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Magnetic fields surrounding spinning black holes can confine radiation and trigger superradiant
instabilities. To investigate this effect, we perform the first fully-consistent linear analysis of the Ernst
spacetime, an exact solution of the Einstein–Maxwell equations describing a black hole immersed in a
uniform magnetic field B. In the limit in which the black-hole mass vanishes, the background reduces to the
marginally stable Melvin spacetime. The presence of an event horizon introduces a small dissipative term,
resulting in a set of long-lived—or unstable—modes. We provide a simple interpretation of the mode
spectrum in terms of a small perfect absorber immersed in a confining box of size ∼1=B and show that
rotation triggers a superradiant instability. By studying scalar perturbations of a magnetized Kerr–Newman
black hole, we are able to confirm and quantify the details of this instability. The instability time scale can
be orders of magnitude shorter than that associated to massive bosonic fields. The instability extracts
angular momentum from the event horizon, competing against accretion. This implies that strong magnetic
fields set an upper bound on the black-hole spin. Conversely, observations of highly-spinning massive
black holes impose an intrinsic limit to the strength of the surrounding magnetic field. We discuss the
astrophysical implications of our results and the limitations of the Ernst spacetime to describe realistic
astrophysical configurations.
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I. INTRODUCTION

The existence of strong magnetic fields around astro-
physical black holes (BHs) is believed to be at the origin of
some of the most energetic events of our Universe, such as
the emission of relativistic jets. The Blandford-Znajek
process is widely believed to be one leading mechanism
at the origin of these phenomena [1]. This process allows us
to extract energy from a spinning BH due to the presence of a
magnetic field supported by the material accreted by the BH.
A full comprehension of the interactions between the

accretion disk, the surrounding magnetic field and the BH
is a complex problem and requires the use of sophisticated
general-relativistic magnetohydrodynamic simulations (cf.
e.g. Refs. [2,3]), nonetheless a qualitative picture can be
drawn by studying stationary magnetized BH solutions in
general relativity. For example, the approximate solution
found by Wald [4], which describes a Kerr BH immersed in
a test uniform magnetic field aligned with the BH spin axis,
has served as a model to understand the interaction of BHs
with magnetic fields. Several remarkable phenomena—
such as charge induction [4] and a Meissner-like
effect [5]—can be understood by studying this simple
solution [6].
In addition to the perturbative solution found by Wald, a

class of exact solutions of the Einstein–Maxwell equations,

describing BHs immersed in a uniform magnetic field, was
discovered by Ernst, who developed a powerful method to
construct them starting from vacuum solutions of Einstein’s
equations [7]. Although the Ernst spacetimes are not
asymptotically flat, they can also be used to model the
properties of BHs immersed in strong magnetic fields in a
simple way.
Even though the Wald and Ernst solutions were dis-

covered 40 years ago, the dynamics of linear perturbations
in these backgrounds is still largely unexplored. One of the
main motivations to study perturbations of magnetized
rotating BHs is the possibility, first proposed by Galt’sov
and Petukhov [8], that the magnetic field can trigger
superradiant instabilities [9,10]. To occur, superradiant
instabilities need essentially two ingredients: (i) a mono-
chromatic bosonic wave with low-frequency ω satisfying
the superradiance condition,

ω < mΩH; (1)

where ΩH is the angular velocity of the BH horizon and m
is an integer characterizing the azimuthal dependence of the
wave; and (ii) a mechanism to trap superradiant modes near
the BH. The first condition allows us to extract rotational
energy from the BH, spinning it down, while the second
condition is necessary to “keep the extraction going,”
thereby triggering the instability.*richard.brito@tecnico.ulisboa.pt
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Several confining mechanisms to trap the modes have
been investigated, starting from an artificial mirror around
the BH (the so-called “BH bomb” [9–11]), to more natural
ones like massive bosonic fields [12–16], where the mass
term plays the role of the mirror, or the asymptotically anti-
de Sitter (AdS) spacetime, where the AdS boundary
confines the perturbations inside the bulk [17–19]. For
the case of massive bosonic fields the instability has
been studied extensively for scalar [12–16,20–22], vector
[23–26] and tensor [27] fields.
Magnetic fields can confine the radiation in a similar

way. Working in a Br ≪ 1 expansion (with B being
the magnetic field strength and r the radial coordinate,
both in geometric units), Refs. [8,28,29] showed that a
scalar field propagating on the Ernst background is equiv-
alent to a massive scalar perturbation propagating on a
Schwarzschild or Kerr metric with an effective mass
μeff ¼ Bm. As such, the magnetic field triggers the same
superradiant instability associated to massive fields.
However, such approximation becomes inaccurate at dis-
tances comparable to or larger than ∼1=B. As we show, this
profoundly affects the dynamics of the perturbations,
because the spectrum is defined by physically-motivated
boundary conditions imposed at large distances r ≫ 1=B.
In this work we take a step further to understand how

strong magnetic fields affect BH spacetimes. We study
scalar perturbations of the Ernst solutions with no approxi-
mation for the first time. We show that magnetized BHs can
indeed support superradiant unstable modes and that this
instability can be orders of magnitude stronger than the one
estimated using the approximation of Refs. [8,28,29] in
terms of an effective mass μeff ¼ Bm. In the exact case the
perturbation equations do not seem to be separable and this
prevents the use of most methods to compute quasinormal
modes (QNMs) (see [30–32] for reviews). In this work we
circumvent this problem using powerful techniques devel-
oped in the past few years (see e.g. [33]), which allow us to
solve the full linearized dynamics for any value of B.

A. Executive summary and plan

We find that the spectrum of unstable modes of spinning
Kerr–Newman magnetized BHs [34,35] is different from
that of massive scalar fields on a vacuum Kerr spacetime,
and it is instead analogous to the BH bomb case [9–11]. In
fact, since the solutions found by Ernst are not asymptoti-
cally flat, there is no reason to believe that superradiant
instabilities in this spacetime resemble the ones triggered
by massive fields, even for arbitrarily small magnetic field.
At infinity the background resembles a solution of the

Einstein–Maxwell describing a uniform magnetic field held
together by its own gravitational pull. This solution, which
was found by Melvin [36,37] and further studied by Thorne
[38], is known in the literature as the Melvin spacetime.
Like the AdS spacetime, the Melvin solution admits normal
modes (computed in Sec. II), because the asymptotic

boundary of the Melvin solution acts as a confining box
for perturbations. Once a BH is added to the spacetime,
absorption or amplification at the horizon is possible, as
happens for a small BH immersed in AdS spacetime
[39,40]. We verify this argument by computing the modes
explicitly for the Schwarzschild–Ernst solution in Sec. III.
As we argue in Sec. IV, it is possible to describe any

confined BH geometry using just the low-frequency
absorption cross section of the (isolated, in flat spacetime)
BH. We show this reproduces known results in the
literature. This simple model predicts that superradiant
instabilities arise when the BH rotates, a prediction that we
verify also explicitly in Sec. V, where we study rotating
magnetized BHs. Finally, we discuss the astrophysical
implications of our results and close with some concluding
remarks.
We use G ¼ c ¼ 4πϵ0 ¼ 1 units, where G, c and ϵ0 are

the Newton constant, the speed of light and the vacuum
permittivity, respectively.

