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The photon contribution to the divergences and conformal anomaly in the theory with Lorentz and
CPT-violating terms is evaluated. We calculate one-loop counterterms coming from the integration over
the electromagnetic field and check that they possess local conformal invariance. Furthermore, conformal
anomaly and the anomaly-induced effective action are calculated. It turns out that the new terms do not
affect the dynamics of the conformal factor in the anomaly-driven inflation (Starobinsky model) and its
extensions. At the same time, one can expect these terms to affect the gravitational wave equation and, in

general, cosmic perturbations.
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I. INTRODUCTION

In the last decades there was a growing interest in the
theoretical and experimental aspects of the theories where
Lorentz and/or CPT symmetries are violated by special
terms in the action of quantum fields [1]. Many different
tests have been proposed in very different areas of physics,
and there are good perspectives to either discover such a
violation someday or benefit from a better understanding of
physics which will result from the continuously improving
upper bounds on these new terms. One of the badly
explored aspects of the theories with Lorentz- and CPT-
violating terms concerns cosmology.1 The present-day
state of art in this area is characterized by rapidly growing
precision, especially concerning the cosmic microwave
radiation (CMB), coming from the cosmic perturbations
in the early universe. Therefore, it would be interesting to
evaluate the possibility of such violations, in particular at
the inflationary epoch. The early universe can be seen as a
subject of very special interest, as far as Lorentz and CPT
symmetries violation is concerned. According to the formal
quantum field theory investigations [3-5], torsion field,
which is one of the fields which may produce such a
violation, cannot be a propagating degree of freedom,
because this would enter into conflict with the unitarity
of the theory at the quantum level. At the same time, torsion
can exist as a composite field which results from some
symmetry breaking in space [5,6]. One can suppose that
similar situation holds for other Lorentz and CPT sym-
metries violating parameters, such that they result from
certain phase transition. Then the role of these terms may
be quite different now and in the inflationary or
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postinflationary epochs, because some physical processes
restoring the space-time symmetries could occur since that
time. For example, some of the symmetry violations in the
early universe could result in the anisotropy in the CMB,
which is apparently observed by Planck [7]. Many of the
Lorentz- and CPT-violating terms may lead to anisotropy
in the cosmological perturbations. Then, after these terms
disappear due to some kind of symmetry restoration, their
imprint remains in the CMB spectrum. Indeed, theoretical
realization of this scheme requires, first of all, a definition
of the symmetry-breaking terms.

The natural next question is how to define the form of the
possible symmetries violation in the gravitational terms.
One of the possibilities is as follows. Assuming that the
form of the vacuum corrections should be derived from the
quantum effects of matter fields, it becomes obvious that
the most relevant are the contributions of photons, since all
other particles are massive and should decouple too early to
produce a significant effect. Therefore, the vacuum quan-
tum contribution of photons is a natural starting point for
the formulation of possible CPT- and Lorentz-violating
terms in the gravitational sector. One more comment is in
order here. Apart from the quantum corrections, one can
introduce vacuum terms in CPT- and Lorentz-violating
theories in many different ways. For example, the general
vacuum action of gravity with torsion (small part of CPT-
and Lorentz-violating terms) includes 168 terms [8]. Such a
great ambiguity makes it very difficult to expect any real
advances in this area. At the same time one can essentially
restrict the number of possible gravitational terms just by
introducing only those terms which can emerge as diver-
gences in the theory with Lorentz- and/or CPT-violating
extensions in the matter-fields sector.

The main purpose of the present work is for contribu-
tions coming from the massless photon field. The deriva-
tion of one-loop divergences for massless conformal
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invariant fields opens the way to the study of the conformal
anomaly [9] and to the anomaly-induced effective action of
gravity [10,11]. The last is a useful, compact analytic form
of quantum correction, which can be derived also in the
presence of other fields, such as torsion [12,13] and
scalars [14,15]. In this work the anomaly-induced effective
action will be extended to the case of a dimensionless
Lorentz- and/or CPT-violating parameter in the photon
sector. As an important example of cosmological appli-
cation, one can consider the effect of the new terms to the
anomaly-driven inflation (Starobinsky model) [16]. The
complete version of this model is based on the anomaly-
induced effective action of gravity, and can be extended
to the cases when other background fields are present
[12,14,15,17,18].

