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We adopt a reference-metric approach to generalize a covariant and conformal version of the Z4 system
of the Einstein equations. We refer to the resulting system as “fully covariant and conformal,” or fCCZ4 for
short, since it is well suited for curvilinear as well as Cartesian coordinates. We implement this fCCZ4
formalism in spherical polar coordinates under the assumption of spherical symmetry using a partially
implicit Runge-Kutta method and show that our code can evolve both vacuum and nonvacuum spacetimes
without encountering instabilities. Our method does not require regularization of the equations to handle
coordinate singularities, nor does it depend on constraint-preserving outer boundary conditions. It also does
not need any modifications of the equations for evolutions of black holes. We perform several tests and
compare the performance of the fCCZ4 system, for different choices of certain free parameters, with that of
BSSN. Confirming earlier results we find that, for an optimal choice of these parameters and for neutron-
star spacetimes, the violations of the Hamiltonian constraint can be between 1 and 3 orders of magnitude
smaller in the fCCZ4 system than in the BSSN formulation. For black hole spacetimes, on the other hand,
any advantages of fCCZ4 over BSSN are less evident.
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I. INTRODUCTION

Numerical relativity has become a field of intense activity,
and considerable progress has been made during the last
decade. The possible detection of gravitational waves by the
second-generation enhanced detectors (Advanced LIGO
[1], Advanced VIRGO [2], and KAGRA [3]) represents a
major incentive for the development of numerical simula-
tions able to provide accurate gravitational waveforms from
astrophysical sources.
Many current numerical relativity codes use the so-called

BSSN formulation of Einstein equations, originally pro-
posed by Nakamura et al. [4] and subsequently modified by
Shibata and Nakamura [5] and Baumgarte and Shapiro [6].
The stability properties of the BSSN formulation are a result
of the “conformal connection functions,” which are intro-
duced as new independent variables. In combination with
certain gauge conditions—in particular the “1þ log” slicing
condition [7] and the “Gamma-driver condition” [8]—the
BSSN formulation has allowed for accurate and stable
simulations of strong-field spacetimes, including black
holes and neutron stars.
Recently, other conformal and traceless decompositions

of the Einstein equations, based on the Z4 system [9], have
been proposed by Bernuzzi and Hilditch [10], the so-called
Z4c formulation, and also by Alic et al. [11,12], the CCZ4
formulation. Unlike the BSSN formulation, both the Z4c

and CCZ4 systems incorporate the constraint damping
scheme developed by Gundlach et al. [13] that allows for
the dynamical control of the constraint violations by means
of constraint damping terms. The Z4c system discards
nondamping nonprincipal terms, breaking the four covari-
ance, but allowing the evolution equations to take a form
that is very similar to BSSN. The CCZ4 system, on the
other hand, retains all damping terms and maintains the
four covariance. Nevertheless, the CCZ4 system as pre-
sented initially in [11] suffers from numerical instabilities
that develop in black hole spacetimes unless the four
covariance is broken. This issue was addressed by Alic
et al. [12], who prescribed a modification for the damping
parameter that removes the instabilities when using the
fully covariant version of the CCZ4 system in the evolution
of black holes. Both conformal decompositions of the Z4
system have been tested extensively [10–12,14–17].
Numerical results show that in nonvacuum simulations
violations of the Hamiltonian constraint can be as much as
1 to 3 orders of magnitude smaller than those in the BSSN
formulation.
Both the BSSN and the CCZ4 or Z4c formulations in

their original form are developed under the assumption of
Cartesian coordinates; in particular, they assume that the
determinant of the conformal metric is equal to one. In the
case of the BSSN formulation, this issue was resolved by
[18–20], who introduced a covariant formulation of the
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BSSN equations that is well suited for curvilinear coor-
dinate systems by adopting a reference-metric framework
[21]. This approach allows, for example, for implementa-
tions in spherical polar coordinates, which is of great
interest since many astrophysical phenomena are symmet-
ric with respect to the rotation axis (e.g., accretion disks) or
are such that spherical coordinates adapt better to their
geometry (e.g., gravitational collapse).
The singularities associated with curvilinear coordinate

systems, however, are a known source of numerical
problems. For instance, one problem arises because of
the presence of terms in the evolution equations that
diverge like 1=r near the origin r ¼ 0. Several methods
have been proposed to deal with the singular terms that
appear in curvilinear coordinates. Cordero-Carrión et al.
[22] recently adopted a partially implicit Runge-Kutta
(PIRK) method to evolve hyperbolic, wavelike equations
in the fully constrained formulation of the Einstein equa-
tions (see [21]). Montero and Cordero-Carrión [23],
assuming spherical symmetry, applied a second-order
PIRK method to the BSSN equations and obtained stable
numerical simulations of vacuum and nonvacuum space-
times without the need for a regularization algorithm at the
origin. This approach has been successfully implemented
in three dimensions without any symmetry assumption by
[24] and more recently by [25] who reported the first
successful implementation of relativistic hydrodynamics
coupled to dynamical spacetimes in spherical polar coor-
dinates with no symmetry assumptions.
The purpose of this paper is threefold. We first generalize

the covariant and conformal Z4 system using a reference-
metric approach. We refer to this new system as “fully
covariant and conformal Z4” or fCCZ4 for short. This
approach allows us to write the evolution equations in a
fully covariant form suitable for spherical polar and other
curvilinear coordinates. Second, we implement the fCCZ4
system in spherical polar coordinates under the assumption
of spherical symmetry and show that by using the PIRK
scheme we obtain robust and stable numerical evolutions
of both vacuum and nonvacuum spacetimes. Third, we
show that the fCCZ4 formulation with the PIRK scheme
can handle spacetimes containing black holes without the
appearance of any instability and without the need for the
modification prescribed by Alic et al. [12]. Finally, we
compare results obtained with the BSSN and the fCCZ4
formulations. Confirming earlier results, we find that, for
certain choices of free parameters, fCCZ4 can significantly
reduce constraint violations, in particular for neutron-star
spacetimes. For black hole simulations, however, the
advantages of fCCZ4 over BSSN are less evident. We also
discuss implications of the presence of free and dimen-
sional damping parameters in the fCCZ4 formalism.
The paper is organized as follows. Section II describes

the fCCZ4 evolution equations. In Sec. III A we write the
fCCZ4 equations in spherical coordinates under the

assumption of spherical symmetry. Section IV describes
the numerical implementation, and Sec. V shows results
from a number of numerical experiments, namely a pure
gaugewave, the evolutionof a single black hole, the evolution
of a spherical relativistic star in equilibrium, the so-called
migration test, and the gravitational collapse of a spherical
relativistic star leading to the formation of a black hole.
We summarize and discuss the respective advantages and
disadvantages of fCCZ4 and BSSN in Sec. VI. Throughout
this article we use gravitational units c ¼ G ¼ 1. Greek
indices denote spacetime indices (0 to 3), while Latin indices
denote space indices only (1 to 3).

