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We investigate the properties of relativistic star spheres made of an electrically charged incompressible
fluid, generalizing, thus, the Schwarzschild interior solution. The investigation is carried by integrating
numerically the hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation,
with the hypothesis that the charge distribution is proportional to the energy density. We match the interior
to a Reissner-Nordström exterior, and study some features of these star spheres such as the total mass M,
the radius R, and the total chargeQ. We also display the pressure profile. For star spheres made of a perfect
fluid there is the Buchdahl bound, R=M ≥ 9=4, a compactness bound found from generic principles. For
the Schwarzschild interior solution there is also the known compactness limit, the interior Schwarzschild
limit where the configurations attain infinite central pressure, given by R=M ¼ 9=4, yielding an instance
where the Buchdahl bound is saturated. We study this limit of infinite central pressure for the electrically
charged stars and compare it with the Buchdahl-Andréasson bound, a limit that, like the Buchdahl bound
for the uncharged case, is obtained by imposing some generic physical conditions on charged
configurations. We show that the electrical interior Schwarzschild limit of all but two configurations is
always below the Buchdahl-Andréasson limit, i.e., we find that the electrical interior Schwarzschild limit
does not generically saturate the Buchdahl-Andréasson bound. We also find that the quasiblack hole limit,
i.e., the extremal most compact limit for charged incompressible stars, is reached when the matter is highly
charged and the star’s central pressure tends to infinity. This is one of the two instances where the
Buchdahl-Andréasson bound is saturated, the other being the uncharged, interior Schwarzschild solution.
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I. INTRODUCTION

The search for matter field solutions in general relativity
started with Schwarzschild [1], who studied a perfect fluid
with spherically symmetric energy density distribution
given by ρðrÞ and pressure pðrÞ, where r is the radial
coordinate, for a constant energy equation of state, ρ ¼ ρ0,
with ρ0 a constant, matched to a static spherically sym-
metric vacuum exterior spacetime. The exterior solution
is the Schwarzschild solution, while the whole solution,
comprised of the interior plus exterior, is called the
Schwarzschild interior solution [1]. Schwarzschild also
obtained a compactness limit, the interior Schwarzschild
limit. He showed [1] that at R=M ¼ 9=4 the central
pressure becomes infinite, and for smaller R there is no
central pressure that can sustain the configuration, and it
presumably collapses, where R is the radius of the configu-
ration and M its mass. Tolman [2] and Oppenheimer and

Volkoff [3] then discussed in detail the structure of those
matter field equations by writing the pressure gradient field
in a convenient form, now called the Tolman-Oppenheimer-
Volkoff (TOV) equation. Volkoff [4] and then Misner in his
lectures [5] showed how the Schwarzschild interior solution
can be extracted directly from the TOV equation and
rederived the limit of R=M ¼ 9=4, as had been found by
Schwarzschild [1]. Nowadays, standard texts in general
relativity exhibit the Schwarzschild interior solution and
its limit. A constant density equation of state for a fluid in a
star is certainly interesting not only from a historical
perspective. Notably, a constant density is achieved when
the matter is negligibly compressible and can sustain huge
pressures. This happens when the velocities of the matter
particles become relativistic, i.e., when the temperatures are
of the order of the particles’ rest mass if the matter is
composed of bosons, or when the Fermi levels are again of
the order of the particles’ rest mass if the matter is composed
of fermions. This means that in both cases the densities
approach one particle per cubic Compton wavelength. In
addition, it is from an incompressible equation of state that
one extracts the important compactness Schwarzschild limit,
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which can then be compared with other compactness
bounds, and the results give a clean and robust picture.
Of course, an incompressible equation of state also has some
drawbacks, as the speed of sound through such a medium is
infinite, although this does not have a major influence in the
overall structure. There are many other equations of state that
can be used to study compact stars. Indeed, for instance,
Oppenheimer and Volkoff [3] applied the method to study
compact neutron stars, stars that do not obey an incom-
pressible equation of state. As expected then, the most
compact neutron stars are not as compact as the interior
Schwarzschild limit allows.
Buchdahl [6] took further interest in general relativistic

equilibrium and proved that, under certain conditions, a
spherically symmetric matter configuration could only exist
when the radius R of the configuration divided by its mass
M satisfies the relation R=M ≥ 9=4. The result is quite
general. Indeed the only assumptions for providing this
result are that the fluid’s energy density ρ is non-negative
and decreasing outward, and the pressure p is non-negative
and isotropic; i.e., the fluid is perfect, and the boundary
defined by p ¼ 0 is matched to the exterior Schwarzschild
solution. The inequality is a compactness bound, the
Buchdahl bound, and the value R=M ¼ 9=4 is the
Buchdahl limit. It is a limit of limits. It also means a star
made of such a fluid cannot approach its own gravitational
radius R=M ¼ 2 and so trapped surfaces are eliminated.
Although derived from completely different means, the
interior Schwarzschild limit (i.e., the limit of infinite central
pressure for incompressible spheres) [1] and the Buchdahl
limit (i.e., the limit for perfect fluids obeying reasonable
physical conditions) [6] coincide, and so the interior
Schwarzschild solution with infinite pressure saturates
the Buchdahl bound and, thus, realizes the Buchdahl limit.
The interest of adding electric charge to the matter in

writing the TOVequation was understood by Bekenstein in
[7]. Indeed, although a significant excess of electric charge
in stars is unlikely, its study in stars is of great interest since
it mimics other fields and possible alterations in the
gravitational field as proposed in alternative theories of
gravity. Perhaps the most simple electric star is a star with a
Schwarzschild incompressible interior with some type of
added electric charge distribution. Adding electric charge to
these configurations can bring some insight to their overall
structure in more complex situations. Thus, in this spirit
and sticking to incompressible fluids, de Felice and
collaborators [8,9] studied the structure of electric stars
with a power-law charge distribution qðrÞ of the form
qðrÞ ¼ Qðr=RÞn, for some exponent n ≥ 3, total charge Q,
and star’s radius R, matching the solutions, at the star’s
boundary, to the Reissner-Nordström solution for the given
star’s mass M, radius R, and charge Q. Numerical tech-
niques were used. They also analyzed the most compact
stars for each Q. Anninos and Rothman [10] also studied
incompressible fluids with somewhat more intricate charge

