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The first proof of well posedness of an initial boundary value problem for the Einstein equations was
given in 1999 by Friedrich and Nagy. They used a frame formalism with a particular gauge for formulating
the equations. This “Friedrich–Nagy” gauge has never been implemented for use in numerical simulations
before because it was deemed too complicated. In this paper we present an implementation of the
Friedrich–Nagy gauge for systems with two commuting spacelike Killing vectors. We investigate the
numerical performance of this formulation for plane wave space-times, reproducing the well-known
Khan–Penrose solution for colliding impulsive plane waves and exhibiting a gravitational wave
“ping-pong.”
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I. INTRODUCTION

The initial boundary value problem (IBVP) for the
Einstein equations is the basic tool for most numerical
investigations of solutions to these equations. The main
reason for this is the fact that infinite physical systems must
be reduced to a finite size by the introduction of an artificial
boundary (see Refs. [1,2] for other situations). Then one is
faced with the question as to which boundary conditions
can be imposed so that the mathematical problem is well
posed. That is to say, for which class of boundary
conditions does there exist a unique solution of the
Einstein equations which assumes the given values on
the initial data hypersurface and the boundary? This
ignores the problem of whether these conditions are also
physical.
While there had been discussions of the solutions to

Einstein’s equations in the neighbourhood of a timelike
hypersurface before (see Refs. [3–5]), the first paper to
discuss the IBVP for the Einstein equations from the point
of view of well posedness of a system of partial differential
equations (PDEs) was by H. Friedrich and Nagy [6]. In
Ref. [7], Friedrich discussed the asymptotic IBVP for the
Einstein equations with negative cosmological constant,
where null-infinity I is timelike and can be used to impose
boundary conditions for the asymptotic falloff of the
gravitational field. However, this situation is special in
the sense that null infinity is a geometrically distinguished
hypersurface, and consequently the data are of a very
particular type as required by the geometry of I .
The discussion in Ref. [6] is based on a formulation of

the Einstein equations as a system of first-order PDEs for
geometric quantities including the Weyl tensor, and the
authors present a class of boundary conditions for the

components of the Weyl tensor in a particular adapted
gauge [the Friedrich–Nagy (FN) gauge], for which the
IBVP is well posed.
However, the standard numerical codes usually employ

second-order formulations, and as a consequence the FN
gauge and boundary conditions have never been imple-
mented numerically. Meanwhile, there are other treatments
of the IBVP (see the review paper [8] and references
therein) based on the generalized harmonic gauge, which
puts the Einstein equations into a system of (second-order)
wave equations.
In this work, we want to study the numerical perfor-

mance of the FN gauge and the related boundary conditions
in a very simple example. To this end we simplify the full
Einstein equations by imposing symmetries. Since the
assumption of spherical symmetry precludes the existence
of gravitational waves, we consider solutions which
possess two commuting spacelike Killing vectors. These
generate the action of a two-dimensional Abelian group of
isometries, and we assume that the orbits are diffeomorphic
to R2. Under these conditions our system describes plane
waves. Such systems have been studied thoroughly in the
literature over the years, mostly in the context of exact
solutions and their generation techniques (see the book by
Griffiths [9] and references therein). Of particular interest
has been the case of colliding plane waves.
In 1971, Khan and Penrose [10] published the first exact

solution describing two impulsive plane gravitational
waves, which approach each other, collide head on—
thereby interacting nonlinearly—and then separate again.
This prototype solution was generalized later to allow for
the waves to have different polarizations and also include
matter waves.
As the first application of our numerical code, we show

how to numerically approach the Khan–Penrose solution
by approximating the delta-function profile of the ingoing
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waves with a sequence of smooth bump functions. Another
application is the gravitational wave “ping-pong,” where
an incoming gravitational wave is reflected back and forth
at the boundaries using boundary conditions from the
admissible class exhibited by Friedrich and Nagy. While
these boundary conditions lead to a mathematically well-
posed IBVP, they have no physical meaning because
there is no known mechanism which would reflect
gravitational waves.
The structure of the paper is as follows. In Sec. II we

present the equations incorporating the symmetry and the
FN gauge. Their numerical implementation and basic tests
are discussed in Sec. III. Section IV is devoted to the
reproduction of the Khan–Penrose solution, and in Sec. V
we present a brief description of the gravitational wave
ping-pong. A short summary ends the paper.

II. DERIVATION OF THE FIELD EQUATIONS

A. Symmetries and gauge conditions

In deriving the equations, we largely follow the deriva-
tion given in Ref. [9]. We assume that the space-time ðM; gÞ
admits the action of the two-dimensional translation group
by isometries. We assume that the orbits are topologically
R2 and that they foliate M. They are intrinsically flat, and
so we refer to them as “planes,” even though they do not
necessarily admit the action of the full two-dimensional
Euclidean group. In fact, if they did, there would be no
gravitational waves present in the space-time. We can
introduce local coordinates ðx; yÞ in the planes such that
the Killing vectors are represented as the coordinate
derivatives ∂x and ∂y.
Next, we introduce local coordinates t and z, which are