II. THE FULLY COVARIANT AND
CONFORMAL Z4 FORMULATION

The Z4 constraint damped system [9,13] in its four-
dimensional covariant form replaces the Einstein equations
by

ð4ÞRμν þ∇μ
ð4ÞZν þ∇ν

ð4ÞZμ − κ1½nμð4ÞZν þ nνð4ÞZμ

− ð1þ κ2Þgμνnσð4ÞZσ� ¼ 8π

�
Tμν −

1

2
gμνT

�
; (2.1)

where ð4ÞRμν is the Ricci tensor of the four-dimensional
spacetime M with metric gμν, ∇μ the covariant derivative
associated with metric gμν, Tμν the stress-energy tensor,
and T ≡ gμνTμν its trace. The above equation reduces to
Einstein’s equations when the additional four vector ð4ÞZμ

vanishes. The two arbitrary constants κ1 and κ2 serve as
constraint damping coefficients. While κ2 is dimensionless,
κ1 has units of inverse length.
In the 3þ 1 decomposition, we assume that the space-

time M can be foliated by a family of spatial slices Σ that
coincide with level surfaces of a coordinate time t. We
denote the future-pointing unit normal on Σ with nμ and
write the line element as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; (2.2)

where α is the lapse function, βi the shift vector, and γij the
spatial metric induced on Σ. In terms of the lapse and shift,
the normal vector nμ can be expressed as

nμ ¼ ð−α; 0; 0; 0Þ or nμ ¼ ð1=α;−βi=αÞ: (2.3)

As in the BSSN formulation, we adopt a conformal
decomposition of the spatial metric

γij ¼ e4ϕγ̄ij; (2.4)

where e4ϕ is the conformal factor and γ̄ij the conformally
related metric. We refer to the connection coefficients
associated with γ̄ij as Γ̄i

jk. Instead of determining the
conformal factor by fixing the determinant of the conformal
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metric, γ̄ to unity, as is suitable for Cartesian coordinates,
we adopt

e4ϕ ¼ ðγ=γ̄Þ1=3; (2.5)

where γ is the determinant of γij. In order to determine the
conformal factor, we then impose Brown’s Lagrangian
condition [19]

∂tγ̄ ¼ 0: (2.6)

We denote the conformally rescaled extrinsic curvature
as

Āij ¼ e−4ϕ
�
Kij −

1

3
γijK

�
; (2.7)

where Kij is the physical extrinsic curvature and K ¼
γijKij its trace.
We next introduce a reference metric γ̂ij with corre-

sponding reference connection Γ̂i
jk. We then define the

difference between the connections associated with the
conformally related and the reference metric as

ΔΓi
jk ≡ Γ̄i

jk − Γ̂i
jk (2.8)

and note that, unlike the individual connections, these
objects transform as a tensor field.
In the Z4 system, the Hamiltonian and momentum

constraints result in equations for the four-vector ð4ÞZμ.
In a 3þ 1 decomposition, these equations can be written as
evolution equations for the projection of the ð4ÞZμ along the
normal nμ, which, following convention, we define as

Θ≡ −nμð4ÞZμ ¼ αð4ÞZ0; (2.9)

and the spatial projection of ð4ÞZμ,

Zi ≡ γi
μð4ÞZμ: (2.10)

Here Zi now denotes a spatial vector whose index can be
raised with the (inverse) spatial metric, Zi ¼ γijZj.
Defining

∂⊥ ≡ ∂t − Lβ; (2.11)

where Lβ denotes the Lie derivative along the shift vector
βi, the fully covariant and conformal Z4 system in a
reference-metric approach (fCCZ4) is then given by the
following set of evolution equations:

∂⊥γ̄ij ¼ −
2

3
γ̄ijD̄kβ

k − 2αĀij; (2.12)

∂⊥Āij ¼ −
2

3
ĀijD̄kβ

k − 2αĀikĀk
j þ αĀijðK − 2ΘÞ

þ e−4ϕ½−2αD̄iD̄jϕþ 4αD̄iϕD̄jϕ

þ 4D̄ðiαD̄jÞϕ − D̄iD̄jα

þ αðR̄ij þDiZj þDjZi − 8πSijÞ�TF; (2.13)

∂⊥ϕ ¼ 1

6
D̄iβ

i −
1

6
αK; (2.14)

∂⊥K ¼ e−4ϕ½αðR̄ − 8D̄iϕD̄iϕ − 8D̄2ϕÞ
− ð2D̄iαD̄iϕþ D̄2αÞ� þ αðK2 − 2ΘKÞ
þ 2αDiZi − 3ακ1ð1þ κ2ÞΘþ 4παðS − 3EÞ;

(2.15)

∂⊥Θ ¼ 1

2
α½e−4ϕðR̄ − 8D̄iϕD̄iϕ − 8D̄2ϕÞ

− ĀijĀij þ
2

3
K2 − 2ΘK þ 2DiZi�

− Zi∂iα − ακ1ð2þ κ2ÞΘ − 8παE; (2.16)

∂⊥ ~Λi ¼ γ̄jkD̂jD̂kβ
i þ 2

3
ΔΓiD̄jβ

j þ 1

3
D̄iD̄jβ

j

− 2Ājkðδij∂kα − 6αδij∂kϕ − αΔΓi
jkÞ

−
4

3
αγ̄ij∂jK þ 2γ̄ki

�
α∂kΘ − Θ∂kα −

2

3
αKZk

�
− 2ακ1γ̄

ijZj − 16παγ̄ijSj: (2.17)

Here the superscript TF denotes the trace-free part of a
tensor; κ1 and κ2 are the damping coefficients introduced
by [13], and D̂i,Di, and D̄i denote the covariant derivatives
built from the connection associated with the reference
metric γ̂ij, the physical metric γij, and the conformal metric
γ̄ij, respectively. We have also defined

~Λi ≡ Λ̄i þ 2γ̄ijZj; (2.18)

where

Λ̄i ≡ ΔΓi ¼ γ̄jkΔΓi
jk: (2.19)

