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We calculate the absorption cross section of a massive neutral scalar field impinging upon a Reissner-
Nordström black hole. First, we derive key approximations in the high- and low-frequency regimes. Next,
we develop a numerical method to compute the cross section at intermediate frequencies, and present
a selection of results. Finally, we draw together our complementary approaches to give a quantitative
full-spectrum description of absorption.
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I. INTRODUCTION

It is almost a century since the theory of general relativity
(GR) supplanted Newton’s theory as the leading explanation
for gravitational phenomena. GR was quickly recognized as
bearing the hallmarks of a successful theory, because not
only was it consistent with the existing canon of data but it
also resolved known anomalies (such as the anomalous
precession of Mercury noted by Le Verrier in 1859) and
made new predictions which soon passed experimental tests,
such as the deflection of starlight measured by Eddington’s
eclipse expedition.
Just as importantly, GR provided a mathematically con-

sistent extension of the concepts of special relativity, which
allowed gravitation to be reinterpreted as a consequence of
the geometry of spacetime. This reinterpretation instigated a
revolution in our understanding of the Universe. GR is the
framework underpinning structure formation in an expand-
ing, and accelerating, Cosmos. GR also provides radical
“strong-field” predictions which test the theory to its limits,
namely, the black holes (BHs). Stationary BHs are simple
solutions of Einstein’s equations that (in electrovacuum)
depend only on three parameters: mass, charge, and angular
momentum [1]. On the other hand, dynamical BHs in
astrophysical environments are undoubtedly crucibles for
tests of physics, including (in principle) the unification of
GR and quantum theory.
BHs may be classified by mass, into three categories

[2,3]: primordial BHs formed in the early universe, stellar-
mass BHs formed after the death of stars, and supermassive
BHs formed in the center of galaxies. Since the develop-
ment of x-ray astronomy in the 1970s, there has been
an accumulation of very strong indirect evidence for
the existence of stellar-mass and supermassive BHs.

The existence of primordial BHs remains open to specu-
lation [4]; it is thought likely that, by the present epoch,
all primordial BHs with initial masses ≲1012 kg have
evaporated via Hawking emission.
The spacetime of static charged (Reissner-Nordström)

BHs presents two concentric horizons: the (outer) event
horizon and the (inner) Cauchy horizon. In the limit of
extremal charge, the horizons become degenerate. The
cosmic censorship conjecture suggests that this extremal
state cannot be exceeded via any finite physical processes.
Yet extremally charged BHs are of interest in their own
right as they present intriguing features, such as (i) zero
surface gravity/Hawking temperature, (ii) a near-horizon
instability [5,6], and (iii) equality between gravitational and
electromagnetic absorption cross sections [7].
The processes of absorption and scattering in the

vicinity of black holes are potentially relevant for exper-
imental investigations. Since the 1960s, much theoretical
work has been done on black hole scattering (cf., e.g.,
Ref. [8] and references therein) in idealized scenarios.
With the positive results of experiments performed at
CERN in the search for the Higgs boson [9], there is now
an additional motivation for studying absorption and
scattering of bosonic fields with mass. For example, it
was recently suggested that accretion of dark matter
onto compact objects will have a distinctive effect on
extreme mass-ratio inspirals and their gravitational wave
signatures [10].
The absorption of massive fields on the Schwarzschild

spacetimewas examined by Unruh [11] nearly four decades
ago. Scattering of massive fields by a Schwarzschild black
hole was studied (for bosons and fermions) in [12–15].
The low-frequency absorption cross section for the charged
massive scalar field in the n-dimensional Reissner-
Nordström spacetime was analyzed in Ref. [16]. Recent
work on black holes and massive bosonic fields includes
investigations of quasi-normal mode excitation [17,18],
long-lived modes in bosonic fields [19–23], and super-
radiant instabilities [24–26].
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In this work we focus on the absorption cross section
for a monochromatic planar wave of the neutral massive
scalar field impinging upon a four-dimensional Reissner-
Nordström spacetime. There are four parameters in this
scenario: the massM and chargeQ of the BH, and the mass
m and frequency ω of the field. From these quantities, we
may form three dimensionless parameters: the BH charge-
to-mass ratio q ¼jQj=M, with 0 ≤ q < 1 for sub-extremal
BHs, and a pair of field-to-BH couplings, Mω and
Mm. Note that we adopt units in which c ¼ ℏ ¼ G ¼ 1
so that, e.g., Mm ≡Mm =m2

P, where mP is the Planck
mass. We also make use of an alternative dimensionless
parameter,

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

ω2

s
; (1)

corresponding to the ratio of the speed of propagation of the
wave in the far field to the speed of light. Here 0 < v ≤ 1
for unbound modes, for which ω > m.
This paper is arranged as follows. In Sec. II we review

the theory of the scalar field in the Reissner-Nordström
spacetime. In Sec. III we find the absorption cross section
for the massive scalar field. In Secs. IVand V we obtain the
high- and low-frequency limits of the absorption cross
section, respectively. In Sec. VI we present a selection of
numerical results. We conclude with our final remarks and
discussion in Sec. VII.
We adopt the spacetime signature ðþ − −−Þ throughout.

