
Rotating charged black hole with Weyl corrections

Songbai Chen* and Jiliang Jing†

Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081,
People’s Republic of China and Key Laboratory of Low Dimensional Quantum Structures

and Quantum Control of Ministry of Education, Hunan Normal University,
Changsha, Hunan 410081, People’s Republic of China
(Received 12 October 2013; published 8 May 2014)

We present first a four-dimensional spherical symmetric black hole with small Weyl corrections and find
that with increasing Weyl corrections the region of the event horizon existence for the black hole in the
parameter space increases for the negative Weyl coupling parameter and decreases for the positive one.
Moreover, we also obtain a rotating charged black hole with weak Weyl corrections by the method of
complex coordinate transformation. Our results show that the sign of Weyl coupling parameter α yields the
different spatial topology of the event horizons for the black hole with its parameters lying in some special
regions in the parameter space. We also analyze the dependence of the ergosphere on the Weyl coupling
parameter α and find that with the increase of the Weyl corrections the ergosphere in the equatorial plane
becomes thick for a black hole with α > 0, but becomes thin in the case with α < 0, which means that the
energy extraction becomes easier in the background of a black hole with the positive Weyl coupling
parameter, but more difficult in the background of a black hole with the negative one.
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I. INTRODUCTION

The generalized Einstein-Maxwell theories have received
a lot of attention recently because they contains higher
derivative interactions and carry more information about
the electromagnetic field. The study of such generalized
Einstein-Maxwell theories could help us to explore the full
properties and effects of the electromagnetic fields. In
general, the generalized Einstein-Maxwell theories can be
classified into two classes. The first class is minimally
coupled gravitational-electromagnetism in which there is no
coupling in the Lagrangian between the Maxwell part and
the curvature part. One of the interesting generalized
Einstein-Maxwell theory belong to this class is Born-
Infeld theory [1] which removes the divergence of the
electron’s self-energy in the classical electrodynamics and
possesses good physical properties including the absence
of shockwaves andbirefringencephenomena [2].Moreover,
it is found that Born-Infeld theory enjoys an electric-
magnetic duality [3] and can describe gauge fields on a
d-brane which arises from attached open strings [4]. The
second class includes the nonminimal coupling between the
gravitational and electromagnetic fields in the Lagrangian
[5–7]. This class is of great interest because the appearance
of the nonminimal couplings in the Lagrangian modifies
the coefficients of the second-order derivatives both in the
Maxwell and Einstein equations, which could affect
the propagation of gravitational and electromagnetic waves
in the spacetime and may yield time delays in the arrival of

thosewaves [5]. In the evolution of the early universe, such a
kind of coupled terms may result in electromagnetic quan-
tum fluctuations and lead to the inflation [8–12]. Recent
investigations also show that these cross-terms have been
used as attempts to explain the large-scale magnetic fields
observed in clusters of galaxies [13–15].
It is of interest to search the solutions of black holes in

the generalized Einstein-Maxwell theories and to probe
how the generalized electrodynamics modify the properties
of the black hole. In the frame of the Born-Infeld theory, the
electrically charged black hole solutions were obtained in
[16–18], which displays that the black hole singularity in
this theory is weaked from that of usual Reissner-Nordströ
m black hole. In order to avoid the black hole singularity
problem, some regular models of black holes have been
proposed in [19,20], which are called as Bardeen black
holes. The Bardeen black holes can be interpreted as the
solution to a nonlinear magnetic monopole with a mass M
and a charge q [21]. The Bardeen black holes are also
generalized to the model with four specific parameters [22].
Recently, a large class of black hole solutions have been
constructed in the power Maxwell theory [23–26] in which
the Maxwell action takes as power-law function of the
form L ¼ −βðFμνFμνÞk, where β is a coupling constant and
k is a power parameter. It is found that the asymptotic
behavior of the solution depends heavily on the value of
the power parameter k. Moreover, the black hole solution
have been considered in the modified Maxwell field
including the nonminimal coupling between the gravita-
tional and electromagnetic fields [27]. It is shown that these
coupled terms modify the electromagnetic and gravitational
structure of a charged black hole.
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One of the simple generalized electromagnetic theories is
the electrodynamics with Weyl corrections, which involves
a coupling between the Maxwell field and the Weyl tensor
[28,29]. In this theory, the Lagrangian density of the
electromagnetic field is modified as

