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Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational
thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is
a nonminimal coupling between the scalar field and the matter field (as a chameleon field). Then we derive
the field equations governing the gravity and the scalar field. For a Friedmann-Robertson-Walker universe
filled only with ordinary matter, we obtain the modified Friedmann equations as well as the evolution
equation of the scalar field. Furthermore, we assume the boundary of the Universe to be enclosed by the
dynamical apparent horizon that is in thermal equilibrium with the Hawking temperature. We obtain a
general expression for the GSL of thermodynamics in the scalar-tensor gravity model. For some viable
scalar-tensor models, we first obtain the evolutionary behaviors of the matter density, the scale factor, the
Hubble parameter, the scalar field, and the deceleration parameter, as well as the effective equation of state
(EoS) parameter. We conclude that in most of the models, the deceleration parameter approaches a de Sitter
regime at late times, as expected. Also, the effective EoS parameter acts like the ΛCDMmodel at late times.
Finally, we examine the validity of the GSL for the selected models.

DOI: 10.1103/PhysRevD.89.104041 PACS numbers: 04.50.Kd

I. INTRODUCTION

During the last decade, observational cosmology has
entered an era of unprecedented precision. Measurements
of the cosmic microwave background ([1,2]), the Hubble
constant (H0) [3], the luminosity and distance at high
redshift with the supernovae Ia [4], and baryon acoustic
oscillations surveys [5] suggest that our Universe is
currently undergoing a phase of accelerated expansion.
The proposals that have been put forth to explain these
interesting discoveries can basically be classified into two
categories. One is to assume the cosmic speeding-up might
be caused within general relativity (GR) by a mysterious
cosmic fluid with negative pressure, which is usually called
dark energy (DE). However, the nature of DE is still
unknown and the problem of DE is one of the hardest
and unresolved problems in modern theoretical physics
(see [6,7] and references therein).
Alternatively, the acceleration could be due to purely

gravitational effects, named modified gravity, i.e., one may
consider modifying the current gravitational theory to
produce an effective DE. One such modification is referred
to as fðRÞ-gravity, in which the Einstein-Hilbert action in
GR is generalized from the Ricci scalar R to an arbitrary
function of the Ricci scalar (for a good review, see [8] and
references therein). There are also some other classes of

modified gravities containing fðGÞ [9], fðR;GÞ [10] and
fðTÞ [11], which are considered as gravitational alterna-
tives for DE. Here, G ¼ RμνρσRμνρσ − 4RμνRμν þ R2 is the
Gauss-Bonnet invariant term. Also, Rμνρσ and Rμν are
the Riemann and Ricci tensors, respectively, and T is
the torsion scalar. The modified gravity can unify the early-
time inflation with late-time acceleration without resorting
to the DE [8]. Moreover, modified gravity may serve as
dark matter [12].
In the context of modified gravity, there is also a large

class of models called scalar-tensor theories [13,14], which
take into account the effects due to the nonminimal
coupling term FðϕÞR between a scalar field, ϕ, and a
Ricci scalar curvature. In scalar-tensor theories, if the
evolution of matter perturbations δm ¼ δρm=ρm is known
observationally, together with the Hubble parameter HðzÞ,
one can even determine the function FðϕÞ together with
the potential VðϕÞ of the scalar field [15]. Scalar-tensor
theories also contain a class of models called chameleon
gravity [16–18] in which there is a nonminimal coupling
between the scalar field and the matter field. Historically,
one of the first scalar-tensor theories is the Brans-Dicke
theory of gravity, which has been motivated from Mach’s
principle. This is achieved in Brans-Dicke theory by
making the effective gravitational coupling strength Geff ∼
ϕ−1 depend on the space-time position and being governed
by distant matter sources. Modern interest in Brans-Dicke
and scalar-tensor theories is motivated by the fact that they
are obtained as low-energy limits of string theories. It was
shown that metric and Palatini (but not metric-affine)

*AAbdolmaleki@uok.ac.ir
†t.najafi90@gmail.com
‡KKarami@uok.ac.ir

PHYSICAL REVIEW D 89, 104041 (2014)

1550-7998=2014=89(10)=104041(16) 104041-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.104041
http://dx.doi.org/10.1103/PhysRevD.89.104041
http://dx.doi.org/10.1103/PhysRevD.89.104041
http://dx.doi.org/10.1103/PhysRevD.89.104041


modified gravities can be reduced to scalar-tensor
theories [19].
Thermodynamics of the accelerating Universe driven by

the DE or dark gravity (due to the modified gravity effect)
is one of the interesting issues in modern cosmology. In
the context of black hole thermodynamics, Jacobson using
the first law of thermodynamics on the local Rindler
horizons and assuming the Bekenstein-Hawking entropy-
area relation SBH ¼ A=ð4GÞ, where A is the area of the
horizon and G is Newton’s constant, was able to derive
the Einstein equations [20]. The study on the connection
between gravity and thermodynamics has been extended
to the cosmological context. It was pointed out that the
Friedmann equation in the Einstein gravity can be obtained
using the first law of thermodynamics (the Clausius
relation) −dE ¼ TAdSA on the apparent horizon ~rA with
the Hawking temperature TA ¼ 1=ð2π ~rAÞ and Bekenstein-
Hawking entropy SA ¼ A

4G [21]. The relation between
gravity and thermodynamics has been further disclosed
in extended gravitational theories, including the fðGÞ
theory [21], scalar-tensor gravity and fðRÞ-gravity [22],
Lovelock theory [23], and braneworld scenarios (such as
DGP, RSI, and RSII) [24].
Note that the entropy-area relation SA ¼ A

4G familiar from
GR is still valid in the other modified gravity theories
provided that Newton’s constant, G, is replaced by a
suitable effective gravitational coupling strength, Geff .
For instance, the effective Newton’s constant in fðRÞ-
gravity and fðTÞ-gravity are given by Geff ¼ G=f0ðRÞ [25]
and Geff ¼ G=f0ðTÞ [26], respectively, where prime
denotes a derivative with respect to the Ricci R and
torsion T scalars. In scalar-tensor gravity, the geometric
entropy is also given by SA ¼ A

