass
Mq (as is the case in the Dyson-Schwinger studies [26]).
This is how the constituent picture of quarks with dynamical
mass emerges. For the baryonic configuration, we can also
think of different types of diagrams that connect separate
quark lines with gluons but the interaction among quarks is
always suppressed by 1=Nc as explained in Fig. 3(b). Each
time one gluon exchange occurs between two quarks
(i.e. diquark interaction), it gives a suppression factor by
g2 ∼ 1=Nc, which is eventually compensated for by a
combinatorial enhancement. Thus, we can parametrically
write the leading-Nc baryon mass as

MB ≃ NcMq −
NcðNc − 1Þ

2
·
Vdiquark

Nc
; (16)

where Vdiquark represents the energy gain from the one-gluon
exchange interaction in the diquark channel [scaled byNc so
that Vdiquark ∼Oð1Þ]. It should be also mentioned that we
neglected the kinetic energy in the above expression, which
is suppressed in the large-Nc case. The combinatorial factor,
NcðNc − 1Þ=2, originates from the number of independent
diagrams in which two of the Nc quarks are selected out.
Before proceeding further, we shall look at the pion
sector next.

(a) (b)

FIG. 2. (a) A bound state of the baryonic pion with a
combination of the ghost ϕ. (b) A baryonic configuration
screened by ϕ leading to three baryonic pions, the mass of
which has nothing to do with the physical baryon mass but is
characterized by 3mqϕ̄.

2We can understand this also from the Dirac eigenvalues; the
Banks-Casher type formula for the quark number operator needs
an eigenvalue density that can be well defined only for a one-
dimensional distribution. The non-Hermiticity makes the eigen-
values spread over the complex plane, and to avoid this, a
conjugate sector should be augmented.

SILVER BLAZE PUZZLE IN 1=Nc EXPANSIONS OF … PHYSICAL REVIEW D 89, 105001 (2014)

105001-5



IV. LARGE-Nc COUNTING OF Fð2Þ

Let us next consider the mesonic contribution of OðN2
f Þ

that makes a discrimination between μq and μI. We first
consider the isospin chemical potential, μ1 ¼ −μ2 ¼ μI. Let
us remember that, on the one hand, at OðNcNfÞ the free
energies with either an isospin or a quark chemical potential
are equivalent to each other, but Fð2Þ atOðN2

f Þ, on the other
hand, makes a sharp contrast and distinguishes one from
the other. The free energy then reads

Fð2ÞðμIÞ=T ¼ −
X∞
n¼−∞

hΓðnÞ
1 ð0ÞΓð−nÞ

1 ð0Þ

þ ΓðnÞ
2 ð0ÞΓð−nÞ

2 ð0Þic;YM
− 2

X∞
n¼−∞

hΓðnÞ
1 ð0ÞΓð−nÞ

2 ð0Þic;YMe2μIn=T: (17)

In the same way as the analysis in the previous section we
can define our pion mass from the following expectation
value (under the approximation that we neglect “composite-
pion” configurations, which is justified in the large-Nc limit
where the meson interaction is turned off):

hΓðnÞ
f ð0ÞΓð−nÞ

f0 ð0Þic;YM ∼ expð−nMπ=TÞ: (18)

Then, using this definition of Mπ , apart from unimportant
prefactors, we see that the last term of Eq. (17) has the
following form of the expansion:

∼
X∞
n¼−∞

exp½−nðMπ − 2μIÞ=T�: (19)

Thus, as long as μI < Mπ=2, the expansion is converging
and the free energy in the T ¼ 0 limit is completely
insensitive to μI, leading to zero isospin density. In other
words the threshold of the pion condensation is given by
Mπ=2, and so it is quite reasonable to adopt the above
definition (18) of the pion mass.

For the case of the quark chemical potential, μ1 ¼
μ2 ¼ μq, unlike the isospin chemical potential case, we
can see that the leading contribution of Fð2Þ is independent
of μq as

Fð2ÞðμqÞ=T ¼ −
X∞
n¼−∞

hΓðnÞ
1 ð0ÞΓð−nÞ

1 ð0Þ þ ΓðnÞ
2 ð0ÞΓð−nÞ

2 ð0Þ

þ 2ΓðnÞ
1 ð0ÞΓð−nÞ

2 ð0Þic;YM: (20)

Therefore, the onset of the quark number density is solely
determined by Fð1Þ and so our baryon mass MB gives
the threshold. It is an interesting and nontrivial observation
that the physics of μq and that of μI belong to different
sectors in the power counting of Nf=Nc.
Now let us proceed to a more quantitative aspect of the

silver blaze problem; the critical question is how large
Mπ=2 is precisely. As we argued in the previous section, the
quenched simulation with finite Nc implicitly requires the
bosonic ghost fields, while quark loops just decouple in
the large-Nc limit. The meson diagrams at large Nc are well
known and the ladder resummation as sketched in Fig. 4
gives the meson. We can then parametrize the meson mass
as follows:

