
Nonlocal quantum effects in cosmology: Quantum memory,
nonlocal FLRW equations, and singularity avoidance

John F. Donoghue and Basem Kamal El-Menoufi
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

(Received 19 March 2014; published 29 May 2014)

We discuss cosmological effects of the quantum loops of massless particles, which lead to temporal
nonlocalities in the equations of motion governing the scale factor aðtÞ. For the effects discussed here,
loops cause the evolution of aðtÞ to depend on the memory of the curvature in the past with a weight that
scales initially as 1=ðt − t0Þ. As one of our primary examples, we discuss the situation with a large number
of light particles, such that these effects occur in a region where gravity may still be treated classically.
However, we also describe the effect of quantum graviton loops and the full set of Standard Model particles.
We show that these effects decrease with time in an expanding phase, leading to classical behavior at late
time. In a contracting phase, within our approximations the quantum results can lead to a bouncelike
behavior at scales below the Planck mass, avoiding the singularities required classically by the Hawking-
Penrose theorems. For conformally invariant fields, such as the Standard Model with a conformally coupled
Higgs, this result is purely nonlocal and parameter independent.
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I. INTRODUCTION

Massless particles can propagate over long distances,
and loops involving massless particles generate nonlocal
effects. In cosmology, where the evolution of the scale
factor depends only on time, this means that loops can
generate temporal nonlocalities. There will be modifica-
tions to the FLRW (Friedmann, Lemaître, Robertson,
Walker) equations governing the scale factor aðtÞ, which
in the classical theory are local differential equations. The
effects of loops will generate new contributions where the
equation for the scale factor depends on what the scale
factor was doing in the past. We refer to this effect as the
quantum memory of the scale factor, and it is the subject of
the present paper. Such nonlocal effects are calculable, even
if we do not know the full theory of quantum gravity,
because they come from the low-energy portion of the
effective field theory [1] where the interactions are those of
general relativity.
Quantum nonlocal effects produce modifications to

standard cosmological behavior at scales below, but
approaching, the Planck scale. In an expanding universe,
we explore how classical behavior emerges from the
quantum regime. In a contracting universe, singularities
are inevitable in the classical theory, as shown by the
Hawking-Penrose singularity theorems [2]. We study
whether quantum effects could lead to the avoidance of
singularities. Our work contains some approximations,
described below, but within the context of those approx-
imations it does seem that quantum effects do lead to
nonsingular bounce solutions in at least some situations.
We will provide results for all forms of matter. However,

two cases are of particular importance. One is obviously
pure gravity, studying the effects of graviton loops.

The other is the case of a large number of matter fields.
Conceptually this situation is distinctive because when the
number (N) of matter fields is large, the nonlocal quantum
effects become important at a scaleMP=

ffiffiffiffi
N

p
, at which point

general relativity itself can be treated classically. For
example, in such a theory the effect of the graviton vacuum
polarization from the N scalar particles diagram of Fig. 1
can be summed to produce a modification to the graviton
propagator,

1

q2
→

1

q2 − GNq4

120π logð−q2=μ2Þ
: ð1Þ

The logarithmic term is crucial for restoring unitarity to
scattering amplitudes in this theory [3,4]. It is the momen-
tum space equivalent of the nonlocal terms that we will
be studying in this paper. We are interested in the effect
of this loop, not in scattering amplitudes but in cosmology.
The large N limit is also relevant for the physical universe,
as the Standard Model has roughly a hundred effective
degrees of freedom (fermions, vectors and scalars, as defined
in Sec. IV) producing quantum effects that are larger than
graviton loops.1 We also display results for the Standard
Model set of particles.
The study of quantum field theory and gravity is a vast

subject—many fundamental developments can be traced in
the references of books such as [5–7]. In connection with
nonlocalities, we should mention some previous work in
particular. Barvinsky, Vilkovisky and collaborators [8–12]
have developed powerful heat kernel techniques to uncover

1At the energy scales being probed, the Standard Model
particles can be treated as massless.
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nonlocal effects. We use some of their results in Sec. IV.
Espriu and collaborators [13,14] have made important
preliminary investigations of possible nonlocal effects
during inflation. We are building on these earlier results.
In addition there are a wide variety of works in nonlocal
models (see for example [15] and references therein) which
however are of a quite different character than the quantum
effects that we study.
The plan of the paper is as follows. In Sec. II and III, we

first treat simple perturbation theory around flat space. This
is useful to show the nature of the nonlocality in time, and
to show how one obtains causal behavior in the equations
of motion. We then provide a nonlinear form of this result,
matching to the heat kernal methods in Sec. IV, with the
corresponding nonlinear FLRW equations of motion being
displayed in Sec. V. The expanding universe emerging from
the quantum regime is studied in Sec. VI, while Sec. VII is
devoted to the exploration of singularity avoidance in a
collapsing phase. In this paper, we discuss matter and
radiation dominated FLRW cosmologies, reserving de
Sitter cosmology for future work because of the extra
complication of the de Sitter case [16]. Comments, caveats
and further work are discussed in the summary.

II. PERTURBATIVE ANALYSIS

We first start with a perturbative treatment of the graviton
vacuum polarization. This provides us with a basis for later
treatment of the nonlinear equations, separating the non-
local effect from the renormalization of the local terms in
the action. It also allows us to explore the impact of using
the appropriate field theoretic formalism to generate causal
behavior for cosmology in the next section.
We compute perturbatively the effective action for a

massless free scalar field minimally coupled to gravity with
the Lagrangian,

L ¼ 1

2

ffiffiffi
g

p
gμν∂μϕ∂νϕ: ð2Þ

After performing the functional integral integrating out the
scalar field, the operator of interest reads

D ¼ ffiffiffi
g

p ð□Þ ¼ ffiffiffi
g

p
gμνð∂μ∂ν − Γα

μν∂αÞ: ð3Þ
The last equality holds because the covariant
d’Alembertian acts on a scalar field. The metric is expanded
around flat space (we use the mostly minus signature),

gμν ¼ ημν þ hμν: ð4Þ

Likewise, the differential operator can be expanded in
powers of hμν to yield

D ¼ ∂2 þ δð1Þ þ δð2Þ þOðh3Þ; ð5Þ
where

∂2 ¼ ημν∂μ∂ν;