4Geff
[19,27] with G eff ¼

G=FðϕÞ [19,27].
In addition to the first law of thermodynamics, the

generalized second law (GSL) of gravitational thermody-
namics, which states that entropy of the fluid inside the
horizon plus the geometric entropy does not decrease
with time, has been studied extensively in the literature
[28]–[37]. The GSL of thermodynamics, like the first law,
is a universal principle governing the Universe. Here, our
aim is to investigate the GSL of thermodynamics in the
framework of scalar-tensor gravity. As one of the most
important theoretical touchstones to examine whether
scalar-tensor gravity can be an alternative gravitational
theory to GR, we explore the GSL of thermodynamics in
scalar-tensor gravity, and derive the condition for the GSL
to be satisfied. The paper is organized as follows. In Sec. II
we investigate the scalar-tensor gravity and extend it to the
case in which there is a nonminimal coupling between the
scalar field and the matter field (as the chameleon field).
In Sec. III, we explore the GSL of thermodynamics on the
dynamical apparent horizon of a Friedmann-Robertson-
Walker (FRW) universe filled with the ordinary matter that
is in thermal equilibrium with the Hawking temperature. In

Secs. IV–VIII, we examine the validity of the GSL for some
viable scalar-tensor gravity models containing Brans-Dicke
gravity, Brans-Dicke gravity with a self interacting poten-
tial, chameleon gravity, chameleonic generalized Brans-
Dicke gravity, and chameleonic Brans-Dicke gravity with
a self interacting potential. Section IX is devoted to
conclusions.

II. SCALAR-TENSOR GRAVITY

In the Jordan frame, general action of the scalar-tensor
gravity can be written as

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2k2
ðFðϕÞR − ZðϕÞgμνϕ;μϕ;ν − 2UðϕÞÞ

þ EðϕÞLm

�
; (1)

where k2 ¼ 8πG. Also g, R, ϕ, and Lm are the determinant
of the metric gμν, the Ricci scalar curvature, the scalar field,
and the matter Lagrangian, respectively. Also FðϕÞ, ZðϕÞ,
and EðϕÞ are arbitrary dimensionless functions, and UðϕÞ
is the scalar field potential. Note that in action (1), the terms
FðϕÞR and EðϕÞLm show that the scalar field ϕ is non-
minimally coupled to the scalar curvature [as the Brans-
Dicke field with FðϕÞ ¼ ϕ] and the matter Lagrangian
(as the chameleon field), respectively. In the absence of
the chameleon field, i.e., EðϕÞ ¼ 1, Eq. (1) reduces to the
ordinary action of the scalar-tensor gravity theory [38].
Taking variations of the action (1) with respect to gμν and

ϕ leads to the corresponding field equations in scalar-tensor
gravity as

FðϕÞGμν ¼ k2Tm
μνEðϕÞ þ ZðϕÞ

�
∂μϕ∂νϕ −

1

2
gμνð∂αϕÞ2

�

þ∇μ∂νFðϕÞ − gμν□FðϕÞ − gμνUðϕÞ; (2)

2ZðϕÞ□ϕ ¼ 2U;ϕ − F;ϕR − Z;ϕð∂αϕÞ2 −
k2

2
gμνE;ϕTm

μν;

(3)

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor, Rμν is the

Ricci tensor, and T m
μν is the energy-momentum tensor of the

matter fields. Also,∇μ is the covariant derivative associated
with gμν and the subscript ϕ denotes a derivative with
respect to the scalar field ϕ (i.e., F;ϕ ¼ dF= dϕ). We
assume that Tm

μν has the form of the energy-momentum
tensor of a perfect fluid,

Tm
μν ¼ pmgμν þ ðpm þ ρ mÞUμUν: (4)

Now we consider a spatially nonflat universe described by
the FRW metric,
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ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2dΩ2

�
; (5)

where K ¼ 0; 1;−1 represents a flat, closed, and open
universe, respectively. Substituting the FRWmetric (5) into
the field equations (2) yields the Friedmann equations in
scalar-tensor gravity as

3FðϕÞ
�
H2 þ K

a2

�
¼ k2ρmEðϕÞþ

ZðϕÞ
2

_ϕ2 − 3H _FþUðϕÞ;
(6)

−2FðϕÞ
�
_H −

K
a2

�
¼ k2ðρm þ pmÞEðϕÞ þ ZðϕÞ _ϕ2

þ F̈ −H _F: (7)

Also, Eq. (3) for the FRW metric (5) gives the equation
governing the evolution of the scalar field as

2ZðϕÞðϕ̈þ 3H _ϕÞ ¼ RF;ϕ − Z;ϕ
_ϕ2 − 2U;ϕ

−
k2

2
E;ϕðρm − 3pmÞ; (8)

where

R ¼ 6

�
_H þ 2H2 þ K

a2

�
; (9)

and H ¼ _a=a is the Hubble parameter. Here, the dot
denotes a derivative with respect to the cosmic time t.
Note that in the absence of the chameleon field, i.e.,
EðϕÞ ¼ 1, Eqs. (6), (7), and (8) are same as those obtained
for the ordinary scalar-tensor gravity [38].
The Friedmann equations (6) and (7) can be rewritten in

the standard form as

H2 þ K
a2

¼ k2

3
ρeff ; (10)

_H −
K
a2

¼ −
k2

2
ðρeff þ peffÞ; (11)

where ρeff and peff are the effective (total) energy density
and pressure defined as

ρeff ¼
1

FðϕÞ
�
ρmEðϕÞ þ

ρϕ
k2

�
; (12)

peff ¼
1

FðϕÞ
�
pmEðϕÞ þ

pϕ

k2

�
: (13)

Here, ρϕ and pϕ are the energy density and pressure due to
the scalar field contribution defined as

ρϕ ¼ ZðϕÞ
2

_ϕ2 − 3H _F þ UðϕÞ; (14)

pϕ ¼ ZðϕÞ
2

_ϕ2 þ F̈ þ 2H _F −UðϕÞ: (15)

Note that the scalar field contributions ρϕ and pϕ in scalar-
tensor gravity can justify the observed acceleration of the
Universe without resorting to the DE. For a special case,

FðϕÞ ¼ EðϕÞ ¼ 1, from Eqs. (14) and (15) we have ρϕ ¼
ZðϕÞ
2

_ϕ2 þUðϕÞ and pϕ ¼ ZðϕÞ
2

_ϕ2 −UðϕÞ; then Eqs. (10)
and (11) transform to the usual Friedmann equations in the
Einstein gravity.
The energy conservation laws in scalar-tensor gravity

can be obtained as

_ρm þ 3Hðρm þ pmÞ ¼ −
3

4
ðρm þ pmÞ

_EðϕÞ
EðϕÞ ; (16)

_ρeff þ 3Hðρeff þ peffÞ ¼ 0: (17)

Also, ρϕ and pϕ satisfy the following energy equation:

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ k2
�
ρeff _FðϕÞ −

1

4
_EðϕÞðρm − 3pmÞ

�
:

(18)

Note that the set of equations containing the Friedmann
equations (6) and (7), the evolution equation of the scalar
field (8), and the continuity equation governing the matter
field (16) are not independent of each other. Taking the time
derivative of Eq. (6) and using Eqs. (8) and (16), one can
get the second Friedmann equation (7). In the next sections,
we take the set of Eqs. (7), (8), and (16), which can
uniquely determine the dynamics of the Universe.

