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Some strong field effects on test particle motion associated with the propagation of a plane
electromagnetic wave in the exact theory of general relativity are investigated. Two different profiles
of the associated radiation flux are considered in comparison, corresponding to either constant or
oscillating electric and magnetic fields with respect to a natural family of observers. These are the most
common situations to be experimentally explored, and have a well known counterpart in the flat spacetime
limit. The resulting line elements are determined by a single metric function, which turns out to be
expressed in terms of standard trigonometric functions in the case of a constant radiation flux, and in terms
of special functions in the case of an oscillating flux, leading to different features of test particle motion.
The world line deviation between both uncharged and charged particles on different spacetime trajectories
due to the combined effect of gravitational and electromagnetic forces is studied. The interaction of charged
particles with the background radiation field is also discussed through a general relativistic description of
the inverse Compton effect. Motion as well as deviation effects on particles endowed with spin are studied
too. Special situations may occur in which the direction of the spin vector changes during the interaction,
leading to observable effects like spin flip.
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I. INTRODUCTION

In general relativity an electromagnetic wave corre-
sponds to a curved spacetime, defined so that both the
electromagnetic and the associated gravitational fields
possess the same Killing symmetries. There exists a large
class of solutions satisfying this condition in terms of some
arbitrary metric functions as well as electromagnetic stress
energy tensor distribution. The choice of either the back-
ground metric or electromagnetic structure determines the
features of the interaction of the wave with the surrounding
matter. A test particle scattered by the wave is expected
to modify its own energy and momentum as a consequence
of this interaction. The analysis of electromagnetically
induced gravitational effects in the exact theory thus
requires some care and seems to be poorly investigated
in the literature.
An exact solution of Einstein’s field equations represent-

ing the gravitational field associated with an electromag-
netic radiation field was discovered long ago (see, e.g.,
Ref. [1] and references therein). The line element is simply

described by trigonometric functions, whereas the associ-
ated electromagnetic field is constant, thus representing a
very special physical situation. In the present work we
study the motion of both neutral and charged particles
(together with geodesic and accelerated world line devia-
tions) when the gravitational field of the electromagnetic
wave background is expressed in terms of special functions
(Mathieu functions), in comparison with the case of the
constant electromagnetic field mentioned above. This
choice of the metric functions yields an associated electro-
magnetic field completely determined by a single harmonic
wave, simply described in terms of standard trigonometric
functions. Notice that both cases of strong uniform as well
as oscillating electromagnetic fields can be easily repro-
duced in a laboratory by using current high precision laser
techniques.
Most of the general (mathematical) features of test

particle motion as well as world line deviations in general
pp-wave spacetimes have been extensively investigated in
the literature (see, e.g., Refs. [2–8] and references therein).
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Nevertheless, the analysis of simple explicit solutions may
lead to a deeper understanding of the underlying physical
properties. We take advantage of the simplicity of these
solutions to perform analytical computations, especially in
view of more complicated situations. For instance, we
study the interaction of charged particles with the radiation
field by considering accelerated orbits with a further con-
tribution to the acceleration proportional to the energy-
momentum distribution of the wave. In a sense, during
the scattering process the particle absorbs and re-emits
radiation, resulting in a force term acting on the particle
itself. This is a second order effect of the scattering problem
which could be relevant in the relativistic regime [9]. A
strong electromagnetic wave is indeed able to transfer
enough energy to a charged particle for the particle to reach
relativistic velocity after a short time.As a result, the photons
of the radiation field will be upscattered by the relativistic
particles in the associated inverse Compton process. For
instance, very high energy emission in pulsars is attributed to
the inverse Compton scattering of soft stellar photons by
energetic particles in the pulsar wind [10]. This analysis thus
naturally leads to observable effects mostly associated with
the interaction between plasmas and strong electromag-
netic waves.
Deviations from geodesic motion can also be due to the

particle’s additional structure. We study the motion of
particles endowed with spin according to the Mathisson-
Papapetrou-Dixon model [11–18]. The high symmetry of
the background spacetime allows us to get explicit sol-
utions for an arbitrary profile of the radiation flux. We then
discuss the shape deformation of a bunch of particles
initially at rest due to their interaction with the electro-
magnetic wave by considering different kinds of radiation
fields as well as interactions associated with the particle’s
additional properties. To the best of our knowledge, such a
comparative analysis has not received enough attention in
the literature and represents an original contribution of the
present work.
Our paper is structured as follows. In Sec. II we review

the solutions of Einstein-Maxwell equations representing
an electromagnetic plane wave in the strong field regime.
The motion of test particles (neutral, charged, spinning) is
studied in Sec. III, with a particular focus on inverse
Compton scattering of charged particles. Deviations from
geodesic motion are calculated explicitly in Sec. IV for
particles endowed with charge or spin. Finally, we draw our
conclusions and suggest possible applications of the
present analysis.

II. THE BACKGROUND OF A STRONG
ELECTROMAGNETIC PLANE WAVE

The gravitational field associated with an electromag-
netic plane wave is given by (see, e.g., Refs. [19,20])

ds2 ¼ −2dudvþH2ðuÞðdx2 þ dy2Þ; (2.1)

written in the Rosen form, i.e., using coordinates
xα ¼ ðu; v; x; yÞ. In order to avoid coordinate singularities,
we limit our considerations to the interval u ∈ ½0; uB�where
uB < u�, being that Hð0Þ ¼ 1 and Hðu�Þ ¼ 0.
Let the electromagnetic potential 1-form A♭ be aligned

with a single spatial direction, e.g., the x-axis, namely

A♭ ¼ hðuÞdx; (2.2)

so that the Faraday 2-form F♭ ¼ dA♭ turns out to be

F ¼ h0ðuÞdu ∧ dx; (2.3)

where a prime denotes differentiation with respect to u. The
associated energy-momentum tensor is then

T ¼ Φ2k ⊗ k; Φ ¼
ffiffiffi
2

p h0

H
; k ¼ ∂v; (2.4)

where Φ represents the flux of the radiation field. Such a
spacetime admits the following Killing vectors:

ξð1Þ ¼ ∂v; ξð2Þ ¼ ∂x; ξð3Þ ¼ ∂y;

ξð4Þ ¼ −y∂x þ x∂y;

ξð5Þ ¼ x∂v þ
Z

u du0

Hðu0Þ2 ∂x;

ξð6Þ ¼ y∂v þ
Z

u du0

Hðu0Þ2 ∂y: (2.5)

The trasformation of the metric (2.1) to the more familiar
Brinkmann form is shown in Appendix A.
Einstein’s equations Gμν ¼ 8πTμν reduce to the single

condition

H00 þ h02

H
¼ H00 þ Φ2

2
H ¼ 0 (2.6)

for the two unknown functions H and h. In order to
determine H and h uniquely, one has to provide a further
relation between them. Alternatively, one can assume that
one of H or h is a known function of u. If one treats H as
the known function, i.e., if one fixes the background
gravitational field, Eq. (2.6) reduces to a first order linear
differential equation for h, whose solution can be formally
written as

hðuÞ ¼
Z

u

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Hðu0ÞH00ðu0Þ

p
du0: (2.7)

For every choice of H one then finds a corresponding
solution for h, i.e., the associated electromagnetic structure.
Equation (2.7) thus identifies a class of exact solutions of
the Einstein-Maxwell field equations representing a plane
electromagnetic wave.
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On the other hand, if one treats h as the known function,
i.e., if one fixes the background electromagnetic field,
Eq. (2.6) is a second order differential equation for
H, which cannot be solved in general. We discuss below
two different choices of h which that are of particular
interest.
The null coordinates ðu; vÞ can be related to standard