The vector ~Λi plays the role of the “conformal connection
functions” in the original CCZ4 system; its evolution
equation (2.17) is a reformulation of the evolution equation
for the variables Zi.
The matter sources E, Si, Sij, and S denote the density,

momentum density, stress, and the trace of the stress as
observed by a normal observer, respectively:

E≡ nμnνTμν; (2.20)

Si ≡ −γiμnνTμν; (2.21)
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Sij ≡ γiμγjνTμν; (2.22)

S≡ γijSij: (2.23)

In Eq. (2.13), we compute the Ricci tensor R̄ij associated
with γ̄ij from

R̄ij ¼ −
1

2
γ̄klD̂kD̂lγ̄ij þ γ̄ðiD̂jÞΔΓk þ ΔΓkΔΓðijÞk

þ γ̄klð2ΔΓm
kðiÞΔΓjÞml þ ΔΓm

ikΔΓmjlÞ: (2.24)

Here we compute the ΔΓi from their definition (2.19).
Given ΔΓi, and values for ~Λi, the vectors Zi, which are not
evolved independently, can be determined from (2.18).
Unless stated otherwise, we fix the gauge freedom by

imposing the so-called nonadvective 1þ log condition for
the lapse [26]

∂tα ¼ −2αðK − 2ΘÞ (2.25)

and a variation of the “Gamma-driver” condition for the
shift vector [8]

∂tβ ¼ Bi; (2.26)

∂tBi ¼ 3

4
∂t

~Λi: (2.27)

Finally, when Θ ¼ Zi ¼ 0, the evolution equations
(2.12)–(2.17) imply that the Hamiltonian and momentum
constraints hold in the form

H≡ 2

3
K2 − ĀijĀij þ e−4ϕðR̄ − 8D̄iϕD̄iϕ − 8D̄2ϕÞ

− 16πE ¼ 0; (2.28)

Mi≡e−4ϕ
�
1ffiffiffī
γ

p D̂jð
ffiffiffī
γ

p
ĀijÞþ6Āij∂jϕ−

2

3
γ̄ij∂jKþĀjkΔΓi

jk

�
−8πSi¼0; (2.29)

where R̄ is the trace of R̄ij.
In Cartesian coordinates, when γ̄ ¼ 1 and Γ̂i

jk ¼ 0, the
above equations reduce to the CCZ4 equations of [11],
except that we have set their coefficients κ3 to unity.

III. SPHERICAL SYMMETRY

A. The fCCZ4 equations

Under the assumption of spherical symmetry, the
space-line element can be written in spherical coordinates
(r; θ;φ) as

dl2 ¼ e4ϕ½aðr; tÞdr2 þ r2bðr; tÞdΩ2�; (3.1)

where dΩ2 ¼ dθ2 þ sin2θdφ2 is the solid angle element
and aðr; tÞ and bðr; tÞ are the metric functions. Since the
evolution equations for the conformally related metric and
the conformal factor, Eqs. (2.12) and (2.14), take the exact
form as their counterparts in the BSSN formulation, their
spherically symmetric versions also remain unchanged

∂tX ¼ βr∂rX −
1

3
XσD̄mβ

m þ 1

3
XαK; (3.2)

∂ta ¼ βr∂raþ 2a∂rβ
r −

2

3
σaD̄mβ

m − 2αaAa; (3.3)

∂tb ¼ βr∂rbþ 2b
βr

r
−
2

3
σbD̄mβ

m − 2αbAb; (3.4)

(see [27] for the BSSN system in spherical symmetry).
Here X ≡ e−2ϕ and σ ¼ 1 to impose the Lagrangian
condition (2.6) on the time evolution of the determinant
of the conformal metric. The covariant derivative of the
shift vector can be written as

D̄mβ
m ¼ ∂rβ

r þ βr
�∂rðab2Þ

2ab2
þ 2

r

�
; (3.5)

and we have defined

Aa ≡ Ār
r; Ab ≡ Āθ

θ: (3.6)

Note that the quantity X is evolved in Eq. (3.2) instead of
the conformal factor ϕ itself.
The evolution equation for the trace of the extrinsic

curvature K is

∂tK ¼ −D2αþ αðRþ 2DmZm þ K2 − 2ΘKÞ þ βr∂rK

− 3ακ1ð1þ κ2ÞΘþ 4παðSa þ 2Sb − 3EÞ; (3.7)

while for Θ we have

∂tΘ ¼ 1

2
α
�
Rþ 2DmZm − ðA2

a þ 2A2
bÞ þ

2

3
K2 − 2ΘK

�
þ βr∂rΘ − Zr∂rα − ακ1ð2þ κ2ÞΘ − 8παE: (3.8)

Here we defined Sa ≡ Srr and Sb ≡ Sθθ. The divergence of
the Zi vector with respect to the physical metric is

DmZm ¼ ∂rZr þ Zr

�∂rðab2Þ
2ab2

þ 2

r
þ 6∂rϕ

�
: (3.9)

In spherical symmetry, the evolution equation (2.13) for
the independent component of the traceless part of the
conformal extrinsic curvature, Aa, reduces to
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∂tAa ¼ βr∂rAa −
�
DrDrα −

1

3
D2α

�
þ α

�
Rr
r −

1

3
R

�

þ α

�
2DrZr −

2

3
DmZm

�
þ αAaðK − 2ΘÞ − 16παðSa − SbÞ; (3.10)

where Rr
r is the mixed radial component of the physical,

spatial Ricci tensor. The covariant derivative of the Zr is

DrZr ¼
�
∂rZr þ Zr

�
∂ra
2a þ 2∂rϕ

��
: (3.11)

From the definition (2.18) we have

~Λr ≡ Λ̄r þ 2

a
Zr; (3.12)

where

Λ̄r ¼ 1

a

�∂ra
2a

−
∂rb
b

−
2

r

�
1 −

a
b

��
: (3.13)

The evolution equation for ~Δr in spherical symmetry can
then be derived from Eq. (2.17),

∂t
~Λr ¼ βr∂r

~Λr− Λ̄r∂rβ
rþ 1

a
∂2
rβ

rþ 2

b
∂r

�
βr

r

�

þσ

3

�
1

a
∂rðD̄mβ

mÞþ2Λ̄rD̄mβ
m

�
−
2

a
ðAa∂rαþα∂AaÞ

þ2α

�
AaΛ̄

r−
2

rb
ðAa−AbÞ

�
þ2α

a

�
∂rAa

2

3
∂rK

þ6Aa∂rϕþðAa−AbÞ
�
2

r
þ∂rb

b

�
−8πSr

�

þ 2

a

�
α∂rΘ−Θ∂rα−

2

3
αKZr

�

þ 2

a

�
2

3
ZrD̄mβ

m−Zr∂rβ
r

�
−
2

a
κ1Zr: (3.14)

The Hamiltonian and momentum constraints are given
by the following two equations that we compute to monitor
the accuracy of the numerical evolutions:

H≡ R − ðA2
a þ 2A2

bÞ þ
2

3
K2 − 16πE ¼ 0; (3.15)

Mr ≡ ∂rAa −
2

3
∂rK þ 6Aa∂rϕþ ðAa − AbÞ

�
2

r
þ ∂rb

b

�
− 8πSr ¼ 0: (3.16)

The gauge condition for the lapse and the shift are the
same as in Eqs. (2.25)–(2.27), but taking only the radial

component for the shift and the vector Bi and replacing ~Λi

by ~Λr as in the evolution equation (3.14).