III. GSL IN SCALAR-TENSOR GRAVITY

Here, in the context of scalar-tensor gravity theory, we
explore the GSL of gravitational thermodynamics on the
dynamical apparent horizon of a FRW universe filled only
with ordinary matter that is in thermal equilibrium with the
Hawking temperature. The GSL states that the sum of the
entropy of fluid filling the Universe along with the entropy
of the cosmological horizon must be an increasing
(or nondecreasing) function of time [21].
For a spatially nonflat FRW universe, the dynamical

apparent horizon takes the form [39]

~rA ¼
�
H2 þ K

a2

�
−1=2

; (19)

which, in the case of a flat universe (K ¼ 0), reduces to the
Hubble horizon, i.e., ~rA ¼ H−1. On the apparent horizon,
the associated Hawking temperature is defined as [21]
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TA ¼ 1

2π ~rA

�
1 −

_~rA
2H~rA

�
; (20)

where the condition
_~rA

2H~rA
< 1 is necessary due to having a

positive temperature. Cai et al. [40], using the tunneling
approach, proved that there is indeed a Hawking radiation
with a temperature (20), for a locally defined apparent
horizon of a FRWuniverse with any spatial curvature. They
also pointed out that an observer with the Kodoma vector
inside the apparent horizon can measure the Hawking
temperature (20).
The entropy of the matter inside the horizon satisfies the

Gibbs equation [28],

TAdSm ¼ dEm þ pmdV; (21)

where Em ¼ ρmV and V ¼ 4π
3
~r3A is the volume of the

dynamical apparent horizon ~rA containing the matter.
Here, we have assumed the local equilibrium hypothesis
to hold. This requires that the temperature Tm of the matter
content inside the apparent horizon should be in equilib-
rium with the temperature TA associated with the apparent
horizon, so we have T m ¼ TA. We notice that the
assumption of the thermal equilibrium in the cosmological
setting is ideal because the temperature of the matter field
at the present time differs much from that of the horizon
TA0

∼ 10−22 K. Hence, the systems must interact for some
length of time before they can attain thermal equilibrium.
Although in this case the local equilibrium hypothesis
may no longer hold [41], Karami and Ghaffari [42] showed
that the contribution of the heat flow between the horizon
and the fluid in the GSL in nonequilibrium thermody-
namics is very small, Oð10−7Þ. Therefore, the equilibrium
thermodynamics are still preserved. In general, when we
consider the thermal equilibrium state of the Universe, the
temperature of the Universe is associated with the apparent
horizon.
Taking the time derivative of Eq. (21) and using (16)

gets the equation governing the evolution of the matter
entropy as

TA
_Sm ¼ 4π ~r3Aðρm þ pmÞ

�_~rA
~rA

−H −
1

4

_E
E

�
: (22)

Using Eq. (7), this can be rewritten as

TA
_Sm ¼ −~r2A

2GEðϕÞ
�
_~rA −H~rA −

1

4

_E
E
~rA

�

×

��
2 _H −

2K
a2

−H
d
dt

þ d2

dt2

�
FðϕÞ þ ZðϕÞ _ϕ2

�
:

(23)

The geometric entropy in the scalar-tensor gravity is given
by [27]

SA ¼ AFðϕÞ
4G

; (24)

where A ¼ 4π~r2A is the area of the apparent horizon. Taking
the time derivative of Eq. (24) and using (20) yields the
evolution of the horizon entropy as

TA
_SA ¼ ~rA

4GH

�
2H −

_~rA
~rA

��
2_~rA
~rA

þ d
dt

�
FðϕÞ: (25)

Now, according to the GSL of gravitational thermodynam-
ics, we can consider the entropy of the Universe as the sum
of the entropy of the matter inside the horizon, and the
horizon entropy. Adding Eqs. (23) and (25) and using the
auxiliary relation

_~rA ¼ H~r3A

�
K
a2

− _H

�
; (26)

the GSL in scalar-tensor gravity reads

TA
_Stot ¼

1

4G

�
H2 þ K

a2

�
−5=2

× ½J 1FðϕÞ þ J 2
_FðϕÞ þ J 3ðZðϕÞ _ϕ2 þ F̈ðϕÞÞ�;

(27)

where

J 1 ¼
�
K
a2

− _H

��
2H

�
2H2

�
1 −

1

E

�
þ _H

�
1 −

2

E

�
þ K
a2

�

−
_E
E2

�
H2 þ K

a2

��
; (28)

J 2¼
K
a2

�
K
a2

þ _Hþ3H2

�

þH2

�
2H2

�
1−

1

E

�
þ _H

�
1−

2

E

��
−
H _E
2E2

�
H2þ K

a2

�
;

(29)

J 3 ¼
2H
E

ð _H þH2Þ þ
_E

2E2

�
H2 þ K

a2

�
; (30)

and Stot ¼ Sm þ SA. Equation (27) shows that the validity
of the GSL, i.e., TA

_Stot ≥ 0, depends on the scalar-tensor
gravity model. For instance, in the Einstein gravity, i.e.,
FðϕÞ ¼ EðϕÞ ¼ 1 and ZðϕÞ ¼ UðϕÞ ¼ 0, the GSL (27)
yields
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TA
_Stot ¼

H
2G

ð _H − K
a2Þ2

ðH2 þ K
a2Þ5=2

≥ 0; (31)

which shows that the GSL in Einstein’s gravity is always
satisfied.
Here, following [43], we try to rewrite the GSL (27) in

terms of the effective equation of state (EoS) parameter weff
defined as

weff ¼
peff

ρeff
¼ −1 −

2

3

� _H − K
a2

H2 þ K
a2

�
; (32)

where we have used Eqs. (10) and (11). From Eqs. (19),
(26), and (32), one can get