LEM ¼ −
1

4
ðFμνFμν − 4αCμνρσFμνFρσÞ; (1)

where Fμν is the usual electromagnetic tensor, which is
related to the electromagnetic vector potential Aμ by
Fμν ¼ Aν;μ − Aμ;ν. The coefficient α is a coupling con-
stant with dimensions of length squared and the tensor
Cμνρσ is so-called Weyl tensor, which is related to the
Riemann tensor Rμνρσ, the Ricci tensor Rμν and the Ricci
scalar R by

Cμνρσ ¼ Rμνρσ −
2

n − 2
ðgμ½ρRσ�ν − gν½ρRσ�μÞ

þ 2

ðn − 1Þðn − 2ÞRgμ½ρgσ�ν; (2)

where n and gμν are the dimension and metric of the
spacetime, and brackets around indices refers to the
antisymmetric part. Therefore, the electrodynamics with
Weyl corrections (1) is a special kind of electromagnetic
theory which contains a coupling between the gravita-
tional and electromagnetic fields. It was found that the
such kind of couplings between curvature tensor and
Maxwell tensor could be obtained from a calculation in
QED of the photon effective action from one-loop
vacuum polarization on a curved background [29].
Moreover, the investigations also show that these cou-
plings could exist near classical compact astrophysical
objects with high mass density and strong gravitational
field such as the supermassive black holes at the center of
galaxies [30,31]. Recently, many efforts have been focus
on studying the effects of Weyl correction on black hole
physics. In Ref. [28], the authors studied the holographic
conductivity and charge diffusion with Weyl correction in
the anti-de Sitter spacetime and found that the correction
breaks the universal relation with the Uð1Þ central charge
observed at leading order. Moreover, the holographic
superconductors with Weyl corrections are also studied in
[32–35]. It is found that Weyl corrections modify the
critical temperature at which holographic superconductors
occur [32] and changes the order of the phase transition
of the holographic superconductor [33]. The effects of
Weyl corrections on the phase transition between the
holographic insulator and superconductor has been also
investigated in [36]. Recently, we [37] studied the
dynamical evolution of the electromagnetic perturbation
coupling to the Weyl tensor in the Schwarzschild black
hole spacetime and analyze the effect of the Weyl
corrections on the stability of the black hole.

It is well known that the properties and structure of a
charged black hole depend heavily on the electrodynamics
of Maxwell field in the spacetime, which means that the
corrections to the standard Einstein-Maxwell theory must
bring some new features for the charged black hole. The
main purpose of this paper is to investigate the charged
black hole in the electromagnetic theory with Weyl
corrections, and to probe how the Weyl corrections modify
its properties and structure.
The paper is organized as follows: in the following

section we will construct a static and spherically symmetric
solution of a black hole with small Weyl corrections, and
then study the effect of the Weyl coupling parameter α on
the black hole. In Sec. III, we obtain a rotating charged
black hole with small Weyl corrections by the method of
complex coordinate transformation [38] and study the
change of the spatial topology of the event horizons and
the infinite redshift surface originating from the Weyl
corrections. We end the paper with a summary.

II. A STATIC AND SPHERICALLY SYMMETRIC
CHARGED BLACK HOLE WITH

WEYL CORRECTION

Let us now first study a static and spherically symmetric
charged black hole with Weyl correction. The action for the
gravity system with the coupling between electromagnetic
field and Weyl tensor has a form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

4
FμνFμν þ αCμνρσFμνFρσ

�
: (3)

Adopting to Schwarzshild coordinates, the line element for
a static spherically symmetric spacetime can be put in the
form

ds2 ¼ fðrÞdt2 − 1

fðrÞ dr
2 − RðrÞðdθ2 þ sin2θdϕ2Þ; (4)

where the metric coefficients fðrÞ and RðrÞ are functions of
polar coordinate r. Moreover, we assume that the electro-
magnetic field inherits the static spherically symmetries,
which means that the potential four-vector of the electric
field has the form

Aμ ¼ ðϕðrÞ; 0; 0; 0Þ: (5)

Inserting Eqs. (2), (4), and (5) into the action (3) and
varying the action with respect to fðrÞ, RðrÞ and Aμ, one
can get three coupled equations of motion

