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We present a new approach to discuss two-dimensional chiral and nonchiral hydrodynamics with gauge
and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are
obtained. For the chiral theory, the constitutive relations may be put in the ideal (chiral) fluid form, whereas
the constitutive relations corresponding to nonchiral case do not take the ideal fluid form. The constitutive
relations in the presence of both gravity and gauge sectors are new. These expressions, in the absence of the
gauge sector, reproduce the results obtained in the gradient expansion approach.
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I. INTRODUCTION

Hydrodynamics is basically a finite temperature quan-
tum field theory in the limit of large time and length scales
[1]. Certain conservation laws govern it that are manifested
by the global symmetries of the underlying theory. For
instance, the conservation of the energy-momentum tensor
invokes the spacetime symmetry, while the conservation of
charge current is yielded by the charge symmetry. The
energy-momentum tensor and the U(1) current have to
satisfy the conservation equations. The constitutive equa-
tions give an explicit form for the one-point functions of the
energy-momentum tensor and the U(1) current in terms of
the hydrodynamic variables, e.g., velocity, temperature,
chemical potential, etc. These constitutive equations are
traditionally required to make the local production of
entropy positive, in accordance with a local version of
the second law of thermodynamics.
Recently, investigations on fluid dynamics in the pres-

ence of anomalies have received considerable attention
[2–13]. This is important because one expects that the
standard picture might nontrivially be modified in the
presence of the quantum anomalies. In this paper we
analyze the structure of constitutive relations in the pres-
ence of both gauge and gravitational anomalies. The latter
includes a diffeomorphism anomaly (violation of general
coordinate invariance) as well as a trace anomaly (violation
of conformal invariance). The present analysis is confined
to (1þ 1) dimensions. Incidentally two dimensions have
certain peculiarities which make it feasible to abstract
various results that may not be possible in higher dimen-
sions. It is well known that the two-dimensional metric, in
general, can be expressed in a conformally flat form.

Therefore, the effective action for a field under this back-
ground is exactly obtainable, and one does not need the
derivative expansion method. This ensures the transparency
of the physics of the problem at each stage of the
computation.
In this paper, we discuss both the nonchiral and chiral

theories. At the classical level, there are no anomalies. For a
quantum theory, a one-loop computation leads to anoma-
lies. In the case of a nonchiral theory (i.e., where ordinary
fermions are coupled to the gauge and/or gravity sector),
the anomaly is a manifestation of the clash between general
coordinate invariance and conformal invariance. For a
gravitational theory, usually the former is retained at the
expense of the latter. Hence, one has to appropriately
account for the conformal (trace) anomaly. A chiral theory,
on the other hand, has both diffeomorphism and conformal
anomalies, since it is not possible to preserve any of the
symmetries at the quantum level.
We develop a new method to discuss anomalous hydro-

dynamics in two dimensions that includes both gauge and
gravity sectors. We start from the anomalous energy-
momentum tensor and current obtained from the corre-
sponding effective action, and then the components are
evaluated explicitly for a general static metric in null
coordinates. Solutions of the anomalous expressions
involve integration constants. These constants crop up in
the various expressions for the constitutive relations, which
are found by introducing the appropriate fluid variables, for
the stress tensor and the gauge current. The constitutive
relations found here are exact and do not require any
gradient expansion as happens in higher dimensions. These
relations are new and have not been posited earlier in the
literature [5–12]. Moreover, for the chiral theory, the
constitutive relations may be put in a form that resembles
the structure for an ideal chiral fluid. The constitutive
relation for an ideal chiral fluid, it may be recalled, has a
form similar to the usual ideal fluid [1] but with the velocity
vector replaced by the chiral velocity vector [13]. It is
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reassuring to note that our results agree with those found by
the derivative expansion approach when the gauge sector is
absent [5]. Incidentally, in the presence of this sector,
results are not available in the gradient expansion method.
The organization of our paper is as follows. A general

setup for our main purpose is presented in the next section.
In Sec. III, we provide a brief discussion, some of which
may not be that well known, on two-dimensional gauge and
gravitational anomalies. Then we find the constitutive
relations for the nonchiral case in Sec. IV. The chiral case
is analyzed in the next section. Section VI is devoted to a
comparison with the gradient expansion approach. The
constitutive relations obtained by us contained an arbitrary
constant. For a particular value of this constant, our
expressions (in the absence of a gauge field) reproduce
those found by the derivative expansion method. Inclusion
of gauge fields has not been considered in full in the
derivative expansion method; hence, a comparison with our
result is not feasible. Finally, we conclude in Sec. VII. We
also added an Appendix.