B. Hydrodynamics

The general relativistic hydrodynamics equations,
expressed through the conservation equation for the
stress-energy tensor Tμν and the continuity equation, are

∇μTμν ¼ 0; ∇μðρuμÞ ¼ 0; (3.17)

where ρ is the rest-mass density and uμ the four velocity of
the fluid. Following [28], we write the equations of general
relativistic hydrodynamics in a conservative form in
spherical symmetry. We define the fluid three velocity as
seen by a normal observer as

vr ≡ ur

αut
þ βr

α
(3.18)

and the Lorentz factor between the fluid and the normal
observer as

W ≡ αut: (3.19)

We also define the fluid density, momentum density, and
energy density, all as observed by a normal observer, as

D ¼ ρW; (3.20)

Sr ¼ ρhW2vr; (3.21)

τ ¼ ρhW2 − P −D; (3.22)

where h is the specific enthalpy and P the pressure. We then
assemble these variables into a vector U of conserved fluid
variables

U ¼ ffiffiffi
γ

p ðD; Sr; τÞ: (3.23)

Defining corresponding fluxes, Fr, as

Fr ¼ ffiffiffiffiffiffi
−g

p ½Dðvr − βr=αÞ;
Srðvr − βr=αÞ þ P;

τðvr − βr=αÞ þ Pvr�; (3.24)

we can cast the equations of hydrodynamics (3.17) in
conservative form

∂tUþ ∂rFr ¼ S: (3.25)

Here S is a vector of source terms given by
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S ¼ ffiffiffiffiffiffi
−g

p �
0; T00

�
1

2
ðβrÞ2∂rγrr − α∂rα

�

þ T0rβr∂rγrr þ T0
r∂rβ

r 1

2
Trr∂rγrr;

ðT00βr þ T0rÞðβrKrr − ∂rαÞ þ TrrKrr

�
: (3.26)

To close the system of equations, we choose a Gamma-law
equation of state

P ¼ ðΓ − 1Þρϵ; (3.27)

where Γ is the adiabatic index and ϵ is the specific internal
energy.

IV. NUMERICAL IMPLEMENTATION

A. PIRK method

We have implemented the fCCZ4 system under the
assumption of spherical symmetry in the one-dimensional
code described in Montero and Cordero-Carrión [23]. This
code solves the Einstein equations coupled to the general
relativistic hydrodynamics equations. The Einstein equa-
tions are solved using either the BSSN or the fCCZ4
formalisms. We employ a second-order PIRK method to
integrate the evolution equations in time. Writing a system
of PDEs as follows

�
ut ¼ L1ðu; vÞ;
vt ¼ L2ðuÞ þ L3ðu; vÞ;

(4.1)

where L1, L2, and L3 represent general nonlinear differ-
ential operators, the second-order PIRK method takes the
following form:

(
uð1Þ ¼ un þ ΔtL1ðun; vnÞ;
vð1Þ ¼ vn þ Δt

h
1
2
L2ðunÞ þ 1

2
L2ðuð1ÞÞ þ L3ðun; vnÞ

i
;

(4.2)

8>><
>>:

unþ1¼ 1
2
½un þ uð1Þ þ ΔtL1ðuð1Þ; vð1ÞÞ�;

vnþ1 ¼ vn þ Δt
2
½L2ðunÞ þ L2ðunþ1Þ þ L3ðun; vnÞ

þL3ðuð1Þ; vð1ÞÞ�;
(4.3)

where we denote L1, L2, and L3 as the corresponding
discrete operators. In particular, we note that L1 and L3 are
treated in an explicit way, whereas the L2 operator contains
the singular terms appearing in the sources of the equations
and, therefore, is treated partially implicitly.
In the first stage, u is evolved explicitly; the updated

value uð1Þ is used in the evaluation of the L2 operator for the
computation of vð1Þ. Once all of the values of the first stage
are obtained, u is evolved explicitly (using the values of the

variables of the previous time step and previous stage), and
the updated value unþ1 is used in the evaluation of the L2

operator for the computation of vnþ1.
The precise evolution algorithm we use in the code is as

follows:
(i) First, the hydrodynamic conserved quantities, the

conformal metric components a and b, the con-
formal factor ϕ or the quantity X, the lapse function
α, and the radial component of the shift vector βr are
evolved explicitly (as u is evolved in the previous
PIRK scheme).

(ii) Second, the traceless part of the extrinsic curvature,
Aa, the trace of the extrinsic curvature, K, and the
projection of the four-vector Zμ along the normal
direction, Θ, are evolved partially implicitly, using
updated values of α, a, b, and X.

(iii) Next, the quantity ~Λr is evolved partially implicitly
using the updated values of α, a, b, βr, X, Aa, K,
and Θ.

(iv) Finally, Br is evolved partially implicitly using the
updated values of Λ̂r.

We note that the matter source terms are always included
in the explicitly treated parts. In the Appendix, we give the
exact form of the source terms included in each operator.
We also note that the PIRK method has similarities with the
implicit-explicit (IMEX) schemes (see, e.g., [29]), namely
in treating some of the (stiff) unstable source terms as
implicit. However, unlike IMEX schemes, the PIRK
method does not require any analytical or numerical
inversion of any operator to treat numerically unstable
terms in the sources of the equations (see [30] for further
details).