3ðR0ðrÞ2 − 2RðrÞR00ðrÞÞ þ 4α
d
dr

½ϕ0ðrÞRðrÞð2RðrÞϕ00ðrÞ
þ R0ðrÞϕ0ðrÞÞ� ¼ 0; (6)
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3½ϕ0ðrÞ2RðrÞ2 þ fðrÞðR0ðrÞ2 − 2RðrÞR00ðrÞÞ − 2RðrÞðRðrÞf00ðrÞ þ R0ðrÞf0ðrÞÞ�
− 4α½2RðrÞϕ00ðrÞ2ðϕ0ðrÞfðrÞÞ0 þ 2RðrÞR0ðrÞðfðrÞϕ0ðrÞ2Þ0 − ϕ0ðrÞ2ðR0ðrÞ2fðrÞ þ 2f00ðrÞRðrÞ2Þ
þ 2fðrÞRðrÞϕ0ðrÞðRðrÞϕ000ðrÞ þ R00ðrÞϕ0ðrÞÞ� ¼ 0; (7)

d
dr

�
ϕ0ðrÞRðrÞ þ 4ϕ0ðrÞα

3RðrÞ ½fðrÞðR0ðrÞ2 − RðrÞR00ðrÞÞ þ RðrÞðR0ðrÞf00ðrÞ − f0ðrÞR0ðrÞÞ − 2RðrÞ�
�

¼ 0. (8)

In order to obtain a solution of a black hole with Weyl
correction, we must solve these three coupling equations.
As α → 0, one can find that Equation (6) is decoupled
naturally and then the solution of Reissner-Nordström
black hole can be obtained. However, for the case with
nonzero Weyl coupling constant α, we find that the
modified equations of motion (6)–(8) are so complicated
that it is difficult for us to obtain an analytical solution of
black hole. Here, we limit ourselves to the case where the
deviation of the coupling parameter α from zero is very
small which is physically justified for the weak Weyl
correction. Then the terms containing the parameter α on
the left-hand side of the three equations above can be
regarded as perturbation. Using the perturbation theory, we
have

RðrÞ ¼ R0ðrÞ þ αR1ðrÞ þOðα2Þ;
fðrÞ ¼ f0ðrÞ þ αf1ðrÞ þOðα2Þ;
ϕðrÞ ¼ ϕ0ðrÞ þ αϕ1ðrÞ þOðα2Þ: (9)

Substituting the variables (9) into the equations of motion
(6)–(8), we can obtain a series of perturbational equations.
Obviously, the usual Reissner-Nordström black hole is a
solution of the zeroth order equations, which means that

R0ðrÞ ¼ r2; f0ðrÞ ¼ 1−
2M
r

þq2

r2
; ϕ0ðrÞ ¼

q
r
: (10)

Solving the first order equation, we obtain

RðrÞ ¼ r2 þ 4αq2

9r2

fðrÞ ¼ 1 −
2M
r

þ q2

r2
−
4αq2

3r4

�
1 −

10M
3r

þ 26q2

15r2

�
;

ϕðrÞ ¼ q
r
þ αq

r3

�
M
r
−
37q2

45r2

�
: (11)

Obviously, the metric coefficients and the static electric
potential depend on the coupling parameter α, which means
that Weyl corrections affect the behavior of the electric field
and the properties of the charged black hole in this case.
Especially, we find that the static electric potential ϕðrÞ

depends also on the black hole parameter M, which is
different from that in the usual Reissner-Nordström black
hole in which the static electric potential ϕðrÞ depends only
on the charge q. It is understandable because the Weyl
coupling in here is a kind of coupling between the
gravitational and electromagnetic fields.
The radius of the black hole horizon is located where

fðrÞ ¼ 0 for the charged black hole with Weyl correction
(11). However, the equation fðrÞ ¼ 0 in this case could
have more than two real roots. Considered that we here
focus only on the weak Weyl correction, it is reasonable to
regard the roots near those in the case of Reissner-
Nordström black hole as the radius of black hole horizon
and to abandon other one as the extraneous roots of the
equation. In this way, we can single out the roots corre-
sponding to the radius of black hole horizons and probe the
effects of Weyl corrections on the horizons. In Fig. 1, we
delineate region I in the parameter space ðα; qÞ, within
which the event horizon is existed for the spacetime (11).
The solid line marks the upper limit on the charge q as a
function of the coupling parameter α, for which the event

I

II
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0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

q

FIG. 1 (color online). In the α-q plane, the event horizon exists
only in region I for the charged black hole with Weyl corrections
(11). Inregion II, there does not exist any horizon and the central
object is a naked singularity. The solid line marks the upper limit
on the charge q as a function of the coupling parameter α. The
dashed line corresponds to the upper limit on the charge q in the
Reissner-Nordström black hole. Here, we set M ¼ 1.