constant on the planes, and locally characterize them
uniquely; we write Πtz for the plane with constant values
of t and z. We fix these coordinates further by imposing
gauge conditions. Here, we impose the Friedrich–Nagy
gauge conditions; see Ref. [6]. First, we fix a spacelike
hypersurface S0 to specify initial data for the IBVP. We
assume that the Killing vectors are tangent to S0, such that
S0 is foliated by planes; i.e., it is homeomorphic to I ×R2

for some finite interval I. Let zl < zr ∈ I, and consider
timelike hypersurfaces Tl and Tr, also ruled by planes,
which intersect S0 in two planes Π0l≔S0∩Tl and
Π0r≔S0∩Tr.
Next, we choose a timelike unit vector field ta, invariant

under the group action, so that it is tangent to Tl and Tr and
otherwise arbitrary in M. We fix the time coordinate t by
requiring that it be the parameter along this vector field.
Thus, t is the proper time for the observers with 4-velocity
ta. Because of the symmetry, the x and y coordinates are
constant along ta, and we fix the z coordinate also by this
requirement, such that ta∇az ¼ 0.
We also fix a global tetrad onM as follows. Let za be the

(spacelike) unit normal to the hypersurfaces Tz of constant

z. Note that this vector will be the outward normal at one
end of the interval and the inward normal at the other end.
We choose it so that it is outward pointing at the right end of
the interval. Furthermore, we choose two mutually orthogo-
nal spacelike unit vectors xa and ya tangent to the planes.
Together with ta, these form a tetrad field ðta; xa; ya; zaÞ on
(a neighbourhood of)M. Note that the tetrad vectors xa and
ya are unique up to a rotation within the planes. In Ref. [6],
they were fixed by the requirement that they be Fermi
transported within the hypersurfaces Tz. Here, we allow for
the arbitrary rotation in the form of a gauge source function;
see below.
The position of the hypersurfaces Tz within M will be

determined in terms of their mean curvature χ, which is
specified as an arbitrary function of the coordinates ðt; zÞ,
i.e., an invariant gauge source function.

B. Newman-Penrose equations

In this article we are interested in solutions of Einstein’s
equations in vacuum,

Rab ¼ 0:

We use the Newman–Penrose formalism [11] to derive
the complete set of field equations. First, we choose an
adapted null tetrad as follows. At each point of the plane
Πtz, there exist two unique null directions given by
future-pointing null vectors la and na, orthogonal to the
plane and assumed to be normalized against each other
lana ¼ 1 [12]. To eliminate the remaining boost freedom,
we require that ta ¼ 1ffiffi

2
p ðla þ naÞ. In addition to the two

real null vectors, we choose the complex null vector
ma ¼ 1ffiffi

2
p ðxa þ iyaÞ.

Our conditions imply

ta∇a ¼ ∂t; and

za ¼ −
1

A
∇az ⇒ za∇a ¼ B∂t þ A∂z þ X∂x þ Y∂y

for invariant functions Aðt; zÞ, Bðt; zÞ, Xðt; zÞ, and Yðt; zÞ.
Using the freedom in the choice of coordinates x and y
within each plane, x↦axþ by, y↦cxþ dy with invariant
functions aðt; zÞ, bðt; zÞ, cðt; zÞ, and dðt; zÞ, we can
eliminate the functions X and Y. Therefore, the null tetrad
ðla; na; maÞ can be represented in terms of the directional
derivatives

D ¼ la∇a ¼
1ffiffiffi
2

p ðð1þ BÞ∂t þ A∂zÞ; (1)

D0 ¼ na∇a ¼
1ffiffiffi
2

p ðð1 − BÞ∂t − A∂zÞ; (2)

δ ¼ ma∇a ¼ ξ∂x þ η∂y; (3)
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in terms of the coordinates ðt; x; y; zÞ. The complex spacelike vector ma is defined in terms of invariant complex-valued
functions ξðt; zÞ and ηðt; zÞ, but it is only defined up to a Uð1Þ-valued function of all the coordinates.
In these coordinates, the metric assumes the form

g ¼
�
dt −

B
A
dz

�
2

−
1

A2
dz2 þ 2

ðξη̄ − ξ̄ηÞ2 ðηdx − ξdyÞðη̄dx − ξ̄dyÞ: (4)

We now use the commutator relations between the directional derivatives [see Ref. [13], Eq. (4.11.11)] applied to the
coordinates to get the following relationships between the tetrad functions and the spin coefficients

ρ ¼ ρ̄; ρ0 ¼ ρ̄0; κ0 ¼ 0; κ ¼ 0; α ¼ 0;

β ¼ 0; τ ¼ 0; τ0 ¼ 0;

ðDþD0ÞB ¼ ðγ þ γ̄ þ ϵþ ϵ̄Þ þ ðγ þ γ̄ − ϵ − ϵ̄ÞB;
ðDþD0ÞA ¼ ðγ þ γ̄ − ϵ − ϵ̄ÞA;
ðDþD0ÞX ¼ ðγ þ γ̄ − ϵ − ϵ̄ÞX;
ðDþD0ÞY ¼ ðγ þ γ̄ − ϵ − ϵ̄ÞY;