distributions. Now, in the case the radius R of the charged
star is taken to the gravitational radius of the star itself, the
configuration is called a quasiblack hole. It is an extremal
configuration. In this extremal configuration, the total
electric charge of the star Q is equal to the star’s mass
M,Q ¼ M, and the configuration has a radius R equal to its
own gravitational radius rþ ¼ M, i.e., R ¼ M. This con-
figuration is highly compact and is a limit for the case
Q ¼ M. In [8–10], such configurations were detected. The
stability of physical system, in particular of electrically
charged stars, is always of importance. An analysis of the
stability of such stars against radial perturbations has been
performed in [9,10], with the conclusion that for a range of
the star parameters, and depending on how stiff the
perturbed matter is, these systems can be stable.
There has also been interest in finding a Buchdahl

electric limit formula which started in the works [11,12].
In [13], among other cases studied, the ρ ¼ ρ0 solution,
with ρ0 a constant, with the n ¼ 3 power-law distribution
for the charge of [8,9], was revisited with the aim of finding
the most compact configuration and a Buchdahl electric
limit formula. Up to now, the sharpest bound has been
given by Andréasson [14]. This Buchdahl-Andréasson
bound for electrically charged matter is taken from the
condition pþ 2pT ≤ ρ, where p and pT are the radial
and tangential pressures, respectively, and some other
reasonable physical conditions [14]. It is given by
R=M ≥ 9=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Q2=R2

p
Þ2. Surprisingly, although

derived from completely different hypotheses, the
Buchdahl bound for the uncharged Q ¼ 0 case R=M ≥
9=4 is reobtained. It also gives the quasiblack hole limit; for
Q ¼ R, one obtains R ¼ M, and so Q ¼ M also. Charged
shells saturate the Buchdahl-Andréasson bound [14],
whereas the ρ ¼ ρ0 solution, with ρ0 a constant, and qðrÞ ¼
Qðr=RÞ3 of [13] do not, as noticed in [14]. Presumably, the
whole set of solutions found in [8,9] also does not saturate
generically the Buchdahl-Andréasson bound.
Motivated by these settings, we want to further inves-

tigate relativistic stars made of an incompressible fluid,
ρ ¼ ρ0, with ρ0 being a constant. In order to probe the
genericity of the results mentioned above, we will assume a
new charge distribution qðrÞ; namely, we take the electric
charge density ρe as proportional to the energy density,
ρe ¼ αρ0, with α a number obeying 0 ≤ α ≤ 1. This is a
possible assumption as one might think that the net charge
is inherent to each particle, having arisen from some
physical consorted process. Then the charged distribution
qðrÞ is taken from the Maxwell field equation dqðrÞ

dr ¼
4πρeðrÞr2

ffiffiffiffiffiffiffiffiffi
AðrÞp

, where AðrÞ is the grrðrÞ component of
the spacetime metric. This gives a qðrÞ different from the
ones considered in [8–10], namely, qðrÞ ¼ Qðr=RÞn (see
also [13]). Other qðrÞ distributions can be thought of, such
as one that has most of the charge at or near the core of the
star. Here we stick to ρe ¼ αρ0. We then analyze the
structure of such spheres and study the compactness
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bounds; namely, we numerically probe the electric interior
Schwarzschild limit with an electric charge Q within the
range 0 ≤ Q ≤ M and compare the results to the Buchdahl-
Andréasson bound [14]. We also study the quasiblack hole
limit Q ¼ R ¼ M of this set of configurations.
It is worth mentioning that there are equations of state,

other than an incompressible one, that can be used in the
study of electrically charged stars and that should be
mentioned. For instance, Cooperstock and de la Cruz
[15] and Florides [16] used an equation of the form ρðrÞ þ
q2ðrÞ=8πr4 ¼ constant and studied some properties of the
solutions (see also [17]). Polytropic equations were used in
[18–21], where star configurations and their structure were
studied, and the Schwarzschild electric limit for the given
equation of state and for a given charge was considered.
There are also works that treat a quark deconfining phase in
compact neutron stars [22], where an unbalance of electric
or color charge might appear. These works [15–22] stayed
away from the extremal quasiblack hole configuration.
Works that did consider the Schwarzschild electric limit
and the quasiblack hole limit are (i) works that analyzed
the Cooperstock—de la Cruz—Florides equation of state
[15–17] as in [23]; (ii) works that used a generic polytropic
equation of state with any exponent as in [24]; (iii) works
with a dust equation of state, i.e., where the fluid is
composed of purely extremal charged matter, also called
electrically counterpoised matter, where static equilibrium
configurations at the quasiblack hole limit, with Q ¼ M
and R ¼ M, were found [25,26]; (iv) works that in addition
to the electric charge have a scalar charge [27]; and of
course (v) works with an incompressible equation of state
[8–10] as mentioned before, to name a sample. Note
that some works, e.g., [24], have been calling the
Buchdahl limit what should in fact be named the
interior Schwarzschild limit. Works that treat generically
quasiblack holes are [28,29]; for a review, see [30].
The paper is organized as follows. In Sec. II, we give the

general relativistic equations, the equations of structure for
a static spherically symmetric configuration, the equations
of state for the energy density and charge density, and
discuss the boundary conditions. In Sec. III, we study
numerically the structure of an electrically charged incom-
pressible star. We give the numerical input values and then
find the mass of the relativistic star as a function of the
energy density, the radius as a function of the energy
density, and the charge as a function of the energy density.
The behavior of the mass, radius, and charge of the stars for
some central pressures is also shown. In addition, the
pressure profile, i.e., pðrÞ, is displayed for some typical
stars. In Sec. IV, we present the electrical Schwarzschild
limit for these stars and compare with the Buchdahl-
Andréasson limit. In Sec. V, we study in detail the
quasiblack hole limit of such a relativistic star and give
the behavior of the redshift at the surface of the quasiblack
hole as a function of the star’s intrinsic parameters.

In Sec. VI, we conclude. In the Appendix, we give the
equations of structure in dimensionless form.