II. METRIC AND GENERAL SETUP

Here we shall consider a (1þ 1) general static spacetime.
Also the explicit components of the comoving velocity
vector will be calculated under this background, which is
necessary for our main purpose. All the required expres-
sions will sometimes be expressed in null coordinates to
make them more transparent.
The static metric in (1þ 1) dimensions can be taken in

the following form:

ds2 ¼ −e2σðrÞdt2 þ g11dr2: (1)

It has a timelike Killing vector, and the Killing horizon is
given by the solution of the equation e2σðrÞjr0 ¼ 0. The
Uð1Þ gauge fields Aa are of the linear form

Aa ¼ ðAtðrÞ; 0Þ: (2)

The null coordinates (u; v) are defined as

u ¼ t − r�; v ¼ tþ r�; (3)

where the tortoise coordinate r� is given by dr� ¼
− ffiffiffiffiffiffi

g11
p

e−σdr. In these coordinates, the metric takes the
following off-diagonal form:

ds2 ¼ −
e2σ

2
ðdudvþ dvduÞ: (4)

To express the anomalous energy-momentum tensor in
terms of fluid variables, we adopt the comoving frame. In
this frame, the velocity vector of a fluid ua is normalized as

uaua ¼ −1: (5)

Note that the norm of the velocity has to be negative since
we are considering timelike trajectories. The absolute
normalization is fixed to unity by choosing the comoving
frame. Subjected to the above condition and the metric (1),
the usual ansatz for the velocity follows,

ua ¼ e−σð1; 0Þ; ua ¼ −eσð1; 0Þ; (6)

with a ¼ t; r. Correspondingly, in null coordinates (u; v),
this transforms to the following form:

ua ¼ e−σð1; 1Þ; ua ¼ −
eσ

2
ð1; 1Þ: (7)

With the above expressions for the velocity vector, the
following combinations of fluid variables can be explicitly
expressed in terms of the metric coefficients,

ua∇b∇aub ¼
1

2g211
ð2g11σ00 þ 2g11σ02 − σ0g011Þ;

ua∇b∇bua ¼
σ02

g11
; (8)

which are necessary to find the constitutive relations.
To discuss the (1þ 1)-dimensional chiral theory, in

which both the diffeomorphism and trace anomalies appear,
we define chiral velocity as

uðcÞa ¼ ua − ~ua; (9)

where ~ua ¼ ϵ̄abub is the dual to ua and ϵ̄ab is an anti-
symmetric tensor with ϵ̄ab ¼ ffiffiffiffiffiffi−gp

ϵab and ϵ̄ab ¼ ϵab=
ffiffiffiffiffiffi−gp

.
In null coordinates the components are given by

ϵuv ¼ 1; ϵuv ¼ −1; uðcÞa ¼ −eσð1; 0Þ: (10)

Note that the definition (9) of the chiral velocity uðcÞa
ensures that it satisfies the familiar chiral property in two
dimensions:

uðcÞa ¼ −ϵ̄abuðcÞb: (11)

III. REVIEW OF GAUGE AND
GRAVITATIONAL ANOMALIES

An anomaly is a breakdown of some classical symmetry
upon quantization. It may have different manifestations, but
generally speaking these are connected. A violation of
gauge symmetry is revealed by a nonconservation of the
gauge current (gauge anomaly) or, alternatively, by the
presence of anomalous terms in the algebra of currents.
These anomalous terms are related to the gauge anomaly.
Likewise, a violation of diffeomorphism symmetry leads to
the nonconservation of the stress tensor.
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Of particular significance are theories in which chiral
symmetries are gauged. The equations of motion show that
the chiral currents are covariantly conserved. However,
quantum effects destroy this feature as may be checked by
doing a one-loop computation. Algebraically, this may be
expressed as

hDμJμia ¼ ∂μhJμai − fabcAb
μhJμci ¼ Ga; (12)

where the average is interpreted to be taken over the
fermionic degrees of freedom appearing in the chiral
current Jaμ and the other symbols have their usual meaning.
Ga is called the anomaly.
There are different ways of defining the averaged current

corresponding to different regularization choices. Among
the various possibilities, two are outstanding. The first and
perhaps the more common way is to interpret the averaged
current as the functional derivative of an effective actionW,

hJaμðxÞi ¼
δW

δAaμðxÞ : (13)

This current satisfies the integrability condition,

δJμaðxÞ
δAb

νðx0Þ
¼ δJνbðx0Þ

δAa
μðxÞ

: (14)

A direct consequence of this relation is that the anomaly
of this current satisfies the Wess–Zumino consistency
condition. To obtain this condition, let us introduce the
operator

LaðxÞ ¼ ∂μ
δ

δAa
μðxÞ

− fabcAb
μðxÞ

δ

δAc
μðxÞ

; (15)

which is basically the generator of the infinitesimal gauge
transformation. From Eqs. (12), (13), and (15), it follows
that

LaðxÞW ¼ GaðxÞ (16)

so that the existence of the anomaly is a statement about the
lack of gauge invariance of the one-loop effective action.
The generators satisfy the closed algebra,

½LaðxÞ; LbðyÞ� ¼ fabcδðx − yÞLcðxÞ: (17)

Acting on W and using Eq. (16) immediately yields

LaðxÞGbðyÞ − LbðyÞGaðxÞ ¼ fabcδðx − yÞGcðxÞ: (18)

This is the Wess–Zumino condition. It is now clear that the
anomaly of the current (13) defined through the effective
action must satisfy this consistency condition and is hence
called the consistent anomaly.