The paper is organized as follows. Section II describes the
technique for deriving one-loop divergences in the electro-
magnetic theory with the new external fields. Let us note that
such a calculation is not an easy thing to do, especially in the
case of dimensionless fields, as the reader will see in what
follows. The method which will be developed here enables
one to perform this and similar calculations up to the first
order in these fields, but, in principal, one can also go beyond
this order. Also in this section we briefly comment on the
general structure of renormalization in this theory. For a
more extensive discussion of this subject one can consult
[19]. Section III is devoted to the technically difficult
problem to prove the conformal invariance of the bulky
one-loop counterterms in the theory. After this task is
accomplished, the derivation of conformal anomaly becomes
a simple issue. Furthermore, in Sec. IV we derive the
anomaly-induced effective action of gravity and also discuss
possible applications to inflation. Finally, in Sec. V we draw
our conclusions.

II. DERIVATION OF ONE-LOOP DIVERGENCES

Let us start with the action describing an extended version
of an electromagnetic field with Lorentz and CPT sym-
metry-breaking terms. The corresponding action in flat space
was formulated in [20], and the minimal extension to the
covariant form is quite simple. The action is

1 1 vay
S = / d*x, /_—g{—ZF,wF’”’ — gk PF i F o

1
+ E kZFeaﬁ/wAﬁFﬂy } s (D

where F,, =2V|,A, and parameters Kl ke, describe

CPT and/or Lorentz violation.

For calculating the one-loop divergences we shall apply
the background field method splitting (see, e.g., [18] for an
introduction),

A,— A, +B,, )
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where B, is the quantum field. The one-loop effective
action is given by the expression

m _ i
Fdiv - 5

TrinHl|g, — i Tr In H g 3)
here H is the operator of the bilinear part of the action in
quantum fields and H,, is the operator of the gauge
(Faddeev-Popov) ghosts term. Let us introduce the
gauge-fixing term in the form

1
Su =5, / d*x/=g(V,B")?, “)

where « is an arbitrary parameter of the gauge fixing.
For this choice of the gauge fixing, the corresponding
Faddeev-Popov ghosts contribute only to the vacuum
(metric-dependent) sector of the theory and these contri-
butions do not depend on the new Lorentz breaking
parameters of the theory. We choose @ = —1 as the simplest
option for the practical calculations.

Replacing (2) in the action (1) one can find the bilinear
form of the action

§@ = % / d*x\/=gB,H"B,, (5)

where H* = H has the form
H=Hy+H,p + Hp, (©6)
Hy=g¢"0—R", ()
Hap = = 2KV — (Vyk§ ) et ®)

Hp == 205"V, Vs = 2V k)W 4 KPRy 9)

The most important property of these formulas is that
operator (6) has a nonminimal structure due to the term

K )VVaVﬂ. Then the standard Schwinger-DeWitt tech-
nique for deriving the divergences cannot be applied. Next,
there is a well-elaborated technique of dealing with non-
minimal operators [21], but it works only in the cases when
nonminimality can be parametrized by some continuous
parameter, such that one can integrate over this parameter
from zero (corresponding to the minimal limit) and any
given value. However, in the case of (6) one meets a tensor
field and not just a parameter. Therefore, since this non-
minimal term in (8) has a nonstandard form, the known
technique of dealing with nonminimal operators [21]
cannot be applied too. We can conclude that the problem
of our interest lies beyond the limits of modern possibilities
and hence its complete solution is impossible.

