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Based on the Newman-Janis algorithm, the Ayón-Beato-García spacetime metric [Phys. Rev. Lett. 80,
5056 (1998)] of the regular spherically symmetric, static, and charged black hole has been converted into
rotational form. It is shown that the derived solution for rotating a regular black hole is regular and the
critical value of the electric charge for which two horizons merge into one sufficiently decreases in the
presence of the nonvanishing rotation parameter a of the black hole.
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I. INTRODUCTION

It is well known that exact solutions of the Einstein
equations have one of the “mysterious” properties of the
black hole that is called singularity. Singularity has been
considered one of the defects of the general relativity
because the explanation of singularity cannot be made by
the general relativity itself. So-called regular black hole
solutions [1–3] can be created in order to eliminate
singularity from the spacetime metric.
We know that there are three types of regular black hole

solutions: (i) solutions that are continuous throughout
spacetime; (ii) solutions with two simple regions, solutions
that have boundary surfaces joining the two regions; and
(iii) solutions with two separated regions, the solutions that
have a surface layer, thin shell, joining the two regions. The
Ayón-Beato-García regular black hole solution [1,2]
belongs to the first type of the regular black holes.
There are two kinds of singularity: the coordinate

singularity (event horizon) and the curvature singularity.
We know that at the singularity the curvature of the
manifold is becoming infinite. In the case of coordinate
singularity, the grr component of the metric tensor goes
to infinity. One can eliminate coordinate singularity by
making transformations to the more fortunate coordinate
system. Usually, by changing coordinates from the Boyer-
Lindquist coordinates to the Eddington-Finkelstein ones,
one can remove coordinate singularity from the spacetime
metric. Eddington-Finkelstein coordinates are based on the
freely falling photons. On the other hand, in the curvature
singularity, the Riemann tensor components of the space-
time metric diverge. It is impossible to eliminate curvature
singularity from the spacetime metric by coordinate
transformations.

In the papers [1–3], the new regular black hole solutions
of the Einstein equations have been found by taking into
account the coupling to the nonlinear electrodynamic field.
Afterwards, this solution has been called the Ayón-Beato-
García regular black hole solution. Recently, another
regular black hole solution [4] has been considered by
introducing a new mass function generalizing the com-
monly used Bardeen and Hayward mass functions and
including the cosmological constant.
The Kerr spacetime metric can be derived from the

Schwarzschild one by using the Newman-Janis algorithm
[5,6]. The derivation of the Kerr spacetime metric from the
Schwarzschild one has been given in several works [5,7] and
[8]. Moreover, in the papers [5,8] and [9], the Kerr-Newman
solution has been derived from the Reissner-Nordström
spacetime metric. The regular Kerr and Kerr-Newman black
holes as well as higher dimensional Kerr and Kerr-Newman
ones have been derived by Newman-Janis algorithm and
their stress-energy tensors and thermodynamics have been
studied in the paper [10]. The Newman-Janis algorithm has
been used to derive the radiating Kerr-Newman black hole in
fðRÞ gravity [11]. The exact nonstatic charged BTZ-like
solutions, in (Nþ 1)-dimensional Einstein gravity, have
been found in [12] in the presence of the negative cosmo-
logical constant. The Lovelock gravity in the critical
spacetime dimension has been studied in Ref. [13].
In order to convert the static, spherically symmetric

black hole spacetime metric into a rotational one [if this
spacetime metric is given in the Boyer-Lindquist coordi-
nates (t, r, θ, ϕ)] one has to proceed with the following five
steps of the Newman-Janis algorithm: (i) a transition from
the Boyer-Lindquist coordinates into the advanced
Eddington-Filkenstein ones (u, r, θ, ϕ) has to be per-
formed; (ii) a null tetrad (l, n, m, and m̄) (Newman-
Penrose tetrad) for a produced metric have to be found;
(iii) a complex coordinate transformations has to be
applied; (iv) reverse coordinate transformations into the
Boyer-Lindquist ones have to be done; and, (v) finally,
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unknown terms of the transformations have to be found
based on the reality condition.
Here, we convert the static, spherically symmetric Ayón-

Beato-García regular black hole spacetime [1–3] into the
rotational one by using the Newman-Janis algorithm [5,6]
and by studying some of its basic properties.

