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This paper deals with a special kind of problems that appear in solutions of Einstein’s field equations for
extended bodies: many structure-dependent terms appear in intermediate calculations that cancel exactly in
virtue of the local equations of motion or can be eliminated by appropriate gauge transformations. For a
single body at rest, these problems are well understood for both the post-Newtonian and the post-
Minkowskian cases. However, the situation is still unclear for approximations of higher orders. This paper
discusses this problem for a “body” of spherical symmetry to post-linear order. We explicitly demonstrate
how the usual Schwarzschild field can be derived directly from the field equations in the post-linear
approximation in the harmonic gauge and for an arbitrary spherically symmetric matter distribution. Both
external and internal solutions are considered. The case of static incompressible fluid is then compared to
the well-known results from the literature. The results of this paper can be applied to generalize the well-
known post-Newtonian and post-Minkowskian multipole expansions of the metric in the post-linear
approximation.
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I. INTRODUCTION

There might be several reasons for an interest in the post-
linear Schwarzschild problem. Our main interest for that
comes from the problem of high-accuracy astrometry in the
framework of general relativity. Recently, a series of igh-
accuracy astrometric space missions were proposed such as
Gaia [1], with accuracies of a few microarcseconds (μas) or
the Nearby Earth Astrometric Telescope (NEAT) proposed
to ESA [2], for which accuracies around 50 nanoarcseconds
(nas) are under discussion. For all of these missions, the
light propagation has to be calculated at a very high level of
accuracy that lies beyond the level of 1 μas in observed
directions. Already for a mission like Gaia, the influence of
the oblateness (quadrupole moment) of the bodies as well
as their barycentric motion cannot be neglected. Largest
post-post-Newtonian effects in the light propagation also
have to be taken into account [3]. Astrometric missions
with angular accuracies beyond 1 μas will certainly come
in the near future, and also the day will come when the
subtle effects of higher post-Newtonian level will be
required. For those reasons, it is of great importance to
have a metric tensor for a system of N gravitationally
interacting arbitrarily shaped and composed, deformable,
and rotating bodies to second post-Newtonian or second
post-Minkowskian order (keeping all terms in the velocities
but only linear and quadratic terms in the gravitational
constant). Such a metric will form the basis for the
modeling of light trajectories. Some first steps toward such
a metric have been done [4,5], but the problem is far from
being solved. Clearly, further work is needed.

Tremendous work in general relativity has been done
with the harmonic gauge that was found to be a useful and
simplifying gauge for many kinds of applications. It is
logical to continue using the harmonic gauge for further
refinements of the theory needed for the high-accuracy
astrometry and celestial mechanics. The harmonic con-
dition is defined by the following equation [g ¼ detðgαβÞ is
the determinant of the metric tensor gαβ]:

∂
∂xα ðð−gÞ

1=2gαβÞ ¼ 0: (1)

Several equivalent forms of the harmonic conditions can be
found, e.g., in Sec. 7.4 of Ref. [6].
For some “body” (which in principle can be composed

of a whole set of individual bodies) at rest, the external
metric in the harmonic gauge that is fully specified by two
families of multipole moments, mass, and spin moments
(ML and SL) is known for both the post-Newtonian [7] and
the post-Minkowskian cases [8]. For a system of pointlike
masses, the whole post-Minkowskian problem, the metric
in harmonic coordinates, and the light-ray trajectories was
solved in Ref. [9]. This work was extended by including
the spin monopoles of the bodies by Kopeikin and
Mashhoon [10]. Kopeikin et al. [11] found an analytical
post-Minkowskian solution for the light propagation in the
field of an extended body at rest; here, the full multipole
structure was taken into account.
Problems arise that are related with the internal structure

of the bodies. For a single body at rest, these problems are
well understood for both the post-Newtonian and the
post-Minkowskian cases [7,8], in which many structure-
dependent terms appear in intermediate calculations that*Sergei.Klioner@tu‑dresden.de
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cancel exactly in virtue of the local equations of motion
or can be eliminated by corresponding gauge transforma-
tions. However, for the post-linear case, the situation is still
unclear. In the course of our studies for the general problem
mentioned above, we found that, even for the spherically
symmetric case of a single body, the complete deriva-
tion of the external metric (the Schwarzschild metric) is
interesting.
We use fairly standard notations: G is the Newtonian

constant of gravitation, and c is the vacuum speed of light.
We use the signature (−þþþ) throughout this paper.
Lowercase Latin indices i; j; … take values 1, 2, 3.
Lowercase Greek indices μ; ν; … take values 0, 1, 2, 3.
Repeated indices imply the Einstein’s summation irrespec-
tive of their positions (e.g., aibi ¼ a1b1 þ a2b2 þ a3b3 and
aαbα ¼ a0b0 þ a1b1 þ a2b2 þ a3b3). We use two special
objects: δij ¼ diagð1; 1; 1Þ is the Kronecker delta, and εijk
is the fully antisymmetric Levi-Civitá symbol (ε123 ¼ þ1).
The three-dimensional coordinate quantities (“3-vectors”)
referred to the spatial axes of the corresponding reference
system are set in boldface: a ¼ ai. The scalar product of
any two 3-vectors a and b with respect to the Euclidean
metric δij is denoted by a · b and can be computed as
a · b ¼ δijaibj ¼ aibi. A comma before an index desig-
nates the partial derivative with respect to the correspond-
ing coordinates: A;μ ¼ ∂Aðt;xÞ=∂xμ, A;i ¼ ∂Aðt;xÞ=∂xi.
For partial derivatives with respect to the coordinate times t,
we use A;t ¼ ∂Aðt;xÞ=∂t. A dot over any quantity desig-
nates the total derivative with respect to the coordinate time
of the corresponding reference system, e.g., _A ¼ dA=dt.
Parentheses surrounding a group of indices denote sym-
metrization, e.g., AðijÞ ¼ 1