δð1Þ ¼ −hμν∂μ∂ν þ
1

2
h∂2 − ημνΓα

μν∂α ð6Þ

δð2Þ ¼ hμνhαν∂μ∂α −
1

2
hhμν∂μ∂ν þ

�
1

4
hμνhμν þ

1

8
h2
�
∂2

þ
�
hμν þ 1

2
hημν

�
Γα
μν∂∂ − ημνΓα

μν
∂α: ð7Þ

The indices are raised and lowered using the flat metric, and
we have defined

Γα
μν ¼

1

2
ð∂μhαν þ ∂νhαμ − ∂αhμνÞ ð8Þ

Γα
μν

¼ −
1

2
hαβð∂μhνβ þ ∂νhμβ − ∂βhμνÞ: ð9Þ

To find the effective action, we take the logarithm of the
differential operator and expand in powers of hμν to find

TrðlogDÞ ¼ Trðlog∂2Þ

þTr

�
Gδð1Þ þGδð2Þ −

1

2
Gδð1ÞGδð1Þ

�
þOðh3Þ:

ð10Þ
In the above, G is the Feynman propagator of a massless
scalar. Terms with one propagator vanish when regularized
dimensionally. The first nonvanishing contribution is at
second order in hμν. We find at this order,

TrðlogDÞ ¼ −
1

2

Z
d4k
ð2πÞ4 h

μνðkÞhαβð−kÞ

×
Z

d4p
ð2πÞ4

Vμνðk; pÞVαβðk; pÞ
ðp2 þ i0Þððpþ kÞ2 þ i0Þ ; ð11Þ

where

Vμνðk;pÞ ¼ pμpν −
1

2
ημνp2 þ 1

2
kμpν þ

1

2
kνpμ −

1

2
ημνk · p:

ð12Þ
This can be calculated straightforwardly, with the final
result

TrðlogDÞ ¼ −
1

2

Z
d4k
ð2πÞ4 h

μνðkÞhαβð−kÞTμναβðkÞ; ð13Þ

where

FIG. 1. Vacuum polarization graph.
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TμναβðkÞ¼
i

3840π2

�
1

ϵ̄
− log

�
−k2

μ2

��
½k4ð6ημνηαβþημαηνβ

þημβηναÞþ8kμkνkαkβ−k2ð6kμkνηαβþ6kαkβημν

þkμkαηνβþkμkβηναþkνkαημβþkνkβημαÞ� ð14Þ
and

1

ϵ̄
≡ 1

ϵ
− γ þ log 4π ð15Þ

with 2ϵ ¼ 4 − d.
In order to write the effective action, we transition back

to position space. The momentum factors turn into deriv-
atives acting on the external field. For example, the
divergent term can be written as

Sdiv ¼
1

3840π2
1

ϵ̄

Z
d4x

�
2∂μ∂νhμν∂α∂βhαβ þ

3

2
∂2h∂2h

þ 1

2
∂2hμν∂2hμν − 3∂μ∂νhμν∂2h− ∂μ∂νhαν∂μ∂βhβα

�
:

ð16Þ
The divergent contribution to the effective action goes into
the renormalization of local operators in the gravitational
action. Counting the number of derivatives in the above
expression shows that the local operator we seek is com-
posed of terms proportional to R2. Hence, we seek the
expansions of the different invariants up to second order inh,

R ¼ −∂μ∂νhμν þ ∂2h

R2 ¼ ∂μ∂νhμν∂α∂βhαβ − 2∂2h∂μ∂νhμν þ ∂2h∂2h ð17Þ

and

Rμν ¼
1

2
ð−∂μ∂αhαν − ∂ν∂αhαμ þ ∂2hμν þ ∂μ∂νhÞ

2RμνRμν ¼ 1

2
∂2h∂2hþ 1

2
∂2hμν∂2hμν þ ∂μ∂νhμν∂α∂βhαβ

− ∂2h∂μ∂νhμν − ∂μ∂νhμα∂β∂νhβα: ð18Þ

Note that we have freely integrated by parts in these
expressions. The gravitational effective Lagrangian is

S ¼
Z

d4x
ffiffiffi
g

p �
1

16πG
Rþ c1R2 þ c2RμνRμν

�
: ð19Þ

Matching with the perturbative calculation allows us to
identify the renormalized coupling constants as

c1 ¼ cr1ðμÞ −
1

3840π2

�
1

ϵ
− γ þ log 4π

�
ð20Þ

c2 ¼ cr2ðμÞ −
1

1920π2

�
1

ϵ
− γ þ log 4π

�
: ð21Þ

Notice the explicit scale dependence of the renormalized
parameters, which ensures the scale independence of the
effective action.
The nonlocal part of the effective action follows closely

from the divergent part because the coefficient of logð−k2Þ
is uniquely tied to the divergent 1=ϵ̄ term. Following the
logarithm in the transition to coordinate space, we find

Snonlocal ¼
1

3840π2

Z
d4x

Z
d4y

�
∂2hðxÞL̄ðx − yÞ∂2hðyÞ þ ∂μ∂νhμνðxÞL̄ðx − yÞ∂α∂βhαβðyÞ − ∂2hðxÞL̄ðx − yÞ∂μ∂νhμνðyÞ

− ∂μ∂νhμνðxÞL̄ðx − yÞ∂2hðyÞ þ ∂μ∂νhναðxÞL̄ðx − yÞ∂μ∂βhαβðyÞ þ ∂μ∂νhναðxÞL̄ðx − yÞ∂α∂βhμβðyÞ
− ∂μ∂νhναðxÞL̄ðx − yÞ∂2hμαðyÞ − ∂μ∂νhναðxÞL̄ðx − yÞ∂μ∂αhðyÞ − ∂2hμνðxÞL̄ðx − yÞ∂μ∂βhνβðyÞ

− ∂μ∂νhðxÞL̄ðx − yÞ∂μ∂βhνβðyÞ þ
1

2
∂2hμνðxÞL̄ðx − yÞ∂2hμνðyÞ þ 1

2
∂2hμνðxÞL̄ðx − yÞ∂μ∂νhðyÞ

þ 1

2
∂μ∂νhðxÞL̄ðx − yÞ∂2hμνðyÞ þ 1

2
∂μ∂νhðxÞL̄ðx − yÞ∂μ∂νhðyÞ

�
; ð22Þ

where

L̄ðx − yÞ ¼ −
Z

d4k
ð2πÞ4 e

−ik·ðx−yÞ log
�
−k2

μ2

�
: ð23Þ

We note that each term in the momentum-space expression
contributes to more than one term in the above position-
space expression, so it needs some work to pass to Eq. (22).
Using the curvature expansions listed above, we easily
realize a possible nonlinear form of the nonlocal action