II. GENERAL RELATIVISTIC EQUATIONS

A. Basic equations

We are interested in analyzing the properties of highly
compacted charged spheres as described by Einstein-
Maxwell equations with charged matter (in this section,
we put c ¼ 1 and G ¼ 1), i.e.,

Gμν ¼ 8πTμν; (1)

∇νFμν ¼ 4πJμ; (2)

where greek indices are spacetime indices running from 0
to 3, with 0 being a time index. The Einstein tensor Gμν is
defined in terms of the Ricci tensor Rμν, the metric tensor
gμν, and the Ricci scalar R by the well-known relation
Gμν ¼ Rμν − 1

2
gμνR. Tμν stands for the energy-momentum

tensor, which in this study is written as a sum of two terms,

Tμν ¼ Eμν þMμν: (3)

The first part Eμν is the electromagnetic energy-momentum
tensor, which is given in terms of the Faraday-Maxwell
tensor Fμν by the relation

Eμν ¼
1

4π

�
Fμ

γFνγ − 1

4
gμνFγβFγβ

�
: (4)

The matter energy-momentum content of the spacetime is
represented by Mμν, which has the form of the energy-
momentum tensor of a perfect fluid,

Mμν ¼ ðρþ pÞUμUν þ pgμν; (5)

with ρ and p being the energy density and the pressure of
the fluid, respectively, and Uμ is the fluid four-velocity.
Equation (2) is the Maxwell equation, stating the propor-
tionality between the covariant derivative ∇ν of the
Faraday-Maxwell tensor Fμν and the electromagnetic
four-current Jμ. For a charged fluid, this current is given
in terms of the electric charge density ρe by

Jμ ¼ ρeUμ: (6)

The other Maxwell equation ∇½αFβγ� ¼ 0, where ½…�
means antisymmetrization, is automatically satisfied for
a properly defined Fμν.

B. Equations of structure

The charged incompressible fluid spheres considered
here are described by a static fluid distribution with
spherical symmetry, in such a way that the line element
is of the form
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ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; (7)

where t, r, θ, and ϕ are the usual Schwarzschild-like
coordinates, and the metric potentials AðrÞ and BðrÞ are
functions of the radial coordinate r only.
The assumed spherical symmetry of the spacetime

implies that the only nonzero components of a purely
electrical Faraday-Maxwell tensor Fμν are Ftr ¼ −Frt,
where Ftr is a function of the radial coordinate r alone,
Ftr ¼ FtrðrÞ. The other components of Fμν are identically
zero. Hence, the only nonvanishing component of the
Maxwell equation (2) is given by

dqðrÞ
dr

¼ 4πρeðrÞr2
ffiffiffiffiffiffiffiffiffi
AðrÞ

p
; (8)

with qðrÞ ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞp

FtrðrÞ representing the total
electric charge inside a spherical surface labeled by the
radial coordinate whose value is r. With this, and from
the line element (7), the Einstein equation (1) yields the
following relevant relations:

1

AðrÞ
�
1 −

r
AðrÞ

dAðrÞ
dr

�
¼ 1 − 8πr2

�
ρðrÞ þ q2ðrÞ

8πr4

�
; (9)

1

AðrÞ
�
1þ r

BðrÞ
dBðrÞ
dr

�
¼ 1þ 8πr2

�
pðrÞ − q2ðrÞ

8πr4

�
: (10)

Defining the new quantity mðrÞ in such a way that

1

AðrÞ ¼ 1 −
2mðrÞ

r
þ q2ðrÞ

r2
; (11)

and replacing AðrÞ from Eq. (11) into Eq. (9), it gives

dmðrÞ
dr

¼ 4πρðrÞr2 þ qðrÞ
r

�
dqðrÞ
dr

�
: (12)

The new function mðrÞ represents the gravitational mass
inside the sphere of radial coordinate r, and Eq. (12) then
represents the energy conservation, as measured in the
star’s frame.
An additional equation is obtained from the contracted

Bianchi identity ∇μTμν ¼ 0, which gives

dBðrÞ
dr

¼ BðrÞ
pðrÞ þ ρðrÞ

�
qðrÞ
2πr4

dqðrÞ
dr

− 2
dpðrÞ
dr

�
: (13)

Finally, replacing Eq. (8) and the conservation equation (13)
into Eq. (10), it yields

dp
dr

¼ −ðpþ ρÞ ½4πprþ
m
r2 −

q2

r3 �
½1 − 2m

r þ q2

r2 �
þ ρe

ffiffiffiffi
A

p q
r2
; (14)

where to simplify the notation we have dropped the func-
tional dependence, i.e., AðrÞ ¼ A, mðrÞ ¼ m, qðrÞ ¼ q,

ρðrÞ ¼ ρ, pðrÞ ¼ p, and ρeðrÞ ¼ ρe. Equation (14) is the
TOV equation [2,3], modified by the inclusion of electric
charge [7] (see also [24]).

C. Equation of state and the charge density profile

In the present model there are six unknown functions,
BðrÞ, mðrÞ, qðrÞ, ρðrÞ, pðrÞ, and ρeðrÞ, and just four
equations, Eqs. (8), (12), (13), and (14). Additional
relations are obtained from a model for the matter, i.e.,
from a model for the cold fluid, which furnishes relations
between the pressure and the energy density. For an
electrically charged fluid, a relation defining the electric
charge distribution is also needed.
For the present analysis, we assume an incompressible

fluid, i.e.,

ρðrÞ ¼ ρ0; (15)

with ρ0 ¼ constant. So the energy density is constant along
the whole star.
Following [18,19] (see also [21] and [24]), we assume a

charge density proportional to the energy density,

ρe ¼ αρ0; (16)

where, in geometric units, α is a dimensionless constant
which we call the charge fraction. The charge density along
the whole star is, thus, constant as well.
We now have four equations, Eqs. (8), (12), (13), and

(14), and four unknowns, BðrÞ, mðrÞ, qðrÞ, and pðrÞ, as ρ0
and ρe are given in (15) and (16), respectively. The result-
ing set of equations constitutes the complete set of struc-
ture equations which, with some appropriate boundary
conditions, can be solved simultaneously.