B. Numerics

The spatial domain for our computations is defined as
0 ≤ r ≤ L, where L refers to the location of the outer
boundary. We use a cell-centered grid to avoid the origin
from coinciding with a grid point. At the origin, we impose
boundary conditions derived from the assumption of
spherical symmetry, while at the outer boundary, we
impose Sommerfeld boundary conditions for the spacetime
variables [8,23].
We compute derivatives in the spacetime evolution using

a fourth-order centered finite difference approximation on a
uniform grid except for the advection terms (i.e., terms of
the form βr∂ru), for which we adopt a fourth-order upwind
scheme. We also use fourth-order Kreiss-Oliger dissipation
[31] to avoid high-frequency noise appearing near the outer
boundary.
For the equations of hydrodynamics, we implement a

high-resolution shock-capturing scheme that consists
of a second-order slope limiter reconstruction scheme
[monotonized central (MC) limiter] to obtain the left and
right states of the primitive variables at each cell interface
and the Harten-Lax-van Leer-Einfeldt (HLLE) approximate
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Riemann solver [32,33]. We add a low-density atmosphere
to handle vacuum regions; more specifically, we treat the
atmosphere as a perfect fluid with rest-mass density several
orders of magnitude smaller than that of the bulk matter.
Further details of our implementation can be found in [23].

V. NUMERICAL EXPERIMENTS

We now describe several numerical experiments with the
fCCZ4 formalism. For each one we describe the initial data
for the gravitational field and hydrodynamics quantities in
the corresponding section; in addition, we always impose
Θ ¼ 0 and Zr ¼ 0 at the initial time t ¼ 0.

A. Pure gauge dynamics

We first consider the propagation of a pure gauge pulse.
Following [23,27] we choose as initial data

ϕ ¼ Aa ¼ Ab ¼ K ¼ ~Λr ¼ 0; (5.1)

a ¼ b ¼ 1; (5.2)

α ¼ 1þ α0r2

λ2 þ r2
½e−ðr−r0Þ2=λ2 þ e−ðrþr0Þ2=λ2 �; (5.3)

with α0 ¼ 0.01 and r0 ¼ 5λ. The quantity λ is the length
scale of the test. In this test, we employ zero shift and
harmonic slicing. The slicing condition is suitably written
for the fCCZ4 formulation by introducing the Θ variable in
the evolution equation for the lapse function,

∂tα ¼ −α2ðK − 2ΘÞ: (5.4)

We choose a grid resolution of Δr ¼ 0.1λ (except for the
convergence test described at the end of this section) and a
time step of Δt ¼ CΔr, where C is the Courant factor.
Among our first observations is that the fCCZ4 formalism
requires a smaller Courant factor than the BSSN formalism,
confirming similar findings by [12]; we found stable
evolution for C ¼ 0.3 for fCCZ4 and C ¼ 0.5 for BSSN.
In Fig. 1 we show the Hamiltonian constraint at four

different times (t=λ ¼ 0; 5.1; 10.5; 15) for evolutions per-
formed with the BSSN and the fCCZ4 formulations.
Following [10] and [12], we also compare different choices
for the damping parameters κ1λ ¼ f0; 0.02; 0.07; 0.2g and
κ2 ¼ f−0.5; 0.5g for the fCCZ4 system, although the
results for κ2 are not shown in the figure for clarity. For
the BSSN system, the violations of the Hamiltonian
constraint settle down to approximately 10−3 close to the
origin at r ¼ 0 and do not decrease with time after that
(recall that we do not employ any regularization scheme at
the origin). As shown in Fig. 1, the behavior for the fCCZ4
system is different. Here, the constraint violations propa-
gate toward the outer boundary; close to the origin, the
constraint violations end up being approximately 3 order of
magnitude smaller than for the BSSN system. We also note
that the constraint violations decrease with increasing
values of the damping parameter κ1. However, one should
handle this parameter with precaution, as we observed that

FIG. 1 (color online). Hamiltonian constraint violation for a pure gauge pulse test as a function of radius at four different times for both
BSSN (solid line) and fCCZ4 (dashed lines).
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taking larger values for κ1 (e.g., κ1=λ ¼ 5) reduces the
propagation of the Hamiltonian constraint violation con-
siderably and leads to overdamping effects: a “pulse”
remains near the origin.
In Fig. 2 we plot the L2 norm, which is normalized by

the total number of grid points of the Hamiltonian con-
straint for BSSN and fCCZ4 as a function of time for
different values of the parameter κ1. The largest violations
occur at t ∼ 5λ when the ingoing pulse reaches the origin
and reflects (see Fig. 1). For any value of the damping
parameters the L2 norm of the Hamiltonian constraint is 2
orders of magnitude smaller for fCCZ4 than for BSSN at
the same time.
At times t > 5λ, different choices of the damping

parameters lead to a different evolution of the L2 norm.
The undamped fCCZ4 system (κ1 ¼ κ2 ¼ 0) does not show
any improvement in the constraint violation with respect
to BSSN. Increasing κ1 while keeping κ2 ¼ 0, we obtain
constraint violations which are 1 to 3 orders of magnitude
smaller than with BSSN. Choosing κ2 ¼ 0.5 and κ1λ ¼
0.07 further improves the results. With κ2 ¼ −0.5 and
κ1λ ¼ 0.07, we find a larger violation of the constraint than
with κ2 ¼ f0.5; 0g (not shown for clarity). Overall, we find
that these results for the κ2 parameter are similar to those
reported by [12] for simulations of binary neutron stars.
We also performed three simulations with different

resolutions Δr=λ ¼ f0.1; 0.05; 0.025g to test the conver-
gence of the code. We show in Fig. 3 the rescaled
Hamiltonian constraint at t ¼ 10.5λ for the particular
choice of damping parameters κ1λ ¼ 0.07 and κ2 ¼ 0,
demonstrating that the expected second-order convergence
of our PIRK time-evolution scheme is achieved.