2
ðAij þ AjiÞ. Angle brackets

surrounding a group of indices or, alternatively, a caret
on top of a tensor symbol denote the symmetric trace-free
(STF) part of the corresponding object, e.g., Âij ≡ Ahiji ≡
STFijAij ¼ AðijÞ − 1

3
δijAkk. For sequences of spatial indi-

ces, we shall use multi-indices; a spatial multi-index
containing l indices is denoted by the same Latin character
in the upper case L (K for k indices, etc.), L ¼ i1…il,
where each Cartesian index takes values 1, 2, 3. We use also
L − 1 ¼ i1…il−1, etc. A multisummation is understood
for repeated multi-indices: ALBL ≡P

i1…ilAi1…ilBi1…il .
For a spatial vector vi, we denote vL ≡ vi1vi2…vil . For
an L-order partial derivative, we denote ∂L ≡ ∂i1…∂il . For
true tensorial quantities like the energy-momentum
tensor Tμν or the metric tensor gμν, the position of each
index (spatial or not) is of great importance. For certain
other quantities, like, e.g., wi, σij, or qij introduced below,
the position of indices (upper or lower) is irrelevant
(e.g., wi ¼ wi).
In Sec. II, we deal with the most generic case of an

arbitrary spherically symmetric mass distribution. The
special case of a static spherically symmetric

incompressible matter distribution will be treated in
Sec. III, and the results will be compared to those known
from the literature in Sec. IV. Conclusions are formulated
in Sec. V.

II. GENERAL SPHERICALLY SYMMETRIC CASE

In this section, we deal with the most general case. Our
goal is to derive the external metric in the post-linear
approximation for a general spherically symmetric compact
matter distribution. From Birkhoff’s theorem, it is clear
that this external metric will be the usual Schwarzschild
metric that is determined by a single parameter, the mass of
the central body. The central point of this paper is to
demonstrate how other terms related with the structure of
the body (e.g., its radius R) that appear in intermediate
calculations cancel exactly or can be removed by a suitable
gauge transformation. Other aspects of the problem related
with the usage of harmonic coordinates are also of general
interest.

A. Metric tensor and field equations

The post-linear metric tensor in harmonic coordinates
will be written in the form

g00 ¼ −1þ 2

c2
w − 2

c4
w2 þOðc−6Þ; (2)

g0i ¼ −
4

c3
wi þOðc−5Þ; (3)

gij ¼ δij

�
1þ 2

c2
wþ 2

c4
w2

�
þ 4

c4
qij þOðc−5Þ: (4)

Here, the metric potentialsw, wi, and qij obey the equations
(see, e.g., Ref. [5])

Δw − 1

c2
w;tt ¼ −4πGσ þOðc−4Þ; (5)

Δwi ¼ −4πGσi þOðc−2Þ; (6)

Δqij ¼ −w;iw;j − 4πGσij þOðc−1Þ; (7)

where

σ ¼ T00 þ Tss

c2
; σi ¼ T0i

c
; σij ¼ Tij − δijTss

(8)

and Tμν are the components of the energy-momentum
tensor. The metric potentials w and wi in Eqs. (2)–(4) are
needed to orders Oðc−2Þ and Oðc0Þ, respectively.
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B. Formal solution of the field equations

We consider an isolated compact matter distribution
and, as usual, require space-time to be asymptotically flat
and covered by one single global coordinate system
xμ ¼ ðct; xiÞ with

lim
jxj→∞
t¼const

gμν ¼ ημν; (9)

where ημν ¼ diagð−1;þ1;þ1;þ1Þ is the flat metric tensor
of Minkowski space-time. For this reason, the field
equations should be solved with the boundary conditions

lim
jxj→∞
t¼const

wðt;xÞ¼0; lim
jxj→∞
t¼const

wiðt;xÞ¼ 0; lim
jxj→∞
t¼const

qijðt;xÞ¼ 0:

(10)

The solution of Eqs. (5)–(7) satisfying these boundary
conditions that will be used in the following reads

wðt;xÞ ¼ G
Z
V

σðt;x0Þ
jx − x0jd

3x0

þ 1

2c2
G

∂2

∂t2
Z
V
σðt;x0Þjx − x0jd3x0 þOðc−4Þ;

(11)

wiðt;xÞ ¼ G
Z
V

σiðt;x0Þ
jx − x0j d

3x0 þOðc−2Þ; (12)

qijðt;xÞ ¼
1

4π

Z
V

w;iðt;x0Þw;jðt;x0Þ
jx − x0j d3x0

þG
Z
V

σijðt;x0Þ
jx − x0j d

3x0 þOðc−1Þ: (13)

Here, V is the support of the matter distribution.

C. Spherically symmetric compact matter distribution

In the following, we consider a matter distribution for
which Tμν has compact support; that is, in our reference
system ðt;xÞ, there exists a quantity R > 0 so that for
r≡ jxj > R the energy-momentum tensor vanishes,
Tμνðt;xÞ ¼ 0. In the following, the matter located within
the area jxj ≤ Rwill be often called the body. Moreover, we
will consider a spherically symmetric matter distribution
for which at an arbitrary point one has

σ ¼ T00 þ Tss

c2
¼ σðt; rÞ (14)

σi ¼ 1

c
T0i ¼ Bðt; rÞni; Bðt; rÞ ¼ 1

c
T0ini; (15)

Tij ¼ Aðt; rÞn̂ij þ δijCðt; rÞ; Aðt; rÞ ¼ 3

2
Tijn̂ij;

Cðt; rÞ ¼ 1

3
Tkk; (16)

σij ¼ Aðt; rÞn̂ij − 2δijCðt; rÞ: (17)

This form of the energy-momentum tensor is in agreement
with the most general form of the spherically symmetric
metric tensor (see, e.g., Sec. 13.5 of Ref. [6]) and the
corresponding field equations. Thus, matter is fully char-
acterized by four independent scalar functions of time t and
radial coordinate r ¼ jxj: σðt; rÞ, Aðt; rÞ, Bðt; rÞ, and
Cðt; rÞ. No further assumptions on these four functions
are made. The body might be nonstatic; it can oscillate or
collapse, etc. In the calculations below, the time t plays a
role as an additional parameter, and we will often omit the
explicit dependence of these functions on time.