The other way of defining the averaged current is to
regularize it by a gauge covariant method. In that case the
current transforms covariantly under the gauge transforma-
tion so that

LaðxÞJbμðyÞ ¼ fabcδðx − yÞJcμ: (19)

It is then simple to show, by taking the covariant divergence
of both sides of this equation, that the corresponding
anomaly Ga also transforms covariantly,

LaðxÞGb
covðyÞ ¼ fabcδðx − yÞGc

cov: (20)

This anomaly is called the covariant anomaly. It is easy to
see, by an appropriate change of indices, that this anomaly
satisfies the condition

LaðxÞGb
covðyÞ − LbðyÞGa

covðxÞ ¼ 2fabcδðx − yÞGc
covðxÞ:

(21)

Comparison with Eq. (18) immediately shows that the
covariant anomaly is incompatible with the Wess–Zumino
condition; it is off by a factor of 2. This analysis illustrates
the difference between covariant and consistent expres-
sions. While the covariant anomaly transforms covariantly
under a gauge transformation but does not satisfy the
Wess–Zumino condition, the behavior of the consistent
anomaly is just the reverse. It satisfies the Wess–Zumino
condition but does not transform covariantly. Since currents
and/or stress tensors are only defined modulo local counter-
terms manifesting the regularization ambiguities, covariant
and consistent expressions are also related by such counter-
terms. These local polynomials were obtained by using
either differential geometric methods [14] or by dynamical
means [15,16].
The above discussion is simply illuminated by means of

the two-dimensional example, which is the case considered
here. Using a covariant regularization, the covariant
(gauge) anomaly is found as1

Gcov ¼
1

4π
ϵμνFμν; (22)

where we have considered the gauge group to be Abelian.
The Euclidean effective action is defined as [15,16]

W ¼
Z

1

0

dg
Z

d2xAμðxÞJðgÞμ ðxÞ; (23)

1A word about the notation. Spacetime indices are denoted in
this section by Greek letters μ, ν, etc. In other sections, it is
denoted by Latin a; b, etc. Here a; b stand for the non-Abelian
group indices.
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where the superscript “g” indicates that this is the coupling
constant to be used in the construction of the current JμðxÞ.
The above equation is a formal definition of W. To
concretize it, one has to regularize the current. Let us
regularize it covariantly. Then, under an Abelian gauge
transformation, Aμ → Aμ − ∂μα,

Z
d2x

�
∂μ

δW
δAμ

�
α ¼

Z
1

0

dg
Z

d2xα∂μJ
ðgÞ
μ ðxÞ: (24)

Since α is arbitrary, equating the integrands yields

∂μ
δW
δAμ

¼
Z

1

0

dg∂μJ
ðgÞ
μ ðxÞ: (25)

Inserting the value of the covariant anomaly (22) yields the
consistent anomaly,

∂μ
δW
δAμ

¼ 1

8π
ϵμνFμν; (26)

where the half factor comes from the integration over g
since it occurs linearly in Fμνð¼ gð∂μAν − ∂νAμÞÞ. Indeed,
in any arbitrary even d ¼ 2n dimensions the (Abelian)
consistent and covariant anomalies are related as

Gcons ¼
1

nþ 1
Gcov (27)

since F involves g homogeneously to the nth power. It is
now straightforward to check that the local polynomial
connecting the consistent and covariant currents is given by

Jconsμ ¼ δW
δAμ

¼ Jcovμ −
1

4π
ϵμνAν (28)

such that compatibility with Eqs. (22) and (26) is
established.
We now make an important point. Initially Eq. (23) was

defined by taking Jμ to be covariant. If we take Jμ to be
consistent, then the result remains unaffected since the
difference vanishes,

Z
1

0

dg
Z

d2xAμðϵμνAνÞ ¼ 0: (29)

This shows that the effective action W remains the same
whether the current is regularized covariantly or consis-
tently. It is a general result valid in any dimensions [15,16].
Let us next consider gravitational anomalies. Such

anomalies occur in 4nþ 2 dimensions ðn ¼ 0; 1; 2…Þ in
contrast to gauge anomalies that occur in 2n dimensions
ðn ¼ 1; 2…Þ [17,18]. This shows that two dimensions are
slightly special. It is the simplest spacetime dimension in
which both gauge and gravitational anomalies may be

present. Since our subsequent analysis will be done for two
dimensions, we will restrict our discussion on gravitational
anomalies also for this case. Although the results are
known, this presentation is given primarily for two reasons.
First, the results are obtained in a simple and elementary
way using special properties of two dimensions. Second,
this approach, discussed previously [19,20] in fragmented
parts, is not particularly well known.
We shall derive the result for the two-dimensional

gravitational (diffeomorphism) anomaly that is known to
exist in a chiral theory. The anomaly will be obtained
directly in the covariant form, which will be exploited in
later sections, to derive the constitutive relations. As
mentioned previously different manifestations of anomalies
are related. Here we show the obtention of the diffeo-
morphism anomaly in a chiral theory from the conformal
(trace) anomaly in a nonchiral (vectorlike) theory. In the
latter theory, it is well known that it is not possible, at the
quantum level, to simultaneously preserve both diffeomor-
ohism and conformal symmetries that are present classi-
cally. Since diffeomorphism invariance is regarded as more
fundamental in a gravitational theory, this is retained at the
quantum level at the expense of conformal invariance. The
breakdown of conformal invariance leads to the trace
anomaly,

Tμ
μ ¼ R

24π
; (30)

where R is the Ricci scalar.
Now the energy-momentum tensor in two dimensions

can decomposed into a traceful and a traceless parts as

Tμν ¼
R
48π

gμν þ θμν; (31)

where θμν is symmetric ðθμν ¼ θνμÞ to preserve the sym-
metric property of Tμν and traceless θμμ ¼ 0. Taking the
trace of Eq. (31) then yields Eq. (30). Furthermore, since
general coordinate invariance is preserved ð▽μTμν ¼ 0Þ, it
implies the following constraint on θμν:

▽μθμν ¼ −
1

48π
▽νR: (32)

The stress tensor (31) may be interpreted as the sum of the
contributions from the right and left moving modes.
Moreover, the left-right symmetry implies that the con-
tribution from one mode is equal to that from the other
mode, except that the u and v variables have to be

interchanged. Since Tμν is symmetric, we have Tμν ¼
TðRÞ
μν þ TðLÞ

μν with

TRðLÞ
μν ¼ R

96π
gμν þ θRðLÞμν ; (33)
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where θμν¼θðRÞμν þθðLÞμν (in analogy with Tμν). The chirality

(or holomorphy) condition on TRðLÞ
μν implies the following

equality [19,20]:

TRðLÞ
μν ¼ −ðþÞ 1

2
ðϵ̄μσT σ RðLÞ

ν þ ϵ̄νσT
σ RðLÞ
μ Þ þ 1

2
gμνT

αRðLÞ
α :

(34)

Hence, we have the following equations for the right and
left modes:

TR
vv ¼ TL

uu ¼ 0; TR
uu ¼ TL

vv ≠ 0: (35)

Expectedly, the L ↔ R symmetry under the interchange
u ↔ v is preserved. The above conditions along with the
tracelessness of θμν yield further relations that follow from
Eq. (33):

θRuv ¼ θRvv ¼ 0; θRuu ≠ 0; θLuv ¼ θLuu ¼ 0; θLvv ≠ 0:

(36)

With this input it is possible to deduce the various
anomalies. The trace anomaly for the chiral theory is
quickly obtained from (33)

Tμ ðRÞ
μ ¼ Tμ ðLÞ

μ ¼ R
48π

; (37)

which is half the result for the usual theory. It needs a little
bit more algebra to derive the diffeomorphism anomaly for
the chiral components. Taking the right mode and applying
the covariant derivative on Eq. (33) yields

∇μTR
μν ¼

1

96π
∇νRþ∇μθRμν: (38)

Next, using Eqs. (32) and (36) for the R mode, we find

∇μθRμu ¼
1

48π
∇uR; ∇μθRμv ¼ 0: (39)

Inserting these expressions in Eq. (38), we obtain for ν ¼ u
and ν ¼ v

∇μTR
μu ¼

1

96π
∇uR −

1

48π
∇uR ¼ −

1

96π
∇uR (40)

and

∇μTR
μv ¼

1

96π
∇vR: (41)

Combining them yields

∇μTR
μν ¼

1

96π
ϵ̄νσ∇σR; (42)

which is the cherished covariant gravitational anomaly. One
can repeat the calculation for the left mode or directly
obtain the final result by using the L ↔ R symmetry under
u ↔ v. The result is the same as Eq. (42) except for a
change in sign. Since covariant expressions have been used
throughout, the final result is also covariant. It is possible to
obtain the consistent anomaly by adding local polynomials.
However, this issue need not concern us since we will be
dealing with the covariant anomaly only.
To summarize, whereas the nonchiral theory has a

trace anomaly (30) but no diffeomorphism anomaly, the
chiral theory admits both types of anomalies (37), (42).
Physically, this is related to the unidirectional property of a
chiral theory [20,21]. This distinction has an important role
in the structure of the constitutive relations.

IV. ANOMALOUS CONSTITUTIVE RELATIONS
IN HYDRODYNAMICS

As elaborated in the previous section, for the nonchiral
theory, after quantization, either the trace or the diffeo-
morphism anomaly exists. Usually, one likes to retain the
diffeomorphism symmetry at the cost of the conformal
symmetry. In that case, one has the trace anomaly. In
(1þ 1) dimension the corresponding effective action is
given by the Polyakov form [22],

SðgÞP ¼ 1

96π

Z
d2xd2y

ffiffiffiffiffiffi
−g

p
RðxÞ 1

□
ðx; yÞ ffiffiffiffiffiffi

−g
p

RðyÞ; (43)

SUð1Þ
P ¼ e2

2π

Z
d2xd2y

ffiffiffiffiffiffi
−g

p
ϵ̄ab∂aAbðxÞ

×
1

□
ðx; yÞ ffiffiffiffiffiffi

−g
p

ϵ̄cd∂cAdðyÞ; (44)

where SðgÞP is the effective action for the gravity sector,

whereas SUð1Þ
P is that for the gauge sector. The total action is

SP ¼ SðgÞP þ SUð1Þ
P . 1

□
is the inverse of d’Alembertian

□ ¼ ∇a∇a ¼ 1ffiffiffiffi−gp ∂að ffiffiffiffiffiffi−gp
gab∂bÞ. This action is nonlocal,

but it can be written in a local form by introducing auxiliary
fields Φ and B, defined as

ΦðxÞ ¼
Z

d2y
1

□
ðx; yÞ ffiffiffiffiffiffi

−g
p

RðyÞ; (45)

BðxÞ ¼
Z

d2y
1

□
ðx; yÞ ffiffiffiffiffiffi

−g
p

ϵ̄ab∂aAbðyÞ: (46)

Then

SðgÞP ¼ 1

96π

Z
d2x

ffiffiffiffiffiffi
−g

p ð−Φ□Φþ 2ΦRÞ; (47)