D. The boundary conditions and the exterior
vacuum region to the star

The numerical integration of the system of equations is
performed along the radial coordinate r, from the center
toward the surface of the star. The conditions at the center
of the star (r ¼ 0) are mðr ¼ 0Þ ¼ 0, qðr ¼ 0Þ ¼ 0,
pðr ¼ 0Þ ¼ pc, ρðr ¼ 0Þ ¼ ρc, ρeðr ¼ 0Þ ¼ ρec, and
Aðr ¼ 0Þ ¼ 1, where pc is the central pressure, and ρc
and ρec are the central energy density and the central charge
distributions, respectively, which by assumption are con-
stant throughout the star. The surface of the star is defined
by the vanishing of the pressure. Since the pressure
decreases outwards, the integration is stopped at the point
r ¼ R for which pðRÞ ¼ 0. The solution is then matched to
the exterior Reissner-Nordström spacetime, with metric
given by

ds2 ¼ −FðrÞdT2 þ dr2

FðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; (17)

where
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FðrÞ ¼ 1 − 2M=rþQ2=r2; (18)

with the outer time T being proportional to the inner time t,
M and Q being the total mass and the total charge of the
star, respectively. The full set of boundary conditions at the
surface of the star is BðRÞ ¼ 1=AðRÞ ¼ FðRÞ, mðRÞ ¼ M,
qðRÞ ¼ Q, besides pðRÞ ¼ 0.

E. Our aim

Using the whole set of equations and boundary conditions,
it is our interest to study the structure of these incompressible
charged stars. Given values for the energy density ρ0 and for
the charge fraction α, we can analyze the system for different
values of central pressure pc. For each α, and thus, for each
Q=M, there is a set of star solutions, each corresponding to
a given pc. The limiting solution that has pc ¼ ∞ gives the
interior Schwarzschild limit. We then compare this interior
Schwarzschild limit with the electric Buchdahl limit, or
Buchdahl-Andréasson limit [14], i.e., the minimum ratio
for R=M for a given Q=M. In addition, the most extreme
configuration, the one that has Q=M ¼ 1, has as the limiting
solution the quasiblack hole, i.e., a star whose boundary is
located at its own gravitational radius. We look in detail into
these solutions and to their corresponding features.

III. THE STRUCTURE OF A CHARGED
INCOMPRESSIBLE RELATIVISTIC STAR
SPHERE AND THE BUCHDAHL LIMIT

A. Numerical input values

We now analyze the structure of incompressible charged
star spheres with ρ0 ¼ constant and ρe ¼ αρ0 ¼ constant.
The set of coupled equations, Eqs. (8), (12), (13), (14), (15),
and (16), and the boundary conditions adopted at the center
are integrated up to the boundary of the star. The integration
is performed upon putting the equations in a dimensionless
form (see the Appendix). For each given energy density ρ0,
charge fraction α, and central pressure pc, the system of
equations is numerically solved using a fourth order
Runge-Kutta method.
Here we are going to analyze the numerical results and to

plot a few graphs showing several parameters of the stars,
such as the radius, the gravitational mass, the total charge,
and some other interesting quantities. In order to obtain the
corresponding values in appropriate units, it is convenient
to restore the gravitational constant G, while keeping the
speed of light set to unity; i.e., in this section, we use units
such that G ¼ 7.42611 × 10−28½m=kg� and c ¼ 1.
For ease of comparison with other works, we con-

sider the energy density and the central pressure in the
ranges 1.0 × 1013½kg=m3� ≤ ρ0 ≤ 1.0 × 1020½kg=m3� and
1.0 × 1013½kg=m3� ≤ pc ≤ 1.0 × 1018½kg=m3�, respectively.
The interval of energy densities considered here covers the
range of values of the central energy density of real neutron
stars. On the other hand, the values considered for the central

pressures are within the range of the central pressures
considered in [19].
Let us last mention that the charge fraction α is varied in

the interval 0 ≤ α ≤ 1. However, it is important to say that,
in the intervals of energy density and central pressure
considered in the present work, the value α ¼ 0.99 is in fact
the largest value of the charge fraction we have used in the
numerical analysis. This value was chosen for comparison
to our previous work [24]. For larger values of α the
numerical calculations become very slow and eventually
fail to converge for α very close to unity. We have not found
equilibrium solutions for α > 1.
The star’s mass M, its radius R, and total charge Q are

found when the pressure at the surface of the object is equal
to zero: pðr ¼ RÞ ¼ 0. We present the main features of
these three quantities in the following subsections.

B. Mass of a charged relativistic incompressible star
as a function of the energy density

The mass of the star (in units of solar masses M⊙) as a
function of the energy density ρ0 is shown in Fig. 1 for
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FIG. 1 (color online). The ratio M=M⊙ of the incompressible
charged spheres as a function of the energy density ρ0 for six
values of the central pressure pc, as indicated. The top panel is for
α ¼ 0.5 and the bottom panel for α ¼ 0.99.
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some values of the central pressure. The top panel gives the
curves for the charge fraction α ¼ 0.5 and the bottom panel
for α ¼ 0.99. The values of the energy density and central
pressure are in the ranges 1.0 × 1013 to 1.0 × 1020½kg=m3�
and 1.0 × 1013 to 1.0 × 1018½kg=m3�, respectively. In all the
presented cases, we can note that the mass of the star
decreases monotonically with the increase of the energy
density, and in a larger rate for small pressures than for
large pressures. This can be understood in the sense that
stars with large energy densities have to have less mass in
order for equilibrium to be maintained. In addition, we can
see that, for low densities, large changes in the central
pressure pc do not imply large changes in the mass; on the
contrary, the mass changes very little. It signals the fact
that, for low densities, the increase on the central pressure is
very sensitive to small increases in the star’s mass. Notice
also that for high densities and small central pressures the
masses of the related incompressible stars are very small
compared to the case of high densities and large central
pressures.
Figure 2 shows the dependence of the mass of the object

in units of solar masses as a function of the charge fraction
α for two values of the energy density ρ0 as indicated. The
general feature is that the mass grows monotonically with
α, and faster for higher densities. Without going into great
detail, let us comment on the change in the mass of an
incompressible charged sphere when the charge fraction α
changes from 0.5 to 0.99. For pc ¼ 1.0 × 1018½kg=m3� and
ρ0 ¼ 1.0 × 1013½kg=m3�, the increase in the mass is about
84.8029%, whereas for the same pc but with ρ0 ¼
1.0 × 1020½kg= m3�, the increase in the mass is about
6220.67%. From these examples, it can be deduced that
for low densities, in comparison with large densities, the
mass of the object does not change considerably with
the increment of the charge fraction α.