Snonlocal ¼
1

3840π2

Z
d4x

Z
d4yð

ffiffiffiffiffiffiffiffiffi
gðxÞ

p ffiffiffiffiffiffiffiffiffi
gðyÞ

p
Þ12

× ½RðxÞL̄ðx − yÞRðyÞ þ 2Rμ
νðxÞL̄ðx − yÞRν

μðyÞ�:
ð24Þ

We note that the perturbative calculation alone does not
enable us to differentiate between alternate forms of the
nonlinear completion which differ by application of the
Gauss-Bonnet identity. The Gauss-Bonnet identity relates
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local terms involving the curvatures squared, but cannot
be used for nonlocal terms. Indeed in Sec. IV, we will see
that the form of Eq. (24) is not fully correct and we will
display the appropriate nonlinear completion. Note that the
log μ2 portion of L̄ðx − yÞ corresponds to a delta function
and hence is a finite local addition to c1 and c2. ForN scalar
fields, the actions Sdiv and Snonllocal are multiplied by a
factor of N.

III. CAUSAL BEHAVIOR

The effective action of the previous section is not
appropriate for generating causal effects in the equations
of motion. The reason is that the Feynman propagators
involve both advanced and retarded solutions, and any
variation of the effective action with respect to a field
at time t will involve the nonlocal effects both before
and after t. This is appropriate for scattering amplitudes
but not for the equations of motion. Rather one needs to
calculate the effects of the loops on the equations of
motion using the in-in (or Schwinger-Keldysh or closed-
time-path) formalism [17–23], which is designed to
produce causal behavior. This is relatively more com-
plicated and unfamiliar than usual perturbation theory.
However, Bavinsky and Velkovisky [18,19] suggest the
simple prescription - that one merely varies the effective
action (which they calculate in Euclidean space) and
then afterwards imposes causal behavior or scattering
behavior on the final result when one writes the answer
in Lorentzian space. We perform the calculation
below and confirm the validity of their prescription.
The reader who is not interested in the details can skip to
the results of Eqs. (34), (36) and (39), which are
reasonably intuitive.
The in-in formalism deals not with the effective action but

with expectationvalues. It is well known that the variation of
the effective action yields the energy-momentum tensor of
the quantum fields, and hence our strategy is to use the in-in
formalism to calculate the causal energy-momentum tensor.
The setup of the formalism is laid out in the Appendix, and
our starting point is Eq. (A3),

hOðtÞi ¼ IhΦð−∞ÞjS†ðt;−∞ÞOIðtÞSðt;−∞ÞjΦð−∞ÞiI:
ð25Þ

It is very useful to insert the identity operator in the form
S†ð∞; tÞSð∞; tÞ ¼ 1 to the left of the operator,

hOðtÞi
¼IhΦð−∞ÞjS†ð∞;−∞ÞT½OIðtÞSð∞;−∞Þ�jΦð−∞ÞiI:

ð26Þ
One then obtains various propagators—the normal
Feynman propagators associated with purely time-ordered
contractions, and others associated with mixed contractions
as will be explicitly shown below.

For our case, we are calculating the expectation value of
the energy momentum tensor to lowest order in the external
field hμν. In order to derive the result, one uses Eq. (26)
with the operator OI being Tμν and considers contractions
with the interactions contained in S or S†. In our case, we
only have two bubble diagrams each with two propagators
where one space-time point is the observation time. The
first diagram arises from theOðhμνÞ term in Sð∞;−∞Þ and
therefore contains the usual Feynman propagators. One
obtains the nonlocal part of the expectation value

hTNL
μν ðxÞi ¼

1

3840π2

Z
d4k
ð2πÞ4 e

−ik·x log

�
−k2

μ2

�
hαβð−kÞ

× ½8kμkνkαkβ − k2ð6kαkβημν þ 6kμkνηαβ

þ kνkβημα þ kαkνημβ þ kμkβηαν þ kαkμηβνÞ
þ k4ðημαηνβ þ ημβηαν þ 6ημνηαβÞ�; ð27Þ

where

hαβð−kÞ ¼
Z

d4yeik·yhαβðyÞ: ð28Þ

This can be obtained either by direct calculation or
by varying the effective action of the previous section. If
we specialize to gravitational fields hμνðxÞ, which are
independent of spatial coordinates, we have

hTNL
μν ðtÞi ¼

1

3840π2

Z
dω
2π

e−iωt
�
log

�
−ω2

μ2

��
hαβð−ωÞ

× ½8kμkνkαkβ − k2ð6kαkβημν þ 6kμkνηαβ

þ kνkβημα þ kαkνημβ þ kμkβηαν þ kαkμηβνÞ
þ k4ðημαηνβ þ ημβηαν þ 6ημνηαβÞ�; ð29Þ

where now the momentum is purely temporal kμ ¼ ðω; ~0Þ
and

hαβð−ωÞ ¼
Z

dt0eiωt0hαβðt0Þ: ð30Þ

Note that this result displays noncausal behavior because it
is sensitive to times both before and after t.
The second diagram arises from the OðhμνÞ term in

S†ð∞;−∞Þ. To calculate such diagram, the algebra of
contractions needs a modification to Wick’s theorem to
incorporate anti-time-ordered product of operators. The
details of the construction is included in the Appendix.
Only the last two terms in Eq. (A5) involving products of
positive-frequency Wightman functions contribute to the
calculation. We denote this particular Wightman function
by an underline,

ϕðxÞϕðyÞ≡ ½ϕþðxÞ;ϕ−ðyÞ� ¼ h0j½ϕþðxÞ;ϕ−ðyÞ�j0i

and it explicitly reads
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ϕðxÞϕðyÞ
¯