Cartesian coordinates ðt; zÞ by the transformation

u ¼ 1ffiffiffi
2

p ðt − zÞ; v ¼ 1ffiffiffi
2

p ðtþ zÞ; (2.8)

casting the metric (2.1) in the following quasi-Cartesian
form:

ds2 ¼ −dt2 þH2ðt − zÞðdx2 þ dy2Þ þ dz2; (2.9)

with x and y as above. Moreover, we have

∂t ¼
1ffiffiffi
2

p ð∂u þ ∂vÞ; ∂z ¼
1ffiffiffi
2

p ð−∂u þ ∂vÞ; (2.10)

so that the direction of propagation of the electromag-
netic wave turns out to be the z-axis, and k ¼
ð∂t þ ∂zÞ=

ffiffiffi
2

p
. Notice that the two directions on the

wave front, i.e., the axes x and y, are no longer
equivalent, since the electromagnetic vector potential is
aligned with the x direction.
A family of fiducial observers at rest with respect to the

coordinates ðx; y; zÞ is characterized by the 4-velocity
vector

n ¼ ∂t: (2.11)

An orthonormal spatial triad adapted to the observers
n≡ e0 is given by

e1 ¼ ∂z; e2 ¼
1

H
∂x; e3 ¼

1

H
∂y; (2.12)

with dual n♭ ≡ ω0 ¼ −dt and

ω1 ¼ dz; ω2 ¼ Hdx; ω3 ¼ Hdy: (2.13)

Such a frame is also parallely propagated along e0, i.e.,∇e0eα ¼ 0. It is also convenient to introduce the following
notation:

eþ ¼ e2 ⊗ e2 þ e3 ⊗ e3; e23 ¼ e2 ∧ e3: (2.14)

The associated congruence of the observer world lines
is geodesic and vorticity free, but has a nonzero
expansion,

θðnÞ ¼ ΘðnÞ
2

eþ ¼
ffiffiffi
2

p H0

H
eþ: (2.15)

The frame components of F are

F ¼ Φ
2
½ω0 ∧ ω2 − ω1 ∧ ω2� ¼ n♭ ∧ EðnÞ þ �ðnÞBðnÞ;

(2.16)

where the symbol �ðuÞ denotes the spatial dual of a spatial
tensor with respect to u. The electric and magnetic fields as
measured by the fiducial observers n are thus given by

EðnÞ ¼ −
Φ
2
e2; BðnÞ ¼ Φ

2
e3: (2.17)

One easily recognizes that the electromagnetic field has a
wave-like behavior, since the two electromagnetic invari-
ants both vanish, i.e.,

EðnÞ2 − BðnÞ2 ¼ 0; EðnÞ · BðnÞ ¼ 0: (2.18)

The nonzero frame components of the Riemann
tensor are

R0202 ¼ R0303 ¼ R1212 ¼ R1313

¼ −R0313 ¼ −R0212 ¼ −
H00

2H
¼ Φ2

4
; (2.19)

so that the electric (EðnÞ), magnetic (HðnÞ) and mixed
(F ðnÞ) parts of the Riemann tensor (see, e.g., Ref. [21] for
their standard definitions) are given by

EðnÞ ¼ F ðnÞ ¼ Φ2

4
eþ ¼ EðnÞ ⊗ EðnÞ þ BðnÞ ⊗ BðnÞ;

HðnÞ ¼ −
Φ2

4
e23 ¼ EðnÞ ∧ BðnÞ: (2.20)

Therefore, the electric and magnetic parts of the Weyl
tensor are both vanishing, i.e.,

1

2
ðEðnÞ − F ðnÞÞðTFÞ ¼ 0; SYMHðnÞ ¼ 0; (2.21)

respectively, implying that the spacetime metric is con-
formally flat, and hence the associated gravitational field is
algebraically special and of the Petrov type O. The super-
script (TF) here stands for the trace-free part of a tensor.
In the following Secs. III and IV we will study test

particle motion as well as deviation effects associated with
an electromagnetic wave background. The interaction of
particles with the radiation field is different depending on
their additional properties. Besides the well known cases of
neutral and charged test particles, we will consider more
complicated situations, like those associated with inverse
Compton scattering of charged particles and deviation
effects induced by spin on particles endowed with structure.
The latter two cases, to the best of our knowledge, have not
been addressed in the literature.
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A. Electromagnetic waves with constant profile

Let us turn to the solutions of Eq. (2.6). The case of
electromagnetic waves with constant profile [19], used in
the literature as the simplest nontrivial solution, is recov-
ered by setting hðuÞ ¼ sinðbuÞ, with b as constant, leading
to the constant flux Φ ¼ ffiffiffi

2
p

b of the associated radiation
field and the constant electric and magnetic fields as
measured by the observers n, i.e.,

EðnÞ ¼ −
bffiffiffi
2

p e2; BðnÞ ¼ bffiffiffi
2

p e3; (2.22)

and HðuÞ ¼ cosðbuÞ. Note that the background quantity b
denotes the strength of the electromagnetic wave and has
the dimensions of the inverse of a length. It is related to the
frequency of the wave by b ¼ ffiffiffi

2
p

ω.
The frame components of the electric and magnetic parts

of the Riemann tensor are constant as well, namely

EðnÞ ¼ b2

2
eþ; HðnÞ ¼ −

b2

2
e23: (2.23)

B. Electromagnetic waves with oscillating electric
and magnetic fields

Let us now choose the unknown function h such that the
electric and magnetic fields are both characterized by an
oscillatory behavior, i.e.,

EðnÞ ¼ −A sinðbuÞe2; BðnÞ ¼ A sinðbuÞe3; (2.24)

with A and b as constants, by requiring

Φ
2
¼ h0ffiffiffi

2
p

H
¼ A sinðbuÞ: (2.25)

The electric and magnetic parts of the Riemann tensor are
also oscillating:

EðnÞ¼A2sin2ðbuÞeþ; HðnÞ¼−A2sin2ðbuÞe23: (2.26)

Substituting the expression (2.25) for the flux of the
radiation field in Eq. (2.6) then gives

H00 þ 2A2sin2ðbuÞH ¼ 0; (2.27)

which represents a Mathieu’s differential equation with the
general solution

H ¼ c1MathieuCða; q; buÞ þ c2MathieuSða; q; buÞ;
(2.28)

in terms of even and odd general Mathieu functions with
the characteristic number a ¼ A2=b2 and characteristic
parameter q ¼ a=2 (so that they cannot be chosen inde-
pendently). The periodicity as well as asymptotic properties

of the solutions of Mathieu’s equation are related to the
values of the characteristic exponent ν, which depends on
both a and q. For the general properties of Mathieu
functions, see, e.g., Ref. [22]. A short review of main
definitions and basic features of Mathieu functions is
given in Appendix B. There are many different nota-
tions and conventions used in standard mathematical
textbooks, leading to different implementations in
common computational softwares, like Maple™ [23] and
Mathematica™ [24].
In this paper we adopt Maple’s definition of Mathieu

functions. We discuss strong electromagnetic plane waves
described by the solution (2.1)–(2.4) with the functions

HðuÞ ¼ MathieuCða; q; buÞ;

hðuÞ ¼
Z

u

0

ffiffiffi
2

p
A sinðbxÞHðxÞdx; (2.29)

with H satisfying Eq. (2.27) with the initial conditions
Hð0Þ ¼ 1 and H0ð0Þ ¼ 0. For the numerical integrations
we fix the values of the background parameters as
A ¼ 1 ¼ b, as an example, so that the parameters of the
Mathieu’s equations are ða; qÞ ¼ ð1; 0.5Þ. The correspond-
ing characteristic exponent is thus given by ν ≈ 1þ
0.2431457i, making the solutions nonperiodic. Periodic
solutions can of course be obtained by suitably choosing a
in such a way that ν is real and a rational number. For
instance, setting a ≈ 0.2404016 implies ν ≈ 1=2, leading to
4π-periodic solutions.

