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We analyze conformal gravity in translationally invariant approximation, where the metric is taken to
depend on time but not on spatial coordinates. We find that the field mode, which in perturbation theory has
a ghostlike kinetic term, turns into a tachyon when nonlinear interaction is accounted for. The kinetic term
and potential for this mode have opposite signs. Solutions of nonlinear classical equations of motion
develop a singularity in finite time determined by the initial conditions.
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I. INTRODUCTION

Recent years have seen a surge of interest in general-
izations of the theory of general relativity. One strong
motivation for this is the discovery of cosmic acceleration
[1] and the associated need for a nonvanishing cosmologi-
cal constant, which has no natural explanation within
general relativity. One can hope that modifying gravita-
tional interactions at large distance scales might bring a
natural understanding of this problem.
Another problem where modifying gravity can poten-

tially bring dividends is dark matter. Dark matter has not
been observed directly, although within the standard
cosmological model it is necessary to account for the
energy balance of the Universe, as well as explaining
rotation curves of galaxies.
Conformal gravity is an example of a modified theory of

gravity which is potentially interesting in both these
contexts [2]. Simple two parameter fits based on conformal
gravity describe all available galactic rotation curves very
well [3]. Arguments for naturalness of the cosmological
repulsion in conformal gravity have also been presented
[4]. An important aspect of conformal gravity that singles it
out from other higher derivative extensions of general
relativity is that it is renormalizable by power counting in
the ultraviolet [5,6], and on this basis has been considered
as a candidate for a consistent quantum theory of gravity.
It is however not clear whether conformal gravity is

consistent. The problem, like with many higher derivative
theories, is that in perturbation theory it has ghost modes—
the modes whose kinetic energy is negative. As long as
interactions between the field modes are neglected, the
wrong sign of kinetic energy is not a problem as such. Since
in a free approximation any field theory has an infinite
number of conserved quantities, the classical motion of
such a system is bounded. All the oscillators simply
oscillate independently of each other, and the sign of the
energy for each one is a matter of convention.
However, once interactions between the modes are

turned on, one generally expects that the classical motion
becomes ergodic, and samples all available phase space.

If the total energy is not bounded from below, this is
expected to lead to classical instability with positive and
negative contributions to energy growing without bound.
Sometimes the ghosts are said to violate unitarity of a
quantum theory. As explained, for example in [7], this is
simply another way of stating the same problem. In such a
quantum system time evolution evolves a normalizable
quantum state into a state which has support only for
“infinite” values of the field, thereby “violating unitarity.”
A classical theory with such behavior cannot yield a
consistent quantum field theory upon quantization.
The problem of ghosts, or unitarity, afflicts many

extensions of gravity [8]. For example massive gravity
has perturbatively a ghost mode and much effort has been
spent to understand whether this ghost can be consistently
decoupled [9]. It has been however convincingly argued
recently that one does not need to decouple the ghost, since
nonperturbatively the theory cures itself and the full non-
linear Hamiltonian of spontaneously broken gravity is
bounded from below [10].
In fact in simple quantum mechanical systems the

presence of ghosts does not immediately signal instability,
even if the theory is interacting. Some consistent simple
models with interacting ghost and normal modes have been
discussed in [7,11,12]. In a quantum field theory such
stability must be much harder to achieve due to the many
excitation channels available [13]. Nevertheless it is an
interesting open question, whether the ghost modes in
conformal gravity do indeed render the full interacting
theory unstable, or perhaps the theory is consistent “as is”
[14]. In fact it has been shown that the number of local
conserved quantities in conformal gravity is equal to the
number of perturbative ghost modes [16]. This can give
hope that the dynamics is constrained enough and not
ergodic to an extent that instabilities do not appear even in
the interacting theory.
Complete analysis of an interacting theory of gravity is a