_~rA
~rA

¼ 3

2
Hð1þ weffÞ: (33)

Substituting this into Eqs. (22) and (25) yields

TA
_Sm ¼ ~r3A

4G
ρmð1þ wmÞ

�
Hð1þ 3weffÞ −

1

2

_EðϕÞ
EðϕÞ

�
; (34)

TA
_SA ¼ ~rA

8G
ð1 − 3weffÞ½3Hð1þ weffÞFðϕÞ þ _FðϕÞ�;

(35)

where wm ¼ pm=ρm is the EoS parameter of the ordinary
matter. In the framework of Einstein gravity, i.e., FðϕÞ ¼
EðϕÞ ¼ 1 and ZðϕÞ ¼ UðϕÞ ¼ 0; for a flat FRW universe
dominated by a single fluid (H2 ¼ ρf=3) filling the volume
enclosed by the apparent (Hubble) horizon (~rA ¼ H−1), we
have w eff ¼ wm ¼ wf and Eq. (34) reduces to Eq. (11)
in [43].
In the absence of the chameleon scalar field, i.e.,

EðϕÞ ¼ 1, Eq. (34) reduces to

TA
_Sm ¼ H~r3Aρm

4G
ð1þ wmÞð1þ 3weffÞ: (36)

Note that for the ordinary matter we have wm ≥ 0; hence,
the contribution of the matter entropy in the GSL will be
positive or nil for weff ≥ −1=3 and negative otherwise.
For a chameleon scalar field minimally coupled to the

Ricci scalar curvature, i.e., FðϕÞ ¼ 1, Eq. (35) yields

TA
_SA ¼ 3H~rA

8G
ð1þ weffÞð1 − 3weffÞ; (37)

which shows that for −1 ≤ weff ≤ 1=3 the horizon entropy
has a positive or nil contribution in the GSL.

Adding Eqs. (34) and (35) gives the GSL as

TA
_Stot ¼

~rA
8G

�
ð1 − 3weffÞ½3Hð1þ weffÞFðϕÞ þ _FðϕÞ�

þ 2~r2Aρmð1þ wmÞ
�
Hð1þ 3weffÞ −

1

2

_EðϕÞ
EðϕÞ

��
:

(38)

In the Einstein gravity, i.e., FðϕÞ ¼ E ðϕÞ ¼ 1 and
ZðϕÞ ¼ UðϕÞ ¼ 0, we have ~r2Aρm ¼ ~r2Aρeff ¼ 3 and
w m ¼ weff and then the GSL (38) reduces to

TA
_Stot ¼

9H~rA
8G

ð1þ weffÞ2 ≥ 0; (39)

which is always respected. This can also be obtained by
replacing Eqs. (19) and (32) with (31).
Note that in general one cannot explore the validity of the

GSL (38) in terms of weff , explicitly, even in some special
cases like EðϕÞ ¼ 1 and FðϕÞ ¼ 1. To do so, we need to
solve the set of Eqs. (7), (8), and (16), numerically, to
obtain the evolutions of aðtÞ (or H), ϕ, and ρm.
In what follows, we are interested in examining the

validity of the GSL for some viable scalar-tensor gravity
models. We further assume the Universe to be spatially
flat, i.e., K ¼ 0, which is compatible with the recent
observations [1].

IV. MODEL I: BRANS-DICKE GRAVITY

The action of Brans-Dicke (BD) theory is given by [44]

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2k2

�
ϕR −

ω

ϕ
gμν∂μϕ∂νϕ

�
þ Lm

�
; (40)

where ω is the dimensionless BD parameter. In [45], it was
shown that the BD scalar-tensor theory of gravitation (40)
brings a negligible correction to the matter density com-
ponent of the Friedmann equation. It was pointed out that
if this correction is found to be nonzero, data can favor
this model and hence this theory turns out to be the most
powerful candidate in place of the standard Einstein
cosmological model with the cosmological constant.
By comparing the actions (40) and (1), one can get

FðϕÞ¼ϕ; ZðϕÞ¼ω

ϕ
; UðϕÞ¼ 0; EðϕÞ¼ 1: (41)

Substituting the above relations into Eqs. (8) and (16), for a
flat universe (K ¼ 0) one can obtain

ϕ̈þ 3H _ϕ ¼ 3ϕ

ω
ð _H þ 2H2Þ þ

_ϕ2

2ϕ
; (42)

_ρm þ 3Hðρm þ pmÞ ¼ 0: (43)
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Also, the GSL (27) for a flat universe (K ¼ 0) reduces to

TA
_Stot ¼

2π

H4

�
2ϕ _H2− _ϕ _HHþ 2ð _HþH2Þ

�
ϕ̈þω _ϕ2

ϕ

��
;

(44)

where we take k2 ¼ 8πG ¼ 1. Equation (43) for the
pressureless matter (i.e., pm ¼ 0) yields

ρm ¼ ρm0

�
a
a0

�
−3
: (45)

Substituting Eqs. (41) and (45) into the second Friedmann
equation (7) yields

−2ϕ _H ¼ ρm0

�
a
a0

�
−3

þ ω
_ϕ2

ϕ
þ ϕ̈ −H _ϕ: (46)

To obtain the evolutionary behavior of the GSL (44), we
first need to know the time evolution of both the Hubble
parameter HðtÞ and the scalar field ϕðtÞ. To do so, one can
obtain aðtÞ and ϕðtÞ by the numerical solving of Eqs. (42)
and (46). Taking Ωm0

¼ ρm0
=ð3H2

0Þ¼ 0.27 [2] and ω ¼ 1.2
[46], and using the initial values að1Þ ¼ 1, _að1Þ ¼ 0.84,
ϕð1Þ ¼ 1.5, and _ϕð1Þ ¼ 1 [46], the variations of the scale
factor, the Hubble parameter, and the scalar field versus the
redshift z ¼ a0

a − 1 are plotted in Figs. 1(a), 1(b), and 1(c),
respectively. Also, the evolutionary behaviors of the
deceleration parameter,

q ¼ −1 −
_H
H2

; (47)

and the effective EoS parameter weff, Eq. (32), in terms of
the redshift are plotted in Figs. 1(d) and 1(e), respectively.
Figures 1(a) to 1(e) show the following: (i) the scale

factor, the Hubble parameter, and the scalar field, respec-
tively, increases, decreases, and increases during the history
of the Universe. (ii) The deceleration parameter shows
a cosmic deceleration q > 0 to the acceleration q < 0
transition in the near past, which is compatible with the
observations [47]. (iii) The effective EoS parameter weff at
late times z → −1 goes to −0.6, which behaves like the
quintessence model [48].
With the help of numerical results obtained for the