III. TEST PARTICLE MOTION

Let us study the motion of test particles with the
4-velocity U in the background field of a strong electro-
magnetic plane wave. The equations of motion are given by

maðUÞμ ¼ F ðUÞμ; (3.1)

where aðUÞ ¼ ∇UU is the 4-acceleration. As seen by the
observers n, the 4-velocity Uα ¼ dxα=dτ can then be
written as

U ¼ Uα∂α ¼ γðe0 þ νaeaÞ; γ ¼ ð1 − δabν
aνbÞ−1=2;

(3.2)

leading to the following relations between coordinate and
frame components:

Ut ¼ γ; Ux ¼ γν2

H
; Uy ¼ γν3

H
; Uz ¼ γν1:

(3.3)

It is convenient to introduce polar coordinates in the
transverse plane, i.e.,
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ν2 ¼ ν⊥ cos χ; ν3 ¼ ν⊥ sin χ; (3.4)

so that the linear velocity unit spatial vector writes as

νaea ¼ ν∥e1 þ ν⊥ðcos χe2 þ sin χe3Þ; (3.5)

where the notation ν1 ¼ ν∥ has been used.
Test particle motion in the field of an electromagnetic

wave with a constant flux has been investigated, e.g., in
Ref. [9], so we refer to that work for further details.

A. Timelike geodesics

The geodesic motion is governed by the equations

dχ
du

¼ 0;

dν⊥
du

¼ ν⊥
H0

H
ν2⊥ þ ν∥ − 1

1 − ν∥
;

dν∥
du

¼ −ν2⊥
H0

H
; (3.6)

with

γð1 − ν∥Þ ¼ γ0ð1 − ν∥0Þ; (3.7)

and a subscript “0” denoting evaluation at u ¼ 0. It is
useful to introduce the new variables,

ξ ¼ ν2⊥; η ¼ 1 − ν∥; (3.8)

satisfying the following equations:

dξ
du

¼ 2ξ
H0

H
ξ − η

η
;

dη
du

¼ ξ
H0

H
: (3.9)

The solution of the above system is straightforward: χ ¼ χ0
and

η

η0
¼ 2H2η0

2H2η0 þ ð1 −H2Þξ0
;

ξ

ξ0
¼

�
η

η0

�
2 1

H2
: (3.10)

Noticeably, both quantities η=η0 and ξ=ξ0 go to zero as u
approaches u� for which Hðu�Þ ¼ 0.
The solution η ¼ 0 ¼ ξ is also an equilibrium solution

for Eq. (3.9). Furthermore, Eq. (3.7) gives

ξ − 2η

η2
¼ ξ0 − 2η0

η20
≡ C; (3.11)

with C ≤ −1, which is a relation between the velocities ν∥
and ν⊥. It can be cast in the following form:

C2

�
1 − ν∥ þ

1

C

�
2

− Cðν⊥Þ2 ¼ 1; (3.12)

representing an ellipse in the 2-space (ν∥, ν⊥).
The behavior of ν∥ and ν⊥ as functions of u is shown in

Fig. 1 for selected values of the parameters.
The corresponding parametric equations of the particle’s

trajectory can be obtained by further integrating the
evolution equations (3.3), which yield

u ¼ γ0η0ffiffiffi
2

p τ;

v − v0 ¼
1

γ20η
2
0

�
uþ γ20ξ0

Z
u

0

du0

Hðu0Þ2
�
;

x − x0 ¼
ffiffiffi
2

p ξ1=20

η0
cos χ0

Z
u

0

du0

Hðu0Þ2 ;

y − y0 ¼
ffiffiffi
2

p ξ1=20

η0
sin χ0

Z
u

0

du0

Hðu0Þ2 : (3.13)

B. Charged particles

Let us consider the case of an (accelerated) charged
particle with the electric charge e. The equations of motion
(3.1) with

F ðUÞμ ¼ eFμ
νUν (3.14)

imply

FIG. 1 (color online). The behavior of ν∥ and ν⊥ as functions
of u is shown for the geodesic case for the following choice
of parameters and initial conditions: A ¼ b ¼ 1, ν⊥0 ¼ 0.2,
ν∥0 ¼ 0.2. The dashed curve represents the corresponding behav-
ior of H, positively defined in the range of allowed u. The
features of motion in the case of a constant flux are qualitatively
the same.
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dχ
du

¼ ϵ
h0 sin χ
γν⊥H

;

dν⊥
du

¼ −Y
ν2⊥ þ ν∥ − 1

1 − ν∥
;

dν∥
du

¼ Yν⊥; (3.15)

with

Y ¼ −ν⊥
H0

H
− ϵ

h0

H
cos χ
γ

; (3.16)

and ϵ ¼ e=m. Note that Eqs. (3.7) and (3.12) still hold,
providing a relation between the velocities ν∥ and ν⊥. The
above system admits the equilibrium solutions

ν∥ ¼ 1; ν⊥ ¼ 0; χ ¼ 0; π: (3.17)

It can be analytically integrated. In fact, Eqs. (3.15) imply

d
du

½γν⊥H� ¼ −ϵh0 cos χ; (3.18)

which together with the equation for χ gives

γν⊥H sin χ ¼ γ0ν⊥0 sin χ0; (3.19)

and

tan χ ¼ tan χ0

�
1 −

ϵh
γ0ν⊥0 cos χ0

�
−1
: (3.20)

Substituting, then, into the equation for ν∥ yields

1 − ν∥
1 − ν∥0

¼
�
1þ ð1 −H2Þν2⊥0

2H2ð1 − ν∥0Þ
−ϵh

2γ0ν⊥0 cos χ0 − ϵh
2γ20H

2ð1 − ν∥0Þ
�
−1
:

(3.21)

Finally, the corresponding solution for ν⊥ immediately
follows from Eq. (3.12).
The behavior of ν∥ and ν⊥ as functions of u is shown in

Fig. 2 for selected values of the parameters in the case of an
oscillating flux. The features of motion for a constant flux
are qualitatively the same.

C. Particles undergoing inverse Compton scattering

A charged particle moving in a region filled by an
electromagnetic field gets accelerated. Due to this accel-
eration, the particle can attain sufficient kinetic energy to
interact with the photons associated with the background
electromagnetic wave by inverse Compton (IC) scattering.
(In the particle’s rest frame this process can be described by
a Thomson-like scattering, at least at the leading order.) The

photons radiated by the particle itself cause in turn radiation
reaction effects, which we will not discuss here.
The equations of motion are then modified as follows:

maðUÞ ¼ eFμ
νUν þ F ICðUÞ; (3.22)

where

F ICðUÞα ¼ −σTPðUÞαβTβ
μUμ (3.23)

is the drag force which is responsible for the IC scattering
[25,26]. Here, σT denotes the Thomson cross section of the
associated process and PðUÞαβ ¼ δαβ þ UαUβ projects
orthogonally to U. It turns out that

F ICðUÞ ¼ −
σT
2
Φ2γ2ð1 − ν∥Þ2Ū; Ū · Ū ¼ 1; (3.24)

where

Ū ¼ U −
1

γð1 − ν∥Þ
ðnþ e1Þ (3.25)

is a unit spatial vector orthogonal to U, so that the
magnitude of the scattering force is given by

jjF ICðUÞjj ¼ σT
2
Φ2γ2ð1 − ν∥Þ2: (3.26)

The equations of motion (3.15) and (3.7) thus modify as

FIG. 2 (color online). The behavior of ν∥, ν⊥ and χ as functions
of u is shown for a charged particle for the same choice of
parameters and initial conditions as in Fig. 1 with, in addition,
ϵ ¼ 1 and χð0Þ ¼ 0.2. The equilibrium solution is reached at
u ≈ 1.865 where H ¼ 0. Recalling the polar decomposition (3.4)
of linear velocities in the transverse plane, we then find that
ν2 ¼ ν⊥ cos χ changes its sign during the evolution when χ
crosses π=2, due to the electromagnetic interaction, which
corresponds to the relative minimum in the curve.
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dχ
du

¼ ϵ
h0 sin χ
γν⊥H

;

dν⊥
du

¼ −Y
ν2⊥ þ ν∥ − 1

1 − ν∥
−

~σT
2
Φ2

ν⊥
γ
;

dν∥
du

¼ Yν⊥ þ ~σT
2
Φ2

1 − ν∥
γ

; (3.27)

and

γð1 − ν∥Þ
γ0ð1 − ν∥0Þ

¼
�
1þ ~σTffiffiffi

2
p γ0ð1 − ν∥0ÞWðuÞ

�
−1
; (3.28)

where ~σT ¼ σT=m and

WðuÞ ¼
Z

u

0

Φðu0Þ2du0: (3.29)