¼ 2π

Z
d4p
ð2πÞ4 θðp

0Þδðp2Þe−ip·ðx−yÞ: ð32Þ

The result is a simple addition to the expectation value, with
a total result that reads

hTNL
μν ðtÞi ¼

1

3840π2

Z
dω
2π

e−iωt
�
log

�
−ω2

μ2

�
þ 2iπθð−ωÞ

�

×hαβð−ωÞ½8kμkνkαkβ − k2ð6kαkβημνþ 6kμkνηαβ

þ kνkβημαþ kαkνημβ þ kμkβηανþ kαkμηβνÞ
þ k4ðημαηνβ þ ημβηανþ 6ημνηαβÞ�: ð33Þ

Again we transform the above expression to real space,
with momentum factors turning into derivatives. This
yields

hTNL
μν ðtÞi ¼

Z
dt0Lðt − t0ÞDμναβhαβðt0Þ; ð34Þ

where

Dμναβ¼
1

3840π2
½8∂μ∂ν∂α∂βþ∂4ðημαηνβþημβηανþ6ημνηαβÞ

−∂2ð6∂α∂βημνþ6∂μ∂νηαβþ∂ν∂βημαþ∂α∂νημβ

þ∂μ∂βηανþ∂α∂μηβνÞ�; ð35Þ
and where we have identified our key nonlocal function,

Lðt − t0Þ ¼
Z

∞

−∞

dω
2π

e−iωðt−t0Þ
�
log

�
−ω2

μ2

�
þ 2iπθð−ωÞ

�
:

ð36Þ

In order to evaluate this integral, we first note that the
usual iϵ prescription for the Feynman propagator implies

log

�
−ω2

μ2

�
¼ log

�
ω2

μ2

�
− iπ;

−iπ þ 2iπθð−ωÞ ¼ −iπsgnðωÞ; ð37Þ

and hence

Lðt − t0Þ ¼ −2
Z

∞

−∞

dω
2π

e−iωðt−t0Þ
�
log

�
μ

jωj
�
þ iπ

2
sgnðωÞ

�

¼ −2P
θðt − t0Þ
t − t0

: ð38Þ

Here P denotes the principal value distribution [24] defined
by

P
θðt − t0Þ
t − t0

¼ lim
ϵ→0

�
θðt − t0 − ϵÞ

t − t0
þ δðt − t0ÞðlogðμϵÞ þ γÞ

�
:

ð39Þ

Unlike Eq. (23), this function is clearly causal and real. It
also provides a precise definition of how the nonlocal
integration is to be performed as the term with the delta
function yields the desired feature that the nonlocal effect
is finite. This result verifies the Bavinsky-Velkovisky
procedure of varying the effective action and then simply
imposing causal behavior.

IV. NONLINEAR COMPLETION AND
QUASILOCAL FORM

The perturbative analysis gives us a reference for the
form of the nonlocal quantum effects and the precise causal
prescription. In order to have a more complete description
appropriate for application to FLRW cosmology, we can
match to the work by Barvinsky, Vilkovisky and collab-
orators [8–12,25]. These authors have explored nonlocal
aspects of the heat kernel expansion and expressed the
results in quasilocal form. Normally the heat kernel
methodology is used to capture local quantum effects.
For example, the second coefficient in the expansion of the
one-loop effective action, commonly called a2ðxÞ, gives
the divergent terms that go into the renormalization of
the effective Lagrangian quadratic in curvature invariants.
For massless fields, this is the only one-loop divergence.
However, the asymptotic form of the heat kernel expansion
also reveals nonanalytic terms. These are expanded in
powers of the curvature. In particular, the authors of [25]
capture curvature effects expanding around a metric with-
out curvature. The results that we are studying are second
order in the curvature. These authors are able to obtain the
nonanalytic terms in Euclidean space and display the
results using quasilocal actions of the form

SQL ¼
Z

d4x
ffiffiffi
g

p �
R log

�
□

μ2

�
R

�
: ð40Þ

Despite the fact that this appears to be expressed in local
form, we show below that matching to the perturbative
calculation of the preceding sections confirms that it
corresponds to a nonlocal effect. The quasilocal forms
provide a nonlinear covariant completion of the perturba-
tive calculation.
If we resolve the operator logð□

μ2
Þ by introducing position

space eigenstates we find

SQL ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
RðxÞ

Z
d4y

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
hxj log

�
□

μ2

�
jyiRðyÞ:

ð41Þ
Here the states are normalized covariantly,

hxjyi ¼ δð4Þðx − yÞ
ð ffiffiffiffiffiffiffiffiffi

gðyÞp ffiffiffiffiffiffiffiffiffi
gðxÞp Þ1=2 : ð42Þ

If we also define
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hxj log
�
□

μ2

�
jyi ¼ ð

ffiffiffiffiffiffiffiffiffi
gðyÞ

p ffiffiffiffiffiffiffiffiffi
gðxÞ

p
Þ−1=2Lðx; y; μÞ; ð43Þ

we can write the action in explicitly nonlocal form,

SNL ¼
Z

d4x
Z

d4y
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
1=2RðxÞLðx;y;μÞ

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
1=2RðyÞ:

ð44Þ

Again, we note that the log μ dependence in these equations
corresponds to a local effect. Here, we see that replacing
the covariant d’Alembertian in Eq. (44) by its Minkowski
couterpart yields the first term in Eq. (24).
There are three terms in the general nonlocal Lagrangian.

Reverting temporarily to quasilocal form, these can be
written as

SQL ¼
Z

d4x
ffiffiffi
g

p �
αR log

�
□

μ2α

�
Rþ βRμν log

�
□

μ2β

�
Rμν

þ γRμναβ log

�
□

μ2γ

�
Rμναβ

�
; ð45Þ

where α; β; γ are numerical coefficients which we will
display below. We allow for the possibility that the
renormalization scales are different for the three terms as
the coupling constants of the local Lagrangian could be
measured at different scales. For local terms, there are only
two quadratic invariants to be considered due to the Gauss-
Bonnet identity which holds strictly in four dimensions,
Z

d4x
ffiffiffi
g

p
RμναβRμναβ ¼

Z
d4x

ffiffiffi
g

p ½4RμνRμν − R2�

þ total derivative: ð46Þ

While Eq. (45) is simple and easy to apply, an alternate
form reveals some interesting physics. For this form we
employ the Weyl tensor in four dimensions,

Cμναβ ¼ Rμναβ −
1

2
ðgμαRνβ þ gμβRνα þ gναRμβ − gνβRμαÞ

þ 1

6
Rðgμαgνβ − gμβgναÞ; ð47Þ

to rewrite

SQL ¼
Z

d4x
ffiffiffi
g

p �
ᾱR log

�
□

μ2
1

�
Rþ β̄Cμναβ log

�
□

μ2
2

�
Cμναβ

þ γ̄ðRμναβ logð□ÞRμναβ − 4Rμν logð□ÞRμν

þ R logð□ÞRÞ
�
: ð48Þ

This form has several theoretical advantages. Here the last
term, similar in structure to the Gauss-Bonnet term, does
not have any μ dependence because its local form does not

contribute to the equations ofmotion. The FLRWmetric that
we use below is conformally flat and thus its Weyl tensor
vanishes. Thus the second term will not contribute to our
cosmological application. In turn this tells us that the
cosmology study dependence on local short distance physics
comes through the first term only, and there is only one para-
meter μ1 ≡ μ which describes this local term. In addition
this first term is not generated by conformally invariant
field theories (fermions, photons and conformally coupled
scalars) and their quantum effects will be purely nonlocal.
The coefficients in these two different bases are related by