B. Schwarzschild black hole

We next evolve a single Schwarzschild black hole given
by wormhole initial data and follow the coordinate

evolution to the trumpet geometry. We show that we are
able to evolve spacetimes containing singularities without
breaking the original covariance of the Z4 formulation. We
use the gauge conditions given by Eqs. (2.25)–(2.27), for
which the evolution settles down to a maximally sliced
trumpet [26,34]. The computational domain has a reso-
lution of Δr ¼ 0.025M, Δt ¼ 0.5Δr, and we use Nr ¼
60; 000 grid points to place the outer boundary sufficiently
far away from the “puncture” at r ¼ 0.
In Fig. 4, we plot the time evolution of the apparent

horizon (AH) mass (defined asMAH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16π

p
, whereA

is the proper area of the horizon) for BSSN and fCCZ4. The
upper panel shows this quantity from the onset of the
numerical simulation, while the lower panel shows the AH
mass only during the stationary phase when the wormhole
topology has settled to the trumpet topology. We neither
display the AH mass for the fCCZ4 system with κ1¼κ2¼0
nor with κ1M ¼ 0.02, κ2 ¼ 0 because of the appearance of
numerical instabilities (see Fig. 5). For higher values of κ1
and κ2, we obtain stable black hole evolutions. In these
cases, the difference between the AH mass for BSSN and
fCCZ4 is less than 0.005% at the end of the simulation
(t ¼ 1875M), while the error with respect to the initial
ADMmass is ∼0.7%.We note, however, that the black hole
mass continues to drift for the fCCZ4 formulation, while it
remains constant after an initial transition for the BSSN
formulation. For the CCZ4 formulation, similar results for
the BHmass were obtained by [12], who report errors in the
range from 0.1% to 2.8%. In contrast, the error is smaller
for the Z4c formulation, around 0.03% of the initial ADM
mass (see also [12]).
In Fig. 5 we plot the L2 norm of the Hamiltonian

constraint violations. The upper panel displays the L2-norm
evolution in the whole computational domain, while in
the lower panel, we plot the L2-norm evolution only in the
region outside the AH. Clearly, the larger violation of the

FIG. 2 (color online). L2 norm of the Hamiltonian constraint
for a pure gauge pulse test for BSSN (solid line) and fCCZ4
(dashed and dotted lines) as a function of time and for different
choices of the damping parameters.

FIG. 3 (color online). Pure gauge pulse: Hamiltonian con-
straint violations at t ¼ 10.5λ for three different resolutions
Δr=λ ¼ f0.1; 0.05; 0.025g, rescaled by the factors corresponding
to second-order convergence.
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Hamiltonian constraint takes place due to the finite differ-
encing close to the puncture, for both formulations of
the Einstein equations. However, the L2 norm of the
Hamiltonian constraint violation computed outside the
AH shows that there are some differences between
the two formulations that also depend on the values for
the damping coefficients. We observe that the numerical
evolutions develop instabilities for κ2 ¼ 0 and κ1M ¼
ð0; 0.02Þ. Selecting κ1M ¼ 0.07 and κ2 ¼ 0.5 leads to an
overdamped behavior that is responsible for the exponential
growth of the constraint violation at late times, while we
obtain stable simulations with κ1M ¼ 0.07 and κ2 ¼ −0.5
(not shown in the plots for clarity). We find that κ2 ¼ 0with
κ1M ¼ 0.07 or κ1M ¼ 0.2 gives the best results, leading to
constraint violations that are comparable to those achieved
with BSSN.
Our numerical experiments with black hole initial data

indicate that choosing the damping parameter κ2 different
from zero does not help in reducing violations of the
Hamiltonian constraint. We therefore choose κ2 ¼ 0 for the
remainder of the paper.

C. Stable spherical relativistic star

In this section we turn to nonvacuum spacetimes and
describe results for the coupled system formed by the
Einstein equations and the equations of general relativistic
hydrodynamics. We construct spherically symmetric initial
data by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations for a polytropic equation of state

P ¼ Kρ1þ1=N; (5.5)

where K is the polytropic constant and N the polytropic
index, and evolve these data with the Gamma-law equation
of state (3.27) with Γ ¼ 1þ 1=N. Throughout the remain-
der of the paper, we adopt N ¼ 1. We also adopt code units
in which M⊙ ¼ 1; we then choose K ¼ 100 in these units.
In this section we consider a star with a central density of
ρc ¼ 1.28 × 10−3. Solving the TOV equations then results
in star of gravitational massM ¼ 1.4M⊙, baryon rest-mass
M� ¼ 1.5M⊙, and radius R ¼ 14.15 km. We evolve these
initial data withNr ¼ 2000 grid points and a grid resolution

FIG. 5 (color online). (Upper panel) L2 norm of the Hamil-
tonian constraint in the single puncture black hole simulation.
The inset shows a magnified view of the initial 100M in
the evolution. (Lower panel) Same quantity but computed
outside the AH.

FIG. 4 (color online). Time evolution of the mass of the
AH in the single puncture black hole simulation. The lower
panel shows the evolution of the AH mass during the
stationary phase.
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of Δr ¼ 0.05 (so that the interior of the star is covered by
approximately 200 grid points) until a final time t ¼ 4500
(corresponding to 45 light crossing times).
We investigate the effect of the damping parameter κ1

during the time evolution of the TOV solution and explore
the parameter space choosing κ1 ¼ f0; 0.07; 0.2g in our
code units or κ1M ¼ f0; 0.098; 0.28g. In the upper panel of
Fig. 6, we show the time evolution of the normalized
central rest-mass density of the star. This figure shows the
distinctive periodic radial oscillations which are triggered
by finite-difference errors. These oscillations behave differ-
ently depending on the evolution formalism and the choices
of the damping parameters in fCCZ4. We find that the
amplitude of the oscillations is reduced when the damping
parameter is increased (compare the red dashed line and the
green dashed line). Choosing too large of a value, κ1 ¼ 0.2,
causes overdamping effects which lead to a drift in the
central rest-mass density and a growth in the L2 norm of the
Hamiltonian constraint (see Fig. 7). For smaller values of
κ1M (i.e., κ1M ¼ 0 or 0.098), the secular drift in the central

density at late times is very similar for fCCZ4 and BSSN.
We observe that the amplitude of the oscillations decreases
slightly faster for the fCCZ4 system than for BSSN,
indicating that BSSN has a slightly smaller numerical
viscosity.
The Fourier transform of the time evolution of the

central rest-mass density for the fCCZ4 formulation, with
κ1M ¼ 0.098, agrees well with the fundamental frequency
and the radial normal mode frequencies obtained with
linear perturbation techniques [35]. The relative error is less
than 0.1% for the fundamental mode and less than 0.4% for
the first three overtones.
We also performed a convergence test of the fCCZ4

implementation for the stable spherical star. In the lower
panel of Fig. 6, we show three different curves correspond-
ing to three different resolutions for the L1 norm of the
difference between the evolved rest-mass density and the
initial value of the density inside the star. These findings
again demonstrate second-order convergence, as expected.
Finally, in Fig. 7, we plot the L2 norm of the Hamiltonian

constraint, and we find that the constraint violations for
fCCZ4 are several orders of magnitude (at least 2) smaller
than for BSSN. The influence of the damping parameter
κ1M is not significant in the range f0; 0.098g, but for larger
values, e.g., κ1M ¼ 0.28, we find an exponential growth in
the L2 norm. At a reference time t ¼ 3000, the L2 norm is
roughly 1 order of magnitude larger than with κ1M ¼
f0; 0.098g but still 2 orders of magnitude smaller than
for BSSN.