D. Computation of the gravitational potentials w and wi

The gravitational potentials w and wi in the required
approximation have been extensively discussed in the
literature. Here, we summarize the results needed for our
further work. We specialize Eqs. (11) and (12) for the case
of the spherically symmetric matter distribution from
Sec. II C:

wðt;xÞ ¼Gr2
Z

2π

0

dλ0
Z

π

0

dθ0 sinθ0

×
Z

R=r

0

dz
z2σðt; zrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2− 2zn0 ·n
p

þ 1

2c2
Gr4

∂2

∂t2
Z

2π

0

dλ0
Z

π

0

dθ0 sinθ0

×
Z

R=r

0

dzz2σðt; zrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2− 2zn0 ·n

p
þOðc−4Þ;

(18)

wiðt;xÞ ¼ Gr2
Z

2π

0

dλ0
Z

π

0

dθ0 sin θ0n0i

×
Z

R=r

0

dz
z2Bðt; zrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2 − 2zn0 · n
p þOðc−2Þ: (19)

The computations of these and similar integrals dis-
cussed below are straightforward and can be performed by
using

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 − 2zx

p ¼
2
4
P∞

n¼0 PnðxÞzn; jzj < 1;P∞
n¼0 PnðxÞz−n−1; jzj > 1;

(20)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 − 2zx

p
¼
2
4
P∞

n¼0C
ð−1=2Þ
n ðxÞzn; jzj< 1;P∞

n¼0C
ð−1=2Þ
n ðxÞz−nþ1; jzj> 1;

(21)
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where PnðxÞ are Legendre polynomials, CðαÞ
n ðxÞ are

Gegenbauer polynomials, and

Z
2π

0

dλ0
Z

π

0

dθ0 sinθ0n̂0LPsðn0 ·nÞ ¼ 4π

2lþ 1
n̂Lδls; l ≥ 0;

(22)

Z
2π

0

dλ0
Z

π

0

dθ0 sin θ0Cð−1=2Þ
s ðn0 · nÞ

¼ 4π

�
δ0s þ 1

3
δ2s

�
; s ≥ 0: (23)

Equation (22) can be demonstrated in different ways, e.g.,
by using the representation of n̂L in terms of spherical
functions and the STF basis tensors and noting that
Psðn0 · nÞ can be represented as a sum of associated
Legendre polynomials depending on the spherical coor-
dinates of n and n0. The orthogonality of the associated
Legendre functions can then be used. Equation (23) fol-
lows, e.g., from the explicit formulas for the Gegenbauer

polynomials Cð−1=2Þ
s ðxÞ.

1. Internal part

For an internal point ðt;xÞ with r ¼ jxj ≤ R, the formal
solution of Eqs. (5) and (6) reads

wðt;xÞ ¼ 4πG
r

Z
r

0

dyy2σðt; yÞ þ 4πG
Z

R

r
dyyσðt; yÞ

þ 2πG
c2

∂2

∂t2
�
r
Z

r

0

dyy2σðt; yÞ þ 1

3r

Z
r

0

dyy4σðt; yÞ

þ
Z

R

r
dyy3σðt; yÞ þ 1

3
r2
Z

R

r
dyyσðt; yÞ

�

þOðc−4Þ; (24)

wiðt;xÞ ¼ 4πG
3

�
xi

r3

Z
r

0

dyy3Bðt; yÞ þ xi
Z

R

r
dyBðt; yÞ

�

þOðc−2Þ: (25)

2. External part

For an external point ðt;xÞ with r ¼ jxj ≥ R, the formal
solution of Eqs. (5) and (6) can be simplified so that

wðt;xÞ¼ 4πG
r

Z
R

0

dyy2σðt;yÞ

þ2πG
c2

∂2

∂t2
�
r
Z

R

0

dyy2σðt;yÞþ 1

3r

Z
R

0

dyy4σðt;yÞ
�

þOðc−4Þ; (26)

wiðt;xÞ ¼ 4πG
3

xi

r3

Z
R

0

dyy3Bðt; yÞ þOðc−2Þ: (27)

3. General multiple expansions for the external part

As is well known, the solution of Eqs. (5) and (6) outside
an arbitrary compact matter distribution admits an expan-
sion in terms of multipole moments (e.g., Ref. [7]). Such an
expansion takes the form

w ¼ G
X∞
l¼0

ð−1Þl
l!

�
ML∂L

1

r
þ 1

2c2
M̈L∂Lr

�

þ 4

c2
Λ;t þOðc−4Þ; (28)

wi ¼−G
X∞
l¼1

ð−1Þl
l!

�
_MiL−1∂L−1

1

r
þ l
lþ 1

εijkSkL−1∂jL−1
1

r

�

−Λ;i þOðc−2Þ; (29)

where

Λ ¼ G
X∞
l¼0

ð−1Þl
ðlþ 1Þ!