α ¼ ᾱþ β̄

3
þ γ̄; β ¼ −2β̄ − 4γ̄; γ ¼ β̄ þ γ̄: ð49Þ

Wecan identify the coefficients in the nonlocal Lagrangian
because the logarithms are tied to the divergences in the one-
loop effective action, as shown by the perturbative calcu-
lation. The latter have been calculated in the background field
method, and results are known before the Gauss-Bonnet
identity has been applied.2 For example, the divergent
effective Lagrangian for a massless field reads

Ldiv ¼
ffiffiffiffiffi
jgj

p a2ðxÞ
16π2ϵ

: ð50Þ

The coefficient a2ðxÞ is known for scalars, fermions and
photons [5,26],

aS2ðxÞ ¼
1

180

�
5

2
R2 − RμνRμν þ RμναβRμναβ

�
ð51Þ

aF2 ðxÞ ¼
1

360
ð−5R2 þ 8RμνRμν þ 7RμναβRμναβÞ ð52Þ

aV2 ðxÞ ¼
−1
180

ð20R2 − 86RμνRμν þ 11RμναβRμναβÞ: ð53Þ

Here, the result for fermions assumes a four-component
spinor field. The result for the massless vector field also
includes theghost contribution,which is twice the scalar field
result with an appropriate minus sign. Finally, the classic
paper by ’t Hooft and Veltman [27] gave the result
for gravitons only after using the Gauss-Bonnet relation,
but thegeneral result has since been calculated (see e.g. [28]).
This enables us to read off the result for gravitons which
also includes the ghost contribution

aG2 ðxÞ ¼
215

180
R2 −

361

90
RμνRμν þ 53

45
RμναβRμναβ: ð54Þ

In Table I, we collect the coefficients of different fields.

2This background field method resolves the problem of
identifying the complete form of the nonlinear completion that
we had in discussing Eq. (24).
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The results are shown for a scalar with a coupling ξRϕ2

and the parameter ξ enters the α couplings,

α ¼ ᾱ ¼ ð6ξ − 1Þ2
2304π2

; ð55Þ

with β; γ; β̄; γ̄ independent of ξ. Unless stated otherwise,
our results are presented for a minimally coupled scalar
(ξ ¼ 0), while a conformally coupled scalar has ξ ¼ 1=6.
For conformally invariant fields the coefficient ᾱ will
vanish. Because the FLRW metric is conformally flat,
the coupling β̄ does not contribute to our analysis as
mentioned previously. This leaves only the coefficient γ̄
as the active parameter. For NS scalars, Nf fermions and
NV gauge bosons, this coupling has the value

γ̄ ¼ −
1

11520π2
½NS þ 11Nf þ 62NV �: ð56Þ

Note that all conformally invariant matter fields carry the
same sign of γ̄ and will have similar effects, differing just
in magnitude. Moreover, this case is independent of the
parameter μ because the Gauss-Bonnet nonlocal term
(the one proportional to γ̄) has no local contribution to
the equations of motion.
Finally, we can also add up the contributions of all the

SM particles (plus the graviton) to find effective SM
coefficients that are calculated as follows,

αSM ¼ NSαS þ NlαF þ NcNqαF þ NVαV þ αG; ð57Þ

and likewise for β and γ. Here, we have broken the fermion
contribution up into quark and lepton terms Nf ¼ Nl þ
NcNq whereNl is the number of leptons,Nq andNc are the
numbers of quarks and colors respectively. For the standard
model with a minimally coupled Higgs, these numbers read

NS¼4; Nl¼6; Nc¼3; Nq¼6; NV ¼12: ð58Þ

Hence, for this case we find

αSM ¼ −7
1152π2

; βSM ¼ 287

1440π2
; γSM ¼ −17

1440π2
ð59Þ

for the Standard Model particles alone, or also including
gravitons,

αSMG ¼ −3
128π2

; βSMG ¼ 71

960π2
; γSMG ¼ 1

40π2
: ð60Þ

For a conformally coupled Higgs field we find the con-
formally invariant result (without gravitons), ᾱc ¼ 0 and

γ̄c ¼ −
253

2880π2
: ð61Þ

Of course, we recognize that we expect to find new
particles between the weak scale and the Planck scale,
and so these numbers would likely be modified when the
formalism is applied near the Planck scale.

V. NONLOCAL FLRW EQUATIONS

The equations of motion can be obtained by varying the
effective action, specializing to the FLRW metric and then
imposing causal prescription. We do that in this section,
displaying the corresponding nonlocal effects in the FLRW
equations.
We are working to second order in the curvature. The

Barvinsky-Vilkoviskymethod describes the nonlocal effects
in a series expansion in the curvature and the next term
appears at third order[29] through the inclusion of triangle
diagrams. Some of these effects could be incorporated
through a modification of the nonlocal function Lðx; y; μÞ
to depend on the background curvature. However, since the
quasilocal action is already quadratic in the curvature, we
will proceed by dropping such higher curvature terms and
employing the approximation,

Lðx; y; μÞ ≈ L̄ðx − yÞ; ð62Þ

when we pass to the nonlocal form of the action. This
approximation confines our study to quadratic corrections
to the gravitational action. Because the nonlocal function
L̄ðx − yÞ falls as 1=ðt − t0Þ our approximation captures
the behavior where the integrand is the largest, but will
differ past the Hubble time where the integrated curvature
becomes large. With this approximation, the nonlocal
function depends only on jx − yj so that

∂
∂x L̄ðx − yÞ ¼ −

∂
∂y L̄ðx − yÞ; ð63Þ

allowing derivatives acting on L̄ to be transferred to
derivatives acting on the scale factor aðt0Þ.
The nonlinear FLRW equations can be derived in one of

two ways. One can vary gμν in general and then specialize
to the FLRW metric. Equivalently one may use the general
metric ds2 ¼ f2ðtÞdt2 − a2ðtÞd2x, varying with respect to
both f and a and then setting f ¼ 1 at the end. Either way
we obtain the 0 − 0 component of the modified equations
of motion,

TABLE I. Coefficients of different fields. All numbers should
be divided by 11520π2.