SUð1Þ
P ¼ e2

2π

Z
d2x

ffiffiffiffiffiffi
−g

p ð−B□Bþ 2ϵ̄ab∂aAbBÞ: (48)
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The above structure of the effective action is the general
form for theories in which usual (and not chiral) fermions
or scalars are coupled to the gauge and gravitational fields.
The chiral case is considered in the next section. We prefer
to discuss the models, case by case, in order to highlight the
interplay between the conformal and diffeomorphism
anomalies, apart from generating exact results.
The two-dimensional anomalous energy-momentum

tensor and the Uð1Þ current are given by

TðgÞ
ab ¼ −

2ffiffiffiffiffiffi−gp δSðgÞP

δgab

¼ 1

48π

�
∇aΦ∇bΦ − 2∇a∇bΦ

þ gab

�
2R −

1

2
∇cΦ∇cΦ

��
; (49)

TUð1Þ
ab ¼ −

2ffiffiffiffiffiffi−gp δSUð1Þ
P

δgab
¼ e2

π

�
∇aB∇bB −

1

2
gab∇cB∇cB

�

(50)

and

Ja ¼ 1ffiffiffiffiffiffi−gp δSUð1Þ
p

δAa
¼ e2

π
ϵ̄ab∂bB; (51)

respectively. The auxiliary fields Φ and B satisfy the
following equations of motion:

□Φ ¼ R; □B ¼ ϵ̄ab∂aAb: (52)

The total energy-momentum tensor is Tab ¼ TðgÞ
ab þ TUð1Þ

ab .
Here R is the two-dimensional Ricci scalar, which, for the
metric (1), is given by

R ¼ 1

g211
ðg011σ0 − 2g11σ02 − 2g11σ00Þ: (53)

It turns out that Eq. (49) leads to ∇aTabðgÞ ¼ 0 and non-
vanishing of the trace, whereas Eq. (50) yields ∇bTabUð1Þ ¼
JbFab and vanishing of the trace of the stress tensor.
Therefore, the explicit form of the trace anomaly of the
theory is solely given by the gravity part. Hence, we have

TaðgÞ
a ¼ R

24π
; TaUð1Þ

a ¼ 0: (54)

Next, we shall evaluate the explicit expressions for the
components of the energy-momentum tensor and Uð1Þ
current in null coordinates for the background (4).
The (uv) component of stress tensor is easy to find

because in null coordinates it is proportional to the trace.
Therefore, from Eq. (54) we obtain

TðgÞ
uv ¼ −

e2σR
96π

; TUð1Þ
uv ¼ 0: (55)

To find the other components, we need to start from
Eqs. (49) and (50), where the auxiliary fields are deter-
mined by the solutions of Eq. (52). The solutions of
Eq. (52), for the background (1), turn out to be

Φ ¼ Φ0ðrÞ − 4ptþ q; ∂rΦ0 ¼ −2σ0 þ z
ffiffiffiffiffiffi
g11

p
e−σ;

(56)

B¼B0ðrÞþPtþQ; ∂rB0ðrÞ ¼−e−σ
ffiffiffiffiffiffi
g11

p ðAtðrÞþCÞ;
(57)

where p, q, z, P, Q, and C are constants. A detailed
analysis to find the solutions is given in the Appendix. Then
Eqs. (49) and (50) yield

TðgÞ
uu ¼ e2σ

96πg211
ð2σ00g11 − σ0g011Þ þ Cuu; (58)

TðgÞ
vv ¼ e2σ

96πg211
ð2σ00g11 − σ0g011Þ þ Cvv; (59)

and

TUð1Þ
uu ¼ e2

4π
ðAt − PþCÞ2; TUð1Þ

vv ¼ e2

4π
ðAt þ PþCÞ2;

(60)

where Cuu and Cvv are constants, made out of p and z.
Similarly, the components of the current are

Ju ¼
e2

2π
ðAt − Pþ CÞ; Jv ¼

e2

2π
ðAt þ Pþ CÞ: (61)

We now construct the constitutive relation for the
energy-momentum tensor of anomalous hydrodynamics.
This will be done as follows. In the comoving frame, the
fluid velocity components are given in Eq. (7). Using
Eqs. (7), (8), and (53), apart from also using the Tolman
relation for the temperature T ¼ T0e−σ , where T0 is the
equilibrium temperature, and the chemical potential,
μ ¼ Ate−σ , the constitutive relations may be determined.
The various components can be written in the covariant
forms

TðgÞ
ab ¼

�
1

12π
ðuc∇d − ud∇cÞ∇cud þ 4C̄T2

�
uaub

−
�

1

24π
uc∇d∇duc − 2C̄T2

�
gab; (62)
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TUð1Þ
ab ¼

�
e2

2π
ðμ2 þ C̄1

2T2Þ
�
ð2uaub þ gabÞ

þ
�
e2

π
μC̄1T

�
ðua ~ub þ ~uaubÞ; (63)

Ja ¼ −
e2

π

�
μþ C

T
T0

�
ua −

�
e2P
π

�
T
T0

~ua

¼ −
e2

π
ðμþ C̄1TÞua; (64)

where C̄ ¼ CuuT0
−2, C̄1 ¼ ðC − PÞT0

−1 for the uu com-
ponent and C̄ ¼ CvvT0

−2, C̄1 ¼ ðPþ CÞT0
−1 for the vv

component.
The above constitutive relations (62–64) are new find-

ings. For the chargeless case, the relations (62–64) repro-
duce the results obtained by the derivative expansion
approach [11], for the choice C̄ ¼ π

12
. Inclusion of charges

in that approach requires the consideration of higher-order
terms, which has not been done. We will further elaborate
on this in the next section.