Hubble parameter and the scalar field presented in
Figs. 1(b) and 1(c), the variation of the GSL (44) versus z
is plotted in Fig. 1(f). The figure shows that the GSL in
the BD gravity model (40) is satisfied during the late
cosmological history of the Universe, i.e., TA

_S tot ≥ 0.
It is worth noting that, although in our numerical

calculations following [46] we take the BD parameter
ω ¼ 1.2, this clearly contradicts the solar system limit
ω > 600. In [49], it was shown that the BD parameter ω
asymptotically acquires a small value due to having an

accelerating universe at the late time. There are also other
evidences in the literature where a small ω has been
supported. In the extended inflationary model, La and
Steinhardt [50] showed that the required value for ω is
20. The structure formation in scalar-tensor theory also
contradicts the solar system bound on ω [51]. Thus, the
problem seems to appear in different scales (astronomical
and cosmological). Considering ω to be a variable (as we
consider in Sec. VII) having both decelerating and accel-
erating phases at different epochs, while large ω values
occur due to local inhomogeneities in the astronomical
scale to satisfy the solar system bound, may give a
satisfactory answer to this question [49].

V. MODEL II: BD GRAVITY WITH A SELF
INTERACTING POTENTIAL

The action of BD theory with a self interacting potential
and a matter field is given by [49]

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2k2

�
ϕR−

ω

ϕ
gμν∂μϕ∂νϕ−VðϕÞ

�
þLm

�
;

(48)

with

VðϕÞ ¼ λϕ4 −
μ20

aðtÞn ϕ
2: (49)

Here, λ and μ0 are two constants and n is a positive integer.
In [49], it was shown that the model described by the action
(48) and potential (49) can support the late-time accelerated
phase of the Universe in BD cosmology. The geometric BD
scalar fieldϕ can play the role of the dynamicalΛ and provide
the missing energy. Authors of Ref. [49] also calculated
different parameters like the time variation of gravitational
coupling, the age of theUniverse, and the luminosity-distance
redshift relation and show that all of these cosmological
parameters agree quite well with the observations.
By comparing the actions (48) and (1), we find

FðϕÞ ¼ ϕ; ZðϕÞ ¼ω

ϕ
; UðϕÞ ¼ VðϕÞ

2
; EðϕÞ ¼ 1:

(50)

Inserting the above relations into Eqs. (8) and (16), for a flat
universe one can obtain

2ω

ϕ
ðϕ̈þ 3H _ϕÞ ¼ 6ð _H þ 2H2Þ þ ω

�
_ϕ

ϕ

�2

− 4λϕ3 þ μ20
ϕ

an

�
2 − n

_a=a
_ϕ=ϕ

�
; (51)

_ρm þ 3Hðρm þ pmÞ ¼ 0; (52)

where the evolution of ρm for the pressureless matter
(pm ¼ 0) is the same as that obtained in (45).
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Here, the GSL (27) for a spatially flat universe takes the
form

TA
_Stot ¼

2π

H4

�
_Hð2 _Hϕ−H _ϕÞ þ 2ð _HþH2Þ

�
ϕ̈þω

ϕ
_ϕ2

��
;

(53)

where k2 ¼ 8πG ¼ 1.

Inserting Eqs. (45) and (50) into the second Friedmann
equation (7), one can find

−2ϕ _H ¼ ρm0

�
a
a0

�
−3

þ ω
_ϕ2

ϕ
þ ϕ̈ −H _ϕ; (54)

which is the same as Eq. (46) for the BD gravity model (40)
because the form of potential of the scalar field
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FIG. 1. Variations of the scale factor a, the Hubble parameter H, the scalar field ϕ, the deceleration parameter q, the effective EoS
parameter weff, and the GSL, T A

_Stot, versus the redshift z for model I (40). Initial values are að1Þ ¼ 1, _að1Þ ¼ 0.84, ϕð1Þ ¼ 1.5, and
_ϕð1Þ ¼ 1 [46]. Auxiliary parameters are Ωm0

¼ 0.27 [2] and ω ¼ 1.2 [46]. Here, t0 ¼ 1=H0.
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does not appear explicitly in the second Friedmann
equation (7).
Taking Ωm0

¼ 0.27 [2], ;ω ¼ 1.2 [46], and n ¼ 1 [49],
the time evolution of both the scale factor aðtÞ and the
scalar field ϕðtÞ can be obtained by numerical solving
of Eqs. (51) and (54) with the initial values að1Þ ¼ 1,
_að1Þ ¼ 0.84, ϕð1Þ ¼ −1.5, and _ϕð1Þ ¼ 1. Also, we set
λ ¼ H2

0 and μ0 ¼ H0 to recast the differential Eqs. (51) and
(54) in dimensionless form, which is more suitable for

numerical integration. The numerical results obtained for a,
H, ϕ, q, and weff are plotted in Figs. 2(a), 2(b), 2(c), 2(d),
and 2(e), respectively. The figures show that (i) a,H, and ϕ,
respectively, increases, decreases, and increases during the
history of the Universe. (ii) The deceleration parameter
shows a transition from the deceleration era q > 0 to the
acceleration regime q < 0. At late times (z → −1), the
deceleration parameter approaches a de Sitter regime (i.e.,
q → −1), as expected. (iii) The effective EoS parameter
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FIG. 2. Same as Fig. 1 but for model II (48). Initial values are að1Þ ¼ 1, _að1Þ ¼ 0.84, ϕð1Þ ¼ −1.5, and _ϕð1Þ ¼ 1. Auxiliary
parameters are Ωm0
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shows a transition from the quintessence state, weff > −1,
to the phantom regime, weff < −1, in the future. Also,
at late times we get w eff → −1, which acts like the
ΛCDM model.
The results of H and ϕ illustrated in Figs. 2(b) and 2(c)

help us to obtain the variation of the GSL (53) for the BD
gravity model (48) with a self interacting potential (49).
The result is plotted in Fig. 2(f). The figure shows that the
GSL for our model is satisfied from the past to the present
epoch. But in the future the GSL is violated for z < −0.15.