II. THE SCALAR FIELD

The line element ds2 ¼ gμνdxμdxν of the Reissner-
Nordström spacetime is

ds2 ¼ fdt2 − f−1dr2 − r2dθ2 − r2sin2θdϕ2; (2)

where

f ¼
�
1 −

rþ
r

��
1 −

r−
r

�
; (3)

and the horizon radii are

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: (4)

The Klein-Gordon equation governing the propagation of a
massive scalar field is

∇μ∇μΦþm2Φ ¼ 0; (5)

where ∇μ denotes the covariant derivative, and indices are
raised with the inverse metric gμν.
Without loss of generality, we will assume that the

incoming wave is incident along the z-axis. An axially-
symmetric solution to Eq. (5) in Reissner-Nordström
spacetime can be written as

Φωl ¼
ψωlðrÞ

r
Plðcos θÞe−iωt; ω > m; (6)

where Plðcos θÞ is a Legendre polynomial, and ψωlðrÞ
satisfies the radial equation

d2

dr2�
ψωl þ ½ω2 − VeffðrÞ�ψωl ¼ 0; (7)

with the effective potential

VeffðrÞ ¼ f

�
m2 þ lðlþ 1Þ

r2
þ 2M

r3
−
2Q2

r4

�
: (8)

Here we have used the tortoise coordinate r�, defined in the
standard way by dr�=dr ¼ f−1.
Equation (7) is a Schrödinger-like equation with an

effective potential. Figure 1 shows Veff , defined in Eq. (8),
for l ¼ 0, 1 and various values of the scalar field mass.
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FIG. 1 (color online). Effective potential for q≡Q=M ¼ 0.4, l ¼ 0 (left, Mmc ¼ 0.195) and l ¼ 1 (right, Mmc ¼ 0.405) plotted for
different values of the scalar field mass.
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In the far field, the potential may be expanded as
Veff ¼ m2 − 2Mm2=r þ ½lðl þ 1Þ þ Q2m2�=r2 þ Oðr−3Þ.
The mass coupling term generates a Newtonian-like
attraction at Oðr−1Þ, and the angular momentum l (and
charge Q) creates a potential barrier at Oðr−2Þ. In the limit
r → rþ, the potential tends to zero. Figure 1 shows that, for
moderate values of Mm, the effective potential admits a
local maximum and local minimum. These features are
washed out as Mm increases.
Jung and Park [12] introduced the notion of a ‘critical

mass’Mmc, defined (for each l and q) as the value at which
the local maximum value of Veff is equal to the asymptotic
value, Veffðr → ∞Þ ¼ m2. For Mm > Mmc, all unbound
modes are strongly absorbed, regardless of mode fre-
quency. In the large-l regime, the critical mass scales
linearly with lþ 1=2. Figure 2 shows Mmc=ðlþ 1=2Þ as
function of l, determined numerically, for various black
hole charge-to-mass ratios q. We see that Mmc increases
somewhat with q.
Let us now turn our attention to the asymptotic solutions

of Eq. (7). Since we are interested in the absorption process,
we consider only those modes which are ingoing at the
outer horizon,

ψωlðrÞ ≈
� ffiffiffi

v
p

Tωle−iωr� for r → rþ;
e−iϱ þ Rωleiϱ for r → ∞;

(9)

where Tωl, Rωl are complex coefficients, v was defined in
Eq. (1), and ϱ ¼ ϱðrÞ has the leading-order expansion

ϱ ¼ ωvrþ ωMð1þ v2Þ
v

lnð2MωvrÞ þOðr0Þ: (10)

Here we note that the normalization of ψωlðrÞ has been
chosen for later convenience. jRωlj2 and jTωlj2 may be

interpreted as reflection and transmission coefficients,
respectively. By considering the Wronskian of Eq. (7), it
is straightforward to show that

jRωlj2 þ jTωlj2 ¼ 1; (11)

representing the conservation of flux (cf. Sec. III).

III. ABSORPTION CROSS SECTION

In this section we obtain an expression for the absorption
cross section as a sum of partial wave contributions. We
seek a field Φ which is purely ingoing at the event horizon
[cf. Eq. (9)] and which, in the far field, resembles the sum
of an incident planar wave ΦI and an outgoing scattered
wave ΦS. The absorption cross section is defined as the
ratio of the flux in Φ passing into the black hole, to the
current in the incident wave ΦI.
We take the incident wave ΦI to be a monochromatic

planar wave of frequency ω which, without loss of general-
ity, we assume to be propagating along the z-axis. In a
Minkowski spacetime, one may write ΦI

ðMÞ ¼ e−iωðt−vzÞ,
and then make use of

eiωvz ¼
X∞
l¼0

ð2lþ 1ÞiljlðωvrÞPlðcos θÞ; (12)

to expand in partial waves. Here jlð·Þ is a spherical Bessel
function. In the far field, this becomes