V. ANOMALOUS CONSTITUTIVE RELATIONS
IN CHIRAL HYDRODYNAMICS

In this section we use the energy-momentum tensor and
the gauge current to derive anomalous constitutive relations
in chiral hydrodynamics. For the chiral gauge theory, as
already mentioned, after quantization we have both the
trace and diffeomorphism anomaly, where the trace
anomaly comes only from the gravity part.
The two-dimensional chiral effective action with Uð1Þ

gauge field is given by [23,24]

ΓðHÞ ¼ −
1

3
zðωÞ þ zðAÞ; (65)

where

zðvÞ ¼ 1

4π

Z
d2xd2yϵab∂avbðxÞ

1

□
ðx; yÞ

× ∂c½ðϵcd þ
ffiffiffiffiffiffi
−g

p
gcdÞvdðyÞ�: (66)

The spin connection and the gauge field are denoted,
respectively, by ωa and Aa. From a variation of the effective
action, the consistent forms for the energy-momentum
tensor and the gauge current are obtained. However, we
are interested in the covariant forms, so appropriate local
polynomials have to be added. This is possible because
energy-momentum tensors and currents are only defined
modulo local polynomials. Then we have

δΓH ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
δgabTab þ δAaJa

�
þ l; (67)

where the local polynomial is given by [23,24]

l ¼ 1

4π

Z
d2xϵab

�
AaδAb −

1

3
ωaδωb −

1

24
Rezaδe

z
b

�
: (68)

Here eza is the zweibein vector, which fixes the metric gab.
Including the effect of the local polynomial, the two-

dimensional covariant chiral energy-momentum tensor
can easily be determined by variation of the effective
action (67) [24],

TðgÞ
ab ¼ 1

4π

�
1

48
DaΦDbΦ −

1

24
DaDbΦþ 1

24
gabR

�
; (69)

TUð1Þ
ab ¼ e2

4π
ðDaBDbBÞ; (70)

whereas the covariant chiral gauge current is given by

Ja ¼ −
e2

2π
DaB: (71)

The total energy-momentum tensor is Tab ¼ TðgÞ
ab þ TUð1Þ

ab .
The auxiliary fields, Φ and B, are again determined by the
solutions of Eq. (52), which are Eqs. (56) and (57). The
chiral nature of Tab and Ja are manifested by the presence
of the chiral covariant derivative Da that is defined in terms
of usual covariant derivative ∇a,

Da ¼ ∇a − ϵ̄ab∇b ¼ −ϵ̄abDb: (72)

Based on the above identity, it is possible to show the
properties

Tab ¼ −
1

2
ðϵ̄acTc

b þ ϵ̄bcTc
aÞ þ

1

2
gabTc

c; Ja ¼ −ϵ̄abJb;

(73)

which manifest the chiral nature of Tab and Ja.
It is easy to check that in null coordinatesDu ¼ 2∇u and

Dv ¼ 0, and hence this corresponds to the outgoing modes.
The above stress tensor leads to both trace and diffeo-
morphism anomalies. The trace anomaly again comes from
the gravity part alone:

TaðgÞ
a ¼ R

48π
; TaUð1Þ

a ¼ 0: (74)

These results are simply obtained by exploiting the chirality
condition (72). The stress tensor satisfies the covariant
conservation law,

∇bTab ¼ ϵ̄ab

96π
∇bRþ JbFab; (75)

where Fab ¼ ∇aAb −∇bAa is the gauge field strength. The
first term on the right is the covariant diffeomorphism
anomaly, while the second is the usual Lorentz force term.
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Now we will determine the expressions for the
components of Tab in null coordinate ðu; vÞ. Here, as
earlier, the (uv) components are determined from the
trace expression (74), whereas the other components are
found out from Eqs. (69) and (70) with the use of
Eqs. (56) and (57):

TðgÞ
uu ¼ e2σ

96πg211
ð2σ00g11 − σ0g011Þ þ Cuu;

TðgÞ
uv ¼ −

e2σR
192π

; TðgÞ
vv ¼ 0; (76)

TUð1Þ
uu ¼ e2

4π
ðP − At − CÞ2; TUð1Þ

vv ¼ 0; TUð1Þ
uv ¼ 0:

(77)

Similarly, the components of the current are

Ju ¼
e2

2π
ðAt − Pþ CÞ; Jv ¼ 0: (78)

Relations given in Eqs. (76) and (77) yield the expression
for the covariant energy-momentum tensor with the U(1)
current in chiral hydrodynamics.
Finally we deduce the constitutive relations of a chiral

fluid in the comoving frame. In this frame the chiral fluid
velocity is given in Eq. (9) and fluid variables determined in
Eq. (8). Therefore, the components can be expressed in the
forms

TðgÞ
ab ¼

�
1

48π
ðuc∇d − ud∇cÞ∇cud þ e−2σCuu

�

× ð2uaub − ua ~ub − ~uaubÞ

−
�

1

48π
ðuc∇d∇ducÞ − e−2σCuu

�
gab; (79)

TUð1Þ
ab ¼ e2

4π

�
μ2 þ C1μe−σ þ

C1
2

4
e−2σ

�

× ð2uaub − ua ~ub − ~uaub þ gabÞ; (80)