ROTATING CHARGED BLACK HOLE WITH WEYL CORRECTIONS PHYSICAL REVIEW D 89, 104014 (2014)

104014-3



horizon is still existed. Region II corresponds to the part of
the parameter space, where there does not exist any horizon
and the central object is a naked singularity. From Fig. 1,
we find that with Weyl corrections the allowed range of q
increases for the negative α and decreases for the positive α.
In Fig. 2, we plot the effects of Weyl corrections on the
inner and outer horizons of the black hole as the parameters
α and q lie in region I. It is shown that with the increase of
the Weyl corrections, the radius of outer horizon rþ
decreases, but the radius of inner horizon r− increases
for α > 0, but the situation is just the opposite for α < 0.
The change of Hawking temperature TH of black hole with
α is plotted in Fig. 3, which tells us that Hawking
temperature decreases with α. In the low energy limit,
the luminosity of Hawking radiation of a spherically
symmetric black hole (11) can be approximated as

L ∼ 2π3T4
H

15
ðr2þ þ 4αq2

9r2þ
Þ. From Fig. 4, one can find that the

luminosity of Hawking radiation also decreases with the
Weyl coupling parameter α. In a word, with the increase of
the deviation from the Reissner-Nordström metric, the
effects of Wely corrections on the properties of the black
hole in the case α > 0 is different from that in the
case α < 0.

III. A ROTATING CHARGED BLACK HOLE
WITH SMALL WEYL CORRECTIONS

In this section, we will study a rotating charged black
hole with Weyl corrections. In the presence of the coupling
between the Maxwell field and the Weyl tensor, the field
equations of gravity for a rotating black hole are compli-
cated. Even if in the case with small Weyl corrections, we
find it is still very difficult to find exact analytical solution
of a rotating black hole by usual perturbational method
with some calculation softwares including Maple and
Mathematica. Considering that the spacetime described
by the action (3) is an electrovacuum solution, we can apply
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FIG. 2. The changes of the radius of horizon with Weyl coupling parameter α as the parameters q and α lie in region I. The left is for the
outer horizon and the right is for the inner horizon. Here we set M ¼ 1.

0.10 0.05 0.00 0.05 0.10

T
H

0.035

0.036

0.037

0.038

0.039

0.040

0.041

FIG. 3. The change of Hawking temperature TH of black hole
with Weyl coupling parameter α. Here we set M ¼ 1.
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FIG. 4. The change of luminosity of Hawking radiation with
Weyl coupling parameter α. Here we set M ¼ 1.
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the method of complex coordinate transformation discov-
ered by Newman and Janis [38] to construct a rotating black
hole with the previous static black hole solution with small
Weyl corrections (11) and then study the properties of the
black hole spacetime. Although our method in this section
is different from the perturbational method used in the
previous section, the solution is true because in the action
(3) the only nongravitational mass energy present is the
field energy of an electromagnetic field and the spacetime
described by the action (3) is electro-vacuum and the
approach of Newman and Janis is substantiated for vacuum
or electrovacuum [39]. Moreover, in the following calcu-
lation, we neglect the terms of the order Oðα2Þ and the
higher-order terms to keep the consistency with the small
Weyl corrections just considered in Sec. II.
Introducing the new variable u defined by

u ¼ t −
Z

dr
fðrÞ ; (12)

one can rewrite the metric (11) as

ds2 ¼ fðrÞdu2 þ 2dudr − RðrÞ2ðdθ2 þ sin2θdϕ2Þ: (13)

The inverse of the above metric can be expressed as

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ; (14)

with the null tetrad vectors

lμ ¼ δμ1; (15)

nμ ¼ δμ0 −
1

2

�
1−

2M
r

þ q2

r2
−
4αq2

3r4

�
1−

10M
3r

þ 26q2

15r2

��
δμ1;

(16)

mμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2RðrÞp

�
δμ2 þ

i
sin θ

δμ3

�
; (17)

m̄μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2RðrÞp

�
δμ2 −

i
sin θ

δμ3

�
: (18)