Mπ ¼ 2Mq − Nc ·
Vscalar

Nc
: (21)

It is known [27] that the projection of the one-gluon
exchange interaction to the scalar and the diquark channels,
respectively, leads to the factor:

Vdiquark ∝
Nc þ 1

2Nc
; Vscalar ∝

N2
c − 1

N2
c

; (22)

which means that Vdiquark ¼ ½Nc=2ðNc − 1Þ�Vscalar. For the
lightest pseudoscalar (i.e. pion) channel Vscalar should be
about 2Mq at most in order to realize small Mπ of the

(a) (b)

FIG. 3. (a) Lowest-order diagram of the quark self-energy in the
double-line notation. This and all the rainbow types of higher-
order diagrams are of the same Nc order as the bare-quark
propagation, the sum of which should lead to the dynamical mass
Mq. (b) One gluon exchange between two quarks, which is
suppressed by g2 ∼ 1=Nc. (No Nc factor appears by closing a
quark loop.)

FIG. 4. Ladder interactions between a quark and an antiquark
that form the meson. Lines at the top and the bottom are closed by
the antiperiodic boundary condition and the winding number
counts how many times the configuration wraps around this circle.
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Nambu-Goldstone boson. Using the above coefficients
we can make an estimate of the difference between MB
and Mπ as

MB

Nc
−
Mπ

2
≃ Vscalar

4
> 0: (23)

In particular, when the maximally large Vscalar ≃ 2Mq is
realized to render the pion mass to vanish, the lower bound
of the baryon mass could be ½MB�lowest ≃ NcMq=2; that is,
the baryon mass cannot be lighter than a half of the sum
of the constituent quark mass. Although the quantitative
estimate here might be a bit oversimplified, the essential
point in this present argument is that it is very likely that
MB is heavier than ðNc=2ÞMπ . This hand-waving argument
suggests that the diquark interaction is not strong enough to
make the baryon as light as the pion in the large-Nc world,
which makes a sharp contrast to the finite-Nc quenched
world where MB → 0 in the chiral limit.

V. “ORIENTIFOLD” LARGE-Nc EXPANSION

Apart from the ’t Hooft and the Veneziano large-Nc
expansions there is another large-Nc expansion that goes
under the name “orientifold expansion” [28]. Consider an
SUðNcÞ gauge theory coupled to Nf fermions that trans-
form in the two-index antisymmetric representation,
denoted by ψ ½ij�. For SUð3Þ a Dirac fermion that transforms
in the antisymmetric representation is equivalent to a Dirac
fermion that transforms in the fundamental representation,
since qk ¼ 1

2
ϵijkψ ½ij�. In the large-Nc limit the fermions that

carry two-indices behave like gluons. In particular, fer-
mions are not quenched in the Nc → ∞ limit. This is the
most significant difference between the orientifold expan-
sion and the ’t Hooft expansion.
The color singlets of the orientifold theory contain

mesons and baryons (in addition to glueballs). The meson,
as in ordinary QCD, consists of a pair of a fermion and
antifermion. As for the baryons, the issue is more subtle:
the most natural candidate consists of Nc fermions,
contracted by two epsilon tensors. It turns out, however,
that this identification is not correct. It was shown by
Bolognesi [29] (see also Ref. [30]) that this simple
“baryon” is not stable and, moreover, does not admit the
properties of baryons, as anticipated from the Skyrme
model. The correct object that should be identified as
the baryon consists of 1

2
NcðNc − 1Þ fermions.

Our current discussion of the orientifold theory at finite
temperature and density is similar to the previous discus-
sion. We can use the worldline formalism to expand the
fermion determinant in powers of Nf . Unlike the ’t Hooft
expansion case, at present,

hΓΓ � � �Γ|fflfflfflffl{zfflfflfflffl}
k times

ic;YM ∼ N2
cNk

f ; (24)

which means that the expansion converges if Nf is small
enough. It was estimated that at T ¼ 0 the worldline

expansion converges for Nf < 4Nc=ðNc − 2Þ [31], when
the theory is below the conformal window.
The rest of the discussion is almost identical to the previous

discussion. The main issue is that μB ¼ 1
2
NcðNc − 1Þμ. The

free energy Fð1Þ=T at T ¼ 0 is μ independent as long as μ is
below the onset, according to

Fð1Þ=T ∼ −
X∞
ω̄¼−∞

exp½ω̄ðμB − ~MBÞ=T�: (25)