Ja ¼ −
e2

2π

�
μþ C1

2
e−σ

�
uðcÞa ; (81)

where, at an intermediate step, we have used the identity

~ua ~ub − uaub ¼ gab: (82)

It is now shown that the above constitutive relations can be
put in the corresponding forms for an ideal chiral fluid.
Let us first recall that the constitutive relation for an ideal

chiral fluid is different from the usual expression. To
account for the chiral property, it is necessary to replace
the velocity vectors by chiral velocity vectors [13]. Once
this is done, the relevant constitutive relation becomes

Tab ¼ ðϵc þ PcÞuðcÞa uðcÞb þ Pcgab; (83)

where uðcÞa is defined in Eq. (9). The quantities ϵc and Pc

may be regarded as mimicking the energy density and
pressure, respectively, that appear in the (standard)
contribution to the ideal stress tensor,

T0
ab ¼ ðϵþ PÞuaub þ Pgab; (84)

satisfying ∇aT0
ab ¼ 0. The total stress tensor,2 is a sum of

the contributions from the diffeomorphism-invariant part
(T0

ab) and the anomalous part (Tab),

TðtotalÞ
ab ¼ T0

ab þ Tab: (85)

It is straightforward to verify the holomorphy condition
(34) for Eq. (83). Using Eq. (9) the ideal chiral constitutive
relation (83) is written as

Tab ¼ ðϵc þ PcÞð2uaub − ua ~ub − ~uaubÞ þ ðϵc þ 2PcÞgab:
(86)

As done in the last section, we introduce the Tolman
relation T ¼ T0e−σ and exploit Eqs. (79) and (80) to write
the energy-momentum tensor as

Tab ¼ TðgÞ
ab þ TUð1Þ

ab

¼
�

1

48π
ðuc∇d − ud∇cÞ∇cud þ C̄T2 þ e2

4π

�
μ2 þ C̄1μT þ C̄1

2T2

4

��
ð2uaub − ua ~ub − ~uaubÞ

þ
�
e2

4π

�
μ2 þ C̄1μT þ C̄1

2T2

4

�
þ C̄T2 −

1

48π
ðuc∇d∇ducÞ

�
gab; (87)

2The constitutive relations in the previous section have to be interpreted similarly. Expressions (62–64) yield only the anomalous part.
However, contrary to the chiral case, these cannot be expressed in the form (83).
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where C̄¼CuuT0
−2 and C̄1¼2ðC−PÞT0

−1. Equation (87)
reproduces Eq. (86) with the following identifications:

ϵc ¼ 1

48π
ð2uc∇d − ud∇cÞ∇cud þ C̄T2

þ e2

4π

�
μ2 þ C̄1μT þ C̄1

2T2

4

�
; (88)

Pc ¼ −
1

48π
ðuc∇d∇cudÞ: (89)

Note that in the chiral case the contribution to Pc from
the gauge field is zero. Also, the constitutive relation
(81) for the current is manifestly in the form of an ideal
chiral fluid relation. Constitutive relations done in this
section are general and exact. In the absence of a gauge
field, the relation (87) reproduces the result of Ref. [13]
as well as that found by the gradient expansion
method [11].
We note that although εc and Pc contain derivative/

dissipative terms we refer to the relation (83) as ideal
because it has a structural resemblance with the usual ideal
form. The quantities εc andPc are not ideal in the sense that
they include dissipation.

VI. COMPARISON WITH DERIVATIVE
EXPANSION APPROACH

In this section we make a brief comparison with the
derivative expansion approach that is a favored approach
in the context of anomalous hydrodynamics. This would
also help in putting our analysis in a proper perspective.
The one-point function of the covariant stress tensor is

given by

Tab ¼ εuaub þ P ~ua ~ub þ θð ~uaub þ ua ~ubÞ; (90)

which is the general form for a symmetric second rank
tensor constructed from the velocity vector ua and its dual
~ua ¼ ϵ̄abub. The explicit values for ε, P, and θ are provided
by the gradient expansion scheme as [11]

ε ¼ p0T2 þ Cwðub∇a∇aubÞ þ 2Cwðua∇b − ub∇aÞ∇aub

P ¼ p0T2 − Cwðub∇a∇aubÞ
θ ¼ CT2 − 2Cgðua∇b − ub∇aÞ∇aub; (91)

where, for simplicity, we consider the chargeless case.
The problems of including charge within this scheme
will be highlighted later. Here Cw and Cg are the normali-
zation factors of the conformal (trace) and gravitational
(diffeomorphism) anomalies. Likewise, p0 and C are
certain response parameters that are undetermined for
the moment. To determine them it is essential to use earlier
results from various (1þ 1)-dimensional conformal field
theories. One obtains

p0 ¼ 4π2Cw; C ¼ −8π2Cg: (92)

It is now feasible to deduce the constitutive relation for
the stress tensor. Let us first consider the chiral case. Here
Cw ¼ 1

48π ¼ 2Cg as seen from Eqs. (74) and (75). The
response parameters are found to be

p0 ¼
π

12
¼ −C: (93)

Inserting these values in Eq. (91) and using the resulting
expressions in Eq. (90) reproduces Eq. (87) for e ¼ 0

(chargeless case) and for the specific choice of C̄ ¼ π
12
.