Dξ ¼ σξ̄þ ðϵ − ϵ̄þ ρÞξ; D0ξ ¼ σ̄0ξ̄þ ðγ − γ̄ þ ρ0Þξ;
Dη ¼ ση̄þ ðϵ − ϵ̄þ ρÞη; D0η ¼ σ̄0η̄þ ðγ − γ̄ þ ρ0Þη:

The next set of equations comes from the curvature
equations [see Ref. [13], Eq. (4.11.12)], which under
the given simplifications and with the vacuum equations,
Φik ¼ 0 and Λ ¼ 0, read

Dρ ¼ ρ2 þ σσ̄ þ ρðϵþ ϵ̄Þ;
D0ρ ¼ 2ρρ0 þ ρðγ þ γ̄Þ;
Dρ0 ¼ 2ρρ0 − ρ0ðϵþ ϵ̄Þ;

D0ρ0 ¼ ρ02 þ σ0σ̄0 − ρ0ðγ þ γ̄Þ;
Dσ ¼ 2ρσ þ σð3ϵ − ϵ̄Þ þΨ0;

D0σ ¼ ρ0σ þ ρσ̄0 þ σð3γ − γ̄Þ;
Dσ0 ¼ ρσ0 þ ρ0σ̄ − σ0ð3ϵ − ϵ̄Þ;
D0σ0 ¼ 2ρ0σ0 − σ0ð3γ − γ̄Þ þΨ4;

Dγ −D0ϵ ¼ −ρρ0 þ σσ0 − ϵðγ þ γ̄Þ − γðϵþ ϵ̄Þ

together with algebraic conditions for the Weyl tensor
components Ψ1, Ψ2, and Ψ3:

Ψ1 ¼ 0; Ψ2 ¼ σσ0 − ρρ0; Ψ3 ¼ 0: (5)

The second of these is simply a consequence of the
vanishing Gauss curvature of the planes and the vanishing
of the Ricci tensor.
The final set of equations comes from the Bianchi

identities, regarded as equations for the Weyl tensor
components

D0Ψ0 ¼ 3σΨ2 þ ðρ0 þ 4γÞΨ0;

DΨ4 ¼ 3σ0Ψ2 þ ðρ − 4ϵÞΨ4:

We note that the equations for the functions ξ and η
decouple from the remaining system in the sense that they
can be integrated separately once the remaining equations
have been solved. Therefore, we will ignore them for the
time being.
Furthermore, we note that we do not have enough

equations to determine the spin coefficients ϵ and γ. To
obtain the missing information, we turn to the gauge
conditions that we imposed. First, we determine the mean
curvature of the hypersurfaces Tz in terms of the spin
coefficients:

χ ¼ ðgab þ zazbÞ∇azb ¼
1ffiffiffi
2

p ðϵþ ϵ̄þ γ þ γ̄ − 2ρþ 2ρ0Þ:
(6)

It is easily seen that Fermi transport F of xa and ya (and,
hence, of ma) along ta within Tz reduces to parallel
transport due to the symmetry assumptions. Therefore,
we can write

Fma ¼ tc∇cma ¼ 1ffiffiffi
2

p ðϵ − ϵ̄þ γ − γ̄Þma: (7)

The remaining gauge freedom in the choice of ma can be
expressed by the equation

Fma ¼ ifma

for an arbitrary real-valued invariant function fðt; zÞ.
Combining Eqs. (6) and (7), we obtain

ϵþ γ ¼ ρ − ρ0 þ F;
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where Fðt; zÞ is an invariant complex-valued function, withffiffiffi
2

p
F ¼ χ þ if. Introducing a new complex-valued func-

tion μðt; zÞ by defining

μ ¼ γ − ϵ;

we can express ϵ and γ in terms of μ and F as follows:

ϵ ¼ 1

2
ðρ − ρ0 þ F − μÞ; γ ¼ 1

2
ðρ − ρ0 þ F þ μÞ:

Inserting these expressions into the last of the curvature
equations, we obtain an equation for the function μ:

ðDþD0Þμ ¼ μ2 − 3ðρ − ρ0Þ2 − ðρ − ρ0ÞðF̄ þ 3FÞ
þ ðμþ μ̄Þðρþ ρ0Þ þ μμ̄ − σσ̄ − σ0σ̄0 þ 2σσ0

− F2 − FF̄ −DF þD0F: (8)