VI. MODEL III: CHAMELEON GRAVITY

The action of chameleon gravity in the presence of
matter is given by [52,53]

I¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2k2
ðR− gμν∂μϕ∂νϕ−2VðϕÞÞþfðϕÞLm

�
;

(55)

where there is a nonminimal coupling term, fðϕÞL m,
between the chameleon scalar field and the matter field.
Note that the mass of the chameleon scalar field depends
sensitively on the environment. In high density regions, the
chameleon blends with its environment and becomes
essentially invisible to searches for equivalence principle
violation and the fifth force. In [16], it was pointed out that
the chameleon-mediated force between the Earth and the
Sun is suppressed by the thin-shell effect, which thereby
ensures that solar system tests of gravity are satisfied. In
[17], it was shown that the chameleons are also consistent
with cosmological constraints on the existence of non-
minimally coupled scalars, such as the bound on the time
variation of G from nucleosynthesis.
Comparing the chameleon gravity action (55) with

action (1), one can get

FðϕÞ¼ 1; ZðϕÞ¼ 1; UðϕÞ¼VðϕÞ; EðϕÞ¼ fðϕÞ:
(56)

With the help of these relations, Eqs. (8) and (16) for a flat
universe read

ϕ̈þ 3H _ϕþ V;ϕ þ
1

4
ðρm − 3pmÞf;ϕ ¼ 0; (57)

_ρm þ 3Hðρm þ pmÞ ¼ −
3

4

_fðϕÞ
fðϕÞ ðρm þ pmÞ; (58)

where we take k2 ¼ 8πG ¼ 1. Taking the integration of
Eq. (58) for the pressureless matter (pm ¼ 0) gives

ρm ¼ ρm0

�
a
a0

�
−3
�
fðϕÞ
f0

�
−3
4

: (59)

Substituting the relations (56) into (27) gives the GSL for a
flat universe as

TA
_Stot ¼

2π

H4

�
−2 _Hð2H2 þ _HÞ

þ 1

2fðϕÞ ð2
_H þ _ϕ2Þ

�
4ðH2 þ _HÞ þ

_f
f
H

��
:

(60)

According to [53], we consider both fðϕÞ and the potential
VðϕÞ that appeared in (55) to behave exponentially as

fðϕÞ ¼ f0eb1ϕ; VðϕÞ ¼ V0eb2ϕ; (61)

where f0, V0, b1, and b2 are arbitrary constants. There is
no a priori physical motivation for these choices, so it is
only purely phenomenological, which leads to the desired
behavior of the phantom crossing model of the Universe.
Using Eqs. (59) and (61), the evolution Eq. (57) for the

pressureless matter (pm ¼ 0) gives

ϕ̈þ 3H _ϕþ b2V0eb2ϕ þ
1

4
b1f0ρm0

�
a
a0

�
−3
eb1ϕ=4 ¼ 0:

(62)

Also, the second Friedmann equation (7) reads

−2 _H ¼ f0ρm0

�
a
a0

�
−3
eb1ϕ=4 þ _ϕ2: (63)

Finally, the GSL (60) takes the form

TA
_Stot ¼

2π

H4

�
−2 _Hð2H2 þ _HÞ

þ 1

2f0eb1ϕ
ð2 _H þ _ϕ2Þð4ðH2 þ _HÞ þ b1 _ϕHÞ

�
:

(64)

From numerical solving of Eqs. (62) and (63), one can
obtain aðtÞ and ϕðtÞ. To do so, we take Ωm0

¼ 0.27 [2],
f0 ¼ −10, and b1 ¼ b2 ¼ −1 [53] and use the initial values
að1Þ ¼ 1, _að1Þ ¼ 1, ϕð1Þ ¼ 1, and _ϕð1Þ ¼ −2. The var-
iations of a,H, ϕ, q, and weff versus the redshift are plotted
in Figs. 3(a) to 3(e). The figures show that (i) the scale
factor increases when the time increases. The Hubble
parameter decreases with increasing time and then
increases to approach a constant value. The scalar field
decreases with increasing time and increases at late times.
(ii) The deceleration parameter shows a cosmic transition
from q > 0 to q < 0 in the near past, which is compatible
with the observations [47]. It also approaches a de Sitter
regime at late times, as expected. (iii) The effective EoS
parameter can justify the transition from the quintessence
state (weff > −1) to the phantom regime (weff < −1) in the
near past, as indicated by recent observations [54]. This is
also in good agreement with that obtained in [53]. The
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effective EoS parameter also behaves like the ΛCDM
model at late times.
With the help of numerical results obtained for the

Hubble parameter and the scalar field illustrated in
Figs. 3(b) and 3(c), the variation of the GSL (64) versus
the redshift for the chameleon gravity model is plotted in
Fig. 3(f). The figure shows that the GSL in this model is
violated for the range of −0.88 < z < 0.37. This is in

contrast with that obtained in [53]. The authors of Ref. [53]
investigated the GSL in flat FRW chameleon cosmology
and showed that, in an expanding universe, the GSL is
always respected. This contradiction comes back to the
definition of energy and pressure in the Gibbs equation
(21). In [53], Farajollahi et al. considered the effective
(total) energy Eeff ¼ ρ effV and pressure peff instead of
Em ¼ ρ mV and pm as we have in our case. Therefore, in
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FIG. 3. Same as Fig. 1 but for model III (55). Initial values are að1Þ ¼ 1, _að1Þ ¼ 1, ϕð1Þ ¼ 1, and _ϕð1Þ ¼ −2. Auxiliary parameters
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[53], the GSL is defined as TA
_S tot ¼ TAð _Seff þ _SAÞ in

which

TA
_Seff ¼

3H~rA
4G

ð1þ weffÞð1þ 3weffÞ;

and TA
_SA is given by Eq. (37). Finally, the GSL yields

Eq. (39), which is nothing but the GSL in the Einstein
gravity. This confirms that the GSL investigated in [53]
does not belong to the chameleon gravity.