II. THE MELVIN SPACETIME AND ITS
NORMAL OSCILLATION MODES

We start by studying the geodesic motion and the normal
modes of the Melvin spacetime, which are propaedeutic to
understand the QNMs of a BH immersed in a magnetic
field. In cylindrical coordinates the Melvin metric is given
by [36]

ds2 ¼ Λ2ð−dt2 þ dρ2 þ dz2Þ þ ρ2

Λ2
dϕ2; (2)

where Λ ¼ 1þ B2ρ2=4. This solution describes a uniform
magnetic field aligned along the z-axis.
Let us start with a brief geodesic analysis of the

metric (2). Staticity and axial symmetry of the metric
imply the existence of a conserved energy E and angular
momentum parameter L, defined as

Λ2_t ¼ E;
ρ2

Λ2
_ϕ ¼ L; (3)

where a dot stands for derivative with respect to an affine
parameter. Null particles then obey the equation

_ρ2 ¼ Vρ ≡ E2

Λ4
−
L2

ρ2
; (4)

or simply

�
dρ
dt

�
2

¼ 1 −
Λ4ðL=EÞ2

ρ2
: (5)

Circular (Vρ ¼ dVρ=dρ ¼ 0) geodesics for massless par-
ticles are only possible for ρ2 ¼ 4=ð3B2Þ and correspond to
an angular frequency
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Ω≡ dϕ
dt

¼ 16
ffiffiffi
3

p
B

9
ffiffiffi
4

p ∼ 1.5396B: (6)

In the geometric-optics regime, normal modes with
m ≫ 1 in the Melvin spacetime are expected [41] to reduce
to the geodesic result described by Eq. (6), i.e,

ωnormal ¼ mΩ ¼ 16
ffiffiffi
3

p
mB

9
ffiffiffi
4

p ∼ 1.5396mB: (7)

Let us now find the normal modes of a probe scalar field
propagating in the Melvin metric (2). The Klein-Gordon
equation for a massless field has the form

□Φ≡ 1ffiffiffiffiffiffi−gp ðgμν ffiffiffiffiffiffi
−g

p
Φ;μÞ;ν ¼ 0: (8)

By making the following ansatz for the scalar field

Φðt; ρ; z;ϕÞ ¼ QðρÞffiffiffi
ρ

p eikzeimϕe−iωt; (9)

the Klein-Gordon equation (8) reads

Q00ðyÞ þ
�
~ω2 −

m2ðy2 þ 4Þ4 − 64

256y2

�
QðyÞ ¼ 0; (10)

where ~ω2 ¼ ðω2 − k2Þ=B2 and y ¼ Bρ. Note that with
these redefinitions the magnetic field B scales out of the
problem. Furthermore, the eigenvalue problem is invariant
under m → −m, ω → −ω, k → −k and QðyÞ → Q�ðyÞ so
we consider only modes with m > 0.
After imposing appropriate boundary conditions,

Eq. (10) defines a boundary value problem that admits
normal modes. Near the origin the solution behaves as

QðyÞ ∼ A1ymþ1=2 þ A2y−mþ1=2; (11)

and regularity at the origin imposes A2 ¼ 0. The asymp-
totic behavior at infinity is given by

QðyÞ ∼ y−3=2½Cey4m=64 þDe−y
4m=64�; (12)

and the only acceptable physical solution corresponds
to C ¼ 0.
To find the normal frequencies of this spacetime we

integrate numerically Eq. (10) starting from the boundary
condition (11) and imposing C ¼ 0 in the asymptotic
solution (12). This selects a discrete spectrum of frequen-
cies which are summarized in Tables I and II.
The most important points to retain from these results

are that (i) Melvin spacetimes are (marginally) stable and
are described by a set of normal modes; (ii) for large m
our results are well consistent with the expansion
~ω ¼ 1.5396mþ 0.5301 − 0.02113=m, in excellent agree-
ment with the geodesic analysis in Eq. (7).

At this point it is important to stress that these modes
only exist due to the behavior of the metric at ρ → ∞,
which is not asymptotically flat. Indeed, considering
y≡ Bρ ≪ 1 and neglecting terms at Oðy2Þ, we find that
Eq. (10) describes a scalar field propagating in Minkowski
spacetime with effective mass μeff ¼ mB. A free massive
field in flat space does not form stationary bound states and,
therefore, no modes are predicted for the Melvin spacetime
within this approximation. These modes solely exist due to
the boundary condition (12) imposed by the magnetic field
at large distances, Bρ ≫ 1. The situation is analogous to
what happens in AdS spacetime. Normal modes exist in
pure AdS space due to the timelike boundary at spatial
infinity, which allows null rays to reach the boundary in a
finite time and be reflected back. In this case the AdS radius
selects the frequencies of these modes. In the same way, in
the Melvin spacetime perturbations are confined by the
magnetic field which behaves like an infinite “wall” at a
radius r0 ∼ 1=B. This allows for the existence of a discrete
set of normal modes. As we discuss in the next sections,
such modes would be missed by a perturbative analysis
similar to what was done in Refs. [8,28,29], where QNMs
of a BH immersed in the Melvin universe have been
computed perturbatively to order B2.

III. THE LINEAR STABILITY
OF THE ERNST SPACETIME

A. The Ernst background spacetime

In 1976 Ernst found a class of exact BH solutions of the
Einstein–Maxwell equations immersed in the Melvin
spacetime [7]. The simplest of these solutions corresponds
to a magnetized Schwarzschild BH, also known as the
Ernst metric, which is given by

ds2 ¼ Λ2

�
−fðrÞdt2 þ dr2

fðrÞ þ r2dθ2
�
þ r2 sin θ2

Λ2
dϕ2;

(13)

TABLE I. Scalar normal modes of the Melvin spacetime for
m ¼ 1 and different overtone number n.

~ω
n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6

2.04862 2.91334 3.68457 4.39629 5.06541 5.70187 6.31212

TABLE II. Fundamental (n ¼ 0) scalar normal modes of the
Melvin spacetime for different azimuthal number m.