ΦI
ðMÞ ∼

e−iωt

r

X∞
l¼0

clωðe−iωvr þ e−iπðlþ1ÞeiωvrÞPlðcos θÞ;

(13)

where

clω ¼ 2lþ 1

2iωv
eiπðlþ1Þ: (14)

By contrast, in a black hole spacetime the long-ranged
nature of the gravitational field means that a planar wave is
distorted, even far from the black hole. Taking note of
Eqs. (9) and (10), the analogue of a planar wave has an
asymptotic form,

ΦI ∼
e−iωt

r

X∞
l¼0

clωðe−iϱ þ e−iπðlþ1ÞeiϱÞPlðcos θÞ: (15)

The physical solution Φ is constructed from the horizon-
ingoing modes (9) in such a way that, in the far field,
the ingoing part of Φ matches on to the ingoing part of ΦI .
That is, we define

Φ ¼ e−iωt

r

X∞
l¼0

clωψωlðrÞPlðcos θÞ: (16)

FIG. 2 (color online). Critical mass coupling Mmc [12] as a
function of multipole l. For l ¼ 0,Mmc ≈ 0.192 in the Schwarzs-
child (q ¼ 0) case, and Mmc ≈ 0.209 in the extremal Reissner-
Nordström (q ¼ 1) case. In the large-l regime, Mmcðq ¼ 0; lÞ ≈
0.25ðlþ 1=2Þ and Mmcðq ¼ 1; lÞ ≈ 0.3ðlþ 1=2Þ.
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The scattered wave ΦS ¼ Φ − ΦI has the asymptotic form

ΦS ∼
e−iωt

r
f̂ðθÞeiϱ; (17)

with a scattering amplitude f̂ðθÞ given by

f̂ðθÞ ¼ 1

2iωv

X∞
l¼0

ð2lþ 1Þðeiπðlþ1ÞRωl − 1ÞPlðcos θÞ: (18)

To find the absorption cross section, we may begin by
introducing a four-current

Jα ¼
i
2
½Φ�∇αΦ − Φ∇αΦ��; (19)

which satisfies the conservation law ∇αJα ¼ 0 by Eq. (5).
Now, we consider a four-volume bounded by three-surfaces
defined by t ¼ t1, t ¼ t2, r ¼ r1 and r ¼ r2 (where t1 < t2
and rþ < r1 < r2). Applying Gauss’s theorem and taking
the limit t2 − t1 → 0þ, leads to

d
dt

�Z
r2Jtdr�dΩ

�
¼

�
NðrÞ

�
r2

r1

: (20)

Here, NðrÞ is the flux passing through a surface of
constant radius r, given by

NðrÞ ¼ −
Z

r2JrdΩ: (21)

We consider a stationary scenario, in which the left-hand
side of Eq. (20) is zero, and thus Nðr1Þ ¼ Nðr2Þ ¼ N.
In this case, N is (minus) the flux of particles passing into
the black hole [11].
The absorption cross section σ is defined as the ratio of

jNj to the incident current in the planar wave, ωv. We may
insert Eq. (16) into Eq. (19) and use the orthogonality
of Legendre polynomials [

R
Plðcos θÞPl0 ðcos θÞdΩ ¼

4πδll0=ð2lþ 1Þ] to write the total absorption cross section
σ as a sum of partial cross sections σl,

σ ¼
X∞
l¼0

σl; (22)

defined in terms of modal transmission/reflection coeffi-
cients by

σl ¼
πð2lþ 1Þ
ω2v2

jTωlj2 ¼
πð2lþ 1Þ
ω2v2

ð1 − jRωlj2Þ: (23)

IV. HIGH-FREQUENCY REGIME

In the limit of high frequency, the wavelength of the field
becomes very small in comparison to the scale of the black

hole (e.g., the horizon radius). Under the eikonal approxi-
mation, a wavefront propagates along geodesics of the
spacetime [8]. The geodesic capture cross section is defined
as σhf ¼ πb2c, where bc is the critical impact parameter
corresponding to the unbound geodesic which asymptoti-
cally approaches the unstable circular orbit at r ¼ rc.
The critical impact parameter bc may be found by solving
the orbital equation for a timelike geodesic in the Reissner-
Nordström spacetime. Without loss of generality, we may
consider motion in the equatorial plane (θ ¼ π=2). Let us
start from the “energy" equation,

_r2 ≡ T ðrÞ ¼ E2 − fðm2 þ L2=r2Þ (24)

where _r ¼ dr=dτ, τ is the proper time, and E ¼ f_t and
L ¼ r2 _ϕ are the energy and angular momentum of the
geodesic, respectively. Now we introduce the impact
parameter b≡ L=ðEvÞ, where v2 ¼ 1 −m2=E2. (We note
in passing that v defined above [for a geodesic] is
equivalent to v defined in Eq. (1) [for a field/wave] under
the standard semiclassical mapping E↔ω, L↔lþ 1=2.)
This allows us to write

T
L2

¼ 1

b2v2
− f

�
1 − v2

b2v2
þ 1

r2

�
: (25)