C. Radius of a charged relativistic incompressible
star as a function of the energy density

The radius of the star as a function of the energy density
is shown in Fig. 3, where we plot the ratio R=M against the
energy density ρ0 for some values of the central pressure
pc. The energy density and central pressure values in the
figure are the same as in Fig. 1, so the values of the
considered energy densities are in the range 1.0 × 1013 to
1.0 × 1020½kg=m3�. Two values of the charge fraction were
taken for comparison, α ¼ 0.5 (top panel) and α ¼ 0.99
(bottom panel). In all curves, the relation R=M grows with
ρ0, indicating that less compact stars are found for large
energy densities. On the other hand, we see that there is also
an influence of pc in the degree of compaction of a star. The
larger pc is, the smaller the value of R=M. This is of course
expected; as the star gets more compact, the gravitational
action is stronger and there is a need for a greater pressure
throughout the star, including the central pressure pc, to
counterbalance.
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FIG. 2 (color online). The ratio M=M⊙ of the incompressible
charged spheres as a function of the charge fraction α for the central
pressure pc ¼ 1.0 × 1018½kg=m3� and two values of the energy
density ρ0, namely, 1.0 × 1013½kg=m3� and 1.0 × 1020½kg=m3�.
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FIG. 3 (color online). The ratio R=M of the incompressible
charged spheres as a function of the energy density ρ0 for six
values of the central pressure pc, as indicated. The top panel is for
α ¼ 0.5 and the bottom panel for α ¼ 0.99. The point at the lower
left corner of bottom panel, toward which the curves converge,
indicates the quasiblack hole configuration where R=M ≃ 1.0.
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In Fig. 4, the dependence of R=M is shown as a function
of the charge fraction α for the minimum and the maximum
considered energy densities, i.e., ρ0 ¼ 1.0 × 1013½kg=m3�
and ρ0 ¼ 1.0 × 1020½kg=m3�, respectively, and for the
central pressure pc ¼ 1.0 × 1018½kg=m3�. The ratio R=M
decreases with the charge fraction, meaning that the stars
bearing a large amount of charge are more compact than the
stars with little or no charge. The case that has a central
pressure pc much higher than the energy density ρ0, the
case shown in the full line, is the case that approximates
well the electric interior Schwarzschild limit for each charge
fraction α. So, for α ¼ 0.0, one gets R=M ≃ 2.25, which is
the original interior Schwarzschild limit R=M ¼ 9=4 [1].
For the case of α ¼ 0.99, i.e., the extremal charge case,
we obtain R=M ≃ 1.0, which is in accord with the limits
set by Andréasson for charged spheres [14]. In this case,
the limit is a quasiblack hole, the last point on the right
in Fig. 4.

D. Charge of a relativistic incompressible star as a
function of the energy density

In Fig. 5, the charge to mass relation Q=M is plotted
against the energy density ρ0, for some values of the central
pressure, and for the charge fractions α ¼ 0.5 (top panel)
and α ¼ 0.99 (bottom panel). The point at the upper left
corner of the bottom panel indicates the quasiblack hole
configuration (Q=M ¼ 1.0). It is seen that in all cases the
ratio Q=M decreases as ρ0 is increased. For sufficiently
small central pressures, each curve presents a plateau in the
low density region. The width of the plateau is larger (and
higher) for high charge fractions, and, as the energy density
grows, the ratio Q=M decays very rapidly. The minimum

value of Q=M is around the corresponding value of α.
For instance, in the α ¼ 0.5 case (top panel), the charge to
mass ratio decreases from approximately Q=M ≃ 0.7 at
low energy densities to approximately Q=M ¼ 0.5 at
ρ0 ¼ 1.0 × 1020½kg=m3�. This value is found for ρ0≳
103pc. Another important feature is that the fraction
Q=M increases with the central pressure. From this we
see that the larger the central pressure, the larger the amount
of charge the star admits. In fact, it is seen from the α ¼
0.99 case (bottom panel) that there are incompressible
charged stars very close to the quasiblack hole configura-
tion, i.e., with Q=M ≃ 1.0.
The amount of charge supported by the incompressible

spheres can also be seen in Fig. 6, which shows the ratio
Q=M as a function of α for two values of the energy density
ρ0. In this figure, the central pressure is 1.0 × 1018½kg=m3�
and the energy densities are 1.0 × 1013½kg=m3� and
1.0 × 1020½kg=m3�. The point close to the upper right
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FIG. 4 (color online). The ratio R=M of the incompressible
charged spheres as a function of the charge fraction α for a central
pressure pc ¼ 1.0 × 1018½kg=m3� and two values of the energy
density, one case with ρ0 ¼ 1.0 × 1020½kg=m3� > pc, and the
other case with ρ0 ¼ 1.0 × 1012½kg=m3� << pc, as indicated.
The point at the lower right corner of the figure indicates the
quasiblack hole configuration where R=M ≃ 1.0.
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FIG. 5 (color online). The ratio Q=M of the incompressible
charged spheres as a function of the energy density ρ0 for six
values of the central pressure pc as indicated. The top panel is for
α ¼ 0.5 and the bottom panel for α ¼ 0.99. The point at the upper
left corner of the bottom figure indicates the quasiblack hole
configuration where Q=M ≃ 1.0.
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corner in this figure, as in the bottom panel of Fig. 5,
indicates that for α ¼ 1.0 it is found Q=M ¼ 1.0.