VII. MODEL IV: CHAMELEONIC
GENERALIZED BD GRAVITY

The action of the chameleonic generalized BD gravity
model is given by [46]

I¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2k2

�
ϕR−

ωðϕÞ
ϕ

gμν∂μϕ∂νϕ

�
þfðϕÞLm

�
:

(65)

In [55], it was pointed out that with the scalar field
dependent BD parameter ωðϕÞ one can have a decelerating
radiation dominated era in the early time and an accelerated
matter dominated era in the late time.
Comparing Eq. (65) with action (1) gives

FðϕÞ¼ϕ; ZðϕÞ¼ωðϕÞ
ϕ

; UðϕÞ¼ 0; EðϕÞ¼ fðϕÞ:
(66)

Using these, Eqs. (8) and (16) for a flat universe read

ϕ̈þ 3H _ϕ

¼ 1

2ωðϕÞ þ 3

�
ðρm − 3pmÞ

�
fðϕÞ − 1

2
ϕf;ϕ

�
− ω;ϕ

_ϕ2

�
;

(67)

_ρm þ 3Hðρm þ pmÞ ¼ −
3

4

_fðϕÞ
fðϕÞ ðρm þ pmÞ; (68)

where k2 ¼ 8πG ¼ 1. The solution of Eq. (68) for the
pressureless matter (pm ¼ 0) yields the same result
obtained in (59).
With the help of relations (66), the GSL (27) for a flat

universe yields

TA
_Stot ¼

2π

H4

�
ð2H2 þ _HÞð _ϕH − 2ϕ _HÞ

þ 1

2fðϕÞ
�
4ðH2 þ _HÞ þH

_f
f

�

×

�
2ϕ _H − _ϕH þ ϕ̈þ ωðϕÞ

_ϕ2

ϕ

��
: (69)

According to [46], we take

fðϕÞ ¼ f0ebϕ; ωðϕÞ ¼ ω0ϕ
n: (70)

In [46], it was shown that the model (70) can predict the
late-time acceleration and phantom divide line crossing as
well as fit the observational data for velocity drift and
distance modulus better that the Chevallier-Polarski-Linder
[56] and ΛCDMmodels, respectively, subject to constraints
on the model parameters.
Substituting Eqs. (59) and (70) into (67) for the pressur-

eless matter (pm ¼ 0) gives

ϕ̈þ3H _ϕ¼ 1

3þ2ω0ϕ
n

×

�
f0ρm0

�
a
a0

�
−3
�
1−

b
2
ϕ

�
ebϕ=4−nω0ϕ

n−1 _ϕ2

�
:

(71)

Also, the second Friedmann equation (7) gives

−2ϕ _H ¼ f0ρm0

�
a
a0

�
−3
ebϕ=4 þ ω0ϕ

n−1 _ϕ2 þ ϕ̈ −H _ϕ:

(72)

Moreover, the GSL (69) reduces to

TA
_Stot ¼

2π

H4

�
ð2H2 þ _HÞð _ϕH − 2ϕ _HÞ

þ 1

2f0ebϕ
ð4ðH2 þ _HÞ þ b _ϕHÞ

× ð2ϕ _H − _ϕH þ ϕ̈þ ω0ϕ
n−1 _ϕ2Þ

�
: (73)

Taking Ωm0
¼ 0.27 [2], ω0 ¼ 1.2, n ¼ −2, f0 ¼ −7,

and b ¼ −0.4 [46], the time evolution of both the scale
factor aðtÞ and the scalar field ϕðtÞ can be obtained by
numerical solving of Eqs. (71) and (72) with the initial
values að1Þ ¼ 1, _að1Þ ¼ 1, ϕð1Þ ¼ −6.5, and _ϕð1Þ ¼ 0.1.
Figures 4(a) to 4(e) show the following: (i) the scale factor
and the Hubble parameter, respectively, increases and
decreases with increasing time. (ii) The scalar field with
increasing time decreases to a minimum and then increases
to approach a constant value. (iii) The deceleration param-
eter shows the cosmic transition q > 0 → q < 0 in the near
past, as indicated by recent observations [47]. It also
approaches a de Sitter regime at late times, as expected.
(iv) The effective EoS parameter at late times behaves like
the ΛCDM model (weff → −1).
The results of H and ϕ illustrated in Figs. 4(b) and 4(c)

help us to obtain the variation of the GSL (73) for the
chameleonic generalized BD gravity model (65). The result
is plotted in Fig. 4(f). The figure shows that the GSL for this
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model is violated during the late cosmological history of
the Universe.

VIII. MODEL V: CHAMELEONIC BD GRAVITY
WITH A SELF INTERACTING POTENTIAL

Within the framework of chameleonic BD gravity with a
self interacting potential, the action is given by [57]

I¼
Z

d4x
ffiffiffiffiffiffi
−g

p

×

�
1

2k2

�
ϕR−

ω

ϕ
gμν∂μϕ∂νϕ−VðϕÞ

�
þfðϕÞLm

�
: (74)

In [57], the cosmological applications of interacting holo-
graphic DE in BD theory with the chameleon scalar field
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FIG. 4. Same as Fig. 1 but for model IV (65). Initial values are að1Þ ¼ 1, _að1Þ ¼ 1, ϕð1Þ ¼ −6.5, and _ϕð1Þ ¼ 0.1. Auxiliary
parameters are Ωm0

¼ 0.27 [2], ω0 ¼ 1.2, n ¼ −2, f0 ¼ −7, and b ¼ −0.4 [46]. Here, t0 ¼ 1=H0.
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that is nonminimally coupled to the matter field described
by action (74) was investigated. It was found that in this
model the phantom crossing can be constructed if the
model parameters are chosen suitably.
Here, in comparison with action (1), we have

FðϕÞ¼ϕ; ZðϕÞ¼ω

ϕ
; UðϕÞ¼VðϕÞ

2
; EðϕÞ¼ fðϕÞ:

(75)

Using the above relations, the evolution Eq. (8) and the
continuity Eq. (16) for a flat universe take the forms

ϕ̈þ 3H _ϕ ¼ 1

2ωþ 3

�
ðρm − 3pmÞ

�
fðϕÞ − 1

2
ϕf;ϕ

�

þ 2VðϕÞ − ϕV;ϕ

�
; (76)

_ρm þ 3Hðρm þ pmÞ ¼ −
3

4

_fðϕÞ
fðϕÞ ðρm þ pmÞ; (77)

where k2 ¼ 8πG ¼ 1. The solution of Eq. (77) for the
pressureless matter (pm ¼ 0) is same as that obtained
in (59).
Inserting the relations (75) into (27) gives the GSL

for the chameleonic BD gravity with a self interacting
potential as

TA
_Stot ¼

2π

H4

�
ð2H2 þ _HÞð _ϕH − 2ϕ _HÞ

þ 1

2fðϕÞ
�
4ðH2 þ _HÞ þH

_f
f

�

×

�
2ϕ _H − _ϕH þ ϕ̈þ ω

_ϕ2

ϕ

��
: (78)

According to [16], we consider the inverse power-law
potential

VðϕÞ ¼ Mnþ4

ϕn ; (79)

whereM has units of mass and n is a positive constant. This
kind of potential has the desired features for quintessence
models of the Universe [58]. In [16], it was found that
the energy scale M is generally constrained to be of the
order of ð1 mmÞ−1. Also the resulting bounds on the range
of chameleon-mediated interactions in the atmosphere,
in the solar system, and on cosmological scales today show
that n ≤ 2.