To obtain bc, the critical impact parameter, and rc, the
radius of the unstable circular orbit (or ‘critical radius’), we
set this equation and its radial derivative to zero, i.e., T ¼ 0
and dT =dr ¼ 0. This yields

bc ¼
rc

vf1=2c

½1 − ð1 − v2Þfc�1=2; (26)

where fc ¼ fðrcÞ, and a quartic equation for rc, namely,

r4c þM
ð1 − 4v2Þ

v2
r3c þ

�
4ðv2 − 1Þ

v2
M2 þ 2Q2

�
r2c

þ 4MQ2ð1 − v2Þ
v2

rc þ
Q4ðv2 − 1Þ

v2
¼ 0: (27)

We seek a root of Eq. (27) that is larger than the outer
horizon, i.e., rc > rþ, and which corresponds to a local
minimum of the right-hand side of Eq. (25). This root may
be found numerically. The top plot of Fig. 3 shows the
critical radius as a function of v for various charge ratios q.
We see that, in general, rc decreases as v increases, and as q
increases.
In the limit v → 0, the critical impact parameter bc

diverges as 1=v. Let us therefore introduce a dimensionless
‘absorption function’ Fðv; qÞ ¼ v2b2c=M2, which is regular
in this limit, so that in the high-frequency regime

σ → σhf ¼ Fðv; qÞ πM
2

v2
: (28)
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In the null geodesic case (v ¼ 1) [27],

Fð1; qÞ ¼
�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − q2

p 	
4

8
�
3 − 2q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8q2

p 	 : (29)

In the Schwarzschild case (q ¼ 0) [14],

Fðv; 0Þ ¼ 1

4

�
4v2 − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v2

p 	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v2

p
− 1

�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v2

p 	
:

(30)

In the extremal case (q ¼ 1),

Fðv; 1Þ ¼ χ2
v2 þ 2ð1−v2Þ

χ − ð1−v2Þ
χ2

1 − 2
χ þ 1

χ2
; (31)

where

χ ¼ 1

6

κ1=3

v2
þ 2

3

ð3v2 þ 1Þ
v2κ1=3

þ 1

3

ð3v2 − 1Þ
v2

(32)

and

κ ¼ −36v2 þ 108v4 − 8þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð27v4 − 22v2 − 5Þ3

q
v2:

(33)

In the limit v → 0, we may find rc by solving the cubic

x3 − 4x2 þ 4q2x − q4 ¼ 0; (34)

where x ¼ rc=M, and substituting the solution into Eq. (26)
to obtain bc and thus Fð0; qÞ.
In the general case ðv; q ≠ 0; 1Þ, one may compute the

values of the critical ray by finding the numerical solution of
Eq. (27). We find that the absorption function Fðv; qÞ varies
smoothly, as shown in Fig. 4. In Fig. 5 we compare the
values from the geodesic analysis with the total absorption
cross section at moderate-to-large frequencies Mω.

A. Sinc approximation

In the high-frequency regime the absorption cross
section exhibits regular oscillations (with ω) around the
limiting value (see, e.g., Fig. 5). In the case of a massless
scalar field absorbed by a Schwarzschild BH, Sanchez [28]
found that a simple formula provided a good fit at high
frequencies,

σðq¼0;v¼1Þ
hf ≈ 27πM2½1 − α̂sincð2π

ffiffiffiffiffi
27

p
MωÞ�; (35)

where sincðxÞ ¼ sinðxÞ=x and α̂ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
32=27

p
(see Eq. (30) in

Ref. [28]). Decanini, Folacci and coworkers [29,30]
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FIG. 3 (color online). Orbitalparameters forcriticalgeodesicson
Reissner-Nordströmspacetime.The topplot shows the radiusof the
unstable circular orbit, rc, as a function of incident speed v for a
range of charge ratios q. The bottom plot shows the Lyapunov
exponent Λ associated with the peak in the potential barrier. The
inset shows the Lyapunov exponent as a function ofq in the nearly-
bound(v → 0)andnull (v ¼ 1)cases.Thecritical impactparameter
bc may be inferred from the absorption function shown in Fig. 4.
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have applied the complex angular momentum approach to
analyze the absorption cross section. They derived
Sanchez’s result in the high-frequency regime, with a more
accurate coefficient of α̂ ¼ 8πe−π , and gave higher-order
corrections. Furthermore, Ref. [29] showed that regular
oscillations are a universal feature of cross sections for
massless fields absorbed by spherically-symmetric BHs.
We now seek to extend the complex angular momentum

analysis to the massive-field case (see also Ref. [31]). As
before, the oscillatory contribution to the cross section is
related to a sum of the residues of so-called Regge poles,
and the asymptotic properties of the Regge pole spectrum
may be determined by geodesic analysis. We used the
approach of Ref. [32] to show that, in the high-frequency
regime, the Regge pole λn is approximately

λn ¼ vbcωþ iðnþ 1=2Þβ̂ þOðω−1Þ; (36)

where β̂ ¼ vbcΛ and Λ is the Lyapunov exponent asso-
ciated with the unstable circular orbit, i.e.,