D. Migration test

Our next test of fCCZ4 is the so-called migration test of
an unstable relativistic star in hydrostatic equilibrium [35].
For this test we choose as initial data a TOV solution on the
unstable branch, meaning with a density larger than that of
the maximum mass configuration. Depending on the initial

FIG. 6 (color online). (Upper panel) Time evolution of the
normalized central density with fCCZ4 for different values of κ1
and BSSN. (Lower panel) The L1 norm between the evolved rest-
mass density and the initial density as a function of time, rescaled
for three different resolutions Δr ¼ f0.2; 0.1; 0.05g for the
fCCZ4 system.

FIG. 7 (color online). Comparison of the time evolution of the
L2 norm of the Hamiltonian constraint for the stable spherical
relativistic star for BSSN (solid line) and fCCZ4 (dashed lines)
with κ1 ¼ f0; 0.07; 0.2g (in our code units).
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perturbation, this unstable model may either collapse to a
black hole or perform initially large oscillations about a
stable TOV configuration with smaller central density. As
in Sec. V C, we adopt N ¼ 1 and K ¼ 100 (in our code
units), but we now choose a central rest-mass density of
ρc ¼ 8 × 10−3. The resulting star has a gravitational mass
M ¼ 1.447, a baryon rest-mass M� ¼ 1.535, and a radius
R ¼ 8.62 km. We evolve these data with Nr ¼ 2000 grid
points and a resolution Δr ¼ 0.025.
In an ideal gas, the gravitational binding energy is

gradually converted into internal energy via shock heating.
Therefore, the high-amplitude oscillations around the
new equilibrium configuration are damped, and the heated
stable equilibrium model approaches a central density
slightly smaller than the rest-mass density of a zero temper-
ature star of the same rest mass (ρc ¼ 1.35 × 10−3). This
is shown in the upper panel of Fig. 8, which displays
the evolution of the normalized central density. After the star
has migrated to the stable branch, it undergoes a series of
strong expansions and contractions around the new stable
configuration. During the contraction phase, shock waves

are formed inside the star.When these shockwaves reach the
surface, small amounts of mass are expelled from the object.
Taking κ1 ¼ 0.2, fCCZ4 and BSSN provide very similar

results for the evolution of the central density. However,
with κ1 ¼ f0; 0.07g or κ1M ¼ f0; 0.10129g, differences
become visible at late times. The oscillations become more
damped for these values of the damping parameter (slightly
more for the undamped fCCZ4 with κ1M ¼ 0), and a phase
lag appears in the oscillations. Nevertheless, the differences
are not significant. The lower panel of Fig. 8 shows that for
the higher value of the damping parameter, the L2 norm
of the Hamiltonian constraint is reduced by 2 orders of
magnitude with respect to BSSN, while for the other values
of κ1M, the reduction is approximately 3 orders of
magnitude. Another difference between BSSN and
fCCZ4 is that for the latter, the violations slightly decrease
with time while they remain constant for BSSN. We take
this as an indication that the numerical viscosity is slightly
smaller in BSSN, consistent with our findings in Sec. V C.
We obtain the smallest constraint violations for the smallest
value of κ1M, but this value also leads to the strongest
damping of the oscillations.

E. Gravitational collapse of a marginally
stable neutron star

The last numerical experiment is the gravitational collapse
of a marginally stable spherical relativistic star to a black
hole. As before, we adopt a polytropic start with K ¼ 100
and N ¼ 1 as initial data, but we now consider a
star with central rest-mass density ρc ¼ 3.15 × 10−3. This
initialmodel has a gravitationalmassM ¼ 1.64 and a baryon
rest-mass M� ¼ 1.77. At t ¼ 0 we artificially decrease the
pressure by 0.5% in order to induce the collapse.We perform
this test with a spatial resolution of Δr ¼ 0.0125 and
Nr ¼ 8000, which places the outer boundary at rmax ¼ 100.
In Fig. 9, we plot the evolution of the normalized central

density and the mass of the AH after it forms at a time tAH.
We find that tAH depends slightly on the formulation used
and, for fCCZ4, on the coefficient κ1M: for BSSN, we
found tAH ∼ 167, while for fCCZ4 with κ1M ¼ 0, we found
tAH ∼ 177 (all in our code units). Increasing κ1M slightly
reduces tAH, as shown in Fig. 9. This behavior is again
consistent with our observations in Sec. V C and Sec. V D
and suggests that the numerical viscosity of the BSSN
scheme is slightly smaller than that of fCCZ4. It also
suggests that the numerical viscosity of fCCZ4 decreases
with increasing κ1M. For κ1M ¼ 0.82 (not shown in
Fig. 9), tAH agrees well with that of BSSN, although this
choice of κ1M leads to nonnegligible overdamped results
(an important drift for the black hole mass appears).
In the lower panel of Fig. 9 we show the horizon mass as

a function of time, as obtained with the different evolution
schemes. The difference between the initial ADM mass of
the system and the mass of the AH at t ¼ 500 for the BSSN
formulation is about 0.5%. We find a slightly higher

FIG. 8 (color online). Time evolution of the normalized central
density (upper panel) and of the L2 norm of the Hamiltonian
constraint (lower panel) for the migration test for both BSSN and
fCCZ4 with κ1 ¼ f0; 0.07; 0.2g (in our code units).
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deviation, around 1.6%–1.7% for fCCZ4 with κ1M ¼
f0.0; 0.1148g and 1% for κ1M ¼ 0.328.
Finally, in Fig. 10 we show the L2 norm of the

Hamiltonian constraint violation computed in the region

outside the AH. As expected, the constraint violations
obtained with the fCCZ4 formulation are smaller than those
obtained with the BSSN formulation. The difference in the
constraint violations between the two formulations is at
most 3 orders of magnitude when we take κ1M ¼ 0.1148
(green dashed line in Fig. 10). Increasing the value of κ1
does not reduce the L2 norm further. Instead, it increases
again and approaches a value similar to that obtained
with BSSN.