α β γ ᾱ β̄ γ̄

Scalar 5ð6ξ − 1Þ2 −2 2 5ð6ξ − 1Þ2 3 −1
Fermion −5 8 7 0 18 −11
Vector −50 176 −26 0 36 −62
Graviton 430 −1444 424 90 126 298
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3a _a2

8π
þ N

�
6ð ffiffiffi

a
p

äÞt
Z

dt0Lðt − t0ÞR1

þ 6

�
_a2ffiffiffi
a

p
�

t

Z
dt0Lðt − t0ÞR2

þ 12ð ffiffiffi
a

p
_aÞt

Z
dt0Lðt − t0Þ dR3

dt0

�
¼ a3ρ: ð64Þ

Here, N represents the number of particles and the different
functions read

R1 ¼ −
ffiffiffi
a

p
äð6αþ 2β þ 2γÞ − _a2ffiffiffi

a
p ð6αþ βÞ ð65Þ

R2 ¼ −
ffiffiffi
a

p
äð12αþ β − 2γÞ − _a2ffiffiffi

a
p ð12αþ 5β þ 6γÞ ð66Þ

R3 ¼
ffiffiffi
a

p
äð6αþ 2β þ 2γÞ þ _a2ffiffiffi

a
p ð6αþ βÞ: ð67Þ

For mixed combinations of particles, N can be absorbed in
the definitions of αtot, βtot, γtot as described in the previous
section. As described in Sec. III, the equations of motion
must use the causal nonlocal function,

Lðt − t0Þ ¼ lim
ϵ→0

�
θðt − t0 − ϵÞ

t − t0
þ δðt − t0Þ logðμRϵÞ

�
; ð68Þ

obtained therein and we absorbed Euler’s constant into the
renormalization scale μR. We finally remind that in a
covariant theory the space-space equation of motion is
not an independent equation. This is not true in our case
since we employed an approximation for the function
Lðx; y; μÞ that manifestly breaks general covariance.

VI. EMERGENCE OF CLASSICAL BEHAVIOR

In assessing the effects of the nonlocal behavior, we treat
the new terms as a perturbation in the equation of motion.
They have certainly been calculated as perturbations to the
leading behavior, so this is a conservative approach. We
will address the limits of such perturbative treatment in the
final section.
In an expanding universe, the quantum effects are

expected to be felt most in the early phases of expansion
when the curvature is largest. In principle, these effects
could change the character of the expansion, perhaps by an
instability. In addition, the memory effect which is sensitive
to past values of the curvature with the weight 1=ðt − t0Þ
could have an effect which builds up with time. Within our
approximation, neither of these happens. We will explore
the situation by “switching on” the nonlocal effect at the
Planck time. The evolution of the scale factor is influenced
by the nonlocal effect very close to the Planck time.

However, subsequent evolution turns essentially classical
and the effect of nonlocal terms fades away.
We will treat both a dust-filled universe and a radiation-

filled universe. We set G ¼ 1 in the numerical evaluation.
The lower limit of the integrals is then taken to be t0 ¼ 1
which corresponds to the Planck time as mentioned earlier.
In treating the new terms as a perturbation,we use the known
classical solutions as input to the integrands, integrating up
to the observation time t. This allows the integrals over time
to be done by hand and converts the integro-differential
equation into a simpler differential equation, albeit one with
a reference back to a starting time t0.
For a scalar field, we use the coefficients listed in the

previous section to find the functions

R1 ¼
−1
π2

� ffiffiffi
a

p
ä

384
þ 7_a2

2880
ffiffiffi
a

p
�
;

R2 ¼
−1
π2

�
3

ffiffiffi
a

p
ä

640
þ 31_a2

5760
ffiffiffi
a

p
�
;

R3 ¼
1

π2

� ffiffiffi
a

p
ä

384
þ 7_a2

2880
ffiffiffi
a

p
�
: ð69Þ

If we treat the matter input as dust, the classical solution is
aðtÞ ¼ ðt=t0Þ2=3 and thus the 0 − 0 equation of motion reads

a _a2 −
NS

2430π

�
19E1ðt; t0Þ

t20t
þ 26E2ðt; t0Þ

t20

�
¼ 8πρ0

3
: ð70Þ

We note that the normalization time is chosen to coincide
with the initial time t0, and hence the energy density is
ρ0 ¼ 1=ð6πt20Þ. We also defined the functions

E1ðt; t0Þ ¼
logðμRtÞ þ logðt=t0 − 1Þ

t
;

E2ðt; t0Þ ¼
logðμRtÞ þ logðt=t0 − 1Þ þ ðt=t0 − 1Þ

t2
: ð71Þ

Results are shown in Figs. 2–4 for different numbers of
scalar fields. In each case, the quantum correction provides
an initial deviation from the straight classical behavior.
However, as the scale factor evolves, the curvature decreases
and the evolution is driven by the lowest order FLRW
equation with the usual classical form. This is perhaps
expected but indicates, at least within our approximations,
that the quantum terms do not destabilize the evolution of
the scale factor. One can see that increasing the number of
scalars increases the magnitude of the quantum effect, but
does not change the character of the effect. For these plotswe
have used μR ¼ 1, but a reasonable range of other values of
μR leads to qualitatively similar results.
We also show the case of pure graviton loops in Fig. 5.

This is qualitatively similar to that of scalars, with the
graviton making a somewhat larger effect than would an
individual scalar.
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FIG. 2 (color online). The evolution of the scale factor and its time derivative in an expanding dust-filled universe for
N ¼ 10.
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FIG. 3 (color online). The evolution of the scale factor and its time derivative in an expanding dust-filled universe for
N ¼ 100.
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FIG. 4 (color online). The evolution of the scale factor and its time derivative in an expanding dust-filled universe with N ¼ 103 scalar
fields.