C. Evolution and constraint equations

The final step is the splitting of the equations obtained in
the previous paragraph into evolution equations and con-
straints. Combining the equations appropriately, we obtain
the evolution equations,

ffiffiffi
2

p ∂tA ¼ ðμþ μ̄ÞA; (9a)

ffiffiffi
2

p ∂tB ¼ ð2ρ − 2ρ0 þ F þ F̄Þ þ ðμþ μ̄ÞB; (9b)

ffiffiffi
2

p ∂tρ ¼ 3ρ2 þ σσ̄ þ ρðF þ F̄Þ; (9c)

ffiffiffi
2

p ∂tρ
0 ¼ 3ρ02 þ σ0σ̄0 − ρ0ðF þ F̄Þ; (9d)

ffiffiffi
2

p ∂tσ ¼ 4ρσ − ρ0σ þ ρσ̄0 þ σð3F − F̄Þ þΨ0; (9e)

ffiffiffi
2

p ∂tσ
0 ¼ 4ρ0σ0 − ρσ0 þ ρ0σ̄ − σ0ð3F − F̄Þ þΨ4; (9f)

ffiffiffi
2

p ∂tμ ¼ μ2 þ μμ̄ − 3ðρ − ρ0Þ2 þ ðμþ μ̄Þðρþ ρ0Þ − σσ̄

− σ0σ̄0 þ 2σσ0 − ðρ − ρ0ÞðF̄ þ 3FÞ − F2

− FF̄ −
ffiffiffi
2

p
A∂zF −

ffiffiffi
2

p
B∂tF; (9g)

ð1 − BÞ∂tΨ0 − A∂zΨ0

¼
ffiffiffi
2

p
ð3σΨ2 þ ð2ρ − ρ0 þ 2F þ 2μÞΨ0Þ; (9h)

ð1þ BÞ∂tΨ4 þ A∂zΨ4

¼
ffiffiffi
2

p
ð3σ0Ψ2 þ ð2ρ0 − ρ − 2F − 2μÞΨ4Þ; (9i)

and the remaining equations can be written as the vanishing
of constraint quantities:

0 ¼ C1≔
ffiffiffi
2

p
A∂zρ − ð1 − 3BÞρ2 þ 2ρρ0 − ð1 − BÞσσ̄

þ ρðμþ μ̄Þ þ ρBðF þ F̄Þ; (10a)

0 ¼ C2≔
ffiffiffi
2

p
A∂zρ

0 þ ð1þ 3BÞρ02 − 2ρρ0 þ ð1þ BÞσ0σ̄0
− ρ0ðμþ μ̄Þ − ρ0BðF þ F̄Þ; (10b)

0 ¼ C3≔
ffiffiffi
2

p
A∂zσ þ ð1þ BÞρσ̄0 − 2ð1 − 2BÞρσ

þ ð1 − BÞρ0σ þ σð3μ − μ̄Þ þ Bσð3F − F̄Þ
− ð1 − BÞΨ0; (10c)

0 ¼ C4≔
ffiffiffi
2

p
A∂zσ

0 − ð1 − BÞρ0σ̄ þ 2ð1þ 2BÞρ0σ0
− ð1þ BÞρσ0 − σ0ð3μ − μ̄Þ − Bσ0ð3F − F̄Þ
þ ð1þ BÞΨ4: (10d)

The evolution equations (9) are a system for the tetrad
components A and B, the divergences ρ and ρ0, the shears σ
and σ0, the auxiliary “spin coefficient” μ, and the two Weyl
tensor components Ψ0 and Ψ4. All of the equations are
advection equations, the first seven along the vector field ta

and the last two along the null vector na or la. The system is
therefore symmetric hyperbolic, and we obtain solutions
for arbitrary initial conditions.
The second system (10) can be read as four equations for

the divergences and shears to be satisfied on every hyper-
surface of constant t, the other functions (A, B, μ, F,Ψ0 and
Ψ4) being specified freely. Using the evolution equations,
one can show that the constraint quantities ðC1;…; C4Þ
satisfy a linear system of ordinary differential equations
(ODEs) of the form

d
dt
C ¼ MCþ NC̄;

whereM andN are 4 × 4 complex matrices depending only
on the unknowns. Thus, the constraints propagate. What is
more important is the fact that the constraint quantities
propagate within the hypersurfaces Tz; in particular they do
not cross boundaries given by constant values of z. This
implies that we do not need to impose any special kind of
“constraint preserving” boundary conditions. This is a
special case of the theorem proven in Ref. [6]. The only
boundary conditions that are necessary for this system are
boundary values for the Weyl tensor components Ψ0 and
Ψ4. If A > 0 and jBj < 1, then Ψ0 travels toward the left
and needs a boundary condition at the right-hand side of the
interval, while Ψ4 travels to the right and needs a boundary
condition on the left.
Taking these facts together, we find that the two systems

(9) and (10) combined admit a well-posed initial boundary
value problem.
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III. NUMERICAL SETUP

In our numerical code, we choose the interval I ¼ ½−1; 1�
as our computational domain. Since most of the evolution
equations are ODEs in time, only the equations for the
Weyl tensor components need spatial discretization. We
approximate the spatial derivative ∂z by a finite difference
operator which has the summation by parts property (see
Refs. [14,15]) at both ends of the interval. The time evolu-
tion is done with the standard fourth-order Runge–Kutta
method.

A. Boundary conditions

As discussed above the only boundary conditions we
need are for Ψ0 at z ¼ 1 and Ψ4 at z ¼ −1. We impose
these conditions using the SAT method, which has been
discussed in detail in Refs. [16–18]. Our main application
will be the case where one or two plane waves enter an
initially flat domain. We achieve this by initially giving
constant values to A and B and putting all other variables to
zero. Under these conditions the constraint equations are
satisfied initially.