2lþ 1

2lþ 3
PL∂L

1

r
: (30)

The Blanchet–Damour moments, ML and SL, are given by

ML ¼
Z
V
σx̂Ld3xþ 1

2ð2lþ 3Þ
1

c2
d2

dt2

Z
V
σx̂Lx2d3x

−
4ð2lþ 1Þ

ðlþ 1Þð2lþ 3Þ
1

c2
d
dt

Z
V
σix̂iLd3x; l ≥ 0; (31)

SL ¼
Z
V
εijhal x̂L−1iiσjd3s; l ≥ 1: (32)

The additional moments PL are defined by

PL ¼
Z
V
σix̂iLd3x; l ≥ 0: (33)

Here, V again denotes the support of the matter distribution.
Since we consider an isolated matter distribution of

compact support, it is well known that, according to the
local equations of motion, the lower multipole moments
satisfy the equations [12,13]

_M ¼ Oðc−4Þ; M̈i ¼ Oðc−4Þ; _Si ¼ Oðc−2Þ: (34)

It is also clear that Mi can always be chosen to be
identically zero by the choice of the origin of the reference
system as the post-Newtonian center of mass.
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4. General skeletonized harmonic gauge

The terms containing Λ can be eliminated from Eqs. (2)
and (3) by a transformation of the time coordinate

t0 ¼ t − 4

c4
Λ; x0 ¼ x: (35)

This coordinate transformation obviously retains the
harmonics gauge. This transformation changes the metric
tensor as

g000 ¼ g00 − 8

c4
Λ;t þOðc−5Þ; (36)

g00i ¼ g0i − 4

c3
Λ;i þOðc−5Þ; (37)

g0ij ¼ gij þOðc−5Þ: (38)

This gauge is called a skeletonized harmonic gauge [12], in
which Λ terms do not appear in the post-Newtonian metric,
neither in Eq. (2) and (3) nor in the termsOðc−2Þ of Eq. (4).
In this approximation, the metric is “skeletonized” by the
Blanchet–Damour moments ML and SL. However, it is
important to understand that the transformation (35) does
not change gij and therefore terms depending on Λ are still
present in the terms Oðc−4Þ in gij.

5. Multipole moments for a spherically symmetric
matter distribution

For the spherically symmetric matter distribution
(14)–(17), one can easily show that

M ¼
Z
V
σd3x − 1

2c2
d2

dt2
N

¼ 4π

Z
R

0

dyy2σðt; yÞ − 2π

c2
d2

dt2

Z
R

0

dyy4σðt; yÞ; (39)

N ¼
Z
V
σr2d3x ¼ 4π

Z
R

0

dyy4σðt; yÞ; (40)

P ¼
Z
V
σixid3x ¼ 1

2
_N þOðc−2Þ

¼ 4π

Z
R

0

dyy3Bðt; yÞ þOðc−2Þ; (41)

ML ¼ 0; l ≥ 1; (42)

SL ¼ 0; l ≥ 1; (43)

PL ¼ 0; l ≥ 1: (44)

In this case, the Blanchet–Damour mass M coincides with
the Tolman mass [13] and thus coincides with the mass

parameter of the Schwarzschild metric as discussed,
e.g., in Ref. [6]. The relation P ¼ 1

2
_N þOðc−2Þ holds

for an arbitrary matter distribution and follows from the
Newtonian equation of continuity [see Eq. (67) below] and
the Ostrogradsky–Gauss theorem.
It is easy to see that w and wi from Eqs. (26) and (27)

admit multipole expansions (28)–(30) with multipole
moments given by Eqs. (39)–(44).
In the following, we work only with the skeletonized

harmonic gauge and drop the primes over the coordinates.
Thus, the metric tensor in this gauge at the external point
ðt;xÞ with jxj ≥ R takes the form

g00 ¼ −1þ 2

c2
GM
r

− 2

c4
G2M2

r2
þOðc−5Þ; (45)

g0i ¼ Oðc−5Þ; (46)

gij ¼ δij

�
1þ 2

c2
GM
r

þ 2

c4
G2M2

r2

�
þ 4

c4

�
qij þ δij

GN̈
3r

�

þOðc−5Þ: (47)

E. Computation of qij
We now come to the computation of qij, as a solution of

Eq. (7), which can be split according to

qij ¼ qwij þ qσij; (48)

where

Δqwij ¼ −w;iw;j þOðc−1Þ; (49)

Δqσij ¼ −4πGσij þOðc−1Þ: (50)

1. Computation of qwij
The gravitational potential w in the Newtonian approxi-

mation is determined by Eq. (24), where the terms Oðc−2Þ
are omitted. Since w ¼ wðt; rÞ, we get

∂w
∂xi ¼

xi

r
∂w
∂r ;

∂w
∂r ¼

2
6664
−GMr

r2
; r ≤ R

−GM
r2

; r ≥ R

; (51)

where Mr is the mass contained in a sphere of radius r,

Mr ¼
Z
jxj≤r

σd3x ¼ 4π

Z
r

0

σðt; yÞy2dy; (52)

andM ≡MR is the total mass of the body. Note, thatMr is
some unknown function of r, while M does not depend on
r. Therefore, one gets
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Δqwij ¼ −w;iw;j ¼ −G2M2f2ðrÞ x
ixj

r6
; (53)

where

fðrÞ≡Mr=M; (54)

so that fð0Þ ¼ 0 and fðrÞ ¼ 1 for r ≥ R. The solution for
qwij can be written as

qwij ¼ G2M2ðIij þ EijÞ; (55)

where Iij ¼ Iijðt;xÞ is the potential with the source defined
by the gravitational potential wðt; rÞ inside the body
(for r ≤ R),