~ω
m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5 m ¼ 6

2.04862 3.59874 5.14195 6.68336 8.22404 9.76436
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where fðrÞ ¼ 1 − 2M
r . In the limitM → 0 this metric reduces

to the Melvin solution (2), with ρ ¼ r sin θ and z ¼ r cos θ,
while in the limit B → 0 it reduces to the standard
Schwarzschild solution. Due to the presence of the magnetic
field this spacetime is not asymptotically flat, but instead
approaches the Melvin metric as r=M → ∞. The vector
potential giving rise to the homogeneous magnetic field reads

Aμdxμ ¼ −
Br2sin2θ

2Λ
dϕ: (14)

The event horizon is located at rH ¼ 2M and its area is
given by AH ¼ 4πr2H, as in the Schwarzschild BH, but due
to the θ–dependence of the gϕϕ component, the horizon
takes the form of a cigar-shaped object [42]. However the
magnetic field only starts to distort significantly the
spacetime at distances of the order of B−1.

B. Linearized analysis

In a Melvin background the scalar field equation can be
separated using cylindrical coordinates. However, due to
the presence of the BH, cylindrical symmetry is lost in the
Ernst metric, making the separation of the radial and
angular part apparently impossible. Nevertheless we can
use the method discussed in [43] to separate the equation at
the expense of introducing couplings between different
modes (see also Ref. [33] for a review).
We begin by splitting the angular and radial dependence

of the field as

Φðt; r; θ;ϕÞ ¼
X
jm

Qjðr; tÞ
r

Yjmðθ;ϕÞ; (15)

where Yjmðθ;ϕÞ denotes the usual spherical harmonics.
Because the background is axisymmetric, the eigenfunc-
tions are degenerate in the azimuthal number m. Inserting
the ansatz above in the Klein-Gordon equation (8) and
considering the background (13), we find

X
jm

Yjmðθ;ϕÞ
�
d2Qj

dr2�
−
d2Qj

dt2
− Veffðr; θÞQj

�
¼ 0; (16)

where r� is the tortoise coordinate, defined via dr=dr� ¼ f,
and

Veffðr; θÞ ¼ fðrÞ
�
jðjþ 1Þ

r2
þ 2M

r3

þ B2m2

256
½ðB2r2 þ 8ÞðB4r4 þ 8B2r2 þ 32Þ

−B2r2ð3B4r4 þ 32B2r2 þ 96Þcos2θ

þB4r4ð3B2r2 þ 16Þcos4θ−B6r6cos6θ�
�
: (17)

Since the spacetime is not spherically symmetric, the
angular and radial parts of the Klein-Gordon equation

cannot be separated using a basis of spherical harmonics.
Nonetheless, the problem can be reduced to a 1þ 1–
problem using the fact that terms with cosn θ lead to
couplings between different multipoles [43]. To show this,
we first multiply Eq. (16) by Y�

lmðθ;ϕÞ and integrate over
the sphere. Then, making use of the fact that the Clebsch-
Gordan coefficients,

cðnÞjlm ≡ hlmj cosn jjmi; (18)

are zero unless j ¼ l or j ¼ l − n;….; lþ n, we finally
arrive at the following equation

d2Qlðr; tÞ
dr2�

−
d2Qlðr; tÞ

dt2
−
X3
i¼−3

Vlþ2iQlþ2iðr; tÞ ¼ 0; (19)

where the radial potentials read

Vl ¼ f

�
lðlþ 1Þ

r2
þ 2M

r3

þ B2m2

256
½ðB2r2 þ 8ÞðB4r4 þ 8B2r2 þ 32Þ

− B2r2ðB4r4cð6Þll − B2r2ð3B2r2 þ 16Þcð4Þll

þ ð3B4r4 þ 32B2r2 þ 96Þcð2Þll Þ�
�
; (20)

Vl�2 ¼ f

�
−
B4m2

256
r2ðB4r4cð6Þl�2l − B2r2ð3B2r2 þ 16Þcð4Þl�2l

þ ð3B4r4 þ 32B2r2 þ 96Þcð2Þl�2lÞ
�
; (21)

Vl�4 ¼ f

�
B6m2

256
r4ðð3B2r2 þ 16Þcð4Þl�4l − B2r2cð6Þl�4lÞ

�
; (22)

Vl�6 ¼ −f
�
B8m2

256
r6cð6Þl�6l

�
; (23)

where for ease of notation we have suppressed the index m
of the Clebsch-Gordan coefficients, but it is understood that
the latter depend also on m.
This system of equations admits long-lived modes. To

find them we can either evolve the system in time (as
discussed in Sec. III E below) or compute them in the
frequency domain. In the frequency domain we consider
the following time dependence for the field:

Qjðr; tÞ ¼ QjðrÞe−iωt: (24)

Imposing regularity boundary conditions at the horizon and
at infinity, Eq. (19) defines an eigenvalue problem for the
complex frequency ω ¼ ωR þ iωI. The eigenfrequencies
are also termed the QNM frequencies and form a discrete
spectrum [30–32], which generically depends on m, B and
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on the overtone number n. Since the presence of the
magnetic field breaks the spherical symmetry of the
Schwarzschild background, the harmonic index l is not a
conserved “quantum number” and, for a given m, Eq. (19)
effectively describes an infinite system of equations where
all the eigenfunctions Qj (j ¼ 0; 1; 2;…m) are coupled
together.
It is straightforward to show that at the horizon the

system decouples and regularity requires purely ingoing
waves,

QlðrÞ ∼ e−iωr� ; r → rH: (25)

The behavior at infinity is more intricate since different
multipoles are coupled. However this is a difficulty
introduced by the spherical coordinates. Expanding the
potential (17) at infinity and defining ρ ¼ r sin θ, we easily
see that the asymptotic solution reduces to (12). We can
then use standard methods for systems of coupled equa-
tions (see e.g. Refs. [23,24,27] and the review [33]) to find
the QNM frequencies. Since the full system (13) contains
an infinite number of equations, in practice we must
truncate the series at some given L, i.e. we assume
Qj ≡ 0 when j > L. Convergence is then checked by
increasing the truncation order. The results shown have
converged to the number of digits displayed and have been
obtained with two different methods, a “direct integration”
and a “Breit-Wigner” approach [33].

C. Results

We have performed a detailed numerical analysis of the
scalar eigenfrequencies of the Ernst BH as functions of B,
m and overtone number n. Some results are shown in
Tables III and IV. Even though the background metric is not
spherically symmetric, a notion of harmonic index l is still
meaningful. In the following we define a mode with
given ðl; mÞ as the one corresponding to a set Qj
(with j ¼ 0; 1; 2;…m) for which the eigenfunction Ql is
the one with largest relative amplitude. Although this
practical definition becomes ambiguous for large values
of B, we find that such hierarchy in l holds in a large region
of the parameter space. For the same reason, the multipolar
series in Eq. (13) converges rather fast in L, even for
moderately large values of B.
For BM ≪ 1, the real part behaves approximately as

ωR ∼ ½0.75nþ 1.2mþ 0.25lþ 0.7�B; (26)

whereas we infer for the imaginary part a dependence of the
form

MωI ∼ −γðBMÞ2lþ3; (27)

where γ is a numerical coefficient that depends on n, l and
m. For l ¼ m ¼ 1, we find γ ≈ 2.2 for n ¼ 0 and γ ≈ 9.3 for
n ¼ 1, respectively.