II. NEWMAN-JANIS ALGORITHM TO GET A
ROTATING REGULAR SOLUTION

In this section, we describe the Newman-Janis algorithm
that is used for converting the spherically symmetric static
black hole spacetime metric into a rotational one. The
Ayón-Beato-García spacetime metric of the regular spheri-
cally symmetric black hole is given as [14]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2 þ r2 sin2 θdϕ2; (1)

where the lapse function fðrÞ reads

fðrÞ ¼ 1 −
2Mr2

ðr2 þQ2Þ3=2 þ
Q2r2

ðr2 þQ2Þ2 ; (2)

andM andQ are the totalmass andelectric chargeof the black
hole, respectively. The spacetime metric (1) is the solution of
the field equations within general relativity, where the non-
linear electrodynamic field satisfying the weak energy con-
dition is considered as a source. As can be seen from the lapse
function (2), the spacetime metric (1) has only the coordinate
singularity. This iswhy in order to remove this singularity one
has to write the spacetime metric (1) in the advanced
Eddington-Finkelstein coordinates. To do this, we make
the following transformation for the incomingphoton (or ray):

v ¼ t − r�; (3)

and for the outgoing photon (or ray),

u ¼ tþ r�; (4)

where

r� ¼
Z

dr
fðrÞ : (5)

Hereafter, we consider only the outgoing photon (4) case.
Then the spacetime metric (1) in the advanced Eddington-
Finkelstein coordinates takes the form

ds2 ¼ −fðrÞdu2 − 2dudrþ r2dθ2 þ r2 sin2 θdϕ2: (6)

TheNewman-Penrose tetradconsists offour isotropicvectors,
l, n, m, and m̄. l and n are real vectors, and m and m̄ are
mutually complex conjugate vectors [8].
Newman-Penrose tetrads satisfy the orthogonality

condition:

lμ ·mμ ¼ lμ · m̄μ ¼ nμ ·mμ ¼ nμ · m̄μ ¼ 0; (7)

and also the isotropic condition:

lμ · lμ ¼ nμ · nμ ¼ mμ ·mμ ¼ m̄μ · m̄μ ¼ 0: (8)

Moreover, the basis vectors usually impose the following
normalization condition:

lμ · nμ ¼ 1; mμ · m̄μ ¼ −1; (9)

where m̄μ is the complex conjugate of mμ.
The contravariant components of the metric tensor of the

spacetime metric (6) are

gμν ¼

0
BBB@

0 −1 0 0

−1 fðrÞ 0 0

0 0 1=r2 0

0 0 0 1=r2sin2θ

1
CCCA: (10)

We can rewrite (10) with the help of the Newman-
Penrose tetrad as

gμν ¼ −lμ · nν − lν · nμ þmμ · m̄ν þmν · m̄μ; (11)

where the components of the null tetrad vectors are

lμ ¼ ½0; 1; 0; 0�; nμ ¼
�
1;−

1

2
fðrÞ; 0; 0

�
;

mμ ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ

�
;

m̄μ ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;−

i
sin θ

�
. (12)

As the next step, we make the following complex
coordinate transformations:

~r ¼ rþ ia cos θ; ~u ¼ u − ia cos θ;

~θ ¼ θ; ~ϕ ¼ ϕ: (13)

As a result of these transformations, the components of the
null tetrad vectors take the form [7]

~lμ ¼ ½0; 1; 0; 0�; ~nμ ¼
�
1;−

1

2
~fðrÞ; 0; 0

�
;

~mμ ¼ 1ffiffiffi
2

p ðrþ ia cos θÞ

�
ia sin θ;−ia sin θ; 1;

i
sin θ

�
;

~̄mμ ¼ 1ffiffiffi
2

p ðr − ia cos θÞ

�
−ia sin θ; ia sin θ; 1;−

i
sin θ

�
;

(14)

where the function

~fðrÞ ¼ 1 −
2Mr

ffiffiffi
Σ

p

ðΣþQ2Þ3=2 þ
Q2Σ

ðΣþQ2Þ2 (15)
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is the new form of the lapse function (13) and Σ ¼ r2 þ a2 cos2 θ.
Then the metric tensor gμν takes new ~gμν form,

~gμν ¼ −~lμ · ~nν − ~lν · ~nμ þ ~mμ · ~̄mν þ ~mν · ~̄mμ; (16)

or

~gμν ¼

0
BBBBB@

a2sin2θ
Σ −1 − a2sin2θ

Σ 0 a
Σ

−1 − a2sin2θ
Σ

~fðrÞ þ a2sin2θ
Σ 0 − a

Σ

0 0 1
Σ 0

a
Σ − a

Σ 0 1
Σsin2θ

1
CCCCCA
: (17)

The covariant components of the metric tensor (17) are

~gμν ¼

0
BBB@

− ~fðrÞ −1 0 að ~fðrÞ − 1Þsin2θ
−1 0 0 asin2θ

0 0 Σ 0

að ~fðrÞ − 1Þsin2θ asin2θ 0 sin2θ½Σ − a2ð ~fðrÞ − 2Þsin2θ�

1
CCCA; (18)

and the spacetime element can be written as

d~s2 ¼ guudu2 þ 2gurdudrþ 2guϕdudϕþ 2grϕdrdϕ

þ gθθdθ2 þ gϕϕdϕ2: (19)