E. The interior pressure of a charged
incompressible star

We now study the behavior of the pressure inside these
charged incompressible spheres; i.e., we study pðrÞ.
Figure 7 shows a few particular cases of pðrÞ. The panel
at the top is for the energy density ρ0 ¼ 1013½kg=m3�, the
one in the middle is for ρ0 ¼ 1018½kg=m3�, and the panel at
the bottom is for ρ0 ¼ 1020½kg=m3�. Each panel shows the
results for two values of the charge fraction, α ¼ 0.0 and
α ¼ 0.99, and two central pressures pc ¼ 1013½kg=m3� and
pc ¼ 1018½kg=m3�. As expected, the pressure within the
star decreases monotonically from the center toward the
surface of the object in all the analyzed cases. For stars
with central pressure smaller than the energy density the
pressure varies very slowly with the radial coordinate,
going to zero with a fast rate just close to the surface of the
star. The general behavior is that of a star with constant
pressure from the center up to very close to the surface. On
the other hand, stars with central pressure larger than the
energy density have a larger pressure gradient. In particular,
in the limit of a very large central pressure, the pressure has
to decrease abruptly with the radial coordinate to reach
vanishing values at the surface. It is clearly observed that
for fixed energy density and charge fraction, the radius of a
given star increases with the central pressure. In general,
the increase of the central pressure implies an increase of
the size R of the equilibrium solutions and an increase in
the mass M, while the resulting star becomes more
compact, in the sense that R=M approaches unity. From
Figs. 3 and 7, it is seen that more compact stars have larger
radii and larger mass and charge.
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FIG. 6 (color online). The ratio Q=M of the incompressible
charged spheres as a function of the charge fraction α for the
central pressure 1.0 × 1018½kg=m3� and two values of the energy
density as indicated. The point at the upper right corner indicates
the quasiblack hole configuration where Q=M ≃ 1.0.
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FIG. 7 (color online). The figure shows the pressure p of the
fluid as a function of the radial coordinate r. The panel at the top
is for the energy density ρ0 ¼ 1013½kg=m3�, the one in the middle
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ρ0 ¼ 1020½kg=m3�. Each panel displays pðrÞ for two values of
charge fraction, 0.5 and 0.99, and for two central pressures pc ¼
1013 and pc ¼ 1018½kg=m3�.

ARBAÑIL, LEMOS, AND ZANCHIN PHYSICAL REVIEW D 89, 104054 (2014)

104054-8



IV. THE ELECTRIC INTERIOR
SCHWARZSCHILD LIMIT OF A CHARGED

RELATIVISTIC INCOMPRESSIBLE STAR AND
THE BUCHDAHL-ANDRéASSON LIMIT

The solid black line in Fig. 8 gives the ratio R=M as a
function of Q=R found by means of the TOV equation,
for the lowest energy density and the largest central
pressure used in the present analysis, i.e., for ρ0 ¼ 1.0 ×
1013½kg=m3� and pc ¼ 1.0 × 1018½kg=m3�, respectively.
Numerically, this discrepancy of 105 between pc and ρ0
simulates the electric interior Schwarzschild limit, as this
happens for pc=ρ0 → ∞. Thus, the solid black line gives
the electric interior Schwarzschild limit pc=ρ0 → ∞. For
Q=R ¼ 0, i.e., for the interior Schwarzschild solution, one
gets the original interior Schwarzschild limit of R=M ¼
9=4 ¼ 2.25 [1]. In the other extreme, for Q=R ¼ 1, one
gets the quasiblack hole R=M ¼ 1. In between these
charges, the values of R=M for this limit are displayed
in the curve. As noted before, numerically we work with
α ¼ 0.99 rather than α ¼ 1, and so our results give rather
Q=M ≃ 1.0, Q=R≃ 1.0, and R=M ≃ 1.0.
One should also compare the electric interior

Schwarzschild limit with the Buchdahl-Andréasson limit.
The Buchdahl limit [6], a limit of limits, is obtained by
imposing that the density of the star should be nonincreas-
ing with radius r, the pressure is isotropic, and a few other

reasonable assumptions. For stars with nonzero electrical
charge, there is the Buchdahl-Andréasson limit, a gener-
alized Buchdahl limit found by Andréasson [14] by
imposing other conditions, such as pþ 2pT ≤ ρ, where
p and pT are the radial and tangential pressures, respec-
tively, together with some other reasonable physical
conditions. The Buchdahl-Andréasson bound is [14]

R
M

≥
9

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Q2=R2

p
Þ2
; (19)

where the inequality gives the Buchdahl-Andréasson
limit. For Q ¼ 0, Eq. (19) gives the Buchdahl bound
R=M ≥ 9=4, of course. In Fig. 8, the dashed line is the
Buchdahl-Andréasson limit. It is clearly seen in Fig. 8 that
there are two points where the two lines coincide, namely,
Q=R ¼ 0 and Q=R ¼ 1. Indeed, for α ¼ 0, i.e., Q=R ¼ 0,
both the original interior Schwarzschild limit and the
Buchdahl limit coincide, giving R=M ¼ 9=4. For α ¼ 1,
i.e., Q=R ¼ 1, both curves give R=M ¼ 1, i.e., both limits
yield the quasiblack hole solution. On the other hand, it is
also clearly seen in Fig. 8 that although the lines are near
each other, they do not coincide; i.e., the electric interior
Schwarzschild and the Buchdahl-Andréasson limits are
generically different. Undoubtedly, the values of R=M
shown by the solid line are very close but always larger
than those shown by the dashed line. This has been
substantiated by analytical calculations valid up to order
Q2=R2 on the interior Schwarzschild limit for these stars,
and it points to the fact that the Buchdahl-Andréasson limit
is indeed a limit of limits. As noted in [14], the ρ ¼
constant electric solutions discussed in [13] do not saturate
the bound. In our work, we also find that our ρ ¼ constant
electric solutions, although close, do not saturate the bound.
Configurations that do saturate the Buchdahl-Andréasson
bound are self-gravitating electrically charged shells [14]. It
will be interesting to investigate whether there are other
configurations that saturate the bound.