D. Relation with previous results in the literature

The behavior (26) and (27) is different from the results of
Refs. [8,28,29]. The approximation employed in these
works changes the asymptotic behavior at infinity in such
a way that the only role of the external magnetic field is to
introduce an effective mass, μeff ¼ Bm, for the scalar field.
Consequently, the QNM spectrum was found to be equiv-
alent to that of massive scalar perturbations of a
Schwarzschild BH. Massive fields admit quasibound state
modes with a hydrogenic spectrum [14,22]

ωmass
R ∼ μeff ; Mωmass

I ∼ −ðMμeffÞ4lþ6: (28)

While the real part is consistent with the exact behavior
(26), the scaling of the imaginary part with B is different
from Eq. (27).
Indeed, solving the full system (19), we find that the

QNM spectrum has the same qualitative behavior as the
modes of a small BH in AdS [17] or of a BH inside a mirror
[11]. This is not surprising since the asymptotic behavior
plays a crucial role in defining the eigenfrequencies. In fact
these frequencies are supported by an effective “wall”
created by the magnetic field at r0 ∼ 1=B. In the AdS and in
the mirror cases the mirror is given by the AdS radius and
by the mirror radius, respectively. We can therefore under-
stand the modes of the Ernst BH as being a small correction
to the modes of the Melvin spacetime. The BH event
horizon behaves like a perfect absorber [44] and its role is
mostly to change one of the boundaries, leading to the slow

TABLE III. Fundamental (n ¼ 0) QNMs of the Ernst BH
solution computed in the frequency domain for l ¼ m ¼ 1 and
different values of B.

BM MωR −MωI

0.025 0.0510 1.2 × 10−8

0.050 0.1002 6.7 × 10−7

0.075 0.1473 9.1 × 10−6

0.100 0.1919 7.0 × 10−5

0.125 0.2337 3.7 × 10−4

0.150 0.2721 1.4 × 10−3

TABLE IV. Quasinormal modes of the Ernst spacetime com-
puted in the frequency domain for l ¼ m ¼ 1, BM ¼ 0.1 and
different overtone number n.

n MωR −MωI

0 0.1919 7.0 × 10−5

1 0.2674 7.5 × 10−4

2 0.3213 2.9 × 10−3

3 0.3656 4.5 × 10−3
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decay of the field.1 In the next subsection we shall confirm
this qualitative picture using arguments based on the
absorption cross section at the horizon and reflections at
the asymptotic boundaries [cf. Eq. (31)].
Therefore, our analysis gives an explicit example of a

very natural fact: the eigenvalue spectrum of a given metric
is highly sensitive to the asymptotic behavior of the
spacetime. Any approximation that changes the boundary
conditions might drastically affect the spectrum. Indeed, for
the same multipole number l the decay rate of a massive
field [cf. Eq. (28)] can be orders of magnitude smaller than
the exact results given in Eq. (27). Due to this difference, in
Sec. V we shall see that, when rotation is turned on, not
only the exact modes of the Ernst BH become unstable due
to superradiance, but also that the instability time scale can
be orders of magnitude shorter than that associated to a
massive field [21,22]—and, consequently, the instability is
stronger than that discussed in Ref. [29].

E. Time-domain analysis

For completeness, in this section we discuss the results of
a time-domain analysis of the system (19). Some examples
of waveforms obtained in the time domain are shown in
Fig. 1. We consider an initial Gaussian wave packet
Qjð0; rÞ ¼ δj1 exp ½ðr� − rcÞ2=ð2σ2Þ� with σ ¼ 6M and
rc ¼ 6M, whose time evolution is governed by the
system (19). The discretization of spatial derivatives is
performed using a 2nd order finite difference scheme
and integration in time is done with a 4th order accurate
Runge-Kutta method.
At early times and for small values of B, the waveform is

dominated by some ringdown modes [32] (top left panel of
Fig. 1). These ringdown frequencies are not given by the
modes previously computed, being in fact very similar to
the Schwarzschild QNM frequencies [32]. These numbers
are in very good agreement with what was found in
Ref. [28] and are indeed consistent with the fact that for
BM ≪ 1 the ringdown frequencies are almost unaffected
by the long-range modification of the potential due to the
magnetic field.
However, we stress that such frequencies do not show up

in the frequency domain analysis because they do not
satisfy the asymptotic boundary conditions (12). Indeed,
after a time of order t ∼ 1=B, the wave is reflected back by
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FIG. 1 (color online). Waveforms for a small Gaussian packet Qjð0; rÞ ¼ δj1 exp ½ðr� − rcÞ2=ð2σ2Þ� (with σ ¼ 6M and rc ¼ 6M
propagating on a Ernst spacetime for different values of BM. Top left: BH ringdown at early times for BM ¼ 0.05 and l ¼ m ¼ 1. Top
right: After a time t ∼ 1=B, the “Melvin-like”modes are excited. Bottom panels: Waveform for BM ¼ 0.1 and l ¼ m ¼ 1, truncating the
series at L ¼ 7 (left panel) and L ¼ 1 (right panel). In the bottom right panel we also show the fit to the decay rate of the scalar field,
showing good agreement with the frequency domain analysis.

1Strictly speaking, since the regular behavior of Eq. (12) is a
damped exponential, such modes could be dubbed as quasibound
states, in analogy to the case of massive fields [22,25,27].
However, in the case of the Ernst solution these are the only
eigenfrequencies that solve the exact problem and the distinction
with the QNMs is irrelevant.
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the effective wall at r0 ∼ 1=B with a smaller amplitude due
to the absorption by the event horizon (top right panel of
Fig. 1). These reflections give rise to the QNM spectrum
previously computed in the frequency domain and are
related to the Melvin normal modes. Due to the couplings
between different multipoles, various frequencies dominate
the waveform, making it difficult to extract accurate
information about these modes in the time domain.
The fact that the ringdown frequencies at intermediate

times are different from the QNMs of the spacetime is
another example of an interesting phenomena discussed in
detail in Ref. [45] in the context of “dirty” BHs.