B. Characteristic coordinates

We will describe the evolution in terms of characteristic
coordinates ðu; vÞ, which we define by the equations

D0u ¼ 0; Dv ¼ 0:

We add these advection equations to the evolution system,
so that we compute these coordinates together with the
geometry. The boundary conditions for u and v are

uðt;−1Þ ¼ vðt; 1Þ ¼ 1ffiffiffi
2

p t

at the boundaries z ¼ �1. These have the consequence that
uð0;−1Þ ¼ vð0; 1Þ ¼ 0. With appropriate initial condi-
tions, discussed later, the characteristic coordinates are
fixed uniquely, since they are determined in terms of the
conformal structure of the two-dimensional space of orbits.
We use these coordinates (or their timelike and spacelike
counterparts T ¼ T0 þ ðvþ uÞ= ffiffiffi

2
p

and Z ¼ ðv − uÞ= ffiffiffi
2

p
)

to describe the solutions in an (almost) invariant way.

C. Code tests

To show the validity of our code, we tested it for
convergence. We ran our first scenario, described in the
following section, with weak waves coming in from
both boundaries for almost one crossing time, using an
increasing number of grid points N ∈ f200; 400;
800; 1600; 3200; 6400g, and computed the difference to
an evolution using the maximal number of 6400 grid
points. The results are shown in Fig. 1, where we can
see the expected fourth-order convergence.

With the same setup, we also checked for constraint
violations. In Fig. 2 we display the evolution of the
constraint quantities over time. Again we see the expected
behavior. We should point out here that we have not (yet)
explored the possibility of modifying the evolution equa-
tions by adding combinations of the constraint quantities in
order to obtain an evolution system which damps the
constraints on the fly.

D. Exploring the gauge source function

To get some feeling for the effect of the gauge source
function F, we consider the simple case of Minkowski
space with metric g ¼ dT2 − dZ2 − dX2 − dY2. We take
the coordinate vectors ∂X and ∂Y as the Killing vectors so
that the planes are given by constant values of the
coordinates T and Z, as before. We will not concern

FIG. 1 (color online). Convergence plot of Ψ0 at time 0.4.

FIG. 2 (color online). Log10 of the L2-norm of jC1j over the
course of the simulation.
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ourselves with the imaginary part of F, since this deter-
mines the orientation of the frame vectors spanning the
planes and therefore only affects the phases of the complex
spin-weighted quantities, such as the shears and the
curvature scalars.
The real part of F determines the mean curvature χ of the

constant z hypersurfaces. Projecting these onto the ðT; ZÞ
plane, we obtain a curve. We write the curve in para-
metrized form as ðTðtÞ; ZðtÞÞ, and we assume that
Tð0Þ ¼ 0 and Zð0Þ ¼ z. Taking the coordinate t along
the curve as proper time (with _T > 0), we have

∂t ¼ γðtÞ∂T þ vðtÞγðtÞ∂Z; where γ ¼ _T;

v ¼
_Z
_T
; and γ2ð1 − v2Þ ¼ 1:

The normal vector n to the curve pointing toward increas-
ing Z is

nðtÞ ¼ γðtÞðvðtÞ∂T þ ∂ZÞ:

The induced metric on this curve is dt2, and it is easy to
compute the extrinsic curvature, which comes out to be

K ¼ 1

2
Lng ¼

_v
1 − v2

dt2:

Then, the mean curvature is

χðtÞ ¼ _v
1 − v2

:

Integrating these relationships for constant χ > 0 and
subject to the additional condition _Zð0Þ ¼ 0, we obtain
the hyperbolic motion

TðtÞ ¼ 1

χ
ðcoshðχtÞ − 1Þ; ZðtÞ ¼ zþ 1

χ
sinhðχtÞ:

Thus, in this simplified case, the mean curvature plays the
role of the acceleration of the lines of constant z. In more
complicated cases, even within the plane symmetric space-
times, the relationship is not so clear, and the steering of
the curves becomes much more indirect. Without the
symmetry, prescribing the mean curvature of a constant
z hypersurface influences the entire hypersurface, and it is
difficult to predetermine how the hypersurface will behave
for different values of the mean curvature, apart from the
more or less obvious fact that it will bend outward for one
choice of its sign and inward for the other choice.

IV. KHAN–PENROSE SOLUTION

In 1971 Khan and Penrose [10] published an exact
solution of Einstein’s vacuum equations describing the
head-on collision of two impulsive gravitational waves,

which approach each other through a flat region of
Minkowski space, interact, and then separate again. The
metric that describes this process is

g ¼ 2T3dUdV
RWðPQþ RWÞ2 − T2

�
RþQ
R −Q

��
W þ P
W − P

�
dX2

− T2

�
R −Q
RþQ

��
W − P
W þ P

�
dY2: (11)

The functions P, Q, R, W, and T are defined as

P ¼ UθðUÞ; Q ¼ VθðVÞ; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − P2

p
;

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
; T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − P2 −Q2

p
;

with θ being the Heaviside step function,

θðxÞ ¼
�
0 x ≤ 0;

1 x > 0:

The form of this metric suggests that the space-time splits
in a natural way into four regions, traditionally labelled I, II,
III, and IV defined by the signs of U and V:

8>>><
>>>:

U ≤ 0; V ≤ 0 in region I;

U > 0; V ≤ 0 in region II;

U ≤ 0; V > 0 in region III;

U > 0; V > 0 in region IV:

In region I, we have P ¼ Q ¼ 0 and R ¼ W ¼ T ¼ 1, so
that the metric becomes

gI ¼ 2dUdV − dX2 − dY2;

the flat metric in double null coordinates. In region II, the
metric is

gII ¼ 2dUdV − ð1þUÞ2dX2 − ð1 −UÞ2dY2;

and similarly in region III (with U and V interchanged).
Regions II and III are both also flat, but they contain a
coordinate singularity (fold singularity) at U ¼ 1 and
V ¼ 1, respectively. Region IV is the interaction region,
which is not flat. In fact, Khan and Penrose show that
region IV contains a spacelike curvature singularity, which
is located along the line U2 þ V2 ¼ 1; see Fig. 3. The
structure of the singularities in the Khan–Penrose solution
and its causal properties are discussed in great detail in
Ref. [19]; see also Ref. [9].
The two waves come in along the lines U ¼ 0 and

V ¼ 0, colliding in the central point. They travel through
each other, one wave lensing the other, and separate again.
After the collision, the waves maintain a strengthened
impulsive component in their profile but also pick up a tail.
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The exact expressions for the Weyl spinor components and
the curvature invariant I in region IVare quite complicated.
We give them in the Appendix.
To reproduce the Khan–Penrose solution, we approxi-

mate the impulsive ingoing profile by a sequence of profiles
which approximate the δ functions in the exact solutions.
We have chosen appropriate members from the family of
bump functions,

ρlðxÞ ¼
� 128

35l sin
8ðπx=lÞ 0 ≤ x ≤ l

0 otherwise
;

which satisfy the condition
R∞
−∞ ρl ¼ 1 and have shrinking

support, approaching f0g for l → 0.
Our numerical setup is as described in Sec. III. The

computational domain is the interval ½−1; 1�. We specify
initial data for t ¼ 0, which correspond to the initial
region (I) being flat, i.e., B ¼ 0, ξ ¼ iη ¼ 1=

ffiffiffi
2

p
, and A

is constant. Choosing A ¼ 1=L yields an initial length 2L
of the domain. All other functions in the system vanish for
t ¼ 0. We also specify the initial values for the character-
istic coordinates v ¼ ð−1þ zÞ= ffiffiffi

2
p

and u ¼ ð−1 − zÞ= ffiffiffi
2

p
.

On the boundaries, we specify values for u and v as
given in Sec. III, as well as the profiles of the ingoing
waves. Thus, on the left boundary, we put for some
value of l

uðt;−1Þ ¼ tffiffiffi
2

p ; Ψ4ðt;−1Þ ¼ ρlðuðt;−1ÞÞ;

and on the right boundary,

vðt; 1Þ ¼ tffiffiffi
2

p ; Ψ0ðt; 1Þ ¼ ρlðvðt; 1ÞÞ:

To fix the coordinates completely, we need to fix a gauge
source function Fðt; zÞ. However, since we will analyze the
geometric quantities in their dependence on the character-
istic coordinates, which are computed simultaneously, the
influence of the gauge is quite small. It affects the size and
shape of the patch of space-time which is covered by the
coordinates, but not the dependence of the geometric
quantities on the characteristic coordinates. We have run

the code with both F ¼ 0 and with F computed from the
explicit representation of the Khan–Penrose metric (11) and
did not find other differences. So, here, we present our
results obtained with F ¼ 0.
Figure 4 shows the curvature invariant I for an ingoing

wave amplitude of 28, dependent on the coordinates T and
Z determined from the characteristic coordinates u and v,
which have been computed along with the solution. One
can clearly distinguish three different regimes: the flat
region consisting of the regions I, II, and III, in which no
curvature is present, and region IV, where a rapid diver-
gence occurs across the full time slice. These two regions
are divided by an almost steplike increase along the u ¼ 0
and v ¼ 0 lines. Finally, we observe a central peak at
u ¼ v ¼ 0. This peak extends up to 65405.8 ≈ 216 but has
been capped in the figure to the same height as the
maximum value at the final time.
To compare the computed space-time with the exact

solution, we need to relate the coordinate systems. The
characteristic coordinates are already in agreement in the
sense that the lines of constant u and of constant v agree
with the linesU ¼ const and V ¼ const. That is, they agree
up to functions U ¼ f1ðuÞ and V ¼ f2ðvÞ. To determine
the functions f1 and f2, we use the discrete symmetry
z↦ − z or, equivalently, u↔v of the system. Along the line
z ¼ 0 in the ðu; vÞ plane, we have u ¼ v in the numerical
space-time, and by construction the coordinate t measures
proper time τ ¼ t. Restricting to U ¼ V in the analytic
solution, we find that

dτ2 ¼ 2ð1 − 2U2Þ32
1 −U2

dU2;

from which we can find UðτÞ ¼ VðτÞ. Numerically, we
compute uðτÞ ¼ vðτÞ along the central line with z ¼ 0, so
that the function f≔f1 ¼ f2 is obtained implicitly
by UðτÞ ¼ fðuðτÞÞ.