Now we regard the radius r as a complex variable and then
rewrite the null tetrad in the form

lμ ¼ δμ1; (19)

nμ ¼ δμ0 −
1

2

�
1 −M

�
1

r
þ 1

r̄

�
þ q2

rr̄
−
4αq2

3r2r̄2

×

�
1 −

5M
3

�
1

r
þ 1

r̄

�
þ 26q2

15rr̄

��
δμ1; (20)

mμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rðrr̄Þp

�
δμ2 þ

i
sin θ

δμ3

�
; (21)

m̄μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rðrr̄Þp

�
δμ2 −

i
sin θ

δμ3

�
; (22)

where r̄ is the complex conjugate of r. As in Ref. [38], we
can perform a complex coordinate transformation

u0 ¼ u − ia cos θ; (23)

r0 ¼ rþ ia cos θ; (24)

θ0 ¼ θ; ϕ0 ¼ ϕ; (25)

and find that the tetrad is transformed as

l0μ ¼ δμ1; (26)

n0μ ¼ δμ0 −
1

2

�
1 −

2Mr0 − q2

r02 þ a2cos2θ
−

4αq2

3ðr02 þ a2cos2θÞ2

×

�
1 −

50Mr0 − 26q2

15ðr02 þ a2cos2θÞ
��

δμ1; (27)

m0μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rðr0Þp

�
ia sin θðδμ0 − δμ1Þ þ δμ2 þ

i
sin θ

δμ3

�
; (28)

m̄0μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rðr0Þp

�
−ia sin θðδμ0 − δμ1Þ þ δμ2 −

i
sin θ

δμ3

�
: (29)

With help of this new tetrad, the metric of a rotating charge
black hole with Weyl corrections can be described by

g0μν ¼ −l0μn0ν − l0νn0μ þm0μm̄0ν þm0νm̄0μ: (30)

In the coordinates (u0, r0, θ0, ϕ0), the covariant components
of the metric (30) can be expressed as

g000 ¼
Fðr0; θ0Þ
Σðr0; θ0Þ ; g001 ¼ 1; g013 ¼ −asin2θ0; (31)

g022 ¼ −Σ1ðr0; θ0Þ; g003 ¼
�
1 −

Fðr0; θ0Þ
Σðr0; θ0Þ

�
asin2θ0;

(32)

g033 ¼ −
sin2θ0

Σðr0; θ0Þ ½Σðr
0; θ0ÞΣ1ðr0; θ0Þ

þ a2sin2θ0ð2Σðr0; θ0Þ − Fðr0; θ0ÞÞ�; (33)

with

Σðr0; θ0Þ ¼ r02 þ a2cos2θ0; (34)
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Σ1ðr0; θ0Þ ¼ r02 þ a2cos2θ0 þ 4αq2

9ðr02 þ a2cos2θ0Þ ; (35)

Fðr0;θ0Þ ¼ r02þa2cos2θ0− 2Mr0 þq2−
4αq2

3ðr02þa2cos2θ0Þ

×

�
1−

50Mr0− 26q2

15ðr02þa2cos2θ0Þ
�
: (36)

In order to eliminate the elements g001 and g
0
13, we must use

a transformation [40,41] to the coordinates (u0, r0, θ0, ϕ0)
which is given by

du0 ¼ dt −Wðr0; θ0Þdr; (37)

r0 ¼ r; θ0 ¼ θ; (38)

dϕ0 ¼ dϕ −Gðr0; θ0Þdr; (39)

with

Wðr0; θ0Þ ¼ g001g
0
33 − g003g

0
13

g000g
0
33 − g0203

¼ Σðr0; θ0Þ½Σ1ðr0; θ0Þ þ a2sin2θ0�
Fðr0; θ0ÞΣ1ðr0; θ0Þ þ Σðr0; θ0Þa2sin2θ0 ; (40)

Gðr0; θ0Þ ¼ g000g
0
13 − g001g

0
03

g000g
0
33 − g0203

¼ aΣðr0; θ0Þ
Fðr0; θ0ÞΣ1ðr0; θ0Þ þ Σðr0; θ0Þa2sin2θ0 : (41)

And then the metric for a rotating charged black hole with
Weyl corrections reads

ds2 ¼ Fðr; θÞ
Σðr; θÞ dt

2 þ 2

�
1 −

Fðr; θÞ
Σðr; θÞ

�
asin2θdtdϕ −

Σðr; θÞΣ1ðr; θÞdr2
Fðr; θÞΣ1ðr; θÞ þ a2sin2θΣðr; θÞ − Σ1ðr; θÞdθ2

−
sin2θ
Σðr; θÞ ½Σðr; θÞΣ1ðr; θÞ þ a2sin2θð2Σðr; θÞ − Fðr; θÞÞ�dϕ2; (42)

with

Σðr; θÞ ¼ r2 þ a2cos2θ; (43)