In this situation one can try to consider a certain
approximation. Let us assume that the parameters k’}“ﬁ 4
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and k9, are small, such that the linear order in these
parameters will be sufficient for our purposes. Indeed, the
expansion can be taken to the next orders. In the case of the
dimensional parameter k% such an expansion will be
finite, but for k” it can be infinite. The general situation
concerning renormahzatlon in the presence of parameters
such as k4 has been recently described in [19] and we will
not repeat it here completely, only give some necessary
comments at the end of this section. On the practical side
we will consider only linear order and, as the reader will
observe, it will be a technically difficult task.

So, for the sake of calculating the one-loop divergences,
let us first split the operator H into the minimal part A,
and the nonminimal part H,, and make the following
transformation:

Trin& =Trln(A,, + H,,) = TrinH,,
+Trin(i + A;'H,,,)

=TrlnH,, + TanmHg + ... 10)
In the last line we perform the expansion of the logarithm
and take into account only terms in the first order in the
Lorentz- and CPT-violating parameters. One can see that
the first term in the last line of Eq. (10) can be directly
calculated by the standard Schwinger-DeWitt method [22],
while the second term can be calculated by means of the
universal functional traces method (generalized Schwinger-
DeWitt technique) of Barvinsky and Vilkovisky [21].

The minimal version of the operator (6) has been
considered in Ref. [23], with the final result for the
divergences was obtained in the form

i N . 2~
ETrlnHmLﬁV —iTrin H g g5,

1 1
= / d"xm—‘h/——g{Ranvﬂk@”“”—ngavﬂk;ﬁ
€

1 1 1
+3 3 Rﬂuaﬁvﬂ vf k;fww - E kjll?mﬁRRuuaﬁ + E kj;’a/hR a/}rR/w }
+Talgul.

(1D
|

o . | |
TanmHEI = —2Tl'k'l;~( ﬁ)l{gﬂyvavﬂ E + Riuvavﬂ ﬁ + (vavﬁRiv)

1
2(V(1R/1y)v/3 ﬁ + R/lTRZvav/}

—4(V,VPR,,)VyV, — D3

1
VYRV, V= + ORY) }
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In the last formula we used a standard notation € =
(47)?(n — 4) for the parameter of dimensional regulariza-
tion and introduced a new notation K, = k. Also,
i [9,»] is the divergent part of the metnc—dependent
vacuum effective action of a massless vector field (see,
e.g., [18,24]),

_l/dnx n—4\/__ icZ

€ # g 10

31
I (g0] = SEL ——DR}

180 10
(12)

with C? and E representing the square of the Weyl tensor
and the Gauss-Bonnet topological term (Euler density),
respectively.

In the present work we shall go beyond the results of [23]
and perform a calculation for the case of the nonminimal
operator. Consider the contribution of the last term in the
expression (10) for the divergences. For this calculation we
need first the inverse operator of (7). As far as we are
interested in the divergences, the critically important
observation is that, from the viewpoint of power counting,
the presence of the dimensionless parameter k*“”” makes no
changes. Therefore, even in the presence of this parameter,
the counterterms will be given by the terms up to quadratic
order in the curvature tensor, and it is safe to ignore higher

order terms. Then the inverse operator Hj' can be
expressed as
-1 /11 A 1 V? RNV 1
Hy' = (HY): =6 D+R E—Z( RY) '
1 1
A RT A
+ RiR] VEp T (OR; )D3
+ 4(VﬂfoRﬁ)v,,V,,ﬁ +O(I73). (13)

In the last formula 1/[J is the inverse of d’Alembert
operator and the last term O(/75) indicates to an infinite
series of omitted inessential terms of a higher background
dimension 1/1.