V. QUASIBLACK HOLE LIMIT OF A CHARGED
RELATIVISTIC INCOMPRESSIBLE STAR

An important point here is to investigate whether one
finds configurations close to the quasiblack hole configu-
ration or not. In the analysis we have found that the limit of
the quasiblack hole configuration is reached for values of
the central pressure much greater than the energy density
and for large charge fractions.
It can be seen from Figs. 3, 4, 5, and 6 that for some

values of the energy density, central pressure, and charge
fraction, the relationsR=M andQ=M reach unity. This limit
appears when the central pressure is much larger than
the energy density. In this instance, the parameters that
best show these results are ρ0 ¼ 1.0 × 1013½kg=m3�,
pc ¼ 1.0 × 1018½kg=m3�, and α ¼ 0.99. In this case, the
quantities M, R, and Q are such that R=M ¼ 1.02268 and
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FIG. 8 (color online). The solid black line shows the electric
interior Schwarzschild limit, i.e., the ratio R=M versus the
ratio Q=R for very large central pressures, here for ρ0 ¼ 1.0 ×
1013½kg=m3� and pc ¼ 1.0 × 1018½kg=m3�. The charge fraction
varies from α ¼ 0.0 to α ¼ 1 (numerically, the maximum value of
α we have managed to achieve was α ¼ 0.99). The line is found
using the TOV equation for these specific stars. The dashed line
gives the Buchdahl-Andréasson limit, i.e., the values found using
the relation R=M ¼ 9=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Q2=R2

p
Þ2. The two curves

coincide in the boundary points, namely,Q=R ¼ 0 andQ=R ¼ 1,
but not in the intermediate points. The Buchdahl-Andréasson
curve bounds the electric interior Schwarzschild limit curve and
is indeed a limit of limits. The point at the right end, Q=R ¼ 1,
represents the quasiblack hole limit.
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Q=M ¼ 0.999853. These values can be interpreted as
giving R≃M ≃Q, indicating that this charged star is
close to the quasiblack hole configuration.
In order to show that there is indeed a quasiblack hole in

this limit, we analyze also the behavior of the metric
functions, AðrÞ and BðrÞ, as proposed in [28] (see
also [29,30]).
We plot 1=AðrÞ versus the radial coordinate in Fig. 9 for

the energy density ρ0 ¼ 1.0 × 1013½kg=m3�, the central
pressure pc ¼ 1.0 × 1018½kg=m3�, and the charge fraction
α ¼ 0.99. Observe that the function 1=AðrÞ starts at unity at
r ¼ 0 (no conical singularity) and decreases with the
increasing of the radial coordinate, reaching its minimum
value at the star’s surface r ¼ R. The value of 1=AðrÞ at the
surface of the star is approximately zero; actually, it is
2.25942 × 10−4. This vanishingly small value of 1=Aðr ¼
RÞ indicates that the solution is close to a quasiblack hole
configuration [28].
We plot the metric potential BðrÞ as a function of the

radial coordinate in Fig. 10 for the same values of energy
density, pressure, and charge fraction as in the case of the
function 1=AðrÞ. Once the values for the total mass M,
radius R of the star, and total charge Q are already known,
BðrÞ is obtained by numerically integrating the differential
equation (13) from the surface to the center of the star. The
results show that the function BðrÞ assumes values close to
zero in the whole interior region, confirming that this is on
the verge of being a quasiblack hole solution [28]. The
value of BðrÞ increases albeit slowly with the radial
coordinate, reaching its maximum interior value at the
surface of the star (r ¼ R). This value of BðRÞ coincides
with the minimum value of the function A−1ðRÞ, i.e.,
BðRÞ ¼ 2.25942 × 10−4. The equality between BðrÞ and
A−1ðrÞ at r ¼ R satisfies the boundary conditions, namely,
BðRÞ ¼ A−1ðRÞ ¼ 1 − 2M

R þ Q2

R2 . This comes from the

junction conditions which impose continuity of the metric
functions.
The event and the Cauchy horizons of a Reissner-

Nordström spacetime are given by the solutions of the
equation BðrÞ ¼ 0, i.e., r� ≡M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, respec-

tively. Then, since the mass, the radius, and the charge
of the star are very close to each other, i.e., R≃M ≃Q, the
event and the Cauchy horizons obey r� ≃M, with R≳ rþ.
This indicates that the solution is a regular static configu-
ration. Since R≃ rþ, we see that the boundary of the star
approaches its own gravitational radius; i.e., a quasiblack
hole with pressure is close to being reached.
An important quantity is the redshift at the surface of the

system, i.e., how the light frequency of a wave emitted from
the system’s surface is redshifted away when it arrives at
infinity. We have investigated numerically the behavior of
the redshift for the charged incompressible stars presented,
comparing the charged and uncharged cases for a few
central pressures and central densities. The results are as
expected from previous studies [28] (see also [25,26]). In
the quasiblack hole limit, the redshift at the surface of the
stars is indefinitely large. However, numerically we were
able to find values of the order of 100; i.e., the larger ratio
between the frequency of a flash of light emitted at the
surface of the star compared to the observed frequency
at spatial infinity we found numerically was of about 100
(the low ratio is due to numerical convergence problems in
the limit of large charge fractions). In Fig. 11, the redshift
function BðRÞ1=2 − 1 at the star’s surface is displayed for
0 < α < 1. The quasiblack hole limit corresponds to α ¼ 1.
Quasiblack hole behavior has been also found in [8–10]

for an incompressible fluid, where different equations for
the charge density have been considered. Other works
where quasiblack holes have been found are [23–27], to
name a few.
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FIG. 9 (color online). The inverse of metric function AðrÞ as a
function of the radial coordinate for the quasiblack hole con-
figuration. The parameters used are ρ0 ¼ 1.0 × 1013½kg=m3�,
pc ¼ 1.0 × 1018½kg=m3�, and charge fraction α ¼ 0.99. The
vertical dashed line indicates the surface of the star.
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FIG. 10 (color online). The metric function BðrÞ as a function
of the radial coordinate for the quasiblack hole configuration.
The parameters used are ρ0 ¼ 1.0 × 1013½kg=m3�, pc ¼ 1.0×
1018½kg=m3�, and charge fraction α ¼ 0.99. The vertical dashed
line indicates the surface of the star.
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VI. CONCLUSIONS