Iij ¼
1

4π

Z
jx0j≤R

f2ðr0Þ x
0ix0j

r06
1

jx − x0j d
3x0

¼ 1

4π

1

r2

Z
2π

0

dλ0
Z

π

0

dθ0 sin θ0n0in0j

×
Z

R=r

0

dz
f2ðzrÞ

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 − 2zn0 · n

p ; (56)

and Eij ¼ Eijðt;xÞ is the potential with the source defined
by the gravitational potential wðt; rÞ outside the body
(for r ≥ R),

Eij ¼
1

4π

Z
jx0j≥R

x0ix0j

r06
1

jx − x0j d
3x0

¼ 1

4π

1

r2

Z
2π

0

dλ0
Z

π

0

dθ0 sin θ0n0in0j

×
Z

∞

R=r
dz

1

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 − 2zn0 · n

p

¼ 1

4π

1

r2

Z
2π

0

dλ0
Z

π

0

dθ0 sin θ0n0in0j

×
Z

r=R

0

dz
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2 − 2zn0 · n
p ; (57)

where r0 ¼ jx0j, r ¼ jxj, n0 ¼ x0=r0, n ¼ x=r. Both poten-
tials Iij and Eij are nonzero both inside and outside of the
matter distribution. For each of these two integrals, Iijðt;xÞ
and Eijðt;xÞ, two cases should be considered: the external
case with jxj ¼ r ≥ R (labeled by a superscript þ) and the
internal case for jxj ¼ r ≤ R (labeled by a superscript −).
Straightforward calculations show that

I−ij ¼
1

3r2
δij

�
r
Z

r

0

dy
f2ðyÞ
y2

þ r2
Z

R

r
dy

f2ðyÞ
y3

�

þ 1

5r2
n̂ij

�
1

r

Z
r

0

dyf2ðyÞ þ r4
Z

R

r
dy

f2ðyÞ
y5

�
; (58)

Iþij ¼
1

3r
δij

Z
R

0

dy
f2ðyÞ
y2

þ 1

5r3
n̂ij

Z
R

0

dyf2ðyÞ: (59)

E−
ij ¼

1

6

1

R2
δij þ 1

20

r2

R4
n̂ij; (60)

Eþ
ij ¼

1

3

1

Rr
δij − 1

6

1

r2
δij þ 1

4

1

r2
n̂ij − 1

5

R
r3

n̂ij: (61)

Note, that the integrals in Eq. (59) do not depend on r.
Therefore, the dependence of Iþij on r is explicitly found.

2. Computation of qσij
We now turn to the computation of qσij determined by

Eq. (50). Using Eq. (17), we have

qσij ¼ G
Z
jx0j≤R

σijðt;x0Þ
jx − x0j d

3x0

¼ Gr2
Z

2π

0

dλ0
Z

π

0

dθ0 sin θ0n̂0ij

×
Z

R=r

0

dz
z2AðzrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2 − 2zn0 · n
p

− 2Gr2δij
Z

2π

0

dλ0
Z

π

0

dθ0 sin θ0

×
Z

R=r

0

dz
z2CðzrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2 − 2zn0 · n
p : (62)

Here, we do not specify explicitly that A and C may also
depend on time t. Again, two cases r ≥ R and r ≤ R should
be considered using Eqs. (20)–(22). For an internal point
with r ≤ R, the integral expression for qσij reads

qσ;−ij ¼ 4πG
5

n̂ij

r3

Z
r

0

dyy4AðyÞ þ 4πG
5

r2n̂ij
Z

R

r
dy

AðyÞ
y

−
8πG
r

δij
Z

r

0

dyy2CðyÞ − 8πGδij
Z

R

r
dyyCðyÞ:

(63)

For an external point with r ≥ R, the integral expression for
qσij can be simplified to

qσ;þij ¼ 4πG
5

n̂ij

r3

Z
R

0

dyy4AðyÞ − 8πG
r

δij
Z

R

0

dyy2CðyÞ:
(64)

Again, the integrals on the last line of Eq. (64) do not
depend on r, and the dependence of qσ;þij on r is explicitly
given by Eq. (64).
For the general spherically symmetric case considered

here, f ¼ fðrÞ, AðrÞ and CðrÞ are arbitrary functions, and
no further simplification of the internal potentials I−ij and
qσ;−ij can be done. Clearly, the internal potentials I−ij, E−

ij,
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and qσ;−ij are not needed for the derivation of the external
metric. They will be used below for comparisons in the
special case of a body composed of an incompressible
fluid.

F. External metric

Gathering all the partial results, we can now write the
following expression for the potential qijðt;xÞ at an
external point with jxj ≥ R:

qþij ¼ G2M2ðIþij þ Eþ
ijÞ þ qσ;þij

¼ G2M2

3r
δij

Z
R

0

dy
f2ðyÞ
y2

þ G2M2

5r3
n̂ij

Z
R

0

dyf2ðyÞ

þ G2M2

3Rr
δij −G2M2

6r2
δij þ G2M2

4r2
n̂ij −G2M2R

5r3
n̂ij

þ 4πG
5

n̂ij

r3

Z
R

0

dyy4AðyÞ − 8πG
r

δij
Z

R

0

dyy2CðyÞ:
(65)

All integrals in Eq. (65) are constants characterizing the
matter distribution under consideration in addition to the
mass M. Such additional constants do not appear in usual
forms of the external Schwarzschild metric, and either can
be eliminated by some coordinate transformation or vanish
in virtue of the local equations of motion.
The dependence of qþij ¼ qþijðt;xÞ on x in Eq. (65) is

fully explicit. There are terms of the following type:
i) δij=r, ii) δij=r2, iii) n̂ij=r2, and iv) n̂ij=r3. The additional
constants appear in terms of types i and iv. We demonstrate
first that the terms of type i cancel with the term in Eq. (47)
proportional to N̈ and coming from Λ;t in Eq. (28).
Collecting all terms of this type in Eq. (65), one gets

qþijj1=r ¼
δijG
3r

�
−24π

Z
R

0

dyy2CðyÞ

þGM2

Z
R

0

dy
f2ðyÞ
y2

þGM2

R

�

¼ −8π
δijG
3r

Z
R

0

dy

�
3y2CðyÞ þ y3σðyÞ dwðyÞ

dy

�

¼ −8π
δijG
3r

d
dt

Z
R

0

dyy3Bðt; yÞ

¼ − δijG
3r

N̈; (66)

where we used the Newtonian local equations of motion:

∂
∂t σ þ ∂

∂xi σ
i ¼ Oðc−2Þ; (67)

∂
∂t σ

i þ ∂
∂xj T

ij ¼ σ
∂
∂xi wþOðc−2Þ: (68)

The second equation, in the case of spherical symmetry
(14)–(17), can be simplified to

2

3

∂
∂r Aðt; rÞ þ

2Aðt; rÞ
r

þ ∂
∂t Bðt; rÞ þ

∂
∂rCðt; rÞ

¼ σ
∂
∂r wðt; rÞ þOðc−2Þ: (69)

The quantity N appearing in the final result in Eq. (66) is
just the moment of inertia of the body defined by Eq. (40).
Comparing Eq. (66) with the last term in Eq. (47), we
conclude that the 1=r terms of order Oðc−4Þ in gij cancel
exactly.
Finally, let us note that the terms of type iv in Eq. (65)

can be eliminated by a gauge transformation:

t0 ¼ t; x0i ¼ xi þ 1

c4
∂ih: (70)

This transformation changes the metric tensor according to

g000 ¼ g00 þOðc−5Þ; (71)

g00i ¼ g0i þOðc−5Þ; (72)

g0ij ¼ gij − 2

c4
∂ijhþOðc−5Þ: (73)

One can see that the coordinate gauge remains harmonic if
the function h satisfies the condition ∂kkh ¼ Oðc−1Þ.
Taking

h¼ 1

30

G
r

�
GM2

Z
R

0

dyf2ðyÞ−GM2Rþ4π

Z
R

0

dyy4AðyÞ
�
;

(74)

one can eliminate the terms of type iv in Eq. (65) and in the
metric. The transformation (70) with h given by Eq. (74)
augments the definition of the skeletonized harmonic gauge
for a spherically symmetric matter distribution in the post-
linear approximation. Note that both Λ appearing in
Eq. (35) and h in Eq. (70) depend on the internal structure
of the body, while the resulting external metric does not.
Indeed, omitting the primes again, we can see that the
metric tensor at the external point ðt;xÞ with jxj ≥ R takes
the form

g00 ¼ −1þ 2

c2
GM
r

− 2

c4
G2M2

r2
þOðc−5Þ; (75)

g0i ¼ Oðc−5Þ; (76)

gij ¼ δij

�
1þ 2

c2
GM
r

þ 1

c4
G2M2

r2

�
þ 1

c4
G2M2

r2
ninj

þOðc−5Þ: (77)
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This metric fully agrees with the well-known external
Schwarzschild metric in harmonic coordinates in the
corresponding approximation.

III. CASE OF A STATIC INCOMPRESSIBLE FLUID

The case of a static body composed of an incompressible
fluid is often discussed in the literature when dealing with
the internal Schwarzschild solution [6]. It is well known
that for a static incompressible fluid the four functions
describing the matter distribution in Eqs. (14)–(17) are time
independent and read

σðrÞ ¼ κ

�
1þ 1

c2
ð2wþ 3pÞ

�
þOðc−4Þ

¼ κ

�
1þ 1

2c2
GM
R

ð9 − 5η2Þ
�
þOðc−4Þ; (78)

AðrÞ ¼ Oðc−2Þ; (79)

BðrÞ ¼ Oðc−2Þ; (80)

CðrÞ ¼ pþOðc−2Þ ¼ 1

2

GM
R

ð1 − η2Þκ þOðc−2Þ; (81)

where η≡ r=R, κ ¼ const is the invariant density (rest
mass plus internal energy density) and p ¼ pðrÞ is the
isotropic pressure that can be computed from the condition
of hydrostatic equilibrium dp=dr ¼ κdw=drþOðc−2Þ
with the boundary condition pðRÞ ¼ 0. The well-known
Newtonian formula for the internal potential, w ¼
1
2
GM
R ð3 − η2Þ þOðc−2Þ, was used here and in Eq. (78).
The equations that define the gravitational potentials

simplify for the static incompressible fluid case to

wðt;xÞ ¼

2
66664

1

2

GM
R

ð3 − η2Þ þ 3

8c2
G2M2

R2
ð1 − η2Þ2 þOðc−4Þ; r ≤ R;

GM
r

þOðc−4Þ; r ≥ R;

(82)

wiðt;xÞ ¼ Oðc−2Þ; (83)

qijðt;xÞ ¼ G2M2 ×

2
6664

1

R2
η2
�
3

20
− 1

14
η2
�
n̂ij − 1

2R2

�
1 − η2 þ 1

3
η4
�
δij þOðc−1Þ; r ≤ R;

1

4r2

�
n̂ij − 2

3
δij

�
− 2

35
R∂ij

�1
r

�
þOðc−1Þ; r ≥ R;

(84)

where the mass M is defined by

M ¼ 4π

Z
R

0

dyy2σðt; yÞ þOðc−4Þ

¼ 4

3
πR3κ

�
1þ 3GM

c2R

�
þOðc−4Þ: (85)

Here, we used the fact that for a static incompressible fluid
fðrÞ ¼ η3 þOðc−1Þ.
It is important to see that for a static incompressible fluid

P ¼ 0, and therefore Λ ¼ 0 [see Eqs. (41) and (30)]. It
means that no additional time transformation (35) is needed
to bring the external metric in the usual form of the
Schwarzschild solution in harmonic coordinates. In the
gauge transformation of spatial coordinates (70)–(74), one
should take h ¼ − G2M2R

35r . This eliminates the last term in
Eq. (84) for qij for an external point. In this way, the metric
outside of the body again coincides with Eqs. (75)–(77) and
agrees with the well-known Schwarzschild solution.