Λ ¼ 1

_t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

d2Vr

dr2

s
¼ vfc

rc

ffiffiffiffiffi
kc

p
; (37)

where

kc ¼
1

v2r4cfc
fð4v2 − 1ÞMr3c þ ½8M2ð1 − v2Þ − 4Q2v2�r2c

−12MQ2ð1 − v2Þrc þ 4Q4ð1 − v2Þg: (38)

The Lyapunov exponent is shown in the lower plot of Fig. 3.
Following the steps in Ref. [29], it is possible to show

that the high-frequency approximation to the cross section
is given by

σhf ≈
Fðv; qÞπM2

v2
½1 − 8πβ̂e−πβ̂sincð2πvbcωÞ�: (39)

This approximation is compared with numerically-
determined cross sections in Sec. VI, showing excellent
agreement.

V. LOW-FREQUENCY REGIME

In this section we analyze the low-frequency limit of the
Reissner-Nordström absorption cross section for the mas-
sive scalar field, following the method of Ref. [11]. Note
that since ω > m, the low-frequency regime Mω ≪ 1
implies that Mm ≪ 1.
We will first analyze the case for general Reissner-

Nordström black holes ðrþ > r− > 0Þ and then specialize
to the cases of the Schwarzschild (q ¼ 0, rþ ¼ 2M,
r− ¼ 0) and extreme Reissner-Nordström black holes
(q ¼ 1, rþ ¼ r− ¼ M).
We consider three different regions: the region very

close to the black hole (region I), an intermediate
region, in which the frequency and mass terms are
much smaller than the other contributions in Eq. (7)
(region II), and a region distant from the black hole
(region III). We match together the solutions so obtained
to get a global solution.

A. General case

We may rewrite the differential equation (7) as

f
r2

d
dr

�
fr2

d
dr

φ

�
þ ðω2 − VRNðrÞÞφ ¼ 0; (40)

where φ ¼ r−1ψωl [cf. Eq. (6)] and

VRN ¼ f

�
m2 þ lðlþ 1Þ

r2

�
: (41)

For region I ðr ≈ rþÞ, Eq. (40) is approximately

d2φ
dr2�

þ ω2φ ¼ 0; (42)

with φI
RN ∝ e−iωr� representing a transmitted wave. We

may write the tortoise coordinate explicitly as a function of
r, as

r� ¼ rþ r2þ
rþ − r−

lnðr − rþÞ −
r2−

rþ − r−
lnðr − r−Þ; (43)

after fixing the constant of integration appropriately. Let us
consider the dominant term of Eq. (43), for r → rþ,

r� ∼
r2þ

rþ − r−
lnðr − rþÞ þ rð0Þ� ; (44)
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FIG. 5 (color online). Total absorption cross section for
Mm ¼ 0.4 and for different values of the black hole charge q.
We also plot the classical (high-frequency) limit σhf in each case.
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where rð0Þ� is a constant, so that

φI
RN ¼ Atra

RNjr − rþj−iωα: (45)

Here Atra
RN is a complex constant, and α ¼ r2þ=ðrþ − r−Þ.

In order to find the solution in region II we take the limit
ω → 0, m → 0 in Eq. (40). Since we are interested in
computing the absorption cross section in the limit Mω,
Mm ≪ 1 we may restrict ourselves to the l ¼ 0 mode,
which is the dominant term in this limit [33]. Thus, the
differential equation reduces to

d2

dr2
φRN −

ðrþ þ r− − 2rÞ
ðr − rþÞðr − r−Þ

d
dr

φRN ¼ 0; (46)

with solution given by

φII
RN ¼ ζ ln

�
r − rþ
r − r−

�
þ τ: (47)

where ζ and τ are constants to be determined.
We now seek an overlap between the solutions in regions

I and II. We may rewrite Eq. (45) as

φI
RN ≈ Atra

RNð1 − iωα lnðr − rþÞÞ: (48)

If we take the limit r → rþ in Eq. (47), we obtain

φII
RN ¼ ζ lnðr − rþÞ − ζ lnðrþ − r−Þ þ τ: (49)

Comparing Eqs. (48) and (49) yields

ζ ¼ −iωαAtra
RN; τ ¼ ð1 − iωβÞAtra

RN; (50)

where β ¼ α lnðrþ − r−Þ.
For region III (r ≫ rþ) we can rewrite Eq. (40) as

�
d2

dr2
þ
�
ðω2 −m2Þ þ 2Mð2ω2 −m2Þ

r

−
lðlþ 1Þ

r2

��
rf1=2φ ¼ 0; (51)

where we neglect terms of Oð1=r2Þ that are proportional
to ω2 and m2, and terms of order 1=r3 and higher.
The solution to the above equation can be written as:

φIII
RN ¼ a

Flðη;ωvrÞ
r

þ b
Glðη;ωvrÞ

r
; (52)

where η ¼ −Mωð1þ v2Þ=v, and Flðη; xÞ and Glðη; xÞ are
the regular and irregular Coulomb wave functions, respec-
tively [34]. In the far field, we may write