In this work, we have studied stars made of an incom-
pressible fluid, i.e., a fluid with constant energy density ρ0,
and with an electrical charge distribution ρe proportional
to ρ0, ρe ¼ αρ0, with α a number between 0 and 1. The
analyzed configurations have spherical symmetry whose
exterior spacetime is described by the Reissner-Nordström
metric. The configurations were analyzed for different
values of the energy density, central pressure, and charge
fraction. We have found that the electric interior
Schwarzschild limit does not saturate the compactness
Buchdahl-Andréasson bound, except in the border solu-
tions Q=M ¼ 0 and Q=M ¼ 1. For the highest value of the
charge fraction that still yields reliable numerical results,
i.e., α ¼ 0.99, and for a central pressure much larger than
the energy density, we showed that there is a highly
compact configuration with R≃ rþ, i.e., a configuration
on the verge of becoming a quasiblack hole.
Our results supplement the results of several previous

works. In relation to the Buchdahl-Andréasson bound, as
remarked in [14], the work [13] presents that electric stars
with ρ ¼ ρ0 and ρ0 a constant do not saturate the Buchdahl-
Andréasson bound. Surely, the set of solutions found in
[8–10], which include the solution discussed in [13], does
not saturate the Buchdahl-Andréasson bound. In addition,
analytical calculations, valid up to orderQ2=R2, on the stars
we have presented here, also show that the Buchdahl-
Andréasson bound is not saturated. In relation to quasiblack
holes, on one hand, our work shows that the results found
in [8–10] are robust. The authors of [8–10] considered
incompressible electrically charged fluids ρ ¼ ρ0 and ρ0 a
constant, but with a charge distribution that differs from
ours, namely, qðrÞ ¼ Qðr=RÞn for some exponent n ≥ 3 in
[8,9], or a more intricate distribution [10]. Numerical star

solutions were found and it was shown that configurations
with boundaries as close as one wants to their own
gravitational radius are possible. i.e., quasiblack holes also
appear in [8–10]. On the other hand, our previous work [24]
analyzes with care compressible configurations of stars
with an equation of state p ¼ ωργ , for some constant ω and
exponent γ, and also discusses the incompressible γ → ∞
limit. In this work [24], the name Buchdahl limit was
used for what we have called here more appropriately
the interior Schwarzschild limit. Furthermore, the results
presented here are also related to those displayed in [23]
for the Guilfoyle exact configurations [17] which have a
Cooperstock—de la Cruz—Florides equation of state
[15,16] and a different equation for the charge distribution.
In brief, for a wide range of parameters, the structure of the
charged stars change slightly when one changes the
equations of state. However, not all equations of state have
a quasiblack hole limit. An example of an equation of state
that does not yield stars with a quasiblack hole limit is a
polytropic equation of state; see, e.g., [19] and [24].
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APPENDIX A: EQUATION OF STRUCTURE
IN DIMENSIONLESS FORM

For the numerical calculations, it is convenient to write the
equations of structure in a dimensionless form. We then
introduce a rescaled radial coordinate ε through the equation

r ¼ εffiffiffiffiffiffiffiffiffiffi
4πρ0

p ; (A1)

where we have made G ¼ 1 and c ¼ 1. In addition, new
variables μðεÞ, θðεÞ, and κðεÞ are defined in terms of mðrÞ,
pðrÞ, and qðrÞ, respectively, by

mðrÞ ¼ μðεÞffiffiffiffiffiffiffiffiffiffi
4πρ0

p ; (A2)

pðrÞ ¼ pcθðεÞ; (A3)
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FIG. 11 (color online). The redshift function BðRÞ1=2 − 1 at the
stars’ surface as a function of the charge fraction for the central
pressure pc ¼ 1.0 × 1018½kg=m3� and two values of the energy
density is displayed. The charged fraction α is varied from 0.1 to
0.99. The α ¼ 1 limit is a quasiblack hole configuration.
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qðrÞ ¼ ε2κðεÞffiffiffiffiffiffiffiffiffiffi
4πρ0

p ; (A4)

where ρ0 and pc represent the energy density and central
pressure of the star, respectively. Now, in terms of the new
variables μ, θ, and κ, Eqs. (8), (12), and (14) in dimensionless
form become

dκ
dε

¼ −
2κ

ε
þ αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2μ
ε þ ε2κ2

q ; (A5)

dμ
dε

¼ ε2 þ αε3κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μ

ε þ ε2κ2
q ; (A6)

dθ
dε

¼ −εðθ þ ρ0p−1
c Þ

�
pcρ

−1
0 θ − κ2 þ μ

ε3

1 − 2μ
ε þ ε2κ2

�

þ αρ0p−1
c κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2μ
ε þ ε2κ2

q ; (A7)

where we have also used relation (16) written in the
new variables. This set of coupled differential equations,
(A5)–(A7), is solved to get the equilibrium solutions. The
boundary conditions adopted in the center of the star, i.e., at
ε ¼ 0, are κð0Þ ¼ 0, μð0Þ ¼ 0, and θð0Þ ¼ 1.

Once the functions μðεÞ and κðεÞ have been obtained by
means of numerical integration, the metric potential AðεÞ is
obtained from its definition, Eq. (11), which in the
dimensionless variables reads

A−1 ¼ 1 −
2μ

ε
þ ε2κ2; (A8)

while the metric potential BðεÞ is determined by integration
of Eq. (13),

dB
dε

¼ 2εB

�
pcρ

−1
0 θ − κ2 þ μ

ε3

1 − 2μ
ε þ ε2κ2

�
; (A9)

where again we have replaced the original variables r, qðrÞ,
mðrÞ, and pðrÞ, by the respective dimensionless quantities
ϵ, κðεÞ, μðεÞ, and θðεÞ.
The integration of equations (A5)–(A7) comes to a halt

at the point where the pressure θ reaches zero value, finding
thus the value of ε at the surface of the star, ε ¼ εs. The
corresponding value of the radial coordinate is extracted
and the radius of the sphere is obtained from the relation
R ¼ εsffiffiffiffiffiffiffi

4πρ0
p . The other physical quantities, such as the mass

M and the charge Q, are calculated from the relations

M≡mðRÞ ¼ μðεsÞffiffiffiffiffiffiffi
4πρ0

p and Q≡ qðRÞ ¼ ε2sκðεsÞffiffiffiffiffiffiffi
4πρ0

p , respectively.
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