Notice that an equilibrium solution exists also in this case,
still given by Eq. (3.17). In the case of electromagnetic
waves with a constant profile, we simply get

WðuÞ ¼ 2b2u; (3.30)

whereas in the case of electromagnetic waves with oscil-
lating electric and magnetic fields we find

WðuÞ ¼ A2

b
½2bu − sinð2buÞ�: (3.31)

Furthermore, we have

tan χ
tan χ0

¼
�
1 − ϵ

1 − ν∥0
ν⊥0 cos χ0

Z
u

0

h0ðu0Þ
γð1 − ν∥Þ

du0
�
−1
; (3.32)

which for a constant flux implies

tan χ
tan χ0

¼
�
1 − ϵ

sin bu
γ0ν⊥0 cos χ0

½1þ
ffiffiffi
2

p
b ~σTγ0ð1 − ν∥0Þ

×

�
bu −

1 − cos bu
sin bu

���
−1
: (3.33)

The behavior of ν∥ and ν⊥ as functions of u for fixed
values of ~σT is qualitatively the same as in Fig. 2. As the
interaction strength increases, i.e., for increasing values of
~σT , the bump in the evolution of ν⊥ gets smaller and smaller,
whereas ν∥ soon becomes relativistic. Correspondingly, the
sign reversal of the frame component ν2 ¼ ν⊥ cos χ of the
linear velocity in the transverse plane turns out to occur at
even smaller values of u (where χ crosses π=2 and ν⊥ has a
relative minimum).

D. Spinning particles

In this section we study the motion of extended bodies
with spin in the field of a plane electromagnetic wave. We

limit our analysis to the case of uncharged spinning
particles, i.e., the interaction between the particle and the
background geometry is here purely gravitational (see, e.g.,
Refs. [27,28] for the case of gravitational and electromag-
netic wave spacetimes).
The motion of massive uncharged spinning particles is

described to the first order in spin by the set of Mathisson-
Papapetrou-Dixon (MPD) equations given by

maðUÞμ ≃ −
1

2
Rμ

ναβUνSαβ ≡ Fμ
ðspinÞ; (3.34)

DSμν

dτ
≃ 0; (3.35)

where Uα ¼ dxα=dτ denotes the timelike unit tangent
vector (with the proper time parameter τ) to the spinning
particle’s “center of mass line” used to make a multipole
reduction, and Sμν is its antisymmetric (intrinsic angular
momentum) spin tensor. In this limit the total 4-momentum
P of the particle is aligned with U, i.e., Pμ ≈mUμ, with the
particle’s mass m remaining constant along the path.
The generalization to the case ofmassive charged spinning

particles has been developed by Souriau [29]. The MPD
equations are then modified by the inclusion of (classical)
electromagnetic-spin couplings. The resulting motion was
analyzed later both in black hole spacetimes and in gravi-
tational wave spacetimes (see, e.g., Refs. [30–33]).
Consider Eqs. (3.34) and (3.35). The projection of the

spin tensor into the local rest space of U defines the spin
vector by the spatial duality

Sβ ¼ 1

2
ηα

βγδUαSγδ ¼ Uα½�S�αβ; (3.36)

where ηαβγδ ¼ ffiffiffiffiffiffi−gp
ϵαβγδ is the unit volume 4-form and

ϵαβγδ (ϵ0123 ¼ 1) is the Levi-Civita alternating symbol. The
spin vector is thus parallely transported along the trajectory
of the spinning particle, as in Eq. (3.35). It is useful to
introduce the signed magnitude s of the spin vector

s2 ¼ SβSβ ¼
1

2
SμνSμν; (3.37)

which is also a constant of motion.
The linearized MPD equations of motion (3.34) are

formally the same as Eq. (3.1) with

F ðUÞμ ¼ Fμ
ðspinÞ: (3.38)

A first order solution with respect to the spin can then be
found in the general form

xα ¼ xαðgÞ þ ~xα;

Uα ¼ Uα
ðgÞ þ ~Uα; (3.39)
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where Uα
ðgÞ ¼ dxαðgÞ=dτ denotes the unit tangent vector to a

geodesic orbit, and ~Uα ¼ d~xα=dτ is a deviation vector
orthogonal to it (i.e., ~U · UðgÞ ¼ 0, to the first order in spin,
as from the normalization condition U ·U ¼ −1).
Therefore, the 4-velocity U of the spinning particle has
the general form (3.2) with

νa ¼ νaðgÞ þ ~νa; (3.40)

and

ν1ðgÞ ¼ ν∥ðgÞ; ν2ðgÞ ¼ ν⊥ðgÞ cos χ0; ν3ðgÞ ¼ ν⊥ðgÞ sin χ0:

(3.41)

The spin vector must be orthogonal to U, so to the first
order we have

S ¼ S0nþ S1e1 þ S2e2 þ S3e3; (3.42)

with

S0 ¼ S1ν1ðgÞ þ S2ν2ðgÞ þ S3ν3ðgÞ: (3.43)

It is convenient to rescale the frame components of the
spin vector by the particle’s mass, i.e., σa ¼ Sa=ð ffiffiffi

2
p

mÞ,
which have the dimensions of a length, and use the
variables

ξðgÞ ¼ ½ν⊥ðgÞ�2; ηðgÞ ¼ 1 − ν∥ðgÞ; (3.44)

which have already been introduced in Eq. (3.8). The
details for the derivation of the general solution of the full
set of MPD equations are given in Appendix C. Below, we
simply list the main results.
The solutions for the frame components of the rescaled

spin vector are

σ1 ¼ σ10 −
�
1 −

1

H

	��
1 −

1

H

	Σ0

2

ξ0
η0

þ σ10 − Σ0

�
;

σ2 ¼ σ20 þ
�
1 −

1

H

	
Σ0ξ

1=2
0 cos χ0;

σ3 ¼ σ30 þ
�
1 −

1

H

	
Σ0ξ

1=2
0 sin χ0; (3.45)

where

Σ0 ¼ σ10 −
ξ1=20

η0
ðcos χ0σ20 þ sin χ0σ30Þ; (3.46)

so that

1

2

�
s
m

�
2

¼ −½σ10 − η0Σ0�2 þ ½σ10�2 þ ½σ20�2 þ ½σ30�2: (3.47)

Their behavior is determined by the value of Σ0, once the
initial values of the geodesic velocities (i.e., ξ0, η0 and χ0)
have been fixed. In fact, let χ0 ∈ ð0; π=2Þ and σa0 > 0,
without loss of generality. The components σa all depend
on u through the function 1 − 1=H, which monotonically
decreases from 0 to −∞ in the allowed range, forH → 0. If
Σ0 < 0, then all σa are monotonically increasing functions
of u. In contrast, if Σ0 > 0, then all components mono-
tonically decrease, becoming negative at a certain value of
u. Finally, if Σ0 ¼ 0, then σ2 and σ3 remain equal to their
initial values, whereas σ1 ¼ σ10=Hmonotonically increases.
Therefore, the scattering of a spinning particle by an
electromagnetic wave can lead to a spin-flip effect, i.e.,
a sudden change of the direction of the spin vector, with its
magnitude remaining constant. This interesting feature was
already discussed in the context of the interaction between
gravitational waves and extended bodies with application
for the observed phenomenology of glitches in pulsars [34].
The solutions for the deviation velocities turn out to be

~ν1 ¼ H0

H
ηðgÞξ

1=2
ðgÞ ðcos χ0σ30 − sin χ0σ20Þ;

~ν2 ¼ H0

H
ηðgÞ

��
1 −

ξðgÞ
ηðgÞ

�
σ3 þ ξ1=2ðgÞ sin χ0σ

1

�
;

~ν3 ¼ −
H0

H
ηðgÞ

��
1 −

ξðgÞ
ηðgÞ

�
σ2 þ ξ1=2ðgÞ cos χ0σ

1

�
; (3.48)

whereas the spin-induced deviations in the transverse plane
are given by

~xffiffiffi
2

p ¼
�
1 −

1

H

�
ðσ3 þ Σξ1=2ðgÞ sin χ0Þ

− ðσ3 − σ30Þ − ðΣξ1=2ðgÞ − Σ0ξ0Þ sin χ0;
~yffiffiffi
2

p ¼ −
�
1 −

1

H

�
ðσ2 þ Σξ1=2ðgÞ cos χ0Þ

þ ðσ2 − σ20Þ þ ðΣξ1=2ðgÞ − Σ0ξ0Þ cos χ0: (3.49)