Σ1ðr; θÞ ¼ r2 þ a2cos2θ þ 4αq2

9ðr2 þ a2cos2θÞ ; (44)

Fðr; θÞ ¼ r2 þ a2cos2θ − 2Mrþ q2

−
4αq2

3ðr2 þ a2cos2θÞ
�
1 −

50Mr − 26q2

15ðr2 þ a2cos2θÞ
�
:

(45)

Obviously, the above metric can be reduced to the Kerr-
Newman metric in Boyer-Lindquist coordinates as α ¼ 0.
When the rotation parameter a vanishes, one can get the
previous solution of a static and spherically symmetric
black hole with Weyl correction (11).
The mass and angular momentum of the rotating black

hole with Weyl corrections (42) can be calculated by the
quasilocal formalism of the Brown and York [42], which is
extensively applied to various rotating black holes [43–47].
From the quasilocal formalism, one can find that the finite
stress-energy tensor is defined as

Tij ¼ 1

8π
½Θij − Θγij�; (46)

where Θ is the trace of the extrinsic curvature Θij of
the boundary ∂M of the manifold M, with the induced

metric γij. In order to compute the angular momentum of
the spacetime, one can choose a spacelike surfaceB in ∂M
with the metric σab and decompose the boundary metric
into the ADM form

γijdxidxj ¼ −N2dt2 þ σabðdφa þ VadtÞðdφb þ VbdtÞ;
(47)

where the coordinates φa are the angular variables param-
eterizing the hypersurface of constant r. The quantities N
and Va are the lapse and shift functions respectively. If
there is a Killing vector field ξ on the boundary, one can
find that the quasilocal conserved charge associated with
the stress tensors can be defined by

QðξÞ ¼
Z
B
d2φ

ffiffiffi
σ

p
Tijniξj; (48)

where σ is the determinant of the metric σab, ξi and ni are
the Killing vector field and the unit normal vector on the
boundary B, respectively. For the boundary with timelike
(ξ ¼ ∂

∂t) and rotational (ζ ¼ ∂
∂φ) Killing vector fields, one

can write the quasilocal mass and angular momentum as in
the forms

M ¼
Z
B
d2φ

ffiffiffi
σ

p
Tijniξj; J ¼

Z
B
d2φ

ffiffiffi
σ

p
Tijniζj: (49)

Combining the metric (42) with Eqs. (46)–(49), we obtain
the quasilocal mass and angular momentum
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M ¼ lim
r→∞

�
M þM2 − q2

2r
þ 3M3 − 3Mq2 − 2Ma2

6r2

þ 15M4 − 18M2q2 þ 3q4 − 40M2a2 − 4a2q2 þ 90a4 þ 16αq2

24r3
þO

�
1

r4

��
¼ M; (50)

J ¼ lim
r→∞

�
Ma −

2aq2

3r
−
2aq2ða2 − 10αÞ

15r3
þO

�
1

r4

��

¼ Ma: (51)

Obviously, the quasilocal mass and angular momentum of
the rotating black hole with Weyl corrections (42) coincide
with those in the usual Kerr-Newman black hole spacetime.
The main reason is that these quasilocal mass and angular
momentum are decided by the properties of the surface B at
spatial infinity at where the effects of Weyl corrections are
vanished in the dominant terms. This means that the Wely
corrections in the Lagrangian density (1) do not change the
quasilocal mass and angular momentum of the black
hole (42).

The electric charge of the black hole with Weyl correc-
tion (42) can be obtained by calculating the flux of the
electric field at infinity,

Q ¼ 1

4π

I
S∞

∂LEM

∂F2
FμνdSμν: (52)

Here F2 ¼ 1
4
FμνFμν and dSμν is the area element of a two-

dimensional closed spacelike surface at the spatial infinity
S∞, which has a form

dSμν ¼
1

2

ffiffiffiffiffiffi
−g

p
εμνρσdxρ∧ dxσ; εtrθϕ ¼ 1: (53)

At spatial infinity r → ∞, the potential four-vector of the
electric field of the black hole (42) can be approximated as

At ¼
q
r
−
qa2cos2θ

r3
þ αMq

r4
þO

�
1

r5

�
; Aϕ ¼ qasin2θ

r
−
qa3sin2θcos2θ

r3
þ αMqasin2θ

r4
þO

�
1

r5

�
: (54)