Using Eq. (13) one can obtain the relation

1
ﬁ

(v R/Iy)vavﬁvp |:|3

(DRiv)vavﬁ ﬁ

(14)

Equation (14) is already in the form that allows us to apply the tables of universal functional traces of the generalized
Schwinger-DeWitt technique [21]. Using the functional traces formulas of this work, each term of (14) can be directly

calculated. As a result we obtain

104037-3



TIBERIO DE PAULA NETTO AND ILYA L. SHAPIRO PHYSICAL REVIEW D 89, 104037 (2014)

1
[

2
— d"xp" /= k"“ﬂ”v « VR

div €

Trk’;’((lﬂ)l (vavﬂRﬁv)

Hys

1
aff)A T
Trk? ) RﬁTRl/vavﬂﬁ

:é / d" " /=gk R, R,

div

o 1

_L/dnx,un—4 /——gk’}”DRﬂ,,,
div 2e
1

ap)i »
4Trk’;~< ) (Vavf Riy)VﬂVpﬁ .

20
= d" x4\ =gk PN V4R ..
e/ X s

ATekA P (VPVoR,, )V, V4V Y, 54 2

div

2Trky DA (VR )V = =0,

div

D2

N 1
—2Trk!;~< ﬂM(V”R@)vavﬂvﬂﬁ - 07

div

Tr F(aﬂ RMV Vﬂ

i o |
_E/dnxﬂn—4 /__g{gkl;;ﬁDRuvRa/)"f'gk’;"DRRyy}v

D2 div
Tk "V v o lk“ﬂR/“’R 19 — KPR, RY”
ﬂD div E XH —93 7= KF aﬂﬁy 180 v p
2

— kR, R + —k“/’RRa/, +—

1
K
o GKYORy + 55 kVV/,R

45 3

1 1 1
(aP)v pa 2 2 2
3 kﬂ RacRoup’ = ke (180 Rivap = 150 R T 328 T35 DR) }

where the notation kp = gﬂyk’;” has been introduced. By using relations (14)— (23), one can obtain

%Tr In Hnmﬁal|div = _é/ dnx/'tn_é‘\/__g{iki‘ﬂRwRaﬂﬂv 11890k Ra/uwR;W
49 ap ap ap aff 1 (ap)v T
9Ok RyRj, + 9k RR,5 + SRaﬂDk +75 Rv oV sk +3k” RiaiR, 4
2R v vt Lppep gy ( 1 R2 L e g
3 R VaVpke ™ 3K RuRap = kie\ 150 Rwap = 1508w T 73 30

Finally, from Egs. (10), (11) and (24) we arrive at the result for the one-loop divergences of the effective action,

1
ri) = - / d"xu"*\/=gK (g kr) + T (G

where

2
ap
KRR 45

— kPR, RY+ = 9

1 19 49
o af puy ap Ay
K(gyw kF) - E kF R Raﬂ/}y 180 k Ra/l/wR }# 90

1
4 p 2
+ 5 ROk = Rv aVpkE +3 k”" R RS, 5 —

1 1
+3 k!;“aﬁDR/wRaﬁ + 5 R

3 R,V VK

hvaf

1
Wwvﬁkf;m — SRR

1 1 1 1
—R? R, +—-R*+— DR)

kﬂa/MRy —k
apiRu = kr | 1o Rwap = 750 R T 73 30
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The expressions, (25) and (26), represent the final result for
the one-loop divergences in the linear order in the param-
eter (field) K“*. Regardless of its bulky appearance,
Eq. (26) satisfies some rigid constraints, as we shall see
in the next section, where (25) will be used to calculate the
conformal anomaly.