NONLOCAL QUANTUM EFFECTS IN COSMOLOGY: … PHYSICAL REVIEW D 89, 104062 (2014)

104062-9



For a radiation dominated universe the situation is also
interesting,

a _a2 −
NS

1152π

�
E5=4ðt; t0Þ
t3=20 t5=4

−
E9=4ðt; t0Þ
t3=20 t1=4

�
¼ 8πρ0

3a
: ð72Þ

In this case the energy density is ρ0 ¼ 3=ð32πt20Þ. The
expansion functions read

E5=4ðt; t0Þ ¼
1

t5=4

�
logðμRtÞ þ log

�
t1=4 − t1=40

t1=4 þ t1=40

�
þ 4

�
t
t0

�
1=4

þ 2 arctan

�
t0
t

�
1=4

þ logð8Þ− 4−
π

2

�
ð73Þ

E9=4ðt;t0Þ¼
1

t9=4

�
logðμRtÞþ log

�
t1=4−t1=40

t1=4þt1=40

�
þ4

�
t
t0

�
1=4

þ5

4

�
t
t0

�
5=4

þ2 arctan

�
t0
t

�
1=4

þlogð8Þ−21

4
−
π

2

�
:

ð74Þ

The equation of motion shows the interesting feature that
the dependence on log μR cancels out, which means that the
effect is purely nonlocal. The reason is that the classical
solution in the case of radiation aðtÞ ¼ ðt=t0Þ1=2 furnishes
an exact solution to local quadratic gravity. We show results
for the expanding radiation universe with a thousand scalar
fields in Fig. 6. The quantum effects are somewhat smaller
in the radiation case, but have the same qualitative behavior
as the dust-filled universe. Situations involving fermions,
photons and gravitons are also quite similar and we do not
display figures for each case.
Overall these results are satisfying in that the quantum

corrections are well behaved and turn off as we enter the
period of classical evolution.

VII. CONTRACTING UNIVERSE AND THE
POSSIBILITY OF A BOUNCE

Of perhaps greater interest is the physics of a collapsing
phase. Here the initial conditions are purely classical and
the natural evolution brings the universe into the quantum
regime. The classical evolution is headed towards a
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FIG. 5 (color online). The evolution of the scale factor and its time derivative in an expanding dust-filled universe with quantum
graviton loops.

10 20 30 40 50
t

1

2

3

4

5

6

7

a t

Classical

Quantum

5 10 15 20
t

0.1

0.2

0.3

0.4

0.5

a t

Classical

Quantum

FIG. 6 (color online). The evolution of the scale factor and its time derivative in an expanding radiation-filled universe with N ¼ 103

scalar fields.
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singularity—the big crunch. We will explore this case and
see that within our approximation the quantum effects can
lead to an avoidance of the singularity.
Our procedures are similar to those of the previous

section. We input the classical solution into the nonlocal
functions. For scalar fields in the case of collapsing dust,
this results in

a _a2 −
NS

2430π

�
19C1ðtÞ

t20t
þ 26C2ðtÞ

t20

�
¼ 8πρ0

3
: ð75Þ

The collapse functions are defined as

C1ðtÞ ¼
logð−μRtÞ

t
; C2ðtÞ ¼

logð−μRtÞ þ 1

t2
: ð76Þ

We note that the initial time in this case is taken to be −∞
as there is no need to cut off the nonlocal integrals.
The normalization time t0 can be chosen arbitrarily
but in a regime where the classical behavior remains
dominant.
As an example of what happens in a collapsing phase,

consider the caseNS ¼ 1, μR ¼ 1, shown in Fig. 7. Here we
see that _aðtÞ, which is diverging classically, slows down
and in fact turns around. This appears as a bouncing
solution rather than a singular one. Because of the choice
μR ¼ 1, log μR ¼ 0 and there is no local effect in
these units.
If we change the number of scalars, we can lower the

energy that this behavior occurs at, in accord with the
expected N scaling. This is shown in Fig. 8 by adjusting
NS and μR together such that the number of scalars
changes by a factor of 100 between figures, while μR
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FIG. 7 (color online). Collapsing dust-filled universe with
μR ¼ 1 and a single scalar field. The time derivative of the scale
factor quickly stops diverging when the quantum correction
becomes active.
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FIG. 8 (color online). Varying both the scale μ and the number of scalar particlesNS in a collapsing dust-filled universe. The plots from
left to right involve (NS ¼ 1, μR ¼ 1), (NS ¼ 102, μR ¼ 0.1) and (NS ¼ 104, μR ¼ 0.01). Note the change of scale along the time axis in
the figures. The results illustrate the similarity of the quantum corrections with an energy scale that scales as E ∼MP=

ffiffiffiffi
N

p
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FIG. 9 (color online). Varying the scale μR in a collapsing dust-filled universe, with μR ¼ 0.1 on the left and μR ¼ 10 on the right.
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changes by a factor of 10. This modifies the location of the
bounce in a predictable way. The figures look similar even
though the horizontal scale changes by a factor of 10
between pictures. The physics does scale as 1=

ffiffiffiffiffiffi
NS

p
as

long as we rescale μR by this factor, and we can have this
effect occur well below the Planck scale if the number of
scalars is large enough.
However, not all cases lead to singularity avoidance.

There is a dependence on the scale μR and for some
choices the local terms overwhelm the effect of the non-
local terms. This can be seen in Fig. 9. Here the local terms
drive the scale factor in a more singular direction and the
singularity happens more rapidly. It is possible that yet
higher orders in the curvature tensors could eventually
solve this and perhaps also remove singularities in these
cases. However, we do not explore this possibility further in
this paper.
The bounce is also seen in the case of pure gravity,

Fig. 10. The nonlocal coefficients for the graviton are larger
than those for a single scalar and the change in the scale
factor happens at a slightly earlier time than the single
scalar case.
A very interesting case is the Standard Model with a

conformally coupled Higgs. As explained in Sec. V, this
situation is purely nonlocal and completely independent of
the parameter μR, because in the basis of Eq. (48), only the
Gauss-Bonnet nonlocal term contributes and this has no
local effect. So this prediction is particularly simple and
beautiful. The result with all the Standard Model particles is
shown in Fig. 11 and demonstrates the nonlocal bounce
effect in a parameter independent fashion. Note that all
conformally coupled fields contribute with the same sign,
so that increasing the number of matter fields will always
enhance this effect.3

For a radiation-filled universe, the effect is always
independent of the scale μR. With just graviton loops,
we see a very similar bounce, see Fig. 12. Unfortunately,
matter fields have an effect in the opposite direction, and
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FIG. 10 (color online). The effect of graviton loops on a dust-filled universe. These have μR ¼ 0.1 on the left and μR ¼ 1 on the right.
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FIG. 11 (color online). Collapsing dust-filled universe with the
Standard Model particles and a conformally coupled Higgs. The
result is purely nonlocal and hence independent of any scale μR.
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FIG. 12 (color online). Collapsing radiation-filled universe with
gravitons only considered.