very complicated proposition. Our aim in this paper is
much more modest. We ask if the theory has instabilities
when the number of degrees of freedom is restricted
to translationally invariant modes. The requirement of
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translational invariance is very severe and reduces the field
theory to a theory of a finite albeit relatively large number of
classical degrees of freedom. We derive the Hamiltonian for
this system and study classical behavior of its solutions. Our
result is somewhat unexpected. We find that the theory is
unstable on the classical level. The instability is of a some-
what different nature than what we may have expected from
the previous argument. It is not due to the transfer of a large
amount of energy from ghost modes to normal modes.
Instead the nonlinearity of the interaction induces a potential
for the ghost modes which is positive. Thus the ghost
becomes also a tachyon—its kinetic term is negative, while
its potential is positive. Thus the ghost sector becomes
unstable by itself. We find simple classical solutions for
which normalmodes are vanishing, and ghostmodes diverge
within a finite amount of time, set by the initial conditions.
The plan of this paper is the following. In Sec. II we

derive the Hamiltonian of conformal gravity in the trans-
lationally invariant approximation and discuss the sym-
metries of the reduced model that follow from the gauge
symmetries of the full theory. In Sec. III we transform the
model into a set of simple degrees of freedom, and exhibit
some classical solutions which exhibit the properties we
alluded to earlier. Finally in Sec. IV we discuss our results.

II. THE HAMILTONIAN OF THE
REDUCED THEORY

Conformal gravity is defined by the action

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ð3RμνRμν − R2Þ (2.1)

with the usual definitions of the Riemann and Ricci tensors
Rρ

μσλ ¼ −∂σΓρ
μλ þ… and Rμλ ¼ Rσ

μσλ. We use the metric
convention ðþ;−;−;−Þ. Since our interest is in the
classical theory, we set the dimensionless coupling constant
to unity, as its value does not affect solutions of the
equation of motion. In four space-time dimensions the
action is unique, as the Gauss-Bonnet term is topological
and does not affect physics [17].
We treat this Lagrangian as a Lagrangian of an ordinary

field theory. We will derive the Hamiltonian which gen-
erates classical time evolution by Legendre transforming it
[18] rather than using the Arnowitt-Deser-Misner pro-
cedure [19]. Since the Lagrangian possesses gauge invari-
ance, this is of course a constrained system, and constraints

have to be properly taken into account. The Lagrangian, as
is well known, is gauge invariant under the general linear
transformation

gρσðxÞ → g0ρσðx0Þ ¼ gμνðxÞ
∂xμ
∂xρ0

xν

∂xσ 0 (2.2)

and in addition, the local conformal transformation

gμνðxÞ → ~gμνðxÞ ¼ Ω2ðxÞgμνðxÞ: (2.3)

We choose to impose a simple gauge fixing condition:

g00 ¼ 1; gi0 ¼ 0: (2.4)

This gauge condition does not fix one combination of
conformal and general linear transformations (see the
Appendix), and we will deal with this remaining gauge
symmetry later.
We truncate the theory by taking the metric to be space

independent gμν ¼ gμνðtÞ. The nonvanishing components
of the Christoffel symbol and Ricci tensor, in the gauge
Eq. (2.4) for the metric that does not depend on spatial
coordinates, are

Γ0
ij ¼ −

1

2
∂gij; Γi

0j ¼
1

2
gik∂gjk (2.5)

R00 ¼ ∂Γi
0i þ Γi

j0Γj
i0¼ 1

2
∂ðgij∂gijÞ þ 1

4
gik∂gkjgjm∂gmi

¼ 1

2
∂α −

1

4
β (2.6)

Rij ¼ −ð∂Γ0
ij þ Γk

k0Γ0
ijÞ þ ðΓ0

kjΓk
0i þ Γk

0jΓ0
kiÞ

¼ 1

2
∂2gij þ

1

4
α∂gij − 1

2
αkj∂gki (2.7)

R ¼ 1

4
∂α −

1

4
β þ 1

4
α2 (2.8)

where we have defined

αij ¼ gik∂gkj; α ¼ αii (2.9)

βij ¼ ∂gik∂gkj; β ¼ βii: (2.10)