As it was already said before, the result (25), (26)
represents only the first term of an infinite series expansion
in the external field (space-dependent parameter) /.
Since the classical term with &#*” is not controlled by some
fundamental symmetry, at quantum level the situation here
is not the same as with an external metric, which is also
dimensionless, as k’,f-mﬁ 1s. However, in the metric case one
can use general covariance and organize an infinite set of
metric-dependent counterterms into a small amount of
covariant expressions, namely, in the Rimﬂ, R2,, R?, and
LIR terms (see, e.g., [18,25] and a more formal recent
discussion in [26]). In the present case the situation is
absolutely different, because k““* is the parameter of a
purely phenomenological origin and there is no funda-
mental symmetry behind them. Therefore, it is impossible
to restore a full set of counterterms from the lower-order
expressions such as (25) and (26) and, in case of a real
interest, the next order terms should be really calculated
in an independent way. At the same time, there are two
pieces of exact information about higher order terms.
First, it is certain that these terms will have exactly four
derivatives, which means they will be quadratic in
curvature tensor components or have the structures like
VR - kp...kpVkg, or VVR - kp...kp, or R - kp...kpVVkp,
or VR kp...VkFVkF, or kF...kF(VkF)4, or
kp...kp(Vkp)?(Vkg)?, etc. (where we omitted all indices,
of course). This feature is due to the power counting-
based arguments, which we already mentioned before
(see also [19]). The second certain property concerns the
local conformal symmetry, which will be checked for
(25) and (26) in the next section. A standard general
argument shows that this symmetry will hold in all orders
in K’ and can be used for both the verification of
quantum calculations and further applications.

The last observation is that, due to the complex calcu-
lations, we did not derive the total derivative terms in I'..

4 div
This means, from the viewpoint of a conformal anomaly,
that we will not be able to calculate the local terms of the
anomaly-induced effective action [27] and will take care of
only about the (most relevant, usually) nonlocal part.

III. LOCAL CONFORMAL INVARIANCE AND
CONFORMAL ANOMALY

The classical action of an electromagnetic field in curved
space possesses local conformal invariance. This property
is very important, in particular it defined the equation of
state P, = p,/3 for the radiation. The breaking of this
equation of state occurs only at the quantum level due to the
conformal anomaly, and leads to a deformed equation of
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state for radiation [28,29]. It is very important that the
classical action of an electromagnetic field with Lorentz
and CPT symmetry-breaking terms (1) also possesses local
conformal invariance. In the present case this means that
the action of the theory does not change under the
following simultaneous transformation of the metric, of
the vector A, and of the parameter K"

G = G = g€’ A = AL = A,
K = K = ke, @7)

where ¢ = o(x). The local conformal invariance of the
action (1) implies the vanishing trace of the energy-
momentum tensor 7% = 0 in the on-shell limit. The same
is true for the vacuum terms, if we do not put there
unnecessary nonconformal terms. However, the situation
changes dramatically if we take quantum effects onto
account. At the quantum level the classical action of
vacuum has to be replaced by the renormalized effective
action I';. Because of the renormalization procedure, the
expectation value of the trace (77) differs from zero, which
is called a conformal (trace) anomaly [9].
The renormalized one-loop effective action has the form
F=S5+10 +AS, (28)
where T(1) = F‘(ﬁg + an) is a direct quantum correction
to the classical action and AS is a local counterterm which
is called to cancel the divergent part of I'("). AS is the only
source of the noninvariance of the effective action, because
classical action and direct quantum contribution are con-
formal invariant. Then the anomalous trace is

2 oI 2 OAS
T =———gu 2| =g - (29

vV —g gﬂv n=4 V ) 6.9

uv ln=4
The calculation of this expression can be done most simply
by using the conformal parametrization of the metric,

9 = g//weza’ (30)

where g, is the fiducial metric with fixed determinant
(this condition can be seen as purely technical and we can
disregard it after the derivation). One can easily prove the
relation which provides the simplest way to derive an
anomaly for new theories [30],

2 0A [g/w] 1 _do 0A [g//weza]
- v = - e
V=9 69, A So

_(/W—>_gm,(7—>0

€2V

In order to use these general results in our case, we need
first to prove that the conformal invariance of the new term,

V _.dK(g//u/’ k}:) = \/__gK(gyw kF)’ (32)
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holds in the four dimensional space-time limit. Thisisnota  consideration by the infinitesimal version of the trans-
trivial task, from the technical side, so let us present some  formation (27). Then, disregarding the higher orders in ¢
details concerning the transformation rules. For the  and superficial terms, after some long algebra we arrive at

one-parameter Lie group one can safely restrict the  the following transformation rules:
|