Initial conditions for the first order quantities have been
chosen as ~xαð0Þ ¼ 0 ¼ ~νað0Þ, implying that the 4-velocity
U is initially tangent to the reference geodesic UðgÞ. The
behavior of the deviation velocities ~νa as functions of u,
representing the corrections to the geodesic values induced
by the spin, is shown in Fig. 3 for the case of an oscillating
flux. Note that the deviation velocity components all vanish
at the end of the interaction.
The situation is somewhat different if the particle is

initially at rest, i.e., νa0 ≡ 0 (or, equivalently, ξ0 ¼ 0 and
η0 ¼ 1). In this case the geodesic equations imply νaðgÞ ≡ 0,

i.e., ξðgÞ ≡ 0 and ηðgÞ ≡ 1, for any value of u, so that the
solutions (3.45), (3.48) and (3.49) to the whole set of
linearized MPD equations reduce to σa ¼ σa0 ,
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~ν1 ¼ 0; ~ν2 ¼ σ30
H0

H
; ~ν3 ¼ −σ20

H0

H
; (3.50)

and

~xffiffiffi
2

p ¼
�
1 −

1

H

�
σ30;

~yffiffiffi
2

p ¼ −
�
1 −

1

H

�
σ20; (3.51)

respectively. These results agree with Ref. [28], where such
a special choice of initial conditions was discussed only,
even if the background solution considered there is a more
general pp-wave spacetime with both gravitational and
electromagnetic waves. By introducing the quantity

Ω ¼ −
H0

H
e1; (3.52)

the previous solution for the deviation velocities can then
be summarized by

~νa ¼ ½Ω × σ0�a: (3.53)

The angular velocity Ω in general diverges as u → u�,
unless limu→u� ðH0=HÞ ¼ 0 (which is not the case for the
two explicit examples considered above). Note that both
directions of S and Ω are fixed, implying that the direction
of ~ν is fixed too; its magnitude, instead, generally increases
as u → u�.
Finally, in order to make a comparison with the geodesic

case discussed previously, it is useful to introduce polar

coordinates in the transverse plane for the linear velocities
as in Eqs. (3.4)–(3.5), which are given by

ν∥ ¼ ν∥ðgÞ þ ~ν1;

ν⊥ ¼ ν⊥ðgÞ þ cos χ0 ~ν2 þ sin χ0 ~ν3;

χ ¼ χ0 þ
1

ν⊥ðgÞ
ð− sin χ0 ~ν2 þ cos χ0 ~ν3Þ; (3.54)

to the first order in spin. Their behavior as functions of u is
shown in Fig. 4. The parallel component of the velocity
does not significantly differ from its geodesic counterpart;
the same applies to the magnitude of the transverse
component, whereas its direction changes during the
interaction.

E. Discussion

We have investigated so far the motion of test particles in
the spacetime associated with an electromagnetic wave. We
have considered both structureless particles and particles
endowed with additional properties, like electric charge and
spin, discussing, in particular, the occurrence of measurable
effects related to the behavior of the transverse and parallel
components of the spatial velocity.
As a general feature, the transverse components of

the particle’s velocity orthogonal to the direction of
propagation of the wave turn out to be strongly suppressed
during the interaction, whereas the parallel component is
enhanced, as expected. In addition, in the uncharged
(geodesic) case the direction of the transverse velocity
remains fixed and coincides with its initial value; on the
other hand, in the charged case, the electromagnetic
interaction causes it to evolve, leading to a significant
modification with respect to the initial configuration.

FIG. 4 (color online). The behavior of ν∥, ν⊥ and χ given by
Eq. (3.54) as functions of u is shown for a spinning particle with
the same choice of parameters and initial conditions as in Fig. 3.

FIG. 3 (color online). The evolution of the deviation velocities
~νa during the interaction of a spinning particle with an oscillating
electromagnetic field is shown for the same choice of parameters
and initial conditions as in Fig. 1, with, in addition, σa0 ¼ 0.1 and
χ0 ¼ 0.2. The behavior of the complete spatial velocities νa ¼
νaðgÞ þ ~νa given by Eq. (3.40) is of course dominated by the
geodesic contribution, to which the deviation velocities ~νa are
only a small perturbation (the initial values of the spin compo-
nents have been exaggerated to enhance the effect).
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An interesting feature also arises when considering the
evolution of the parallel component of the velocity. Indeed,
if the wave propagates along the positive z-direction and
the particle starts moving with a nonzero component of its
velocity along the negative z-direction, there will be a
certain moment during the interaction at which the drag-
ging effects of the wave momentarily stop the particle (i.e.,
the parallel component of the velocity vanishes). From then
on, the particle and the wave both move along the same
positive z-direction, and relativistic velocity is reached
shortly thereafter. This special physical situation, corre-
sponding to a sign reversal of the parallel component of the
particle’s velocity, applies to all cases (charged, uncharged,
spinning) analyzed here and can have experimental
counterparts.
Consider, for instance, the case of a charged particle. The

solution for the parallel component ν∥ of the velocity is
given by Eq. (3.21). By fixing, as an example, the initial
data as ν∥0 ¼ −1=2, ν⊥0 ¼ 1=2 (so that γ0 ¼

ffiffiffi
2

p
) and

χ0 ¼ π=4, we get

1 − ν∥ ¼
11

18
þ 1 − 2ϵhð1 − ϵhÞ

18H2
: (3.55)

Different choices are clearly equally valid, provided that
−1 < ν∥0 < 0. The behavior of ν∥ as a function of u is
shown in Fig. 5 for both constant and oscillating profiles of
the radiation flux.
The condition ν∥ðūÞ ¼ 0 (i.e., backscattering of the

particle) at a certain value u ¼ ū then gives

HðūÞ2 ¼ 1

7
½1 − 2ϵhðūÞð1 − ϵhðūÞÞ�; (3.56)

which can be solved for ū, once the background solution is
specified. In the simplest case of geodesic motion (i.e.,
ϵ ¼ 0) the above equation reduces toHðūÞ ¼ 1=

ffiffiffi
7

p
, which

gives bū ≈ 1.1832 and bū ≈ 1.5618 for a constant and an
oscillating flux, respectively. For charged particles and
waves with constant profile, Eq. (3.56) implies

sin bū ¼ ϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42þ 13ϵ2

p

7þ 2ϵ2
: (3.57)

The above equation always admits a solution for ū (i.e., for
every fixed value of ϵ). For ϵ ¼ 0 (neutral particles) we
recover the previous result valid for the geodesic case, i.e.,
sin bū ¼ ffiffiffiffiffiffiffiffi

6=7
p

, whereas in the limit ϵ → �∞ we have
sin bū → 0. Finally, in the case of ϵ ≪ 1 a first order
approximation results in

sin bū ≈
ffiffiffi
6

7

r
þ 1

7
ϵþOðϵ2Þ; (3.58)

or, equivalently,

bū ≈ 1.1832þ :3780ϵþOðϵ2Þ; (3.59)

yielding the correction to the geodesic value due to the
charge. Notice that the previous approximation does not
hold for elementary particles, which have a large value of
the dimensionless charge-to-mass ratio parameter ϵ.
Recalling that the background parameter b is simply related
to the frequency of the electromagnetic wave by b ¼ ffiffiffi

2
p

ω,
we expect that experiments with new generation laser
devices may be conceived, in principle, to test the effect
discussed above.

IV. DEVIATION EFFECTS

Deviations from geodesic motion by a test particle in a
given gravitational field are generally associated with the
particle’s additional properties, such as electric charge or
spin, but also with external interacting fields, e.g., radiation
fields.