The action can be written as

S ¼ −
Z

dt
ffiffiffiffiffiffi
−g

p ��
3

��
1

2
∂α −

1

4
β

�
2

þ
�
1

2
∂αaj þ 1

4
ααaj

��
1

2
∂αja þ 1

4
ααja

��
−
��

1

2
∂α −

1

4
β

�
þ
�
1

2
∂αþ 1

4
α2
��

2
�

¼ −
Z

dt
ffiffiffiffiffiffi
−g

p �
−
1

2
ðβþ α2Þ

�
1

2
∂α −

1

4
β

�
þ 3

�
1

4
∂ ~αab∂ ~αba þ 1

4
α ~αab∂ ~αba þ 1

16
α2 ~αab ~α

b
a

��
(2.11)
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where ~αab is the traceless part of αab:

~αab ¼ αab þ
1

3
αgab: (2.12)

After some simple manipulations, involving integration
by parts, this can be written as

S ¼ −
Z

dt
ffiffiffiffiffiffi
−g

p �
3

4
∂ ~αab∂ ~αba − 1

8
∂αtrð ~α2Þ − 1

24
α2trð ~α2Þ

þ 1

8
½trð ~α2Þ�2

�
(2.13)

or using the identity

∂½ ffiffiffiffiffiffi
−g

p ½trð ~α2Þ�� ¼ 1

2

ffiffiffiffiffiffi
−g

p
α2½trð ~α2Þ� þ ffiffiffiffiffiffi

−g
p ∂α ~αab∂ ~αba

þ 2
ffiffiffiffiffiffi
−g

p
α ~αab∂ ~αba (2.14)

and integrating by parts:

S ¼ −
Z

dt
ffiffiffiffiffiffi
−g

p �
3∂ ~αab∂ ~αba þ α ~αab∂ ~αba

þ 1

2
trð ~α2Þ

�
trð ~α2Þ þ α2

6

��
: (2.15)

The latter form is more convenient for applications since it
makes it obvious that no time derivatives of α appear in the
action.
Since we imposed gauge conditions in the action, we

must in principle separately keep track of constraints that
would be generated by variation of the action with respect
to g00 and gi0. However in our reduced theory this turns out
not to be necessary. The variation of the action with respect
to gμ0 results in the equations

Bμ0 ¼ 0 (2.16)

where Bμν is the so-called Bach tensor:

Bμν ≡∇α∇βCμανβ −
1

2
RαβCμανβ ¼ 0: (2.17)

Here Cμανβ is the conformal tensor—the traceless part of
the Riemann tensor:

Cμναβ ¼ Rμναβ − ðgμ½αRβ�ν − gν½αRβ�μÞ þ
1

3
Rgμ½αgβ�ν:

(2.18)

However, in the gauge gi0 in the reduced theory (no xi
dependence) it is obvious that Bi0 ¼ 0 identically. The
Bach tensor is by definition traceless, thus identically

B00 ¼ gijBij: (2.19)

Therefore B00 vanishes automatically when the spatial
components vanish. These are required to vanish by
equations of motion that follow from the action
Eq. (2.13). Thus in the translationally invariant approxi-
mation, constraints Eq. (2.16) do not add any new infor-
mation, and we can forget about their existence.

A. The Hamiltonian

Our aim now is to derive the Hamiltonian for the system
described by the action Eq. (2.13). Since the fields α are
related to the time derivative of gij, we introduce this
relation into the action with the help of the Lagrange
multiplier

S ¼ −
Z

dt
ffiffiffiffiffiffi
−g

p �
3∂ ~αab∂ ~αba þ α ~αab∂ ~αab

þ 1

2
trð ~α2Þ

�
trð ~α2Þ þ α2

6

�
− λabðαba − gbc∂gcaÞ

�
:

(2.20)

The conjugate momenta are

pij ¼ ∂L
∂ð∂gijÞ ¼ −

ffiffiffiffiffiffi−gp
2

½λibgjb þ λjbg
ib� (2.21)