FIG. 4. The curvature invariant I for a run with amplitude 28.
The central peak which extends up to about 216 has been capped.

FIG. 3 (color online). The global structure of the Khan–Penrose
solution as projected onto the ðU;VÞ plane. Each point corre-
sponds to one plane of symmetry. The dotted lines mark the
coordinate fold singularity, while the thick line gives the location
of the curvature singularity.
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In Fig. 5 we display the curvature invariant I as a
function of proper time τ along the z ¼ 0 line for the exact
solution (thick, solid line), together with the approxima-
tions with increasing values of the amplitude a. The value
for the amplitude doubles between successive approxima-

tions. Table I displays the relative distances IðaÞ−Iex
Iex

between
the approximating and the exact solutions as a function of
the amplitude a at the final simulation time t ¼ 0.88.
Evaluating the values in the table shows that the distance

between successive approximations and the exact solution
decreases roughly as a−1=2, so the convergence to the exact
impulsive solution is slow. Simultaneously, the computa-
tions become more and more challenging, since we need
to resolve an increasingly steep function. Runs with an
amplitude of 104 require a resolution of at least 106 grid
points.
As another example, we show in Fig. 6 the curvature

invariant for the collision of two waves with opposite
amplitudes, Ψðt; 1Þ ¼ −Ψ4ðt;−1Þ. In a linear theory, one
would expect that the waves run through each other,
interfering destructively, and then run off the grid, leaving
nothing behind. In the nonlinear case, we observe that the
waves induce curvature, which stays around even after they
have left the grid. In fact, the contribution to I comes
mostly from the component Ψ2, which is determined
entirely from the divergences and the shears; see Eq. (5).
In this case, however, the curvature scalar remains bounded

inside the domain but diverges along the boundaries where
the waves were first noticeable. This results in an entirely
different behavior for the two opposite waves compared to
the waves with equal amplitudes.

V. GRAVITATIONAL WAVE PING-PONG

For the second application of the code, we set up the
boundary conditions so that the system describes a gravi-
tational wave ping-pong. Our main motivation for doing
this is to test the implementation of the boundary con-
ditions. We note that these boundary conditions are
mathematically allowed in the sense that they give a
well-posed IBVP. However, there is no physical motivation
for them because there is no known physical process that
could reflect gravitational waves. Nevertheless, it is inter-
esting to see how the code can cope with these conditions.
We feed an incoming wave into an otherwise flat region

of space-time, through which it propagates until it hits the
boundary on the other side of the computational domain.
Here, we can impose several different boundary conditions,
which are compatible with the condition of maximal
dissipation (see Ref. [6]):

Ψinðt;�1Þ ¼ αðtÞΨ̄outðt;�1Þ þ ψ inðtÞ; jαðtÞj ≤ 1:

Here,Ψout is the outgoing wave, which is partly transmitted
and partly reflected into an ingoing wave profile according
to the complex time-dependent reflection coefficient αðtÞ,
which describes the (time-dependent) reflection properties.
The function ψ inðtÞ is a profile for a wave coming in
additionally from the left.
The incoming left-moving wave enters through the right

boundary with the profile

ψ0ðtÞ ¼
�

a sinðbtÞ8 for 0 ≤ t ≤ π
b

0 otherwise
;

FIG. 6. Curvature invariant for two colliding gravitational
waves with opposite amplitudes.

TABLE I. The relative distance in the curvature invariant at
t ¼ 0.88 as a function of the amplitude of the approximating
solutions.

a 64 128 256 512 1024

ΔI=I 0.6569 0.4702 0.3247 0.2320 0.1793

FIG. 5 (color online). The curvature invariant I along the
middle line as a function of proper time.
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for appropriate values of the constants a and b. The wave
propagates through the computational domain and is
reflected back into the domain at the left boundary with
αðtÞ ¼ i and ψ4ðtÞ ¼ 0. When it hits the right boundary
again, we reflect it back in with the same phase shift, so that
the boundary condition on the right end is

Ψ0ðt; 1Þ ¼ −iΨ̄4ðt; 1Þ þ ψ0ðtÞ; for t ≥ 0:

Thus, every reflection changes the polarization of the wave
by π

2
.

We will discuss these ping-pong systems in another
paper in more detail. Here, we want to restrict ourselves to
some more or less obvious observations. We refer to Fig. 7,
where we plot a representation of the curvature scalar
I ¼ Ψ0Ψ4 þ 3Ψ2

2. The height of the surface shows the
absolute value jIj, while the coloring corresponds to the
complex phase of I. We make the following observations:

(i) Depending on the parameters a and b of the ingoing
wave profile, the wave bounces back and forth
several times until finally a divergence occurs. This
is due to the divergence in Ψ0, and it describes a
genuine curvature singularity and not a coordinate
phenomenon, since both of the Weyl invariants I and
J (see Ref. [13]) diverge. By decreasing the ampli-
tude of the ingoing wave, we can increase the
number of bounces, but in every run so far, there
has always been a divergence on the boundary,
through which the initial wave traveled into the
computational domain. The curvature invariant van-
ishes until the ingoing wave hits the opposite
boundary for the first time. The reason for this is
simply that Ψ4, ρ0, and σ0 vanish initially so that I,
which is made up from products ρρ0, σσ0, and Ψ0Ψ4,

also vanishes. Only when the wave is reflected for
the first time is there a Ψ4 component going to
the right, which generates ρ0 and σ0, and therefore
produces a nonvanishing I.