IV. A SIMPLE INTERPRETATION OF THE
QNMS OF A SMALL BH IMMERSED IN

A CONFINING GEOMETRY

The QNM spectra of at least three classes of BH
solutions—namely Ernst BHs immersed in a magnetic
field B ≪ 1=M, small AdS BHs (where the AdS radius is
much larger than the horizon radius), and BHs confined in a
spherical mirror of radius r0 ≫ M–can be all described by a
unified picture in terms of a small perfect absorber
immersed in a confining box. A confining box supports
stationary, normal modes. Once a small BH is placed
inside, one expects that the normal modes will become
quasinormal and acquire a small imaginary part, describing
absorption—or amplification—at the small BH horizon.
Thus, it seems that one can separate the two scales—BH
and box size—and describe quantitatively the system in
this way.
Now, normal modes supported by a box have a wave-

length comparable to the box size, in other words a
frequency ωR ∼ 1=r0. For small BHs, M=r0 ≪ 1, we then
have Mω ≪ 1, i.e., we are in the low-frequency limit. In
this limit, the equation for wave propagation can be solved
via matched asymptotics [46]. The absorption probability at
the horizon of a nonrotating BH for a given multipole
number l is given by, in this regime [46]

jAj2 ¼ 4π

�
MωR

2

�
2þ2l Γ2½1þ lþ s�Γ2½1þ l − s�

Γ2½1þ 2l�Γ2½lþ 3=2�
∼ ðM=r0Þ2lþ2 ≪ 1 (29)

where s ¼ 0; 2 for scalar and gravitational fields. There-
fore, a wavewith initial amplitude A0 is scattered with ampli-
tude A ¼ A0ð1 − jAj2Þ after one interaction with the BH.
Consider now a wave trapped inside the box and undergoing
a large number of reflections. After a time t the wave
interacted N ¼ t=r0 times with the BH, and its amplitude
decreased to A ¼ A0ð1 − jAj2ÞN ∼ A0ð1 − NjAj2Þ. We
hen get

AðtÞ ¼ A0ð1 − tjAj2=r0Þ: (30)

The net effect of this small absorption at the event
horizon is to add a small imaginary part to the frequency,
ω ¼ ωR þ iωI (with jωIj ≪ ωR). In this limit,
AðtÞ ∼ A0e−jωI jt ∼ A0ð1 − jωIjtÞ. Comparing the latter
equation with Eq. (30), we obtain

MωI ∼ −ðM=r0Þ2lþ3: (31)

This is exactly the scaling that we found numerically, cf.
Eq. (27), when r0 ∼ 1=B. The same behavior is also found
in the BH bomb scenario when the mirror is located at r0
[11] and for asymptotically AdS BHs [17] with the AdS
radius being ∼r0. Thus, this provides a consistent, unified
description of superradiant instabilities of confined sys-
tems. Our simple model shows that the QNM spectrum of
any small BH immersed in a confining box of radius r0
scales as ωR ∼ 1=r0 and with a long damping time given by
the inverse of Eq. (31). This behavior is different from the
case of massive perturbations, because the latter can only
confine low-frequency modes with ωR ≲ μ (where μ is the
mass of the field), whereas an “effective box” confines
radiation of any frequency. From a mathematical view-
point, this property requires different boundary conditions
for the perturbations at infinity.
Finally, our simple model is also useful to capture the

essential behavior of:
(i) Gravitational perturbations. The model predicts that

the dependence on box radius r0 is universal and the
same for scalar, vector and tensor fluctuations. Such
dependence has in fact been confirmed recently for
the AdS system [19].

(ii) Rotating BHs. Also very relevant to us is that our
model can be extended trivially to include rotating
BHs. When the BH is rotating, low-frequency waves
corotating with the BH are amplified by super-
radiance. Starobinsky has shown that, at least for
moderate spin, the result in Eq. (29) still holds with
the substitution [47–50]

ω2lþ2 → ðω −mΩHÞω2lþ1; (32)

where we recall that ΩH is the horizon angular
velocity. In other words, this intuitive picture immedi-
ately predicts that, once rotation is added to the Ernst
spacetime, the latter becomes superradiantly unstable.
We now turn to show this is indeed the case.

V. SUPERRADIANT INSTABILITY OF THE
MAGNETIZED KERR-NEWMAN SOLUTION

After having understood the QNMs of a nonrotating
magnetized BH, we now turn our attention to the spinning
case. A magnetized rotating BH is a complex object. For
example, it was shown by Wald [4] that when a spinning
neutral BH is immersed in a magnetic field it is energeti-
cally favorable for it to acquire a charge given by
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q ¼ −2~aM2B, where q and ~a correspond to the charge and
rotation parameters of the unmagnetized Kerr-Newman
solution. This result was established neglecting backreac-
tion effects of the magnetic onto the BH spacetime.
Nonetheless, the result was quickly generalized, when
Ernst and Wild found the first exact solution of a mag-
netized Kerr BH [51]. This solution was latter shown to
suffer from conical singularities at the poles by Hiscock
[52], but he realized that this singularity could be removed
by redefining the azimuthal angle ϕ (see the Appendix).
Studying perturbations of the full magnetized Kerr-

Newman solution (see e.g. Ref. [35]) is a formidable task.
However the problem becomes tractable if we consider an
expansion in the rotation parameter ~a. In the following we
will consider a slowly-rotating magnetized BH with Wald’s
charge, to second order in the spin. Note that the analysis of
superradiant instabilities within a slow-rotation approxi-
mation of the linear perturbations is fully consistent to
second or higher order in ~a, as discussed in Ref. [25].
The Klein-Gordon equation (8) on the slowly-rotating

Kerr–Newman background is discussed in the Appendix.
The final result reads:

X
l

Ylmðθ;ϕÞ
�
d2QlðrÞ
dr2�

þ ½ω2 − Veff − ~amωW�QlðrÞ

þ ~a2
�X4
i¼0

V2iðrÞcos2iθ
�
QlðrÞ

�
¼ 0; (33)

where Veff ¼ Veffðr; θÞ is given by Eq. (17), the first-order
function

Wðr; θÞ ¼ 4M2

r3
þ 8M2B2

r
−
M2B4

4
ð5rþ 22MÞ

−
M2B4

4
cos2θð2þ cos2θÞðr − 2MÞ;

and the second-order radial coefficients ViðrÞ are given in
the Appendix. To separate this equation we use the same
technique discussed in Sec. III, leading to an infinite set
of radial equations with couplings between different
multipoles up to l� 8.
Defining a tortoise coordinate dr=dr� ¼ F (where F is a

metric variable defined in the Appendix), the purely
ingoing wave condition at the horizon reads

Ql ∼ e−ikHr� ; r → rþ; (34)

where kH ¼ ω −mΩH, rþ is the event horizon radius
to second order in ~a [cf. Eq. (A8)], and ΩH ¼
−limr→rþg