βij ¼
∂L

∂ð∂ ~αjiÞ
¼ −

ffiffiffiffiffiffi
−g

p ð6∂ ~αij þ α ~αijÞ (2.22)

and

pα ¼ pλ ¼ 0: (2.23)

To find the Hamiltonian, we take the Legendre transform
of the action and use Eq. (2.21) to express λab in terms of the
momenta pij. The resulting Hamiltonian is

H ¼ pij∂gij − L ¼ −
1ffiffiffiffiffiffi−gp 1

12
βijβ

j
i þ

1

6
α ~αijβ

j
i

þ 1

2

ffiffiffiffiffiffi
−g

p ½trð ~α2Þ�2 − αbapangnb: (2.24)

The Hamiltonian is complemented by a primary constraint

β ¼ 0: (2.25)

Commuting (calculating the Poisson brackets) the con-
straint with the Hamiltonian, we obtain the secondary
constraint

fH; βg ¼ C1 ¼
1

6
~αijβ

j
i −

1

3
pacgac ¼ 0: (2.26)

In turn, commuting C1 with the Hamiltonian, we obtain
another secondary constraint
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fH;C1g ¼ 1

12

βjiβ
i
jffiffiffiffiffiffi−gp −

1

2

ffiffiffiffiffiffi
−g

p ½trð ~α2Þ�2 þ ~αijp
jkgki ¼ C2:

(2.27)

Commuting this with the Hamiltonian no new constraints
are generated.
Note that

H ¼ −C2 þ αC1 (2.28)

and thus the Hamiltonian vanishes on the constraint sur-
face. This is natural in a conformal theory. Classically
however, it only means that we should consider such
solutions of equations of motion which have zero energy.
The Hamiltonian is still an important quantity, as it
generates the equations of motion, even though the energy
vanishes on intersecting classical trajectories.
Following the standard Dirac procedure, the first order

constraint Eq. (2.25) can be supplemented by another
condition which turns the constraints into second order.
A convenient choice is

α ¼ 0: (2.29)

With this choice the Hamiltonian simplifies and we will
adopt it in the following.

B. General linear transformations

Before analyzing equations of motion and their solutions,
we note that our model has a large number of symmetries.
We have already discussed gauge symmetry, which was
inherited from the complete theory where original gauge
transformations were taken to be independent of spatial
coordinates. However there is a larger subgroup of the
original space-time dependent gauge group, which preserves
the independence of the metric on xi. These transformations
appear in the reduced model not as gauge symmetries with
associated constraints, but rather as global symmetries. The
reason there are no constraints associated with these
symmetries in the reduced model is that they are automati-
cally satisfied when the fields are taken to be xi independent.
Consider a general linear transformation that does not

induce space dependence in the metric, and preserves the
gauge conditions Eq. (2.4). Its infinitesimal form is

x0α ¼ ðδαβ þ ωα
βÞxβ (2.30)

with ω0
0 ¼ 0;ω0

k ¼ 0.
The transformation of the metric is

gij → gij − gikωk
j − gkjωk

i

gij → gij þ gikωj
k þ gkjωi

k: (2.31)

For this to be a canonical transformation, the momenta have
to transform as

δpij ¼ ωi
bpbj þ ωj

bpib: (2.32)

The transformation of α and β can be found using the
expression of α in terms of the time derivative of g, and
again requiring that the transformation is canonical:

αij → αij

�
1þ 1

3
ω

�
− ωk

jα
i
k þ ωi

kα
k
j

βij → βij

�
1 −

1

3
ω

�
− ωk

jβ
i
k þ ωi

kβ
k
j (2.33)

where ω≡ ωi
i.

It is indeed easy to check that this transformation leaves
the Hamiltonian invariant. One has

δH ¼ ω

3
H (2.34)

which vanishes on the constraint surface.
The matrix ωij is an arbitrary real matrix, thus providing

us with nine symmetries. One of them, corresponding to
ωij ∝ δij however, coincides with the conformal trans-
formation. We should therefore strictly speaking consider
only the traceless part ωij as generators of global symmetry
transformations. The theory thus has eight symmetries.
With such a large number of conserved quantities, as
discussed in the introduction, one might hope that the
dynamics of the model is stable. We will see however, that
this is not the case. Nevertheless this large number of
conserved quantities is handy to be able to find solutions of
equations of motion.