A. World line deviation

Let U be a reference world line and ξ a generic deviation
vector Lie-dragged alongU, i.e., ½U; ξ� ¼ 0 ¼ ∇Uξ −∇ξU.
By differentiating this relation alongU and using the index-
free notation of Ref. [35], one gets

∇UUξ ¼ ∇U∇ξU

¼ ½∇U;∇ξ�U þ∇ξaðUÞ
¼ Rð…; U;U; ξÞ þ∇ξaðUÞ: (4.1)

FIG. 5 (color online). The behavior of ν∥ as a function of u is
shown for a charged particle with the choice of parameters and
initial conditions ν∥0 ¼ −1=2, ν⊥0 ¼ 1=2, χ0 ¼ π=4, A ¼ 1 ¼ b
and ϵ ¼ 1. In the case of a constant flux (dashed curve) the
velocity changes its sign at ū ≈ 1.2086. In the case of an
oscillating flux (solid curve), instead, the sign reversal occurs
at ū ≈ 1.5323.
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Denoting ∇U ¼ D=dτ, we have aðUÞ ¼ ∇UU ¼ 0 for a
geodesic orbit and hence

D2ξμ

dτ2
þ Rμ

UξU ¼ 0; (4.2)

where Xabc ¼ Xαβγaαbβcγ . For an orbit accelerated by a
4-force F ðUÞ we have instead maðUÞ ¼ F ðUÞ [see
Eq. (3.1)], so that the deviation equation becomes

D2ξμ

dτ2
¼ −Rμ

UξU þ 1

m
∇ξF ðUÞμ: (4.3)

1. Geodesic deviation

For the simplest scenario, we consider a bunch of
particles at rest with respect to the chosen coordinate
system, i.e., with 4-velocity U ¼ e0 ¼ ∂t, which is also
a geodesic world line. Let ξ ¼ ξ1e1 þ ξ2e2 þ ξ3e3 be a
deviation vector from the reference world line.
Equation (4.2) then gives

d2ξ1
dτ2

¼ 0;
d2ξ2;3
dτ2

þ Φ2

4
ξ2;3 ¼ 0: (4.4)

The first equation implies that ξ1 is linear in τ. However,
since we are interested in deviation effects in the plane
orthogonal to the direction of propagation of the electro-
magnetic wave, we will simply set ξ1 ¼ 0 hereafter.
Recalling that τ is a proper time parametrization along
∂t and hence

dt ¼ dτ ¼
ffiffiffi
2

p
du; (4.5)

the second equation of (4.4) becomes

d2X
du2

þ Φ2

2
X ¼ 0; X ¼ ξ2;3; (4.6)

which is equivalent to Eq. (2.6). It admits the general
solution

X
H

¼ c1 þ c2

Z
u du0

Hðu0Þ2 ; (4.7)

where c1;2 are integration constants. Therefore, in the case
of electromagnetic waves with constant profile deviations
from geodesics are described by standard trigonometric
functions, whereas in the case of electromagnetic waves
with oscillating electric and magnetic fields deviations are
governed by Mathieu functions. As a result, in the former
case the frame components of the deviation vector in the
transverse plane oscillate with constant amplitude, so that a
bunch of particles at rest with respect to the chosen
coordinate system undergoes oscillatory deformations pre-
serving its shape. In the latter case, instead, the amplitude

of oscillations varies with proper time, causing the bunch of
particles either to spread out or to squeeze (see Fig. 6).
Deviations in the transverse plane (i.e., with ξ1 ¼ 0)

from a general timelike geodesic with U given by Eq. (3.2)
and velocity components (3.10) are still described by
Eq. (4.6), due to the symmetries of the background.

2. Charged particle deviation

A similar treatment for the charged case shows that the
generalized deviation equation (4.3) admits the solution
ξ1 ¼ 0 ¼ ξ2, whereas ξ3 still satisfies Eq. (4.6). This is a
consequence of the fact that the Faraday tensor has no
frame components along the axis e3. Therefore, we will
omit further details.

3. Deviation of particles undergoing IC scattering

Deviations from geodesic motion in the transverse plane
due to the combined effect of both the electromagnetic field
and the IC interaction are governed by the equation

d2X
du2

þ Φ2

2

�
1 −

ffiffiffi
2

p
~σTγð1 − ν∥Þ

d
du

ln

�
X
H

��
X ¼ 0; (4.8)

where X ¼ ξ2;3 and we have assumed ξ1 ¼ 0. Recalling the
solution (3.28) for the quantity γð1 − ν∥Þ, the general
solution of the above equation turns out to be

FIG. 6 (color online). The behavior of the magnitude of the
deviation vector jjξjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ ξ22 þ ξ23

p
is shown as a function of

u in the case of an oscillating flux with ξ1 ¼ 0, ξ2 ¼
MathieuCð1; 0.5; uÞ and ξ3 ¼ MathieuSð1; 0.5; uÞ (solid curve).
A bunch of particles at rest thus undergoes an oscillating shape
deformation during the interaction with the radiation field. In
contrast, for a constant flux (ξ1 ¼ 0, ξ2 ¼ cos u and ξ3 ¼ sin u,
implying that jjξjj ¼ 1) the bunch preserves its shape
(dashed line).

PARTICLE DYNAMICS AND DEVIATION EFFECTS IN … PHYSICAL REVIEW D 89, 104049 (2014)

104049-11



X
H

¼ c1 þ c2

Z
u du0

Hðu0Þ2 −
~σTffiffiffi
2

p γ0ð1 − ν∥0Þ
Z

u Wðu0Þ
Hðu0Þ2 du

0;

(4.9)

where higher order terms in the coupling parameter ~σT
have been neglected. The function WðuÞ has been
defined in Eq. (3.29), and is given by Eq. (3.30) and
(3.31) for both the constant and oscillating flux, respec-
tively. In the former case we findZ

u du0

Hðu0Þ2 ¼
1

b
tan bu; (4.10)

and Z
u Wðu0Þ
Hðu0Þ2 du

0 ¼ 2bu tan buþ 2 lnðcos buÞ: (4.11)

Figure 7 shows the behavior of the magnitude of the
deviation vector in the transverse plane in both cases of con-
stant flux and oscillating flux. The presence of the IC effect
changes the situation significantly only in the former case,
with the magnitude of the deviation vector being no longer
constant but increasing with time during the interaction.

B. Deviation induced by spin

A spinning particle deviates from geodesic motion
according to Eq. (3.39). The general form of the deviation
vector ~U is given by

~U ¼ H0

H
γ0η0

�
1

H
ξ1=20

η0
ðcos χ0σ30 − sin χ0σ20Þðnþ e1Þ

þ ðσ3 þ Σξ1=2ðgÞ sin χ0Þe2−ðσ2 þ Σξ1=2ðgÞ cos χ0Þe3g:
(4.12)If the particle is initially at rest, it reduces to

~U ¼ ~νaea ¼
H0

H
½σ30e2 − σ20e3�; (4.13)

with the magnitude

jj ~Ujj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½σ20�2 þ ½σ30�2

q 



H
0

H





: (4.14)

The behavior of the magnitude (4.14) of the deviation
vector is shown in Fig. 8 for both the constant and
oscillating flux.

V. CONCLUDING REMARKS

In this work we have studied deviations from geodesic
motion induced by the interaction of particles endowed
with additional properties (such as electric charge or spin)
with the radiation field associated with the background of
an exact plane electromagnetic wave. The spacetime
symmetries allow an analytical solution of the equations
governing the geodesic and accelerated world line devia-
tions for both neutral and charged test particles, as already
known in the literature. We have then investigated more
complicated situations, when the features of the scattering
process are modified either by the presence of a multipolar
structure of the particle (spin) or due to the inclusion of
higher order effects in the interaction (inverse Compton).
We have been able to obtain explicit analytical solutions
also in these cases, allowing us to discuss some interesting
features which may be eventually observed, like spin-flip
effects. We have compared the two background solutions
representing plane electromagnetic waves with a constant
profile and waves with oscillating electric and magnetic
fields in the frame of a natural family of observers; these are

FIG. 7 (color online). The behavior of the magnitude of the
deviation vector jjξjj in the transverse plane (with ξ1 ¼ 0) is
shown as a function of u for the same choice of parameters as in
Fig. 6 and ~σT ¼ 1 for both the constant flux (dashed curve) and
oscillating flux (solid curve) in the presence of the IC effect.