We further take [46]

fðϕÞ ¼ f0ebϕ; (80)

where f0 and b are constant parameters.
Inserting Eqs. (59), (79), and (80) into (76), for the

pressureless matter (pm ¼ 0), one can obtain

ϕ̈þ 3H _ϕ ¼ 1

3þ 2ω

�
f0ρm0

�
a
a0

�
−3
�
1 −

b
2
ϕ

�
ebϕ=4

þ ðnþ 2ÞMnþ4

ϕn

�
: (81)

Also, the second Friedmann equation (7) reduces to

−2ϕ _H ¼ f0ρm0

�
a
a0

�
−3
ebϕ=4 þ ω

_ϕ2

ϕ
þ ϕ̈ −H _ϕ: (82)

Furthermore, the GSL (78) yields

TA
_Stot ¼

2π

H4

�
ð2H2 þ _HÞð _ϕH − 2ϕ _HÞ

þ 1

2f0ebϕ
ð4ðH2 þ _HÞ þ b _ϕHÞ

×

�
2ϕ _H − _ϕH þ ϕ̈þ ω

_ϕ2

ϕ

��
: (83)

From Eqs. (81) and (82), the scale factor aðtÞ and the scalar
field ϕðtÞ can be obtained, numerically. To do so, we take
Ωm0

¼ 0.27 [2], ω ¼ 1.2, f0 ¼ −7, b ¼ −0.4 [46], and
n ¼ 2 [16] and use the initial values að1Þ ¼ 1, _að1Þ ¼ 1,
ϕð1Þ ¼ 1, and _ϕð1Þ ¼ −1.4. The results are plotted in
Fig. 5. The figures show that (i) the scale factor is an
increasing function of time, as expected for an expanding
universe. (ii) The Hubble parameter and the scalar field
decrease with increasing time, approach to a minimum in
the future, and then increase when the time increases.
(iii) The deceleration parameter at late times goes to −1
which acts like the de Sitter model. It also shows a cosmic
transition from q > 0 to q < 0 in the future. (iv) The
effective EoS parameter at late times behaves like the
ΛCDM model. It also shows the phantom divide line
crossing in the future.
Using the numerical results obtained for H and ϕ, the

evolutionary behavior of the GSL (83) for the chameleonic
BD gravity with a self interacting potential is plotted in
Fig. 5(f). The figure shows that the GSL for this model is
satisfied from the past to the present epoch. But in the
future the GSL is violated for z < −0.53.
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IX. CONCLUSIONS

Here, we investigated the GSL in the framework of
scalar-tensor gravity. In a general theory of scalar-tensor
gravity, a scalar field can be nonminimally coupled both
to the scalar curvature (as the Brans-Dicke field) and the
matter Lagrangian (as the chameleon field) in the action.
Hence, we extended the action of ordinary scalar-tensor
gravity theory to the case in which there is a nonminimal

coupling between the scalar field and the matter field. Then
we derived the associated filed equations governing the
gravity and the scalar field. For a FRW universe filled with
the ordinary matter, we obtained the modified Friedmann
equations as well as the evolution equation of the scalar
field. We further assumed the boundary of the FRW
universe to be enclosed by the dynamical apparent horizon
that is in thermal equilibrium with the Hawking temper-
ature. Then we obtained a general expression for the GSL
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FIG. 5. Same as Fig. 1 but for model V (74). Initial values are að1Þ ¼ 1, _að1Þ ¼ 1, ϕð1Þ ¼ 1, and _ϕð1Þ ¼ −1.4. Auxiliary parameters
are Ωm0

¼ 0.27 [2], ω ¼ 1.2, f0 ¼ −7, b ¼ −0.4 [46], and n ¼ 2 [16]. Here, t0 ¼ 1=H0 and Mnþ4 ¼ H2
0.
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of gravitational thermodynamics. For some viable scalar-
tensor gravity models containing BD gravity, BD gravity
with a self interacting potential, chameleon gravity, cha-
meleonic generalized BD gravity, and chameleonic BD
gravity with a self interacting potential, we first obtained
the evolutionary behaviors of the matter density, the scale
factor, the Hubble parameter, the scalar field, the deceler-
ation parameter, and the effective EoS parameter. Then, we
examined the validity of the GSL for the aforementioned
models. Our results show the following.
(i) The aforementioned models can give rise to a late-

time accelerated expansion phase for the Universe. The
deceleration parameter for all the models shows a cosmic
deceleration, q > 0, to acceleration, q < 0, transition. In
the BD gravity model, the chameleon gravity model, and
the chameleonic generalized BD gravity model, the cosmic
transition from q > 0 to q < 0 occurs in the near past,
which is compatible with the observations [47]. For all
models but the BD gravity model, at late times (z → −1),
the deceleration parameter approaches a de Sitter regime
(i.e., q → −1), as expected.
(ii) The effective EoS parameter for the BD gravity

model with a self interacting potential, the chameleon
gravity model, and the chameleonic BD gravity model
with a self interacting potential shows a transition from the
quintessence state, weff > −1, to the phantom regime,
weff < −1. For the chameleon gravity model, the transition
from weff > −1 to weff < −1 occurs in the near past, as

indicated by recent observations [54]. For all models but
the BD gravity model, the effective EoS parameter at late
times behaves like the ΛCDM model (weff → −1).
(iii) The GSL for the BD gravity model like the Einstein

gravity is satisfied during the late cosmological history of
the Universe. For the BD gravity model with a self
interacting potential, the GSL is satisfied from the past
to the present epoch. But in the future the GSL is violated
for z < −0.15. For the BD gravity model with/without a
self interacting potential, the contribution of the matter
entropy in the GSL will be positive or nil for weff ≥ −1=3
and negative otherwise. For the chameleon gravity model,
the GSL is violated for the range of −0.88 < z < 0.37.
However, for −1 ≤ weff ≤ 1=3, the horizon entropy has a
positive or nil contribution in the GSL. For the chameleonic
generalized BD gravity model, the GSL is violated during
the late cosmological history of the Universe. Finally, for
the chameleonic BD gravity model with a self interacting
potential, the GSL is satisfied from the past to the present
time. But in the future the GSL is violated for z < −0.53.
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