By using the transformations

du ¼ dtþ λðrÞdr; dϕ ¼ dϕþ χðrÞdr; (20)

we will turn back into the Boyer-Lindquist coordinates,
where functions λðrÞ and χðrÞ are chosen for eliminating
the nondiagonal gtr and grϕ terms. By putting (20) into
(19) and collecting the terms that correspond to the gtr
and grϕ ones, then equalizing the produced expression to
zero, one can get two equations for two unknown
functions, λðrÞ, χðrÞ. By solving these equations simul-
taneously, one can find expressions for λðrÞ and χðrÞ in
the following way:

λðrÞ ¼ −
Σþ a2 sin2 θ

Σ ~fðrÞ þ a2 sin2 θ
;

χðrÞ ¼ −
a

Σ ~fðrÞ þ a2 sin2 θ
: (21)

Finally, the spacetime metric can be expressed in the
Boyer-Lindquist coordinates as

d~s2 ¼ − ~fðrÞdt2 þ Σ
Σ ~fðrÞ þ a2 sin2 θ

dr2

− 2a sin2 θð1 − ~fðrÞÞdϕdtþ Σdθ2

þ sin2 θ½Σ − a2ð ~fðrÞ − 2Þ sin2 θ�dϕ2; (22)

where ~fðrÞ is given by Eq. (15).
If we consider the black hole as the noncharged one

(Q ¼ 0), the lapse function (2) takes the same form as one
of the Schwarzschild spacetime metrics and the new
spacetime metric (22) converts into the Kerr one, namely,

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 − 2

2Mr
Σ

a sin2 θdϕdt

þΣdθ2 þ
�
r2 þ a2 þ 2Ma2r sin2 θ

Σ

�
sin2 θdϕ2;

(23)

where Δ ¼ r2 þ a2 − 2Mr,
P ¼ r2 þ a2 cos2 θ.

In order to investigate properties of the spacetime metric
(22), we study here the behavior of the grr and gtt
components of the spacetime metric (22).

III PROPERTIES OF ROTATING REGULAR
BLACK HOLE SOLUTION

Now we will analyze the static limit and event horizon
defined by the conditions gtt ¼ 0 and 1=grr ¼ 0,
respectively.
The obtained new spacetime metric (22) is also regular

everywhere. From Figs. 1 and 2, one can easily see that for
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some set of values of the rotation parameter a and electric
charge Q, the solution (22) has coordinate singularity
(event horizon).
The radial dependence of the function ~fðrÞ presented in

Figs. 1 and 2 shows that, with the increase of the value of

the rotation parameter a and chargeQ, the possibility of the
existence of the horizon decreases. In the equatorial plane
(θ ¼ π=2) the dependence of the function ~fðrÞ on the
rotation parameter a vanishes and the existence of the
horizon depends only on the value of the charge Q.
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FIG. 2 (color online). Dependence of the gtt component of the metric tensor from the radial coordinate r for the typical values of the
electric charge Q.
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FIG. 1 (color online). Dependence of the gtt component of the metric tensor from the radial coordinate r for the typical values of the
rotation parameter a.
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FIG. 3 (color online). Dependence of the critical value of the electric chargeQ and radius of the horizon r from the rotation parameter
a for the different values of θ: θ ¼ 0, θ ¼ π=4, and θ ¼ 2π=5 (from left to right, respectively).
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BOBIR TOSHMATOV et al. PHYSICAL REVIEW D 89, 104017 (2014)

104017-4



There is a critical value of the charge Q for which two
surfaces described by the solutions of the condition gtt ¼ 0
merge intoone. Inorder to find thecritical valueofQ, the lapse
function gttðr; a; θ; QÞ must satisfy a couple of conditions:

gttðr; a; θ; QÞ ¼ 0; ∂rgttðr; a; θ; QÞ ¼ 0: (24)

Since the lapse function gtt is the function of four
quantities, r; a; θ, and Q, by solving Eqs. (24) with respect

to r andQ one can get the solution as a function of a and θ.
In Fig. 3 dependence of the critical value of the electric
charge Q and radius of the static limit surface r that is
corresponding to the critical state on the rotation parameter
a has been shown for several values of θ. The shaded region
in theQ − a plot corresponds to the regular black hole with
the static limit. The unshaded region in the Q − a plot
corresponds to the regular black hole without the static
limit. The r − a plot represents the dependence of the
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FIG. 5 (color online). Shape and size of the ergosphere for the different values of the rotation parameter a and electric charge Q.
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radius of the static limit on the rotation parameter that
corresponds to the border of shaded and unshaded regions.
In order to find the same critical value of the charge, one
may use the conditions