III. SOLVING THE EQUATIONS OF MOTION

Before directly tackling the solution of equations of
motion it is useful to introduce a different set of coor-
dinates, which simplifies this problem somewhat. At the
moment our Hamiltonian is written in terms of basic
variables gij and ~αij. However not all of them are indepen-
dent. The metric gij is symmetric and contains 6 degrees of
freedom, while ~αij is not symmetric, but is nevertheless
constrained since gij ~α

j
k is by definition a symmetric matrix.

Additionally, we set α ¼ 0. Also the constraint Eq. (2.26)
can be used to eliminate one more degree of freedom. We
can use it for example to fix g ¼ −1. Thus in total we have
10 degrees of freedom. We will use the parametrization that
makes these independent degrees of freedom more
accessible.
We introduce the general real matrix Λ by

gij ¼ −½ΛΛT �ij: (3.1)

This relation defines Λ only up to a rotation, as Λ and ΛO
give the same matrix g. To define it completely we take

~αij ¼ ½ΛT−1γΛT �ij (3.2)
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with γ a diagonal traceless matrix

γ ¼
�����
γ1 0 0

0 γ2 0

0 0 −ðγ1 þ γ2Þ

�����:

With general γ Eq. (3.2) is just a similarity transformation,
but requiring γ to be diagonal fixes the freedom in Λ left
undetermined by Eq. (3.1). Tracelessness of γ follows from
the tracelessness of ~α. The general matrix Λ has 9 degrees
of freedom, which we will reduce to 8 by requiring jΛj ¼ 1.
Together with two components of the diagonal, traceless γ
this constitutes the original 10 degrees of freedom present
in fg; ~αg.
In terms of the new variables we have

_g ¼ −ð _ΛΛT þ Λ _ΛTÞ
_α ¼ ΛT−1ð_γ þ γ _ΛTΛT−1 − _ΛTΛT−1γÞ ¼ ΛT−1ðD0γÞΛT

(3.3)

where

D0γ ≡ _γ þ ½γ;M�; M≡ _ΛTΛT−1: (3.4)

The action Eq. (2.13) can now be written as

S ¼ −jΛj
Z

dt

�
3trð_γ2 þ ½γ;M�2Þ þ 1

2
½tr½γ2��2

− tr ~μ½γ − ðM þMTÞ� þ αtr½γ _γ� þ 1

3
μ½α − 2trM�

þ 1

2
α2tr½γ2�

�
: (3.5)

The Lagrange multiplier (symmetric) matrix ~μ enforces
the constraint relating ~α to the time derivative of g. Just like
in the previous section, we can set α ¼ 0, since there is no
time derivative of α in Eq. (3.5). This can be done, but only
after requiring that the variation of S with respect to α
vanishes. This variation leads to a constraint

∂S
∂α

����
α¼0

¼ jΛj
�
trγ _γ þ 1

3
μ

�
¼ 0: (3.6)

This is the generator of the conformal gauge transformation
expressed in the new variables.
Calculating momenta conjugate to Λ, we find

pij ¼
∂L
∂ _Λij

¼ −jΛj
�
ΛT−1

�
6½½γ;M�; γ� þ 2

�
~μ−

1

3
Iμ

���
ij
:

(3.7)

Note that on the constraint surface the symmetric part of
matrixM is proportional to γ. Thus only the antisymmetric
part ofM contributes to the commutator in Eqs. (3.5), (3.7).
Using this, we find

1

2
ðΛTp − pΛTÞ ¼ −6jΛj

��
γ;
1

2
ðM −MTÞ

�
; γ

�

1

2
ðΛTpþ pΛTÞ ¼ −2jΛj

�
~μ −

1

3
Iμ

�
: (3.8)