FIG. 8 (color online). The behavior of the magnitude of the
deviation vector jj ~Ujj given by Eq. (4.14) is shown as a function
of u for the choice of parameters σ20 ¼ 0.1 ¼ σ30 for both the
constant flux (dashed curve) and the oscillating flux (solid curve).
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the most common situations to be experimentally explored
and have a well known counterpart in the flat space-
time limit.
The deviation equations in the transverse plane can be

reduced to a single equation even if one includes higher
order acceleration effects, like inverse Compton scattering.
In the case of electromagnetic waves with a constant profile
we have found that world line deviations of structureless
particles are simply described by standard trigonometric
functions with a constant amplitude, whereas in the case of
electromagnetic waves with oscillating electric and mag-
netic fields, they are governed by Mathieu functions whose
amplitude varies with time. As a result, the magnitude of
the deviation vector is constant in the former case, while it
increases with time in the latter. In the case of particles
endowed with spin, instead, the magnitude increases during
the interaction for both constant and oscillating radiation
fields. The solution of the Einstein-Maxwell equations thus
highlights the parametric (nonlinear) nature of the electro-
magnetically induced gravitational interaction. This is a
strong signature of the different gravitational content of the
associated spacetime. The study of these effects is of
importance especially in view of possible experimental
tests expected from future achievements of exawatt laser
technologies [36].
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APPENDIX A: PP-WAVE SPACETIMES

A general pp-wave spacetime associated with the vac-
uum, Einstein-Maxwell null and pure radiation fields can
be written in Brinkmann form as [37]

ds2 ¼ −2dUdV þ KðU;X; YÞdU2 þ dX2 þ dY2; (A1)

where K is an arbitrary function of the retarded time U.
The corresponding spacetimes may represent strong gravi-
tational or electromagnetic waves with arbitrary profiles.
For a pure gravitational wave the field equations give the
solution

K ¼ kþðUÞðX2 − Y2Þ þ 2k×ðUÞXY; (A2)

where kþðUÞ and k×ðUÞ are the þ and × polarization
modes of the wave. For a pure electromagnetic wave we
have instead

K ¼ kðUÞðX2 þ Y2Þ; kðUÞ ≥ 0: (A3)

The Rosen form of the metric (2.1) is related to
the Brinkmann form (A1) through the coordinate
transformation

u ¼ U; v ¼ V −
1

2

H0

H
ðX2 þ Y2Þ;

x ¼ X
H
; y ¼ Y

H
; (A4)

with

k ¼ −
H00

H
¼ Φ2

2
: (A5)

APPENDIX B: MATHIEU FUNCTIONS

We summarize below some basic properties of the
Mathieu functions as well as different notations and
conventions adopted in common computational softwares,
like Maple™ [23] and Mathematica™ [24].
The canonical form for Mathieu’s differential equation is

d2y
dz2

þ ða − 2q cos 2zÞy ¼ 0; (B1)

where the constants a and q are referred to as characteristic
number and characteristic parameter, respectively, and are
in general complex numbers. The most general solution can
be written in the form

yðzÞ ¼ c1y1ðzÞ þ c2y2ðzÞ; (B2)

where y1;2 are two independent solutions and c1;2 arbitrary
complex constants.
According to Floquet’s theorem, there exists a complex

valued solution of Eq. (B1) of the form

y1ðzÞ ¼ eiνzpðzÞ; (B3)

where ν ¼ νða; qÞ is in general a complex number called
the characteristic exponent, and pðzÞ is a periodic function
of z with the period π. The above solution is bounded for
z → ∞, unless ν is a complex number, for which it is
unbounded. Its periodicity depends on the value of ν: y1ðzÞ
is nonperiodic if ν is complex or even real but not a rational
number; if ν is a rational number, i.e., ν ¼ m=n, then y1ðzÞ
is periodic of the period at most 2πn; finally, if ν is a real
integer, y1ðzÞ is a periodic function with the period π or 2π.
Periodic solutions of Mathieu’s equation are called Mathieu
functions of the first kind, or, more simply, Mathieu
functions. In this case, a and q cannot be given independ-
ently because periodicity requires that they fulfill the
equation νða; qÞ ¼ n, with the n integer. All values of a
satisfying the latter condition for fixed values of q are
called characteristic values. It turns out that y1ðzÞ is
periodic with the period π for an even n and periodic with
the period 2π for an odd n. In most textbooks periodic
solutions which are even functions of z are denoted by
cenðz; qÞ (cosine elliptic), whereas senðz; qÞ (sine elliptic)
are odd functions. Furthermore, ce2nðz; qÞ and se2nþ1ðz; qÞ
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have the period π, while ce2nþ1ðz; qÞ and se2nþ2ðz; qÞ have
the period 2π. However, different normalization conven-
tions are adopted in the literature. On the other hand, if the
parameters a and q are fixed independently (e.g., in the case
of the parametric oscillator), the general solution y1ðzÞmay
be periodic or not, bounded or not, depending on the
corresponding values of ν, as discussed before.
A second independent solution of Mathieu’s equation is

given by y2ðzÞ ¼ y1ð−zÞ, provided that the characteristic
exponent is not a real integer; otherwise, it is of the form
y2ðzÞ ¼ czy1ðzÞ þ fðzÞ (Mathieu functions of the second
kind), where c is a constant and fðzÞ has the same
periodicity properties as y1ðzÞ. The second linearly inde-
pendent solutions (necessarily not periodic) associated with
cosine elliptic and sine elliptic functions are denoted by
fe2nþ1ðz; qÞ and ge2nþ1ðz; qÞ, respectively.

1. Maple™

In Maple™ the general solution (B2) of Mathieu’s
equation (B1) is given by

yðzÞ ¼ c1MathieuCða; q; zÞ þ c2MathieuSða; q; zÞ (B4)

in terms of even and odd functions defined by

MathieuCða; q; zÞ ¼ 1

2

y1ðzÞ þ y1ð−zÞ
y1ð0Þ

;

MathieuSða; q; zÞ ¼ 1

2

y1ðzÞ − y1ð−zÞ
y01ð0Þ

; (B5)

respectively, where the Floquet solution (B3) is denoted
by y1ðzÞ ¼ MathieuFloquetða; q; zÞ. The Mathieu cosine
and Mathieu sine functions are real valued and normalized
so that

MathieuCða;q;0Þ¼ 1; MathieuC0ða;q;0Þ¼ 0; (B6)

and

MathieuSða;q;0Þ¼ 0; MathieuS0ða;q;0Þ¼ 1; (B7)

respectively, like standard trigonometric functions. They
are in general aperiodic. A noteworthy special case is
q ¼ 0, for which

MathieuCða; 0; zÞ ¼ cos
ffiffiffi
a

p
z;

MathieuSða; 0; zÞ ¼ sin
ffiffiffi
a

p
zffiffiffi

a
p : (B8)

For a given pair ða; qÞ, the characteristic exponent ν entering
the Floquet solution (B3) is computed using the auxiliary
function MathieuExponentða; qÞ. For countably many val-
ues of a (as a function of q), the Mathieu cosine and sine
functions are periodic. The corresponding characteristic

values are computed by using MathieuAðn; qÞ and
MathieuBðn; qÞ, respectively.
The periodic solutions of the Mathieu’s equation are

denoted by MathieuCEðn; q; zÞ and MathieuSEðn; q; zÞ,
with n being a non-negative integer, and are also special
cases of the Mathieu cosine and sine functions, respec-
tively. They are defined as

MathieuCEðn; q; zÞ
MathieuCEðn; q; 0Þ ¼ MathieuCðMathieuAðn; qÞ; q; zÞ;

n ¼ 0; 1;…;

MathieuSEðn; q; zÞ
MathieuSE0ðn; q; 0Þ ¼ MathieuSðMathieuBðn; qÞ; q; zÞ;

n ¼ 1; 2;…: (B9)