ð0Þ
tϕ =gð0Þϕϕ, is the angular velocity at the horizon

of locally nonrotating observers, with gð0Þμν being the back-
ground metric.
We have integrated the eigenvalue problem defined by

Eq. (33) numerically. A representative result is shown in

Fig. 2 where we plot the imaginary part of the fundamental
eigenvalue as a function of the BH spin ~a≡ J=M2 and for
different values of B. As discussed in the Appendix, the
charge q affects the superradiance threshold. Accordingly,
the imaginary part crosses the axis when the superradiant
conditions (A15) or (A16) are met, for a BH with
q ¼ −2~aM2B or q ¼ 0, respectively. Although not shown,
the real part of the modes depends only mildly on the spin
and it is well approximated by Eq. (26).
The results shown in Fig. 2 are obtained truncating the

multipolar series at L ¼ 9, which guarantees convergence
in the entire region of the parameter space under
consideration.
In the limit BM ≪ 1, one can estimate the instability

time scale by considering modes (26) and (27) in the
nonrotating case and extrapolating the results to higher
values of the spin. The same kind of extrapolation has been
done in Refs. [24,27], where it was found to be sufficiently
accurate, for example it captures the onset of the instability
and the order of magnitude of the time scale. This argument
is further supported by the simple model we discussed in
Sec. IV, and predicts that the imaginary part of the modes
scales as

ωIM ∼ γ

�
~am −

2ωRrþ
1þ 8B2M2 − 16B4M4

�
ðBMÞ2ðlþ1Þ:

(35)

Because the time dependence of the perturbation is
∼eiωRtþωI t, when the condition (A15) is satisfied ωI > 0
and the perturbation grows exponentially in time. In other
words, as predicted in Sec. IV, rotating BHs in Melvin
spacetimes are unstable, with an instability time scale given
by 1=ωI.
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FIG. 2 (color online). Imaginary part of the fundamental modes
of a Kerr–Newman–Ernst BH with Wald’s charge q ¼ −2JB,
computed at second order in the rotation and truncating the series
at L ¼ 9, as a function of the BH rotation rate ~a ¼ J=M2, for
l ¼ m ¼ 1, and different values of the magnetic field. The dotted
thinner lines correspond to a magnetized BH without charge. The
only effect of the charge is to change the superradiance threshold.
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The estimate (35) is in agreement with our numerical
results to Oð ~a2Þ. Although our analysis is perturbative in
the spin, the results at order ~a2 are found to be in
remarkably good agreement with the exact ones for other
systems [25,26], suggesting that Eq. (35) might be valid
beyond its nominal regime of validity. In the next section
we take Eq. (35) as an order-of-magnitude estimate to
discuss the astrophysical relevance of the superradiant
instability triggered by an external magnetic field.
Finally we note that, unlike the case of a massive field,

the fundamental mode (n ¼ 0) does not necessarily have
the smallest instability time scale. In fact, the nonrotating
results suggest that higher n have larger imaginary parts
(see Table IV), which translates to a stronger instability in
the spinning case. Nonetheless, due to the superradiant
condition (A15) and the scaling of ωR with n given by
Eq. (26), only the modes with small n will be superradiant.

VI. ASTROPHYSICAL IMPLICATIONS OF THE
SUPERRADIANT INSTABILITY TRIGGERED

BY MAGNETIC FIELDS

To measure the strength of a magnetic field in an
astrophysical context, we can define the characteristic
magnetic field BM ¼ 1=M associated to a spacetime
curvature of the same order of the horizon curvature.
Restoring physical units, we obtain

BM ∼ 2.4 × 1019
�
M⊙
M

�
Gauss: (36)

The strongest magnetic fields around compact objects
observed in the Universe are of the order of 1013–1015

Gauss [53]. In natural units this corresponds to
B=BM ∼ 10−6–10−4. However, BM is generically much
larger than the typical magnetic field believed to be
produced by accretion disks surrounding massive BHs.
For supermassive BHs with M ∼ 109M⊙ a magnetic field
B ∼ 104Gauss ∼ 10−6BM seems to be required to explain
the observed luminosity of some active galactic nuclei,
assuming a specific model for the interaction between the
BH and the accretion disk [54]. Likewise, the typical values
of the magnetic field strength near stellar-mass BHs is
estimated to be B ∼ 108Gauss ∼ 10−10BM. In other words,
the magnetic field near massive BHs typically satisfy
B ≪ BM. This justifies the small-B estimates given in
the previous sections but, on the other hand, it also implies
that the superradiant instability time scale would typically
be very long. The purpose of this section is to quantify
these statements and to investigate the (superradiant)
instability triggered by uniform magnetic fields for astro-
physical BHs.
In an astrophysical context our results should be taken

with care. The Ernst metric is not asymptotically flat, since
it describes a BH immersed in a magnetic field which is
supported by some form of “matter” at infinity. In a realistic

situation, the magnetic field is supported by an accretion
disk. The Ernst metric therefore may be a relatively good
approximation to the geometry of an astrophysical BH only
up to a cutoff distance associated with the matter distri-
bution. In other words, the characteristic length scale
r0 ∼ 1=B should be smaller than the characteristic distance
rM of the matter distribution around the BH. Considering
that the accretion disk is concentrated near the innermost
stable circular orbit, this would imply that our results can be
trusted only when r0 ≲ rM ∼M, i.e. for BM ≳ 0.1. As we
discussed above, this is a very large value for typical
massive BHs. On the other hand, the Ernst metric is more
accurate to describe configurations in which the disk
extends much beyond the gravitational radius, as is the
case in various models. In this case, however, the magnetic
field will not be uniform and the matter profile has to be
taken into account.
Nevertheless, and since we wish to make a point of

principle, we will use the results obtained in the
previous sections for a Kerr BH immersed in a uniform
magnetic field to predict interesting astrophysical
implications.
As a result of the superradiant instability, the energy

density of the radiation in the region r≲ 1=B would grow
in time at expenses of the BH angular momentum.
Therefore, the most likely end state of the instability is a
spinning BH with dimensionless spin parameter slightly
below the superradiant threshold.2 This implies an upper
limit on the spin of magnetized BHs which depends on the
magnetic field, but it is certainly lower than the Kerr bound
~a < 1. However, this argument remains valid only if the
instability extracts the BH angular momentum at higher
rate than any possible spin-up effect. For supermassive
BHs, the most efficient mechanism to increase the BH spin
is prolonged accretion. Therefore, to produce observable
effects, the superradiance instability time scale should be
shorter than the typical accretion time scale. For accretion
at the Eddington rate, the typical time scale is the Salpeter
time, τSalpeter ∼ 4.5 × 107 yr.
This type of argument, together with supermassive BH

spin measurements (cf. e.g. Refs. [56,57]), was used to
impose stringent constraints on the allowed mass range of
axionic [55], massive vector [24,25] and massive tensor
[27] fields. Likewise, one could use spin measurements of
supermassive BHs to impose constraints on the allowed
range of the magnetic field strength. In Fig. 3 we show the
spin–mass diagram (so-called BH Regge plane [55]) with
contour curves corresponding to an instability time scale
1=ωI of the order of the Salpeter time. For a given magnetic
field B, BHs lying above the corresponding threshold curve
would be unstable on an observable time scale.