Conjugates to γ are found as

p1 ¼
∂L
∂ _γ1 ¼ −6jΛjð2 _γ1 þ _γ2Þ;

p2 ¼
∂L
∂ _γ2 ¼ −6jΛjð2 _γ2 þ _γ1Þ:

(3.9)

The Hamiltonian is

H ¼ 1

2
ΛTpγ − 3jΛj

�
γ;
1

2
ðM −MTÞ

�
2

þ 1

18jΛj ð−p
2
1 − p2

2 þ p1p2Þ þ jΛjðγ21 þ γ22 þ γ1γ2Þ2:
(3.10)

It is now possible to express the second term in terms of
conjugate momenta using Eq. (3.8). It is most simply done
by expanding both sides of Eq. (3.8) in terms of the
complete basis of 3 × 3 matrices. After some straightfor-
ward algebra, we find

�
γ;
1

2
ðM −MT

�
2

¼ 1

18jΛj2
��ðΛTp − pΛTÞ12

γ2 − γ1

�
2

þ
�ðΛTp − pΛTÞ13

γ2 þ 2γ1

�
2

þ
�ðΛTp − pΛTÞ23

2γ2 þ γ1

�
2
�
: (3.11)

Finally, diagonalizing the quadratic term in the Hamiltonian, we obtain

H ¼ −
1

18jΛj ½ ~p1
2 þ ~p2

2� þ 9

16
jΛj½~γ21 þ ~γ22�2 þ

1

2
trðΛTpγÞ

−
1

6jΛj
��ðΛTp − pΛTÞ12

γ2 − γ1

�
2

þ
�ðΛTp − pΛTÞ13

γ2 þ 2γ1

�
2

þ
�ðΛTp − pΛTÞ23

2γ2 þ γ1

�
2
�

(3.12)
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where

~p1 ¼
1

2
ðp1 þ p2Þ; ~p2 ¼

ffiffiffi
3

p

2
ð−p1 þ p2Þ (3.13)

and

~γ1 ¼ ðγ1 þ γ2Þ; ~γ2 ¼
1ffiffiffi
3

p ð−γ1 þ γ2Þ: (3.14)

The canonical form of the constraint Eq. (3.6), which
supplements this Hamiltonian, is

1

3
ðp1γ1 þ p2γ2Þ þ trðΛTpÞ ¼ 0: (3.15)

As noted above, we fix the gauge freedom associated with
this constraint by setting jΛj ¼ 1[20].
Our goal here is to see whether the Hamiltonian has

unstable solutions. We will not look for a general solution
of equations of motion, but instead will analyze a simple
subset of those. The simplification is possible due to the
following observation. Let us define for convenience
traceless matrices

τ1 ¼ diagð1;0;−1Þ; τ2 ¼ diagð0; 1;−1Þ; σaij ¼ ϵaij

(3.16)

λ1 ¼
�����
0 0 0

0 0 1

0 1 0

�����; λ2 ¼
�����
0 0 1

0 0 0

1 0 0

�����; λ3 ¼
�����
0 1 0

1 0 0

0 0 0

�����
(3.17)

and associated generators of the general linear trans-
formations

Gi ¼ trðΛTpτiÞ; Ga
A ¼ trðΛTpσaÞ;

Ga
S ¼ trðΛTpλaÞ:

(3.18)

In terms of these, the Hamiltonian is written

H ¼ −
1

18jΛj ½ ~p1
2 þ ~p2

2� þ 9

16
jΛj½~γ21 þ ~γ22�2 þ

1

2
ΣiðGiγiÞ

−
1

6jΛj
��

G3
A

γ2 − γ1

�
2

þ
�

G2
A

γ2 þ 2γ1

�
2

þ
�

G1
A

2γ2 þ γ1

�
2
�
:

(3.19)

Note that for all of these generators, we have
½jΛj; Gα� ¼ 0. Consider a solution, which at initial time
has Gi ¼ Ga