Substituting it into the integral (52), we can obtain

Q ¼ lim
r→∞

�
qþ qa2

3r2
þ 2Mqða2 þ 18αÞ

3r3
−
q3ð3a2 þ 107αÞ

9r4
þO

�
1

r5

��
¼ q: (55)

It indicates that the electric charge of the rotating black
hole with Weyl corrections is still Q ¼ q and the presence
of Weyl corrections also does not affect the electric charge
of the black hole.
Let us now study the properties of such a rotating

charged black hole with Weyl corrections (42). The
position of the black hole horizon is defined by
equation

g203 − g00g33 ¼ 0; (56)

i.e.,

r2 − 2Mrþ a2 þ q2

−
4αq2

45ðr2 þ a2cos2θÞ
�
10 −

40M − 21q2

r2 þ a2cos2θ

�
¼ 0: (57)

It indicates that for α ≠ 0 the radius r� depends on the polar
angle coordinate θ, which is similar to those in the modified
Kerr metrics by the deformation parameter ϵ [40] or the

polymeric function P in loop quantum gravity [41].
Furthermore, the position and the shape of horizons are
defined by the parameters M, a, α and q. For a rotating
charged black hole with Weyl corrections, we find that the
whole parameter space (α-q) can be divided into four
regions for fixed a as shown in Fig. 5. In region I, we find
that both of the inner and outer horizons are topologically
spherical surfaces and these two surfaces never cross each
other. In region II, there exist no horizons and the
singularity is naked entirely. These properties of black
hole are similar to those in the nonrotating black hole with
Weyl corrections. However, we also find that when the
parameters (α, q) lie in region III, the outer horizon
coincides the inner horizon near the north and south poles
and the horizons merge into a closed toroidal surface (see in
the left panel of Fig. 6). When the parameters (α, q) lie in
region IV, the parts of the outer and inner horizons in the
northern hemisphere join together to form a new closed
surface with spherical topology. The similar case also
occurs in the southern hemisphere, and then two new
and disconnected horizons are formed, which is shown in
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the right panel in Fig. 6. These properties of black holes are
not observed in the nonrotating black hole with Weyl
corrections. Moreover, we also note that the value of the
Weyl coupling parameter α is negative in region III and is
positive in region IV, which means that the effects of the
Weyl corrections with positive α on the black hole are quite
different from those in the case with negative α. It is easy for
us to find that properties of the rotating charged black hole
withWeyl corrections (11) are similar to the properties of the
rotating non-Kerr black hole [40,48]. The unique difference
is that when the outer and inner horizons merge into a closed
toroidal surface the singularity is naked in the rotating
charged black hole withWeyl corrections, but it is enveloped
by the toroidal surface in the rotating non-Kerr black hole.

With the increasing Weyl corrections, the value of the upper
limit of q in regions I and III is increasing for α < 0, but the
value of the upper limit of q in regions I and IV is decreasing
for α > 0. Moreover, with the increase of the rotation
parameter a, the range of regions III and IV increases.
Furthermore, we find that as the parameters lie in the region I
(see Fig. 5) the radius of the outer horizon for a black hole
with α > 0 is smaller than that in the case with α < 0, which
is consistent with those in a static and spherically symmetric
black hole spacetime with Weyl corrections (11).
The ergosphere is an important zone around a rotating

black hole, which is bounded by the event horizon rþ and
the outer infinite redshift surface rþ∞. The infinite redshift
surface is determined by g00 ¼ 0, i.e.,
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IV

0.10 0.05 0.00 0.05 0.10

0.94
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q
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0.90
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q

a 0.6
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0.10 0.05 0.00 0.05 0.10
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0.78
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0.82

0.84

0.86

q

FIG. 5 (color online). In the α-q plane, the inner and outer horizons are topologically spherical surfaces without intersection in region
I. As the parameters lie in region II, there does not exist any horizon for black hole with Weyl corrections. The horizons merge into a
closed toroidal surface in region III and the horizons are disconnected in region IV for a black hole with Weyl corrections. The panels
from left to right correspond to the case a ¼ 0.2, 0.4 and 0.6, respectively. Here we set M ¼ 1.