VI. SUMMARY

In this paper, we generalize the covariant and conformal
Z4 system [9] of the Einstein equations originally proposed
by Alic et al. [11] using a reference-metric approach [21]
(see [18–20] for the derivation of the BSSN system using
the same approach). The resulting system, which we refer
to as fCCZ4, allows us to write the evolution equations in a
fully covariant form suitable for curvilinear coordinate
systems. As a first step, we implement the fCCZ4 system in
spherical coordinates under the assumption of spherical
symmetry. We adopt a PIRK scheme for the time evolution
and obtain stable evolutions—without regularization of the
equations—for both vacuum and nonvacuum spacetimes.
The CC4Z formalism of [11,12] shares some properties

with a similar approach, Z4c, developed by [10]. In
agreement with [11,12], we find that using Sommerfeld
outer boundary conditions is as accurate as it is for the
BSSN system. Unlike in the Z4c formalism, we therefore
find stable evolutions even without implementing con-
straint-preserving boundary conditions [36]. Unlike
reported in [11], we did not need to introduce a third
parameter κ3 in order to obtain stable evolutions for black
hole spacetimes (see [12] for an alternative modification of
the equations).
We performed a number of tests to compare the accuracy

of the fCCZ4 formulation with that of the BSSN system. As
in previous experiments with Z4c and CCZ4, we find that
constraint violations in neutron-star spacetimes are signifi-
cantly smaller in fCCZ4 than in BSSN, often by 2 or 3
orders of magnitude. We find similar improvements for the
pure gauge-wave test. This test also demonstrates that
fCCZ4 can reduce errors introduced by the coordinate
singularities in spherical polar coordinates, even though
this effect was less visible in our other simulations. We
note, however, that these results depend on the choices for
the free parameters κ1 and κ2. Poor choices may introduce
overdamping, thereby increasing errors, or may make the
code unstable. We also note that our findings suggest that
the fCCZ4 scheme introduces a slightly larger numerical
viscosity than the BSSN scheme.
For black hole spacetimes, we find that, even for the best

choices for the free parameters, fCCZ4 reduces the con-
straint violations only very moderately and only at late
times. At least for the resolutions that we employed in our

FIG. 9 (color online). Time evolution of the normalized central
density (upper panel) and of the irreducible mass of the black hole
(lower panel) for BSSN and fCCZ4 with κ1¼f0;0.02;0.07;0.2g
until t ¼ 500 (in our code units).

FIG. 10 (color online). Time evolution of the L2 norm of the
Hamiltonian constraint for BSSN and fCCZ4 computed outside
of the AH. The time coordinate is relative to the time tAH ∼ 167
when an apparent horizon forms for the BSSN formulation.
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tests, BSSN was slightly more accurate in computing the
black hole mass (compare [10,11]).
We found that choosing κ2 different from zero did not lead

to significant improvements; in fact, poor choices may lead
to overdamping effects. On the other hand, the damping
parameter κ1 plays an important role in the reduction of the
violations of the constraints. Increasing the value of this
parameter tends to reduce constraint violations (except in
the migration test) but may also introduce a damping that is
too large, therebymaking the code unstable and causing it to
crash. For all examples considered in this paper, we have
been able to find suitable choices for κ1, but for more general
applications, it may be difficult to identify an optimal choice
for this parameter. Since κ1 has units of inverse length, its
optimal choice depends on typical length scales in the
simulation. For a single black hole, for example, a good
choice appears to be κ1 ≃ 0.07=M. In simulations of black
hole binaries with unequal masses, on the other hand, it may
be hard to find a single parameter κ1 that is well suited for
both black holes. Similar issues may arise in other mixed
systems, e.g., black hole-neutron star binaries or black holes
surrounded by accretion disks. An optimal choice of κ1 for
the matter component, for example, might lead to over-
damping for the black hole. Should this issue indeed prove to
be a problem, a possible solutionmight be to allow κ1 to take
different values in different regions of the spacetime.
In a future project, we implement the fCCZ4 formalism

in three spatial dimensions without any symmetry assump-
tions, and we plan to explore the issues discussed above
with that code.
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APPENDIX: DETAILED SOURCE TERMS
INCLUDED IN THE PIRK OPERATORS
FOR THE EVOLUTION EQUATIONS

The evolution equations (3.2)–(3.4), (3.7), (3.8), (3.10),
(3.14), and ((2.25)–(2.27) are evolved using a second-order
PIRK method, described in Sec. III. In this Appendix, we
provide a complete listing of the source terms included in
the explicit or partially implicit operators.
First, the hydrodynamic conserved quantities and the

spacetime fields a, b, X, α, and βr are evolved explicitly;

i.e., all of the source terms of the evolution equations of
these variables are included in the L1 operator of the
second-order PIRK method.
Second, Aa, K, and Θ are evolved partially implicitly,

using updated values of α, a, and b; more specifically, the
corresponding L2 and L3 operators associated with the
evolution equations for Aa, K, and Θ are

L2ðAaÞ ¼ −
�
∇r∇rα −

1

3
∇2α

�
þ α

�
Rr
r −

1

3
R

�

þ α

�
DrZr þDrZr −

2

3
DmZm

�
; (A1)

L3ðAaÞ ¼ αðK − 2ΘÞAa − 16παðSa − SbÞ þ βr∂rAa; (A2)

L2ðKÞ ¼ −D2αþ αðRþ 2DmZmÞ; (A3)

L3ðKÞ ¼ βr∂rK þ αðK2 − 2ΘKÞ − 3ακ1ð1þ κ2ÞΘ
þ 4παðSa þ 2Sb − 3EÞ; (A4)

L2ðΘÞ ¼ −Zr∂rαþ 1

2
αðRþ 2DmZmÞ; (A5)

L3ðΘÞ ¼ βr∂rΘþ 1

2
α
�
A2
a þ 2A2

b þ
2

3
K2 − 2ΘK

�
− ακ1ð2þ κ2ÞΘ − 8παE: (A6)

Next, ~Λr is evolved partially implicitly, using updated
values of α, a, b, βr, ϕ, Aa, K, and Θ; more specifically, the
corresponding L2 and L3 operators associated with the
evolution equation for ~Λr are

L
2ð ~ΛrÞ ¼

1

a
∂2
rβ

rþ2

b
∂r

�
βr

r

�
þ σ

3a
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m−Zr∂rβ
r
�
−
2

a
κ1Zr; (A7)

L
3ð ~ΛrÞ ¼ βr∂r

~Λr − 8πjr
ξα

a
: (A8)

Finally, Br is evolved partially implicitly, using updated
values of ~Λr; i.e., L2ðBrÞ ¼ 3

4
∂t

~Λr and L3ðBrÞ ¼ 0.
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