(KPR Ry, = (1 = 46)KL RWR 5, + 2K RIV, V6 — KRV Vo

— kpR#V N 36 — K RyyT6 + 2k Ry, V¥ VY6 + - -
of A o A o ,
(k;«"ﬁR(MﬂuRﬁﬂy)/ = (1 - 40)](;7/ Ra/l;wR/}”y - 4k;7/ Rz’vavla + 4k(FﬂRya[h/

(KPR, RE) = (1 - 40)ki Ry R — 4k RIV V0 — 2k R0 + - - -

(K RgR) = (1 — 40)kL RoyR — 2k’ RV V46 — 6k R,y 06 — kpROo + - - -

(kﬂ(aﬂ) R};MITREU/}) (1 - 4U)kﬂ(aﬂ> RﬂﬂaTRib/i + k;ﬂle/”l’vﬂvya
R R, V0 — 6K Ry VAV 4 -

(kﬂaﬂyR Ra/i) = (1 - 40_)](!;?aﬁDRﬂuRa/)’ + 2ko{F/jI'aozﬂDJ - 4k¢aﬁerl/)’vﬂvVo- t+--

(kﬂmﬂRR#mﬂ) (1 - 46)k!;7m/jRRﬂm/f - 4k(;7ﬁRvavﬁ0 - 6IC‘II’WIJR}U/UC/fDG o

(kyaﬁ/IRDa/MR u)/ = (1 — 4g)k’;7aﬂﬁRf’a/MR 2k R*V le'

2K RV V0 2K R VAV 36— KPR

(RV,V4kY = (1 —40)RV,V 4k — 2k’ RV, V0
~ 6V, V k0o — 6KV RV 36 + kpV,RV 6 + - --

(Ryp k) = (1= 40)R 0k — 4k RV, V 16 — 2k R 500
— 4K R 1, V¥V 6 = 2V V k¥ Do — kp[P6 — 2KV RV jo
- 2k;ﬂleaﬂv20’ + Zk‘;:ﬂvaRﬁﬂle' - 2k§ﬂV’R,amV‘a —+ -

(R Vo VkiY = (1 = 40)R, V Vi + kPRI V0
— KPR gV, V,0 4 2K Ry VAV po + YV, V k5 Do
— KV R V6 + 2KV (R V6 — 4KV R,V so
— 2R Ry Vi -

(Ruap VPV RES) = (1 = 40)R s VIV IS + KL RIV V0
k!;;aﬁy aﬂO’ + ZkFQﬂDRlﬂaDvAVﬂO' + VQVﬂk;X;ﬁDG + k;ﬂVQRMVﬁJ

+ KPVR oy V6 — PN o R,V 50 4 BKEPNR oV jo — 2KV 4R V6

1

1 1 1 / 1
R2 Lo R2 R2 2
[kF<180 L TR oL DR)] =(1- 4a)kp(180 s~ Tag R TR 35 DR

1 QJ
—EkFR ﬂv(lVﬂG—ngRDG—nglsz—EkFVﬁRv}LU‘i— tee

Substituting these formulas into (26), we find the conformal invariance (32).
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By using Egs. (29), (31), and (32), one can easily find the
conformal anomaly,

1
(Th) = — P WC? + bE + cOR + K(g,,. kr)],  (46)
where the parameters w, b, ¢ are, in our case,
1 31 1
=1 === =—-—. 47
=10 180 c=-1 @

IV. ANOMALY-INDUCED EFFECTIVE ACTION

One can use the conformal anomaly (46) to construct an
equation for the finite part of the one-loop correction to the
effective action

2 g

s =
Vamt') g 59;41/ (4ﬂ)2

[WC? 4+ bE + cOOR + K(9,. kr)].