2Note that in the case of the full Ernst metric, since radiation
cannot escape, the end state is most likely similar to the one in
AdS, a rotating BH in equilibrium with the outside radiation [18].
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Spin measurements of supermassive BHs would allow us
to locate data points on the Regge plane, thus excluding a
whole range of possible magnetic fields. Since the contours
extend almost up to J=M2 ∼ 0, one interesting consequence
of our results is that essentially any observation of a spinning
supermassive BH (even with spin as low as J=M2 ∼ 0.1)
would provide some constraint on B. However, these
observations can possibly exclude only very large values
of B. For example a putative observation of a supermassive
BH with M ∼ 109M⊙ and J=M2 ≳ 0.5 can potentially
exclude the range 107Gauss ≲ B≲ 109Gauss.
We conclude this section with a note of caution. The

threshold lines shown in Fig. 3 were obtained using
Eq. (27) in the range 10−4 ≲ BM ≲ 1, but the validity
range of Eq. (27) might be smaller. Indeed, a different
behavior is expected for large magnetic fields, BM ≫ 1. In
the opposite regime, using the magnetized Ernst solution
with BM ∼ 10−4 to approximate a realistic configuration
requires the source of the magnetic field to extend at least
up to rM ∼ 104M ∼ 0.5½M=ð109M⊙Þ�pc. While we expect
that our simplistic analysis can provide the correct order of
magnitude for the instability, a more refined study would be
needed to assess its validity in the full range of B.

VII. CONCLUSIONS AND EXTENSIONS

The main purpose of this work was to show how strong
magnetic fields near spinning BHs can trigger superradiant
instabilities and to start exploring the possible implications
of such effect.
To understand this issue, we have computed the normal

modes of scalar perturbations of the Melvin spacetime and
the QNMs of BHs immersed in a uniform magnetic field.
We showed that the magnetic field can confine perturba-
tions leading to long-lived modes, which can trigger

superradiant instabilities when the BH spins above a certain
threshold. The instability time scale can be orders of
magnitude shorter than that associated to the same kind
of instabilities triggered by massive fields. In fact, a BH
immersed in a uniform magnetic field is very similar to the
original BH bomb proposal [9] and to the case of small BHs
in AdS. We provided a simple interpretation of the long-
lived modes of such systems in terms of absorption cross
section at the horizon and reflection by an effective mirror
placed at r0 ∼ 1=B.
In this work we considered only scalar perturbations. Due

to the presence of the magnetic field, gravitational and
electromagnetic perturbations of magnetized BHs are
coupled, and even a linear stability analysis is rather
involved. Nevertheless, in analogy with the AdS case
[17–19], we expect the instability of gravito-electromagnetic
perturbations of a magnetized Kerr–Newman BH to follow
the same scaling as scalar perturbations (35). This expect-
ation is also supported by the model presented in Sec. IV.
Since gravitational and electromagnetic perturbations extract
energy from the BH more efficiently than a scalar field [58]
we expect them to trigger a slightly stronger instability.
Such problem could be tackled extending the results of
Refs. [59,60], where the gravito-magnetic modes of a Kerr–
Newman BH in vacuum were computed to first order in
the spin.
In an astrophysical context, our results should be used

with care. The Ernst spacetime is not asymptotically flat
and, in a realistic situation, it must be matched with a
Minkowski spacetime at large distance. This will add some
amount of dissipation which is forbidden in the exact Ernst
solution. The validity region of the Ernst metric depends on
the extension of the source of the magnetic field. Besides
that, in realistic situations the presence of an accretion disk
can strongly affect the dynamics of electromagnetic per-
turbations, for example by quenching growing modes or
introducing a cutoff plasma frequency for superradiant
photons [61].
Nevertheless, we hope our work motivates further

studies on the subject. To fully understand the magnitude
and end state of the instability, general relativistic magneto-
hydrodynamic simulations (cf. e.g. Refs. [2,3]) are neces-
sary. Another related subject that deserves further study is
the possible effects of this instability on the Blandford-
Znajek process. It would also be interesting to understand if
the Meissner effect that affects magnetic fields around
highly spinning BHs [5,62,63], and that is still a matter of
debate [6], can change the picture in the near-extremal
limit.
Finally, it is possible that a similar superradiant mecha-

nism is at work in rotating stars immersed in strong
magnetic fields: strong fields provide the confinement
necessary to grow the superradiant modes, and a putative
dissipation at the star would provide superradiance [64].
The time scale for energy dissipation in neutron stars is
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FIG. 3 (color online). Contour plots in the BH Regge plane [55]
corresponding to an instability time scale shorter than τSalpeter ∼
4.5 × 107yr for different values of the magnetic field strength B
for modes with l ¼ m ¼ n ¼ 1. BHs lying above each of these
curves would be unstable on an observable time scale. The
threshold lines are obtained using Eq. (35) in the range
10−4 ≲ BM ≲ 1.
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governed by shear viscosity and estimated to be of the order
of [65]

τη ∼ 109
�
1014 g cm−3

ρ

�
5=4

�
T

109 K

�
2
�

R
106 cm

�
sec:

(37)

where ρ, T and R are the central density of the neutron star,
the temperature and the radius, respectively. By compari-
son, the time scale for energy dissipation in BHs scales like
the light crossing time and is over 14 orders of magnitude
smaller for a stellar-mass BH. Thus, the instability is
expected to be of extremely long time scale. Never-
theless, imprints of the (confined) perturbations should
appear as new modes of vibration.
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APPENDIX: FURTHER DETAILS ON
THE MAGNETIZED KERR-NEWMAN

BLACK HOLE BACKGROUND

The full magnetized Kerr–Newman solution can be
found in Refs. [35,51,66,67]. For q ¼ −2~aM2B and at
second order in the spin, the solution reads

ds2 ¼ H

�
−Fdt2 þ Σ

�
dr2

Δ
þ dθ2

��

þ Asin2θ
ΣH

ðH0dϕ −ϖdtÞ2; (A1)

where F ¼ ΣΔ=A, H0 is introduced to remove the conical
singularity [52] and

Δ ¼ r2 − 2MrþM2 ~a2 þ q2; (A2)