The question is then how large ~MB should be. Because the
large-Nc orientifold theory is not quenched, the Nf expan-
sion around the Yang-Mills theory at Nf ¼ 0 may be
contaminated by the introduction of the corresponding ghost
~ϕ that is required in order to take the average h� � �iYM.
Therefore, if we could perform a quantitative comparison

of Fð1Þ calculated with the fundamental fermions and with
the antisymmetric fermions, and if Nc is large enough, we
could in principle verify our analysis. For the orientifold
large-Nc case the scaling between ~MB and the correspond-
ing pion mass ~Mπ would not be affected, while in the ’t
Hooft large-Nc case it would show a deviation with
increasing Nc, which signals weakened ghosts.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper we discussed QCD with chemical potential
in the framework of ’t Hooft’s 1=Nc and Veneziano’s
Nf=Nc expansions (together with a brief discussion on the
“orientifold” expansion). Starting with the QCD partition
function, we showed that the free energy at T ¼ 0 is μ
independent in the regime of small μ where the density of
pions or baryons vanishes.
We showed explicitly that at any given order in Nf=Nc

the fermionic determinant can be expanded in windings
along the temporal (or thermal) direction. This expansion
converges only for small values of the chemical potential,
the breakdown of which indicates the onset of finite
density.
In particular, at OðNfNcÞ of the free energy, the isospin

and the quark chemical potentials are equivalent to each
other. The density onset is associated with a baryonic
configuration of Nc windings, which leads to a baryonic
mass scale MB. A crucial ingredient in our analysis is the
role of the center symmetry, i.e. ZNc

. We used the fact that
in the confining vacuum center symmetry is unbroken.
Therefore, while the Dirac determinant may depend on the
chemical potential, at T ¼ 0, the only nonzero contribu-
tions come from the zero (modulo Nc) winding sector and
the rest vanishes due to ZNc

phase fluctuations.
At OðN2

f Þ of the free energy, on the other hand, the
isospin and the quark chemical potentials are no longer
equivalent. While no new dependence on the quark
chemical potential appears at this order, for the isospin
chemical potential we encounter a mesonic configuration of
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a quark and an antiquark. In that case the physical picture is
as follows: the isospin density onset is characterized by
such mesonic configurations, the mass from which is Mπ .
An important part of our analysis consists of the estimate

of MB=Nc vs Mπ=2. With Veneziano’s expansion we need
to evaluate the operator expectation values with the pure
Yang-Mills vacuum, and when the finite-density operator is
non-Hermitian, the inevitable inclusion of conjugate quarks
or ghosts makes the behavior of MB unphysical. We argue
that we can extract the physical information onMB thanks to
’t Hooft’s large-Nc limit. Based on diagrammatic analysis,
also,we provided an intuitive account forMB=Nc > Mπ=2 at
largeNc. Thus, we conclude that there is definitely a window
between the onset of the pion condensation and the finite
baryon density in this particular limit.
Apart from the silver blaze puzzle, our expansion scheme

is quite unique on its own. We can see an appreciable
difference from the standard large-Nc limit if we consider
the free energy at finite temperature T: there is an
exponentially small but nonzero contribution to the free
energy of a form, F=T ∼ exp½−ðMB − μBÞ=T� in the
baryon case and F=T ∼ exp½−ðmπ − 2μIÞ=T� in the iso-
spin case. Therefore, as long as T is not strictly zero, the
free energy is not completely T independent, as one
might have naively expected from the large-Nc Eguchi-
Kawai reduction [32]. This is because we first expanded
the Dirac operator to identify the terms of OðNcNfÞ and
OðN2

f Þ and these subleading and sub-subleading terms
contain the baryonic and the mesonic excitations, respec-
tively, as “valence” degrees of freedom, though virtual

excitations are prohibited in the large-Nc limit. It would
be worth revisiting Veneziano’s limit to count the physical
degrees of freedom not only in the baryon sector [33] but
in the meson sector also.
Future applications of our formulation would include

concrete implementation in the lattice-QCD simulation; the
investigation of the silver blaze behavior in the canonical
ensemble can clearly separate two sectors sensitive to the
isospin density and to the quark density. Then, one can test
whether the onset is really given by the physical pion mass
and the physical baryon mass. Once this is confirmed, even
without Veneziano’s expansion and without potential
complication from ghosts, one may be able to justify
our understanding of the silver blaze behavior even for the
case with finite Nc. On the analytical level which would
supplement the numerical efforts, perhaps, the hopping-
parameter expansion (which shares a similarity with the
large-Nc expansion), together with the resummation of
higher-winding configurations [34], will yield a useful
exemplification to diagnose the silver blaze puzzle, hope-
fully in a consistent way with the scenario presented in
this work.
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