φIII
RN ≈ Aref

RNe
iϑ þ Ainc

RNe
−iϑ (53)

where ϑ¼ ωvr− lπ=2− η lnð2MωvrÞ þ argΓðlþ 1þ iηÞ.
Here Ainc

RN and Aref
RN are related to a and b by

Ainc
RN ¼ −aþ ib

2i
; Aref

RN ¼ aþ ib
2i

: (54)

For ωr ≪ 1 and l ¼ 0, Eq. (52) reduces to

φIII
RN ¼ aρωvþ b

ρr
; (55)

where we have used for the Coulomb wave functions

F0ðη; xÞ ¼ ρx; G0ðη; xÞ ¼
1

ρ
; (56)

and

ρ2 ¼ η

eη − 1
¼ −Mωð1þ v2Þ=v

e−Mωð1þv2Þ=v − 1
: (57)

In the asymptotic limit, Eq. (47) becomes

φII
RN ¼ −ζ

rþ − r−
r

þ τ: (58)

Using Eqs. (50), (55) and (58), we find

a ¼ Atra
RN

ρωv
ð1 − iωβÞ; b ¼ ir2þωρAtra

RN: (59)

We substitute Eq. (59) in Eq. (54) and obtain

Ainc
RN ¼ −Atra

RN
ð1þ r2þω2ρ2v − iωβÞ

2iρωv
;

Aref
RN ¼ Atra

RN
ð1 − r2þω2ρ2v − iωβÞ

2iρωv
: (60)

The reflection coefficient is given by

jRωlj2 ¼




A

ref
RN

Ainc
RN






2

¼




 1 − r2þω2ρ2v − iωβ
1þ r2þω2ρ2v − iωβ






2

; (61)

which, recalling Eq. (23), gives for the absorption cross
section, for l ¼ 0, in the approximation ω ≈ 0 and m ≈ 0:

σlf ¼
π

ω2v2

�
4r2þω2ρ2v

ð1þ r2þω2ρ2vÞ2 þ ω2β2

�
: (62)

In the low-frequency limit we can also consider ρ ≈ 1 and
take only the first term in the denominator of Eq. (62), so
that we are left with

σlf ¼
A
v
; (63)
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where A ¼ 4πr2þ is the area of the Reissner-Nordström
black hole.
In Sec. VI we compare this low-frequency limit with the

numerical results.

B. Schwarzschild case

Having outlined the procedure for the Reissner-
Nordström case in the previous section, we can directly
find the results for the Schwarzschild case by inserting
rþ ¼ 2M and r− ¼ 0 in the previous expressions. We have
then, from Eq. (62),

σSchwlf ¼ π

ω2v2

�
16ω2M2ρ2v

ð1þ 4ω2ρ2vÞ2 þ 4ω2M2ln2ð2MÞ
�
: (64)

Considering ρ ≈ 1 and taking only the first term in the
denominator of Eq. (64) leads to σSchwlf ¼ 16πM2=v. This
result was originally obtained by Unruh [11].

C. Extreme case

For the extreme Reissner-Nordström case, in which
rþ ¼ r−, we can repeat the argument with minor mod-
ifications. We have Eq. (40) with VRN → Ve, where

Ve ¼
�
1 −

M
r

�
2
�
m2 þ lðlþ 1Þ

r2

�
: (65)

The tortoise coordinate for the extreme case is

r� ¼ rþ 2M lnðr −MÞ − M2

r −M
: (66)

We consider only the dominant term of Eq. (66), for
r → M, i.e.,

r� ∼ −
M2

r −M
þ rð0Þ� : (67)

The solution in region I is given by

φI
e ¼ Atra

e exp ðiωM2=ðr −MÞÞ: (68)

For region II the radial equation reduces to

d2

dr2
φe þ

2

ðr −MÞ
d
dr

φe ¼ 0; (69)

with solution given by

φII
e ¼ ζe

r −M
þ τe: (70)

If we take the limit ω → 0 in Eq. (68), we obtain

φI
e ¼ Atra

e

�
1þ i

ωM2

r −M

�
: (71)

Comparing Eqs. (70) and (71) yields

ζe ¼ iωM2Atra
e ; τe ¼ Atra

e : (72)

For region III we have again the solution (52) and for low
frequencies we have Eq. (55). Considering Eq. (70) in the
limit r → ∞, we obtain

φII
e ¼ ζe

r
þ τe: (73)

Using Eqs. (55), (72), and (73), we find

a ¼ Atra
e =ðρωvÞ; b ¼ iM2ωρAtra

e : (74)

We substitute Eq. (74) in Eq. (54) to obtain

Ainc
e ¼ −Atra

e
ð1þM2ω2ρ2vÞ

2iρωv
;

Aref
e ¼ Atra

e
ð1 −M2ω2ρ2vÞ

2iρωv
; (75)

which gives us for the absorption cross section, for l ¼ 0,

σelf ¼
π

ω2v2

�
4M2ω2ρ2v

ð1þM2ω2ρ2vÞ2
�
; (76)

in the low-frequency regime. Taking ρ ≈ 1 and considering
only the first term in the denominator of Eq. (76), we are
again left with