For a point inside the body with r ≤ R, Eqs. (82)–(84)
together with the definitions (2)–(4) allow us to write

g00 ¼ −1þ 1

c2
GM
R

ð3 − η2Þ − 1

4c4
G2M2

R2
ð15 − 6η2 − η4Þ

þOðc−5Þ; (86)

g0i ¼ Oðc−5Þ; (87)

gij ¼ δij

�
1þ 1

c2
GM
R

ð3 − η2Þ

þ 1

12c4
G2M2

R2
ð39 − 30η2 þ 7η4Þ

�

þ 1

35c4
G2M2

R2
η2ð21 − 10η2Þn̂ij þOðc−5Þ: (88)

As expected, we see that the internal metric depends on
the radius of the body R as it is the case also in the
Newtonian limit.
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IV. DERIVATION OF THE METRIC FROM THE
EXACT SOLUTION IN THE CASE OF A STATIC

INCOMPRESSIBLE FLUID

It is well known that both internal and external
Schwarzschild solutions for the case of the static incom-
pressible fluid can be written as exact solutions. In this
section, we will compare our results (82)–(88) for the static
incompressible fluid case with those that can be found in
the literature (e.g., Ref. [6] where standard Schwarzschild
coordinates are used).

A. Metric tensor in standard coordinates

For this Schwarzschild problem, the metric tensor in
standard coordinates ðt; ρ; ϑ; λÞ is of the form

ds2 ¼ −BðρÞc2dt2 þAðρÞdρ2 þ ρ2ðdϑ2 þ sin2 ϑdλ2Þ:
(89)

Let the radius of the body be at ρ ¼ a. Then, the internal
metric for ρ ≤ a is given by (e.g., see Secs. 8.2 and 11.9 of
Ref. [6])

A−ðρÞ ¼
�
1 − 2mρ2

a3

�−1
; (90)

B−ðρÞ ¼ 1

4

�
3

�
1 − 2m

a

�
1=2 −

�
1 − 2mρ2

a3

�
1=2

�
2

; (91)

and the external metric for ρ ≥ a reads

AþðρÞ ¼
�
1 − 2m

ρ

�−1
; (92)

BþðρÞ ¼ 1 − 2m
ρ

: (93)

Here, m ¼ GM=c2, and

M ¼ 4π

Z
a

0

κρ2dρ ¼ 4π

3
κa3: (94)

Below, we will show that this expression for M is in
accordance with Eq. (85) above.

B. Transformation to harmonic coordinates

Our goal now is to transform this solution into harmonic
coordinates. It is well known that the transformation
between standard and harmonic coordinates only affects
the radial coordinate r ¼ rðρÞ. The transformation of the
radial coordinate brings the metric (89) into the form

g00 ¼ −B; (95)

g0i ¼ 0; (96)

gij ¼ Dδij þN ninj; (97)

where

D ¼ ρ2

r2
; N ¼

��
dr
dρ

�−2
A − ρ2

r2

�
: (98)

The transformation from the standard radial coordinate ρ
to some harmonic coordinate r ¼ rðρÞ is determined by the
second-order differential equation (e.g., Sec. 8.1 of
Ref. [6]):

d
dρ

�
ρ2B1=2A−1=2 dr

dρ

�
¼ 2A1=2B1=2r: (99)

Clearly, this gives two distinct differential equations for
ρ ≤ a and ρ ≥ a according to Eqs. (90)–(93). We will now
determine the function rðρÞ satisfying these two equations
such that both rðρÞ and its derivative dr=dρ are continuous
at the stellar surface at ρ ¼ a or rðaÞ ¼ R. According to
Eq. (99), this is needed to keep the metric in harmonic
coordinates continuous at rðaÞ ¼ R. In the following, we
will consistently neglect all terms proportional to m3 (or
equivalently c−6).
For both internal and external solutions, we start with the

ansatz

r ¼ ρð1þmbðρÞ þm2cðρÞÞ þOðm3Þ; (100)

where bðρÞ and cðρÞ are unknown functions to be deter-
mined from the differential equation (99) and boundary
conditions.
For the external case, we substitute the external metric

(92)–(93) and the ansatz (100) into Eq. (99), expand in
powers of m, neglect terms Oðm3Þ, and get the general
solutions of the resulting second-order differential
equations for bðρÞ and cðρÞ,

bþðρÞ ¼ Cþ
2 − 1

ρ
− Cþ

1

3ρ3
; (101)

cþðρÞ ¼ Cþ
4 − Cþ

2

ρ
− Cþ

3

3ρ3
− 2Cþ

1

3ρ4
; (102)

where Cþ
i are four arbitrary constants. A similar procedure

for the internal metric (90)–(91) gives

b−ðρÞ ¼ ρ2

2a3
þ C−

2 − C−
1

3ρ3
; (103)

c−ðρÞ ¼ 15

28

ρ4

a6
− 3

20

ρ2

a4
þ C−

2

2

ρ2

a3
þ C−

4 þ C−
1

3a3ρ
− C−

3

3ρ3
;