FIG. 6 (color online). Event horizons of a rotating charged black hole with Weyl corrections as the parameters lie in region III or IV.
The left panel is for the black hole with the fixed parameters a ¼ 0.6, α ¼ −0.075 and q ¼ 0.840. The right panel is for the black hole
with the fixed parameters a ¼ 0.6, α ¼ 0.075 and q ¼ 0.762. Here we set M ¼ 1.
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r2 − 2Mrþ q2 þ a2cos2θ

−
4αq2

3ðr2 þ a2cos2θÞ
�
1 −

50M − 26q2

15ðr2 þ a2cos2θÞ
�

¼ 0: (58)

Similarly, the whole parameter space (α-q) can be divided
into three regions to study the properties of the infinite
redshift surface for fixed a, which is shown in Fig. 7. We
can find that the inner and outer infinite redshift surfaces
are topologically spherical surfaces without intersection as
the parameters ðα; qÞ lie in the region I and there is no any
infinite redshift surface as the parameters ðα; qÞ lie in
region II. In region III, the inner and outer infinite redshift

surfaces merge into a new infinite redshift surface with
toroidal topology around the original point, which is shown
in Fig. 8. The new infinite redshift surface becomes more
and more thin and looks like a disk as the rotation
parameter a increases. Comparing with the spacetime with
the negative Weyl coupling constant (i.e., α < 0), the
change of the topological properties of the horizons and
the infinite redshift surfaces become easier in the spacetime
with the positive Weyl coupling constant (i.e., α > 0). For
fixed rotation parameter a, we also note that with the
increasing Weyl corrections, the ergosphere in the equa-
torial plane becomes thick for a black hole with α > 0, but
becomes thin in the case with α < 0, which is shown in

a 0.2
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0.10 0.05 0.00 0.05 0.10
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0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

q

a 0.6

I

II

III

0.10 0.05 0.00 0.05 0.10

0.80

0.85

0.90

0.95

1.00

q

FIG. 7 (color online). In the α-q plane, the inner and outer infinite redshift surfaces are topologically spherical surfaces without
intersection in region I. As the parameters lie in region II, there does not exist any infinite redshift surface for black hole with Weyl
corrections. The infinite redshift surfaces merge into a closed toroidal surface in region III. The panels from left to right correspond to the
case a ¼ 0.2, 0.4 and 0.6, respectively. Here we set M ¼ 1.

FIG. 8 (color online). The infinite redshift surfaces of a rotating charged black hole with Weyl corrections as the parameters lie in
region III. The left panel is for the black hole with the fixed parameters a ¼ 0.6, α ¼ −0.075 and q ¼ 0.98. The right panel is for the
black hole with the fixed parameters a ¼ 0.6, α ¼ 0.075 and q ¼ 0.91. Here we set M ¼ 1.
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Fig. 9. It means that with the increase of the Weyl
corrections the energy extraction becomes easier in the
background of a black hole with α > 0, but more difficult in
the background of a black hole with α < 0.

IV. SUMMARY

In this paper we present first a four-dimensional spheri-
cal symmetric black hole with small Weyl corrections and
find that theWeyl coupling parameter α affects the radius of
the event horizon, Hawking temperature, and Hawking
radiation of the black hole. Moreover, we find that with the
increasingWeyl corrections, the region of the event horizon
existence for the black hole increases for the negative α and
decreases for the positive α. Moreover, we also obtain a
rotating charged black hole with weak Weyl corrections by
the method of complex coordinate transformation. We find
that presence of Weyl corrections makes the black hole
horizon a function of the polar angle coordinate θ, which
brings some special properties of the black hole horizon. In
particular, the rotating black hole with α < 0 develops two
disconnected topologically spherical horizons above some
critical spin and charge parameters. In the case with α > 0,
the horizon looks more like a toroidal surface above some
critical a and q. Comparing with the spacetime with α < 0,
the change of the topological properties of the horizons
becomes easier in the spacetime with α > 0. We also
analyze the dependence of the ergosphere on the Weyl

coupling parameter α and find that the ergosphere in the
equatorial plane becomes thick for a black hole with α > 0,
but becomes thin in the case with α < 0. It means that with
the increase of the Weyl corrections the energy extraction
becomes easier in the background of a black hole with
α > 0, but more difficult in the background of a black hole
with α < 0.
Finally, we must point out that we here have not

discussed the thermodynamic properties of the rotating
charged black hole with the Weyl corrections. The main
reason is that the radius of black hole horizon is a function
of the polar angle coordinate θ, which reveals that the
surface gravity κ is not a well-defined quantity at the
Killing horizon.
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