σelf ¼
4πM2

v
¼ Ae

v
: (77)

VI. NUMERICAL COMPUTATIONS

In this section we present numerical results for the
absorption cross section, obtained by solving the radial
equation, Eq. (7), numerically. We integrate the radial
equation from (close to) the event horizon to a large r.
By matching the numerical solutions onto the asymptotic
forms in Eq. (9), we obtain the reflection and transmission
coefficients and, via Eqs. (22)–(23), the absorption cross
section of the massive scalar field for the Reissner-
Nordström spacetime.
In Fig. 5 we compare the scalar-wave absorption cross

section with the geodesic capture cross section σhf ¼ πb2c
[cf. Eq. (28)]. We see that σ exhibits regular oscillations
around σhf . We note that the critical impact parameter bc,
and hence also the absorption cross section, diminishes as
the the charge-to-mass ratio q increases. This is in agree-
ment with results for the massless case [35].
In Fig. 6 we examine the effect of varying the mass of the

scalar field m. In the case Mm > Mmcðq; lÞ, the cross
section diverges as 1=v2 in the limit ω → m, as expected
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from Eq. (23). As described in Sec. V, in the very low-
frequency regime the cross section instead diverges as 1=v.
In the high-frequency limit (ω ≫ 1 and ω=m ≫ 1 [or
equivalently v → 1]), Fig. 6 shows that the massive results
converge with their massless counterparts.
Figure 7 shows that the oscillations in the cross section

are well modeled by the sinc approximation in Eq. (39). As
anticipated [cf. Eq. (39)], the width of the oscillation (in ω)
approaches 1=ðvbcÞ in the limit ω → ∞.
In Fig. 8 we show the partial absorption cross section for

l ¼ 0 and different values of the mass coupling Mm above
and below the critical mass Mmc [for q ¼ 0.4 and l ¼ 0,
Mmc ¼ 0.195]. For Mm ≪ Mmc the absorption cross
section presents a local minimum and a local maximum.
ForMm≳Mmc, σl¼0 becomes a monotonic function of the
frequency.
Figures 9 and 10 show the total and partial absorption

cross section for Mm ¼ 0.04 and Mm ¼ 0.4, respectively.
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FIG. 6 (color online). Total absorption cross section for q ¼ 0.4
and different values of Mm.
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FIG. 7 (color online). Comparison of the sinc approximation,
Eq. (39), with numerical results from the partial-wave method, for
the case Mm ¼ 0.4, q ¼ 0.4. Similar levels of agreement are
found for all q, in the moderate-to-large ω regime.
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FIG. 8 (color online). Partial absorption cross section for the
monopole (l ¼ 0) mode for charge-to-mass ratio q ¼ 0.4, and
four choices of Mm. Note that the local minimum and maximum
disappear as Mm increases towards Mmc ¼ 0.195.
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FIG. 9 (color online). Total and partial absorption cross sections
for q ¼ 0.4 and Mm ¼ 0.04. The smaller plot shows the low-
frequency limit of the absorption cross section.

FIG. 10 (color online). Total and partial absorption cross
sections for q ¼ 0.4 and Mm ¼ 0.4. The smaller plot shows
the low-frequency limit of the absorption cross section.
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For Mm ¼ 0.04 we see that the monopole ðl ¼ 0Þ gives
the main contribution for ω=m≲ 5. As shown in Sec. V,
in the low-frequency limit the absorption cross section
tends to A=v, which diverges as ω → m. For Mm ¼ 0.4
we see that both the partial cross sections for l ¼ 0
and l ¼ 1 diverge in this limit. This occurs because the
value of Mm in this case is very close to the critical value

Mmc [N.B. for q ¼ 0.4 and l ¼ 1, Mmc ¼ 0.405]. We
note that, in this case, since Mm ¼ 0.4, the low-frequency
approximation A=v, although still valid for the partial
cross section σl¼0, is not a good approximation for
the total low-frequency absorption cross section, as the
condition Mm ≪ 1 is not fully satisfied and σl¼1 also
diverges as v → 0.
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FIG. 11 (color online). Transmission (left plots) and reflection (right plots) coefficients for q ¼ 0.4 and for mass couplings
Mm ¼ 0.04 (top plots) and Mm ¼ 0.4 (bottom plots), for l ¼ 0, 1 and 2.
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FIG. 12 (color online). Transmission (left) and reflection (right) coefficients for q ¼ 0.4 and l ¼ 0, for different choices of Mm.
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In Fig. 11 we plot the transmission and reflection
coefficients for Mm ¼ 0.04 and Mm ¼ 0.4 (q ¼ 0.4).
We observe that in the case with smaller mass coupling
(Mm ¼ 0.04) the transmission coefficient starts at zero
and then goes to unity as ω increases, for all values of l.
By contrast, in the case of mass coupling Mm ¼ 0.4, the
transmission coefficient for l ¼ 0 is close to the unity for all
frequencies. This may be understood by noting that
Mm > Mmc in this case, and so there is no effective
potential barrier for incident waves; hence, near-total
absorption is to be expected.
In Fig. 12 we show the transmission and reflection

coefficients for the monopole (l ¼ 0) for a selection of
values of the mass coupling. We can see that for Mm ¼
0.04 the transmission coefficient starts near zero, but, as we
choose larger values of the mass coupling, the value at
ω ¼ m (v ¼ 0) increases. Beyond the critical mass
Mm > Mmc ¼ 0.195 the value at ω ¼ m is very close
to unity.