(104)
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where C−
i are four arbitrary constants (generally speaking,

different from Cþ
i ). Note that both C−

i and Cþ
i are not

dimensionless. Any values of C−
i and Cþ

i can be taken to
satisfy the differential equation (99). However, all these
constants can be fixed from four boundary conditions:
(1) rðρÞ is equal to ρ at spatial infinity: limρ→∞rðρÞ¼ρ or,

equivalently limρ→∞bþðρÞ¼0 and limρ→∞cþðρÞ¼0;
(2) rðρÞ is regular for ρ ¼ 0: rð0Þ ¼ 0 or, equivalently,

limρ→0ρb−ðρÞ ¼ 0 and limρ→0ρc−ðρÞ ¼ 0;
(3) rðρÞ is continuous at ρ ¼ a: b−ðaÞ ¼ bþðaÞ

and c−ðaÞ ¼ cþðaÞ;
(4) the derivative of rðρÞ is continuous at ρ ¼ a:

db−ðρÞ
dρ j

ρ¼a
¼ dbþðρÞ

dρ j
ρ¼a

and dc−ðρÞ
dρ j

ρ¼a
¼ dcþðρÞ

dρ j
ρ¼a

.

With these boundary conditions, we have

r− ¼ ρ

�
1 − 3

2

m
a
þ 1

2

mρ2

a3
þ 1

4

m2

a2
− 9

10

m2ρ2

a4
þ 15

28

m2ρ4

a6

�

þOðm3Þ; (105)

rþ ¼ ρ

�
1 −m

ρ
− 4

35

a
ρ

m2

ρ2

�
þOðm3Þ: (106)

This also determines the relation between a (the stellar
radius in ρ) and R (the stellar radius in r):

R ¼ a −m − 4

35

m2

a
þOðm3Þ;

a ¼ Rþmþ 4

35

m2

R
þOðm3Þ: (107)

From this, we see that both definitions for the mass M,
(85) and (94) are in accordance with each other.
Note that the first derivative of A is not continuous at

ρ ¼ a: dAþ
dρ j

ρ¼a
≠ dA−

dρ j
ρ¼a

. Interestingly, this is compen-

sated by a discontinuity of the second derivative of rðρÞ at
ρ ¼ a so that the resulting harmonic metric and its first
derivatives are continuous.
Here, we have only worked in an approximation neglect-

ing terms Oðm3Þ. Let us note that the differential
equation (99) outside the star has the solution (e.g.,
Ref. [14])

r ¼ C1ðρ −mÞ þ C2FðρÞ; Ci ¼ const; (108)

FðρÞ≡ ½ðρ −mÞ lnð1 − 2m=ρÞ þ 2m�

¼ −mX∞
i¼2

2iði − 1Þ
iðiþ 1Þ ðm=ρÞi: (109)

Inside the star, Eq. (99) can be transformed into a
Heun equation for which the solutions are also known
(see also Ref. [15]).

Using the coordinate transformations (105)–(106) and
the metric tensor (95)–(98), we can now derive the explicit
expressions for the metric tensor in harmonics coordinates.

C. Internal metric

With these results, the internal metric is given by

g−00 ¼ −B−

¼ −1þm
R
ð3 − η2Þ − m2

4R2
ð15 − 6η2 − η4Þ þOðm3Þ;

(110)

from which we derive Eq. (82) for r ≤ R in virtue of
w=c2 ¼ − 1

2
lnð−g00Þ þOðm3Þ. Here, again, η≡ r=R.

Furthermore,

D−ðrÞ ¼ 1þm
R
ð3 − η2Þ þ m2

2R2

�
13

2
− 27

5
η2 þ 19

14
η4
�

þOðm3Þ (111)

N −ðrÞ ¼ 1

35

m2

R2
η2ð21 − 10η2Þ þOðm3Þ: (112)

These equations and Eq. (97) allows one to recover our
previous result (88).

D. External metric

The metric component gþ00 ¼ −Bþ coincides with
Eq. (45) and

DþðrÞ ¼ 1þ 2m
r

þm2

r2

�
1þ 8

35

R
r

�
þOðm3Þ; (113)

N þðrÞ ¼ m2

r2

�
1 − 24

35

R
r

�
þOðm3Þ: (114)

These equations and Eq. (97) agree with our previous result
(77). It is easy to see that the metric in harmonics
coordinates, and its first derivative is continuous at r ¼ R.

E. Computation of qij
It is interesting to check if we can also recover our

expression (84) for qij for a static incompressible fluid.
From the definition of qij, Eq. (4), one obtains

qij ¼
c4

4

��
D − 1 − 2w

c2
− 2w2

c4

�
δij þN

xixj

r2

�
þOðm3Þ:

(115)

which immediately gives Eq. (84).
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V. CONCLUSIONS

We have treated the gravitational field of some spheri-
cally symmetric matter distribution in harmonic coordi-
nates to post-linear order. We started with the general
case in which the matter distribution might be time
dependent and left the form of the energy-momentum
tensor open. The metric tensor was derived explicitly for
both the interior and the exterior region. In the exterior
region, the metric tensor can be expanded in terms
of the Blanchet–Damour mass, and it is demonstrated
explicitly how the usual external Schwarzschild field can
be derived from the field equations. Terms depending
on the internal structure appear in several places in
intermediate calculations, and it was shown how they
can be removed with additional gauge transformations
or how such terms cancel exactly in virtue of the local
equations of motion.

The results of this paper should be considered as an
intermediate step in the derivation of the post-linear metric
(2)–(4) for a body possessing a full multipole structure,
i.e., having arbitrary mass and spin moments, ML and SL.
This would be a generalization of the well-known post-
Newtonian multipole expansions of Blanchet and Damour
[7] (discussed also in Sec. II D 3) and the post-Minkowskian
ones derived by Damour and Iyer [8]. Such a metric is, e.g.,
required for relativistic modeling of future space astrometric
projects aiming at nanoarcsecond accuracies.
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