(48)

The solution of this equation is straightforward. The
simplest possibility is to parametrize the metric as in
(30), separating the conformal factor o(x) and rewrite
Eq. (48) using (31). The solution for the effective action is

—g’{WO'C2

2
+ bo (E’ - §D’R’> +2boAjo + 6K(g,,. k)

1
Ting = Selg/] + (47)2/‘1436

- 3C3+62b R - 6(V'6)? 65/612},

(49)

where A, is a fourth derivative conformal covariant Paneitz
operator, acting on dimensionless scalar

Ay =P 42R™V,V, - 3RD += (V”R)V . (50)

g = Sc[g’ kf]

3c+2b/d4 SR

36(4

1 2

871'\/—_17 ((ZC + K(g/w’ kF)):| + 871'\/—_b
The last form of the effective action is the most useful one
for dealing with Hawking radiation from black holes
or exploring the dynamics of gravitational waves on the
cosmological background. In both cases one has to solve the
equations for the auxiliary fields ¢ and y by implementing
the appropriate boundary conditions. After that it is possible
to study the energy-momentum tensor of the vacuum in case
of black holes [31,32] or explore the dynamics of gravita-
tional waves [17]. Indeed, for the homogeneous and isotropic
metrics there is no difference between the effective actions
(51) and (49); they always give the same dynamics of the

l//<aC2 + K(gﬂw kF))}
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Scl9w] = Sclg,] in Eq. (49) is an arbitrary conformal
invariant functional of the metric, which serves as an
integration constant of Eq. (48). In the purely metric
theory this functional is irrelevant for the dynamics of the
conformal factor. Then, for the simplest cosmological
applications, the anomaly-induced expression can be seen
as an exact effective action. It is important that this term
can be also ignored when one is dealing with the black-
hole applications [31,32] and gravitational waves
[17,33,34]. In both cases the results obtained without
this term provide a very good fit with the ones obtained
by other methods. The reason for this output is that the
rest of the action (49) keeps full information about the
UV limit of the theory. In other works, it contains all
the leading logarithmic corrections, while for S.[g,,] only
sublogarithmic parts remain.

When other background fields are present, the auto-
matic irrelevance of the term S.[g,,] in the zero-order
cosmology does not hold, because S,[g,,] may depend on
these fields, along with the metric. Our present situation
belongs to this class of theories [13—15], because this
integration constant may depend also on k%*. This
means S, = S, [gﬂy,k{’ﬂ” “]. However, taking into account
the arguments presented above, we will not really care
about this term.

The expression (49) is the quantum correction to the
classical action. Let us note that the covariant forms of
the anomaly-induced action can be easily calculated on the
basis of Eq. (49), in both nonlocal [10,11] and local forms,
the last uses auxiliary fields [35,36] (see also [30] for a
review).

Let us give just a final result for the local form of the
anomaly-induced effective action, with the two auxiliary
scalar fields ¢ and y. Compared to the original formula of
[35], this expression has an extra term related to the
parameter k7"

/d“x\/@{%ww - %WAW + [ﬂ <E —%DR>

8 3

(G

|
conformal factor . Hence, Eq. (49) is completely sufficient
for exploring the dynamics of the conformal factor, which we
are going to study in the rest of this section.

Consider possible applications of anomaly (46) and
the anomaly-induced effective action (49) to inflation.
The starting point should be the theory based on the
Einstein-Hilbert action with quantum correction (49),

M2
S = 16 /d4X\/ R + rmd, (52)
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where M f, = 1/G is the square of the Planck mass and T4
is the quantum correction (49). We look for an isotropic and
homogeneous solution

= a*(n) g, (53)
where 7 is the conformal time

2

1 —kr?

ds"* = g, dx*dx" = dn* - —r2dQ  (54)
and k parametrizes the space-time curvature k = 0, £1.