A ¼ Ga
S ¼ 0. Since the commutator of any of

the generators Gα with the Hamiltonian Eq. (3.19) is
proportional to at least the first power of Gβ, this condition
is preserved in time, and all the generators Gα vanish at all

times. We can think of this initial condition as an initial
condition imposed on pij for arbitrary initial Λij. For this
set of initial conditions, the equations of motion therefore
simplify considerably. The equation of motion for Λ
becomes

_Λij ¼
1

2
ðγΛÞij: (3.20)

This determines Λ once the solution for γ is known as

Λ ¼ A

�
exp

Z
t

0

γ

2
dt

�
(3.21)

where A is the initial condition.
The equations of motion for γ then are derived from the

reduced Hamiltonian

H ¼ −
1

18
½ ~p1

2 þ ~p2
2� þ 9

16
½~γ21 þ ~γ22�2 (3.22)

where we have set jΛj ¼ 1 in accordance with previous
discussion.
The reduced Hamiltonian is a simple upside-down

anharmonic oscillator. The kinetic term is negative, in
accordance with the fact that γi appear as ghost modes in
the linearized theory, where the anharmonic potential is
absent. Interestingly, the sign of the potential is positive,
and therefore it is clear that the dynamics of the reduced
model is unstable. To see this explicitly, consider a simple
solution of equations of motion, corresponding to vanish-
ing “angular momentum” in the ~γ1 − ~γ2 plane. We also have
to impose the constraint of zero energy, which is an easy
task in the reduced model. Solutions under these conditions
are very simple:

~γ1 ¼ γr cos θ; ~γ2 ¼ γr sin θ (3.23)

with

θ ¼ const; γr ¼
γ0

1� γ0
23=2

t
: (3.24)

The two solutions correspond to the sign of the initial radial
velocity. For negative initial velocity [signþ in Eq. (3.24)],
the “particle” initially moves towards the origin. This is a
stable solution, since at infinite time the particle simply
climbs to the top of the potential, and ends up there with
zero velocity. For positive initial relative velocity [sign − in
Eq.(3.24)] the particle moves away from the origin. This
solution is unstable. The instability is in fact much worse
than it would be for an upside-down harmonic oscillator.
The particle reaches infinite distance within a finite
time tc ¼ 23=2=γ0.
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Transforming to the original variables we find

γ1;2 ¼
1

2
ðcos θ∓ ffiffiffi

3
p

sin θÞγr

¼ 1

2
ðcos θ∓ ffiffiffi

3
p

sin θÞ γ0
1� γ0

23=2
t
: (3.25)

The metric g is found to be

gij ¼ −½AΓAT �ij (3.26)

where Γ is the diagonal matrix with the following
nonvanishing matrix elements:

Γ11 ¼
����1� γ0

23=2
t

����
23=2ðcos θ− ffiffi

3
p

sin θÞ
;

Γ22 ¼
����1� γ0

23=2
t

����
23=2ðcos θþ ffiffi

3
p

sin θÞ
;

Γ33 ¼ ½Γ11Γ22�−1: (3.27)

Either one or two eigenvalues of the metric g diverge
at the terminal time tc, while the rest of the eigenvalues
(two or one) vanish.

IV. DISCUSSION

In this paper we have considered conformal gravity in
translationally invariant approximation. Our main finding is
that the nonlinear interactions lead to instability in the
dynamics of zero momentum modes. Specifically we
displayed a simple solution of equations of motion which
diverges within a finite time. The reason for such a severe
divergence is that the dynamical modes γ, which in the
perturbative regime have a ghostlike kinetic term, acquire
in addition a positive potential. Thus this sector of the
reduced theory is equivalent to a two-dimensional upside-
down anharmonic oscillator. Close to the minimum of the
potential γ behaves as a perturbative ghost with zero mass.
However at any nonvanishing distance from the minimum,
the signs of kinetic and potential energies are opposite and
γ behaves as a tachyon.
Thus the perturbative ghost problem is not cured, but is