1=grrðr; a; θ; QÞ ¼ 0; ∂r½1=grrðr; a; θ; QÞ� ¼ 0: (25)

In Fig. 4 dependence of the critical value of the electric
charge Q and radius of the static limit surface r that is
corresponding to the critical state on the rotation parameter
a has been shown for several values of θ. The shaded region
in theQ − a plot corresponds to the regular black hole with
two (outer and inner) event horizons. The unshaded region
in the Q − a plot corresponds to the regular black hole
without an event horizon. The r − a plot represents the
dependence of the radius of the static limit on the rotation
parameter that corresponds to the border of shaded and

unshaded regions. The regular black hole with the rotation
parameter a ∼ 1 can have the horizon in the poles of the
black hole (θ ¼ 0, π) even in the case when the value of
the charge Q is very small. One may conclude that in the
presence of the rotation parameter the small value of the
electric charge may cause the elimination of the singularity.
The critical values of the electric charge Qcr are different

for the static limit and the event horizon. The critical value of
the electric charge for the event horizon is more rapidly
decreasing with the increase of the rotation parameter a
compared to that of the static limit. This means that the event
horizon disappears earlier with the increase of the electric
charge for the fixed value of the rotation parameter a.
One can see from Figs. 3 and 4 that when the value of the

electric charge Q ≤ 0.633 the static black hole (a ¼ 0) has
a horizon. If Q ≤ 0.605, even an extreme black hole can
have the horizon in the equatorial plane (θ ¼ π=2).

FIG. 6 (color online). Radial and angular dependence of ρ, P1 þ ρ, P2 þ ρ, and P3 þ ρ for the given value of the rotation parameter
a=M ¼ 0.5 and electric charge Q=M ¼ 0.9.
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Figure 5 provides the shape and size of the ergoregion in
the x − z plane where z ¼ r cos θ and z ¼ r sin θ. With the
increase of the electric charge, one can observe the increase
of the relative shape and size of the ergosphere. Note that
for the values of an electric charge with Q ≥ Qcr, the event
horizon and static limit both disappear.
As the further step, we study the question of satisfying

the weak energy condition and choose the locally non-
rotating frame (LNRF) in order to get the stress-energy
tensor in diagonal form, namely, Tαβ ¼ ðρ; P1; P2; P3Þ.
Then the weak energy condition reads as [6] ρ ≥ 0,
ρþ Pi ≥ 0, where i ¼ 1, 2, 3.
Finally, we express the spacetime geometry in the frame

of the LNRF and study the behavior of the angular velocity
of these frames. The orthonormal tetrad of the LNRF has
the following form:

ωt ¼ jgtt − gϕϕΩ2
LNRFj1=2dt; (26)

ωr ¼ jgrrj1=2dr; (27)

ωθ ¼ jgθθj1=2dθ; (28)

ωϕ ¼ jgϕϕj1=2dϕ − jgϕϕj1=2ΩLNRFdt; (29)

where

ΩLNRF ¼
að1 − ~fðr; θÞÞ

Σ − a2ð ~fðr; θÞ − 2Þsin2θ (30)

is the angular velocity of the LNRF frame.
In Fig. 6 the three-dimensional plot of the radial and

angular dependence of density and pressures is shown for
the given value of the rotation parameter a=M ¼ 0.5 and
electric charge Q=M ¼ 0.9. One can easily see that the
weak energy condition is violated near the nonsingular
origin of the rotating regular black hole.

IV CONCLUSION

In this paper, we used a regular black hole solution with
the source with the nature of nonlinear electrodynamics
obtained by Ayón-Beato and García [1–3] to generate a
rotating regular black hole solution that includes the Ayón-

Beato-García and Kerr metrics as special cases. The
considered Newman-Janis algorithm uses a static solution
to generate rotating solutions without touching the field
equation and is very useful in order to get rotating black
hole solutions.
The relation between the Einstein vacuum solution and

any nonvacuum solution of general relativity opens new
directions in studying the properties of the new solution
with a nonlinear electrodynamic source. Obviously, when
the electric charge is vanishing, the solution reduces to the
vacuum one. Here, we have obtained an exact rotating
regular black hole (BH) solution in the framework of
general relativity. The obtained solution gives an oppor-
tunity to study the geometrical and causal structures, as
well as to test particle motion around the rotating regular
BH, which will be the subject of future projects. On the
other hand, it could also be very interesting to compare the
rotating Ayon-Beato-Garcia regular spacetimes without
horizons to the Kerr naked singularity spacetimes, testing
if the interesting and unusual physical phenomena occur-
ring in the Kerr naked singularity spacetimes [15] could
arise in the regular rotating spacetimes too.
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