The first observation concerning the effect of the
parameter kj P s its complete irrelevance for the flat-
space case k = 0. The reason is that the effect of Lorentz-
and CPT-violating parameters is accumulated in the scalar
function K = K(g,. kg K"y From the definition of this
function in (26), it dlrectly follows that K(7,,,, Ky = 0,
Therefore, the only chance to observe some effect of the
Lorentz-violating parameter k%* on the dynamics of
conformal factor is related to the cases k = £1.

The direct calculation of the new term, induced by
Lorentz and CPT symmetry-breaking term K(g,,.ky)
requires some long algebra and we shall give only a final
result. It is relatively easy to show that all terms which
involve ¢, for v =10,1,2,3 give zero. For the space
indices i, j = 1,2,3 one can show, by using metric (54)
in Eq. (26), the following relation:

K (G k) = K gl — %kzk;kljg’”g;( - %ka;. (55)
At this point we have to remember that the tensor kX2** has
the same algebraic symmetries as the Riemann tensor.
According to the definitions, K, = k¥ 9uad,y and
K = gleeb Gha it is not difficult to check that, finally,
K (g,w, k’ ) = 0. This means that the new term with
K(g,,- k) gives no contribution to the dynamics of the
conformal factor in the theory (52).

The negative result concerning the effect of the new
terms on the behavior of the conformal factor of the metric
does not mean that there cannot be other relevant effects.
In particular, one can expect the modifications of equa-
tions for cosmic perturbations [37] and especially for the
gravitational waves. An important result concerning
the dynamics of traceless and transverse perturbations of
the metric in the theory (52) without the term K(g,,,. kr) is
that there are no growing modes in this theory [17,33,34].
This fact has important phenomenological consequences,
including the relatively small role of tensor perturbations
compared to the scalar one (see, e.g., [38]). It would be
interesting to check whether the situation remains the same
or gets changed in the theory by Lorentz and CPT breaking
terms K(g,,.kr).

PHYSICAL REVIEW D 89, 104037 (2014)
V. CONCLUSIONS

Quantum effects and, in particular, renormalization,
represent an essential part of the development of the
theories with Lorentz and CPT breaking. In the first papers
[39,40] the calculations have been performed by means of
Feynman diagrams. Later on, the functional methods, such
as Schwinger-DeWitt and heat-kernel techniques, have
been used in [23]. In this paper the renormalization has
been carried out in curved space-time and some general
features of the renormalization were established. However,
the calculations were not complete, because only the
dimensional symmetry-violating parameters were consid-
ered. In the present paper we go beyond the framework of
Ref. [23] and derive, for the first time, the contribution of
the dimensionless parameter k’;mﬁ in the photon sector
to the renormalization of the vacuum.

The performed calculations are new in the sense that we
had to work out the new type of nonminimal operator (6),
which is different from the standard ones which were
considered before [21]. In these standard cases the non-
minimality was caused by the choice of gauge-fixing
parameters. The corresponding operator can be always
studied by integrating over such parameters starting from
the special minimal operator case. In the case of the
nonminimal operator (6) the nonminimality is caused by
the presence of an external dimensionless function and this
makes a direct application of the methods of [21] impos-
sible. The problem has been solved by a trick of inverting
the minimal operator and by working in the first order in the
symmetry-violating function K=*. As a result of this
procedure one can start using the functional traces of
[21] and finally arrive at the first-order counterterms.
The obtained expression, Eq. (25), represents only a part
of an infinite expansion, according to a general analysis
given in [19]. The result also passed a technically com-
plicated test related to the local conformal invariance.

The derivation of anomaly and anomaly-induced effec-
tive actions did not meet serious obstacles, and finally
the expression (51) was obtalned It turns out that the
dimensionless parameter K/ “* makes no contribution to the
dynamics of the conformal factor of the metric. At the same
time, depending on the choice of this parameter, one can
expect relevant contributions and maybe even the growth of
the tensor modes of metric perturbations during the infla-
tionary epoch. The study of this potentially interesting
problem will require significant efforts, but ﬁnally it can
lead to some constraints on the parameter k. vap
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