VII. FINAL REMARKS

We have computed the absorption cross section of a
massive scalar field by a Reissner-Nordström black hole for
a range of frequencies. We compared our results against
(semi)analytic approximations derived in the high- and
low-frequency regimes.
In the moderate-to-high frequency regime, we have

verified that the total absorption cross section oscillates
around the geodesic capture cross section, as quantitatively
described in Sec. IV. We have shown that the regular
oscillations in the cross section (as a function of frequency)
are encapsulated by the ‘sinc’ approximation [Eq. (39)],
which we derived via the complex angular momentum
formalism. Following Refs. [29,30], we showed that the
properties of the oscillations in the cross section (i.e., their
frequency and amplitude) are set by the frequency and
Lyapunov exponent of the unstable orbit in the spacetime
at r ¼ rc.
For small frequencies (ω≳m), we uncovered distinct

possibilities. In the low-frequency limit (Mm ≪ 1,
Mω ≪ 1), absorption is dominated by the monopole,
and we established in Sec. V that σ ∼ σlf ¼ A=v, where
A is the area of the event horizon. For Mm ≪ Mmc, we
found that absorption in the monopole exhibits a local
minimum and a local maximum (Fig. 8), whereas for
Mm≳Mmc absorption by the monopole increases mono-
tonically as v → 0. The critical mass Mmc increases
somewhat with charge-to-mass ratio q, as shown in
Fig. 2. For Mm > MmcðlÞ, the mode l is essentially
entirely absorbed by the black hole. Hence, if Mm >
Mmcðl ¼ 0Þ then, by Eq. (23), the cross section will
diverge as v−2 (rather than v−1) in the limit v → 0.
A key goal here has been to quantify the effect of both

field mass and black hole charge on absorption. We have
found that, in general, the effect of the black hole charge is

to shift key features of the absorption profile of the
Schwarzschild black hole. Let us briefly compare a charged
black hole with an uncharged black hole of identical mass.
The former appears smaller than the latter, in several
regards, as the former (i) has a smaller horizon area, (ii) has
a smaller critical impact parameter bc, (iii) casts a smaller
shadow when illuminated by background radiation,
(iv) possesses an unstable circular orbit with a smaller
radius (and higher orbital frequency), and (v) exhibits (in
general) a smaller scalar-wave absorption cross section than
the latter. These points are interrelated. The critical impact
parameter bc determines the size of the shadow and also the
absorption cross section in the high-frequency regime. Via
Eq. (39), bc determines the width of the oscillations with
frequency seen in (e.g., Figs. 5–7). The amplitude and
decay of these oscillations are set by the critical impact
parameter [Eq. (26)] and the Lyapunov exponent of the
unstable circular orbit [Eq. (37)], whose dependence on q
and v is subtle (see Fig. 3).
The field mass creates qualitatively new effects, leading

to, e.g., a divergence in the cross section as v → 0, and
total absorption in low multipoles lþ 1=2≲ γMm, where
the numerical coefficient γ may be inferred from Fig. 2. For
any known massive Standard Model fields on a solar-mass
black hole spacetime, Mm ≫ 1; in such cases, the horizon
scale is many orders of magnitude larger than the Compton
wavelength of the massive field. However, this is not
necessarily true for primordial black holes, or for (posited)
ultralight particles such as the axion. To get, e.g.,
Mm ∼ 10−2, one may have M ∼ 108 kg in the case of
the Higgs boson; M ∼ 1011 kg in the case of the neutral
pion; or, e.g., M ∼ 2 × 1030 kg for an axion of
mass m ∼ 10−12 eV.
Let us conclude by speculating on the possible physical

relevance of the absorption scenario. In the foreseeable
future, it is possible that observations in the electromag-
netic spectrum of black hole “shadows” will become
feasible [36]. Such measurements would allow one to
probe the absorption cross section in the high frequency
regime, σhf (see Sec. IV). By combining σhf with an
independent measurement of the black hole’s mass, one
may attempt to deduce the black holes charge-to-mass ratio
q. In practice, it seems likely that astrophysical black holes
have negligible charge but significant angular momentum,
so the focus will be on deducing the spin parameter instead.
We note that rotating black holes generate asymmetric
shadows, which may give additional ways to break degen-
eracies in parameter space [37]. If it becomes possible to
sample the absorption cross section across a frequency
band, then quantitative studies such as this will play a
key role in cleanly extracting all key parameters (M, Mm,
and q, say). Notwithstanding this possibility, the results
herein represent a further step towards a quantitative
understanding of the interaction of black holes with
surrounding fields.
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