(ii) During the reflection phase, when the ingoing and
outgoing waves have a nonvanishing overlap, we see
“spikes” in the curvature invariants near the boun-
daries, indicating a period of intense interaction. The
spikes are due to the contributions from the Ψ0 and
Ψ4 profiles directly, while the lower values of I are
caused by the indirect interaction between the waves
via the spin coefficients. The wave amplitudes, and
therefore the spikes, decrease in amplitude over
time. Why this happens is unclear.

(iii) During the first bounces, the phases ofΨ0 andΨ4 go
through the sequence 0 → π

2
→ π → 3π

2
→ 2π → � � �

as expected, but the more bounces there are, the
more obvious it becomes that there is a secular,
nonperiodic phase shift, which must be caused by
the interaction between the wave and the increas-
ingly curved “background,” on which it propagates.

(iv) During the evolution, the geometry of the space-time
region changes. We demonstrate this by computing
the proper length along the intervals given by
t ¼ const. These increase over time. The travel
times from one end of the interval to the other
end increase accordingly.

VI. SUMMARY

In this paper, we have presented a numerical implemen-
tation of the Friedrich–Nagy gauge conditions for the
Einstein equations in the symmetry-reduced context of
plane waves. We have shown that one can use the resulting
algorithm to solve an IBVP for the Einstein equations
in a numerically stable way. We have used the code to
reproduce the well-known Khan–Penrose solution, which
describes colliding impulsive waves. Another application
of the code is the simulation of a gravitational wave that is
reflected with a phase shift back and forth between two
boundaries. We observe that this setup leads to a curvature
singularity. Apparently, this behavior is independent of the
boundary conditions used.
The divergence seems to be driven entirely by the

behavior of ρ or ρ0 along the boundaries. The equations
for ρ and σ on the right boundary are essentially Sachs’
optical equations, and their solutions are driven by curva-
ture component Ψ0. As soon as this becomes nonzero the
boundary gets a nonvanishing ρ and σ. The divergence of ρ
is therefore to be expected. The plane symmetry of the
space-time leads to the effect that Ψ2 is determined only in
terms of the shears and divergences [see Eq. (5)], which is
registered in the curvature invariant. So, unless the evolu-
tion is such that the combinations in Ψ2 cancel each other,
the divergence in ρ along the boundary will inevitably lead
to a curvature singularity.

FIG. 7 (color online). The complex curvature invariant I for
gravitational wave ping-pong. The height of the surface is jIj,
while the color coding corresponds to the complex phase of the
function I. This particular plot was obtained using a ¼ 6
and b ¼ 20.

NUMERICAL EVOLUTION OF PLANE GRAVITATIONAL … PHYSICAL REVIEW D 89, 104026 (2014)

104026-9



These observations seem to be in line with a theorem
proved by Tipler [20], which states that a space-time with
plane symmetry is null incomplete if there is at least one
point p, at which one of the Newman–Penrose quantities,
ðΨ0;Φ00; σÞ (or their primed versions) is nonzero, provided
that the null-convergence condition holds, and that p is
contained in an (invariant) Cauchy surface, which is non-
compact in the direction perpendicular to the symmetry
generators.
It would be interesting to see whether this situation has

any similarity to the recently discovered weakly turbulent
instability [21] of anti-de Sitter space, where a massless
scalar field coupled to the Einstein equations propagates on
an asymptotically anti-de Sitter space-time. Successive
reflections at timelike infinity transfer energy from low-
to high-frequency modes, which ultimately collapse. To
answer this question, one needs to understand the reflecting
plane wave systems better, and more detailed numerical
studies must be carried out.
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APPENDIX: EXACT EXPRESSIONS FOR THE
KHAN–PENROSE SOLUTION

In region IV we have R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U2

p
, W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
and

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −U2 − V2

p
. We also define M≔ðUV þ RWÞ and

N2≔UVRW. With these functions the Weyl curvature
components and the curvature invariants I and J are

Ψ0 ¼ 1
R δðVÞ þ 3U R2

W
M3

T7 ; Ψ2 ¼ M2

T7 ðM2 − N2Þ; Ψ4 ¼ 1
W δðUÞ þ 3V W2

R
M3

T7 ;

I ¼ δðUÞδðVÞ þ 3ðM4 þM2N2 þ N4Þ M4

T14 ;

J ¼ δðUÞδðVÞ − ðM2 − N2ÞðM4 − 11M2N2 þ N4Þ M6

T21 :

(A1)

In obtaining these expressions, it is understood that terms of the form xδðxÞ and similar are put equal to zero.
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