3Gravitons are not conformally coupled, but we have checked
that their quantum effect (with μ near unity) is smaller than the
effect of the Standard Model particles, and do not change the
character of Fig. 11.
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overwhelm the effects of gravity. So with the full set of
Standard Model particles plus gravitons, the net effect does
not lead to singularity avoidance, as shown in Fig. 13.

VIII. SUMMARY

Quantum loops bring a unique feature to cosmology, i.e.
nonlocality. The local classical theory is supplemented by
effects that depend on the past behavior of the scale factor.
Because of the power-counting theorems of general rela-
tivity, these effects are small except at times of large
curvature. However, with enough light fields they can
become important below the Planck scale.
Within the context of matter and radiation dominated

FRLW cosmologies, we have explored the nonlocal effects
that correspond most closely to the graviton vacuum
polarization. Our work has been perturbative, in that we
treat the new nonlocal effects to first order only. This is
appropriate for a correction that has been calculated at one-
loop order only. Actually the large N case can be used to
argue that the one-loop result is the most important in the
limit of large N. The one-loop integral is proportional to
GN. For matter fields that have only gravitational inter-
actions, higher loops would either involve extra gravitons
in loops (which do not bring extra factors of N) or would be
the iteration of the simple vacuum polarization. Counting
the powers of G and N reveals that the iteration of the one-
loop diagram is the only effect of order ðGNÞn, with other
diagrams suppressed by at least a power of N.
In addition to the unavoidable use of perturbation theory,

we have also approximated the nonlocal function by its
free field behavior. The use of the full propagators is not
realistically tractable in a general FLRW space time. The
approximation amounts to neglecting higher powers of the
curvature which appear in the propagators. This is reason-
able when paired with the general use of perturbation
theory. The approximation should be good in the region
where the nonlocal integrand, 1=ðt − t0Þ, is the largest. We

have not seen any problematic effects from the long-time
tail of this integrand.
The most interesting effect uncovered is the tendency

towards singularity avoidance in some collapsing FLRW
universes. The classical theory, with only the Einstein
action, collapses towards an inevitable singularity. The
quantum effects can oppose this collapse and can turn
around converging geodesics. Because of the perturbative
treatment, we cannot be certain of the ultimate fate of such
effect, but within the limits of our approximations it appears
to have the characteristics of a bounce.
There is clearly much more work needed to fully

understand the effects of quantum nonlocality in general
relativity. We will continue our exploration in future work.
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APPENDIX: SOME ASPECTS OF
THE IN-IN FORMALISM

The aim of the in-in formalism is to derive an expression
for the time-dependent expectation value of a Heisenberg
operator OHðtÞ. For systems out of equilibrium, the
Hamiltonian has explicit time dependence. For systems
under equilibrium, the common practice in perturbation
theory is to switch to the interaction picture by splitting the
Hamiltonian into free and interaction pieces. For our case,
we switch to the interaction picture by splitting the full
Hamiltonian to a time-independent piece, which might
itself contain interactions, and a time-dependent interac-
tion, HðtÞ ¼ H0 þHintðtÞ. Hence,

OHðtÞ ¼ U†ðt; 0Þe−iH0tOIðtÞeiH0tUðt; 0Þ
≡ S†ðt; 0ÞOIðtÞSðt; 0Þ;

where Uðt; t0Þ is the fundamental time-evolution opertaor
and we choose all pictures to coincide at t ¼ 0. The ope-
rator Sðt; t0Þ is readily seen to satisfy a Schrodinger-like
equation whose solution reads

Sðt; t0Þ ¼ T exp

�
−i

Z
t

t0
dt1HIðt1Þ

�
;

HIðtÞ≡ eiH0tHintðtÞe−iH0t: ðA1Þ

It remains to relate the states in different pictures where it
is convenient for our problem to change the reference time
such that all pictures coincide at t ¼ −∞. Hence,
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t
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a t
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FIG. 13 (color online). Collapsing radiation-filled universe with
all the StandardModel particles included, aswell as graviton loops.
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jΦiH ¼ jΦð−∞ÞiI: ðA2Þ

Using the fundamental unitarity property of the time
evolution operator, we find the time-dependent expectation
value of an arbitrary operator,

hOHðtÞi ¼ IhΦð−∞ÞjS†ðt;−∞ÞOIðtÞSðt;−∞ÞjΦð−∞ÞiI:
ðA3Þ

As mentioned in the text, it is very useful to insert the
identity operator in the form S†ð∞; tÞSð∞; tÞ ¼ 1 to the left
of the operator,

hOðtÞi
¼ IhΦð−∞ÞjIS†ð∞;−∞ÞT½OIðtÞSð∞;−∞Þ�jΦð−∞ÞiI:

ðA4Þ
One then obtains various propagators—the normal
Feynman propagators associated with purely time-ordered
contractions, and others associatedwith mixed contractions.
Wick’s theoremmust then be generalized to include the anti-
time-ordered products of fields, which we now describe.
The goal is to modify Wick’s theorem to incorporate an

anti-time-ordered product of operators. Here, we do not
prove the modified theorem but rather only derive the
needed expression for our calculation, which is

T̂½AB�T½CD� ¼ N½ABCDþ ABCD
⊓ þ CDAB⊔ þ CD

⊓
AB⊔

þ BCADþ BDACþ ADBCþ ACBD

þ BCADþBDAC�: ðA5Þ

Here, the operators A; B;C;Dmay represent different fields
or the same field evaluated at different spacetime points and
the hat denotes the anti-time-ordering symbol. The under-
line symbol denotes the positive-frequency Wightman
function defined in section 3. We also have the usual
Feynman and Dyson propagators

AB
⊓≡ h0jT½AB�j0i; AB⊔≡ h0jT̂½AB�j0i: ðA6Þ

To derive Eq. (A5), we start with the simpler product,

T̂½AB�C ¼ N½ABCþ CAB⊔ þ BACþ ABC� ðA7Þ

which is proved by employing

T̂½AB� ¼ N½AB� þ AB⊔;

N½AB�C ¼ N½ABCþ ABCþ BAC�: ðA8Þ

Left-multiplying Eq. (A7) by an operator, one finds

T̂½AB�CD ¼ N½ABCDþ ABCDþ ACBDþ BCAD

þ CDAB⊔ þ BDACþ ADBCþ CDAB⊔
þ BDACþADBC�: ðA9Þ

The above expression is obtained by deriving the analog
of the second equation in (A8), albeit with an extra operator
to the left. Using the basic definition of time-ordered
products along with Eq. (A9) readily yields Eq. (A5).
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