For the nonchiral case, there is no diffeomorphism
anomaly (so that Cg ¼ 0), and there is only a conformal
anomaly with Cw ¼ 1

24π (54). The response parameters (92)
are thus given by

p0 ¼
π

6
; C ¼ 0: (94)

Putting these values in Eq. (91) and inserting the resulting
forms for ε, P, and θ in Eq. (90) reproduces the constitutive
relation (62) for the particular choice C̄ ¼ π

12
.

Some comments are now in order. It is seen that the final
constitutive relation can be obtained provided the addi-
tional information (92) is known. This is not required in our
analysis. Also, the constitutive relation found in the
gradient expansion approach corresponds to a specific
value ðC̄ ¼ π

12
Þ of our results. We may compare this with

our approach in which the actual value of C̄ is left open.
Finally, inclusion of charge is quite nontrivial in the
gradient expansion approach. The relations (91) are no
longer exact. There are nonleading (higher-derivative)
corrections. Likewise, the first relation in Eq. (92) also
gets modified. These corrections and/or modifications have
not been discussed in the literature. Thus, the form of the
constitutive relation in the presence of both gauge and
gravitational anomalies is not clearly spelled out. Hence, a
one-to-one comparison with our general form is not
possible.

VII. CONCLUSIONS

Gauge and gravitational anomalies in two dimensions
have played a significant role in different contexts. While
such anomalies can and do occur in various theories,
perhaps their most dramatic appearance happens for chiral
theories, i.e., where chiral fermions are coupled to the
gauge and/or gravitational field. In such theories, due to the
lack of a chiral invariant regularization, the one-loop
effective action always yields anomalies. Depending upon
the regularization, anomalies may be covariant or consis-
tent. The use of the covariant or consistent structure
depends upon the needs of the problem; however, it is
useful to note that the anomaly vanishing condition is
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identical in both cases. Since the covariant form preserves
the correct transformation property of the anomalous
current or stress tensor, it is usually favored over the
consistent form. Indeed, besides their recent influence in
hydrodynamics [2–13], covariant anomalies have been
used to study such diverse phenomena such as the
Hawking effect in black holes [24,25] or the thermal
Hall effect in topological insulators [26].
In this paper we have developed a new approach to study

the consequences of both gauge and gravitational anoma-
lies in fluid dynamics. Explicit computations were done in
two dimensions, leading to the obtention of exact results.
To highlight the competing role of different anomalies,
usual (i.e., nonchiral) and chiral hydrodynamics were
treated separately.
Exact closed-form expressions for the constitutive rela-

tions for the current and stress tensor were obtained. For
chiral hydrodynamics these relations could be put in the
form of an ideal (chiral) fluid. The constitutive relation for
an ideal (chiral) fluid, it may be recalled, is derived from the
corresponding relation for an ideal fluid by replacing the
velocity vector by the chiral velocity vector. Only then does
the current or stress tensor satisfy the special properties of
two-dimensional chirality [13].
Despite the fact that several papers [2–13] discuss

anomalous hydrodynamics including some that are solely
devoted to two dimensions [9–13], the results presented
here are both new and from a different approach. The
novelty of our approach consists of the inclusion of charge
for which no constitutive relation was earlier provided.
Since the two-dimensional metric is conformally flat, the
effective action is exactly known. This leads to exact
constitutive relations for either the current or the stress
tensor. Chirality imposes additional restrictions that even-
tually justify the structures for the constitutive relations. In
other words, not only do we provide new results, but we
also explain their appearance. However, it would be
interesting if our result is compared with the derivative
expansion approach by expanding our exact results. But
this is beyond the scope of the paper. We leave this exercise
for the future.
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APPENDIX: SOLUTIONS FOR THE
AUXILIARY FIELDS

The solutions for Φ and B can be obtained from Eq. (52)
in the following way. Let us first concentrate on the solution
for Φ. Under the background metric (1), we obtain

□Φ ¼ 1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
gab∂bÞΦ

¼ −e−2σ∂2
tΦþ 1

eσ
ffiffiffiffiffiffi
g11

p ∂r

�
eσffiffiffiffiffiffi
g11

p ∂r

�
Φ; (A1)

and R is given by Eq. (53). Now since the metric (1) is
static, it has a timelike Killing vector, and so the ansatz for
Φ can be taken as Eq. (56). Then Eq. (A1) reduces to

□Φ ¼ 1

eσ
ffiffiffiffiffiffi
g11

p ∂r

�
eσffiffiffiffiffiffi
g11

p ∂r

�
Φ0ðrÞ: (A2)

The Ricci scalar (53), multiplied by eσ
ffiffiffiffiffiffi
g11

p
, can be

expressed as a total derivative with respective to the radial
coordinate r:

eσ
ffiffiffiffiffiffi
g11

p
R ¼ −∂r

�
2eσσ0ffiffiffiffiffiffi
g11

p
�
: (A3)

Hence, □Φ ¼ R yields the solution for Φ0ðrÞ as given
in Eq. (56).
Similarly, the solution for B can be obtained.

Substitution of the ansatz in Eq. (57) leads to

□B ¼ 1

eσ
ffiffiffiffiffiffi
g11

p ∂r

�
eσffiffiffiffiffiffi
g11

p ∂r

�
B0; (A4)

whereas ϵ̄ab∂aAb ¼ − 1
eσ

ffiffiffiffiffi
g11

p ∂rAt. Hence, we obtain the

solution for B0ðrÞ as given there.
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