rather exacerbated by nonlinear gravitational interactions.
Thinking about quantization, it is clear that the theory does
not allow sensible quantization via standard methods, i.e.
using the standard Dirac norm. The possibility that the use
of a nonstandard norm, like in [21], could lead to a unitary
theory may be worth exploring, although such a procedure
is rather unintuitive.
Finally we note that another way to view the present

calculation is as a study of possible homogeneous cosmol-
ogies in conformal gravity. The universe described by
Eqs. (3.26), (3.27) is certainly very far from reality, since
it is not isotropic. In fact the only isotropic and homogeneous

space allowed by conformal gauge symmetry is Minkowski
space, since any isotropic metric is conformally equivalent to
the Minkowski one. Nevertheless, an interesting property of
this metric is that it describes accelerated dynamics. As we
indicated above, some dimensions in this space undergo
accelerated expansion, while others accelerated contraction.
Perhaps, when supplemented by a conformal anomaly in the
matter part [22], which we have not considered here, it could
acquire more realistic features while still retaining the
property of acceleration. This would be interesting to study.
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APPENDIX: RESIDUAL GAUGE SYMMETRY
OF THE ACTION

In this appendix we show that the action Eq. (2.13) after
gauge fixing is still invariant under a combination of a
general linear and conformal transformation which has not
been gauge fixed by Eq. (2.4).
Under a combined transformation themetric transformsas

gρσðxÞ → g0ρσðx0Þ ¼ Ω2ðxÞgμνðxÞ
∂xμ
∂xρ0

∂xν
∂xσ 0 : (A1)

In order for the metric to remain a function of time only, we
must only consider the transformation of the type

xi ¼ xi0; x0 ¼ fðx00Þ; Ω ¼ ΩðtÞ: (A2)

With this restriction we get g0i0ðx0Þ ¼ 0 if gi0ðxÞ ¼ 0; thus
this gauge fixing condition is preserved. In order tomaintain
the condition g00ðx0Þ ¼ 1, we need to take Ω2ðtÞ ¼ 1

f02. The

spatial components of the metric transform under this
transformation as

gijðtÞ → g0ijðt0Þ ¼
1

f02
gijðtðt0ÞÞ: (A3)

Denoting 1
f0 ¼ F, we can write

g0ijðtÞ ¼ F2gijðfðtÞÞ; g0ijðtÞ ¼ 1

F2
gijðfðtÞÞ: (A4)

Then, using

∂
∂t ¼

1

F
∂
∂f (A5)

we obtain

∂tgijðtÞ → ∂tg0ijðtÞ ¼ ∂tF2gijðfÞ þ F2∂tgijðfÞ
¼ ∂tðF2Þgij þ F∂fgij (A6)

CONFORMAL GRAVITY REDUX: GHOST-TURNED TACHYON PHYSICAL REVIEW D 89, 104015 (2014)

104015-7



and

αkiðtÞ → α0kiðtÞ ¼ g0kj∂tg0ij ¼
1

F2
gkj½∂tF2gij þ F∂fgij�

¼ ∂tF2

F2
δki þ

1

F
αkiðfÞ; (A7)

or

~αkjðtÞ →
1

F
~αkjðfÞ; αðtÞ → 3

∂tðF2Þ
F2

þ 1

F
αðfÞ: (A8)

Similarly, it follows that

∂tα
k
jðtÞ → ∂tα

0k
jðtÞ ¼ ∂t

�∂tðF2Þ
F2

�
δkj þ ∂t

�
1

F

�
αkjðfÞ

þ 1

F2
∂fα

k
jðfÞ (A9)

or

∂ ~αkjðtÞ → ∂t

�
1

F

�
~αkjðfÞ þ

1

F2
∂f ~α

k
jðfÞ;

∂tαðtÞ → 3∂t

�∂tðF2Þ
F2

�
þ ∂t

�
1

F

�
αðfÞ

þ 1

F2
∂fαðfÞ: (A10)

It is now straightforward to substitute these transformed
fields in the expression for the action Eq. (2.13). Upon
discarding total derivative terms and changing the integra-
tion variables t → f it is then easy to see that the action is
indeed invariant.
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