If the index n is even, then both MathieuCE and
MathieuSE are π periodic, otherwise they are 2π periodic.
They assume the following special values for q ¼ 0∶

MathieuCEðn; 0; zÞ ¼ cos nz;

MathieuSEðn; 0; zÞ ¼ sin nz: (B10)

2. Mathematica™

Compared to Maple™ the Mathieu cosine and Mathieu
sine functions are normalized differently and are defined as

MathieuC½a; q; z� ¼ y1ðzÞ þ y1ð−zÞ
2

;

MathieuS½a; q; z� ¼ y1ðzÞ − y1ð−zÞ
2i

: (B11)

For instance, for q ¼ 0 they reduce to

MathieuC½a; 0; z� ¼ cos
ffiffiffi
a

p
z;

MathieuS½a; 0; z� ¼ sin
ffiffiffi
a

p
z: (B12)

APPENDIX C: SOLVING THE MPD EQUATIONS
FOR A SPINNING PARTICLE

The whole set of linearized MPD equations (3.34)–(3.35)
for spinning particles can be analytically solved due to the
spacetime symmetries.
The transport equations for the rescaled spin vector with

the components σa ¼ Sa=ð ffiffiffi
2

p
mÞ are

dσ1

du
¼ H0

H
ðΣ − σ1Þ;

dσ2

du
¼ H0

H
Σξ1=2ðgÞ cos χ0;

dσ3

du
¼ H0

H
Σξ1=2ðgÞ sin χ0; (C1)

where
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Σ ¼ σ1 −
1

H
ξ1=20

η0
ðcos χ0σ2 þ sin χ0σ3Þ; (C2)

and the variables ðξðgÞ; ηðgÞÞ have already been introduced
in Eq. (3.8). The previous equations imply

cos χ0
dσ3

du
− sin χ0

dσ2

du
¼ 0; (C3)

whence

σ3 ¼ σ30 þ tan χ0ðσ2 − σ20Þ: (C4)

Substituting, then, into the remaining equations gives the
final solution (3.45).
The equations of motion (3.34) then imply the set of

equations

d~ν1

du
¼ −2

H0

H
ξ1=2ðgÞ ðcos χ0 ~ν2 þ sin χ0 ~ν3Þ þ

Φ2

2
ηðgÞξ

1=2
ðgÞ ðsin χ0σ2 − cos χ0σ3Þ;

d~ν2

du
¼ H0

H

�ξ3=2ðgÞ
η2ðgÞ

cos χ0 ~ν1 −
�
1 −

ξðgÞ
ηðgÞ

ð2þ cos 2χ0Þ
�
~ν2 þ ξðgÞ

ηðgÞ
sin 2χ0 ~ν3

�
−
Φ2

2
ηðgÞ

�
ξ1=2ðgÞ sin χ0σ

1 þ
�
1 −

ξðgÞ
ηðgÞ

�
σ3
�
;

d~ν3

du
¼ H0

H

�ξ3=2ðgÞ
η2ðgÞ

sin χ0 ~ν1 þ
ξðgÞ
ηðgÞ

sin 2χ0 ~ν2 −
�
1 −

ξðgÞ
ηðgÞ

ð2 − cos 2χ0Þ
�
~ν3
�
þ Φ2

2
ηðgÞ

�
ξ1=2ðgÞ cos χ0σ

1 þ
�
1 −

ξðgÞ
ηðgÞ

�
σ2
�
; (C5)

whose solution proves challenging. Fortunately, we can take advantage of the high degree of symmetry of the background
spacetime, which admits the six Killing vectors (2.5) with the associated conserved quantities

CðAÞ ¼ −ξðAÞα Pα þ 1

2
SαβξðAÞα;β ; A ¼ 1;…; 6: (C6)

We find

Cð1Þ ¼ −
γ0η0ffiffiffi

2
p

�
1− γ2ðgÞ

��
1−

ξðgÞ
ηðgÞ

�
~ν1 − ξ1=2ðgÞ ðcos χ0 ~ν2 þ sinχ0 ~ν3Þ

��
;

Cð2Þ ¼ γðgÞHξ1=2ðgÞ cosχ0

�
1þ γ2ðgÞ

�
ð1− ηðgÞÞ~ν1 −

ξðgÞsin2χ0 þ ð1− ηðgÞÞ2 − 1

ξ1=2ðgÞ cosχ0
~ν2 þ ξ1=2ðgÞ sinχ0 ~ν

3

�

−
H0

H

ηðgÞ
ξ1=2ðgÞ cosχ0

ðσ3 þΣξ1=2ðgÞ sinχ0Þ
�
;

Cð3Þ ¼ γðgÞHξ1=2ðgÞ sin χ0

�
1þ γ2ðgÞ

�
ð1− ηðgÞÞ~ν1 þ ξ1=2ðgÞ cos χ0 ~ν

2 −
ξðgÞcos2χ0 þ ð1− ηðgÞÞ2 − 1

ξ1=2ðgÞ sinχ0
~ν3
�

þH0

H

ηðgÞ
ξ1=2ðgÞ sinχ0

ðσ2 þΣξ1=2ðgÞ cosχ0Þ
�
;

Cð4Þ ¼ xðgÞCð3Þ − yðgÞCð2Þ þ
ffiffiffi
2

p
γðgÞ

�
ηðgÞð2− ηðgÞÞΣþ ξ1=2ðgÞ

��
σ2 −

H ~yffiffiffi
2

p
�
cosχ0 þ

�
σ3 þH ~xffiffiffi

2
p

�
sin χ0

��
;

Cð5Þ ¼ x0Cð1Þ −
γ0η0ffiffiffi

2
p

�
~xþ

ffiffiffi
2

p

H
ðσ3 þΣξ1=2ðgÞ sinχ0Þ−ðxðgÞ − x0Þ

�
1

ηðgÞ
~ν1 þ 1

ξ1=2ðgÞ cosχ0
~ν2 −

H0

H

ηðgÞ
ξ1=2ðgÞ cosχ0

ðσ3 þΣξ1=2ðgÞ sin χ0Þ
��

;

Cð6Þ ¼ y0Cð1Þ −
γ0η0ffiffiffi

2
p

�
~y−

ffiffiffi
2

p

H
ðσ2 þΣξ1=2ðgÞ cos χ0Þ−ðyðgÞ − y0Þ

�
1

ηðgÞ
~ν1 þ 1

ξ1=2ðgÞ sin χ0
~ν3 þH0

H

ηðgÞ
ξ1=2ðgÞ sinχ0

ðσ2 þΣξ1=2ðgÞ cos χ0Þ
��

;

(C7)

where CðAÞ ¼ CðAÞ=m. Evaluation at u ¼ 0 leads to

PARTICLE DYNAMICS AND DEVIATION EFFECTS IN … PHYSICAL REVIEW D 89, 104049 (2014)

104049-15



Cð1Þ ¼ −
γ0η0ffiffiffi

2
p ; Cð2Þ ¼ γ0ξ

1=2
0 cos χ0; Cð3Þ ¼ γ0ξ

1=2
0 sin χ0;

Cð4Þ ¼ γ0ξ
1=2
0 ðx0 sin χ0 − y0 cos χ0Þ þ

ffiffiffi
2

p
γ0η0½σ10 þ ð1 − η0ÞΣ0�;

Cð5Þ ¼ −γ0η0
�
x0ffiffiffi
2

p þ σ30 þ Σ0ξ
1=2
0 sin χ0

�
; Cð6Þ ¼ −γ0η0

�
y0ffiffiffi
2

p − σ20 − Σ0ξ
1=2
0 cos χ0

�
; (C8)

where the initial conditions for the first order quantities have been fixed as ~xαð0Þ ¼ 0 ¼ ~νað0Þ. Such a choice implies that
the 4-velocity U is initially tangent to the reference geodesic UðgÞ.
The set of equations (C7) and (C8) gives five algebraic relations involving the unknown quantities ~νa, ~x and ~y (plus one

compatibility condition coming from Cð4Þ, which is identically satisfied). The solutions for the deviation velocities as well as
spin-induced deviations in the transverse plane are given by Eqs. (3.48) and (3.49), respectively.
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