Σ ¼ r2 þ ~a2M2cos2θ; (A3)

A ¼ r4 þM2r ~a2½sin2θð2M − rÞ þ 2r�; (A4)

H ¼ 1þ 1

2
B2r2sin2θþ 1

16
B4r4sin4θ

þ ~a2
�
1

8
B6M4r2sin22θþ 1

8
B4M2ð2Mrsin6θ

þ 2Mcos2θðMcos4θþ 2cos2θðM − 2rÞ þ 9Mþ 8rÞ

− 8Mrþ r2sin4θÞ þB2M2

2r
sin2θðr−Mð7þ cos2θÞÞ

�
;

(A5)

H0 ≡Hðr; θ ¼ 0Þ ¼ 1þ 3B4M4 ~a2; (A6)

ϖ ¼ M2 ~a
64r3

½−B4r3ð12 cos 2θ þ cos 4θÞðr − 2MÞ
þ B2r2ð256 − B2rð154M þ 51rÞÞ þ 128�: (A7)

This solution reduces to the Ernst metric (13) when ~a ¼ 0.
To second order in ~a, the event horizon is located at

rþ ¼ 2M − ~a2
�
M
2
þ 2B2M3

�
; (A8)

and the vector potential of the magnetic field is given by

A ¼ Φ0dtþ Φ3ðH0dϕ −ϖdtÞ: (A9)

The explicit form of the functions Φ0 and Φ3 is not
important here, so we refer the reader to Ref. [35].
Interestingly, these solutions incorporate Wald’s result

for the charge induction [4] in the small-B limit. This
allows us to understand the Wald’s charge as being the one
needed to have a vanishing total electric charge at infinity.
Indeed the total physical charge of the solution is given by
[34,35]

Q ¼ q

�
1 −

1

4
q2B2

�
þ 2~aM2B: (A10)

Due to the vacuum polarization and accretion of particles of
opposite charge, BHs have a tendency to quickly lose their
charge [68]. In order to be neutral, a BH must then satisfy
qð1 − 1

4
q2B2Þ ¼ −2~aM2B. Solving for q and expanding in

the small-B limit we find

qneutral=M ¼ −2~aBM þO½ ~a3ðBMÞ5�: (A11)

The result above reduces to Wald’s results to first order in
BM and also in the small-rotating limit.
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Note that q and ~a do not have a direct physical meaning
for the exact geometry of the magnetized BH. The con-
served electric charge of the magnetized BH is given by Q
(A10), while the true conserved angular momentum of the
exact magnetized BH solutions can be evaluated from
thermodynamic considerations, as it was done in Ref. [69].
Although this quantity can be quite complicated, expanding
in the small- ~a limit and considering a BH with Wald’s
charge, one recovers the standard relation for the angular
momentum of a Kerr BH,

J ¼ ~aM2 þOð ~a3Þ: (A12)

For a BH with charge q ¼ −2~aM2BþOð ~a3Þ, the
horizon’s angular velocity ΩH is given by

ΩH ¼ ~a
4M

þ 2~aMB2ð1 − 2B2M2Þ þOð ~a3Þ: (A13)

Note that ΩH is slightly different from the case of a
magnetized BH with q ¼ 0. Indeed, when q ≠ 0 a charged
BH has a gyromagnetic ratio q=M [70], so it can acquire an
angular momentum when immersed in a uniform magnetic
field. The extra term proportional to B in (A13) is related to
this effect. This can be seen by computing ΩH for a BH
with ~a ¼ 0,

Ωð ~a¼0Þ
H ¼ −

8qB½B2ðq2 − 4M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
− 4M2Þ þ 4�

ðB4q4 þ 24B2q2 þ 16Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
þMÞ

∼ −
qB
M

þ 2B3MqþOðq3M3Þ; (A14)

where in the last step we linearized in q. Taking q ¼ qneutral
we get the extra term proportional to B in (A13).
Due to the boundary condition (34), superradiant scat-

tering is possible whenever ωR < mΩH [58] or (to second
order in rotation):

~a >
4MωR

mð1þ 8B2M2 − 16B4M4Þ ; (A15)

where ωR is the real part of the mode frequency given
approximately by (26). The effect of the charge induced by
the magnetic field is to change the superradiant threshold
which, for a BH with q ¼ 0, is given by

~a >
4MωR

m
: (A16)

Finally, after some algebra the Klein-Gordon equation (8)
in the background (A1) reduces to Eq. (33) in the main text,
where the coefficients are given by

V0 ¼
3B12M4m2

128
ðr − 2MÞr5 þ 1

64
B10M4m2r3ð23r − 48MÞ − B8M2m2

128
ðr4 − 968M4 þ 136M3r − 280M2r2 − 14Mr3Þ

−
B6M2m2ð544M3 þ 48M2r − 20Mr2 þ r3Þ

16r
þ B4M3m2ð9r2 − 46M2 þ 10MrÞ

2r3

þ B2M2ðrð−4lðlþ 1ÞM2 þm2rðrþ 4MÞ þ 8M2Þ − 24M3Þ
r5

þM2

r5
½lðlþ 1Þðr − 4MÞ þ rðm2 − ðr − 2MÞrω2 − 1Þ þ 12M� − 24M4; (A17)

V2 ¼ −
9

128
B12M4m2ðr − 2MÞr5 þ 1

64
B10M4m2ð104M − 49rÞr3

þ B8M2m2

256
ð−704M4 þ 1744M3r − 424M2r2 − 76Mr3 þ 5r4Þ þ B6M2m2ðrþ 2MÞððr − 36MÞrþ 84M2Þ

16r

−
B4M2m2½8M3 þ rð−76M2 þ 3rð8M þ rÞÞ�

8r3
−
B2M2m2ðr − 2MÞ

r3
þ ðr − 2MÞM2ω2

r3
; (A18)

V4 ¼
9

128
B12M4m2ðr − 2MÞr5 þ 1

64
B10M4m2r3ð29r − 64MÞ

−
1

256
B8M2m2½288M4 þ rð336M3 þ rð3rðr − 20MÞ − 56M2ÞÞ�

þ B6M2m2½48M3 þ rðr − 4MÞð12M þ rÞ�
16r

þ 3B4M2m2ðr − 2MÞ2
8r2

; (A19)
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V6 ¼ −
3

128
B12M4m2ðr − 2MÞr5 þ 1

64
B10M4m2ð8M − 3rÞr3

−
1

256
B8M2m2½−64M4 þ 80M3r − 40M2r2 þ 4Mr3 þ r4� − B6M2m2ðr − 2MÞ3

16r
; (A20)

V8 ¼
1

256
M2B8m2ðr − 2MÞ4: (A21)
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