
Observational tests of nonlocal gravity: Galaxy rotation curves
and clusters of galaxies

S. Rahvar*

Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5,
Canada and Department of Physics, Sharif University of Technology,

P.O. Box 11155-9161 Tehran, Iran

B. Mashhoon†

Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
(Received 21 January 2014; published 7 May 2014)

A classical nonlocal generalization of Einstein’s theory of gravitation has recently been developed via
the introduction of a scalar causal “constitutive” kernel that must ultimately be determined from
observational data. It turns out that the nonlocal aspect of gravity in this theory can simulate dark matter;
indeed, in the Newtonian regime of nonlocal gravity, we recover the phenomenological Tohline-Kuhn
approach to modified gravity. A simple generalization of the Kuhn kernel in the context of nonlocal general
relativity leads to a two-parameter modified Newtonian force law that involves an additional repulsive
Yukawa-type interaction. We determine the parameters of our nonlocal kernel by comparing the predictions
of the theory with observational data regarding the rotation curves of spiral galaxies. The best-fitting stellar
mass-to-light ratio turns out to be in agreement with astrophysical models; moreover, our results are
consistent with the Tully-Fisher relation for spiral galaxies. Light deflection in nonlocal gravity is
consistent with general relativity at solar-system scales, while beyond galactic scales, an enhanced
deflection angle is predicted that is compatible with lensing by the effective “dark matter.” Furthermore, we
extend our results to the internal dynamics of rich clusters of galaxies and show that the dynamical mass of
the cluster obtained from nonlocal gravity is consistent with the measured baryonic mass.
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I. INTRODUCTION

Lorentz invariance, which is a fundamental symmetry of
nature, deals with observations of ideal inertial observers in
Minkowski spacetime, where the gravitational interaction is
assumed to be turned off. However, physical measurements
are carried out by observers that are all more or less
accelerated. To treat actual accelerated observers in
Minkowski spacetime, a physical law that relates accel-
erated and inertial observers is indispensable. The standard
theory of special relativity postulates a pointwise connec-
tion; that is, Lorentz transformations are applied event by
event to relate the instantaneous local inertial rest frame of
the accelerated observer with the background global inertial
frame. This locality postulate is also essential for the utility
of Einstein’s heuristic principle of equivalence, as these
together establish the local Lorentz invariance of the
gravitational interaction in general relativity [1].
The hypothesis of locality in relativistic physics origi-

nates from the classical mechanics of Newtonian point
particles and rays of radiation. It would be exactly valid if
all physical processes could be reduced to pointlike
coincidences in Minkowski spacetime. The deviation from

locality is expected to be proportional to λ=L, where λ is
the characteristic wavelength of the phenomenon under
observation and L is the relevant acceleration length of the
observer. An accelerated observer in Minkowski spacetime
is naturally endowed with a local orthonormal tetrad frame
that it carries along its world line. The rate of variation of
the tetrad frame along the world line is governed by the
acceleration tensor of the observer. The components of this
tensor consist of the observer’s translational acceleration g
and the angular velocity of rotation of its spatial frame Ω
with respect to a locally nonrotating (i.e., Fermi-Walker
transported) frame. The typical acceleration lengths of the
observer are then given, for instance, by c2=jgj and c=jΩj.
For an observer fixed on the Earth, c2=jg⊕j ≈ 1 light year
and c=jΩ⊕j ≈ 28 astronomical units; hence, laboratory
deviations from locality are expected to be generally rather
small in special relativity, and this circumstance explains
why the locality postulate is an excellent approximation in
most situations of practical interest. It is important to
recognize that these physical considerations regarding
deviations from locality for accelerated observers in
Minkowski spacetime cannot be directly extended to the
gravitational field, since Einstein’s local principle of
equivalence cannot be applied to situations where locality
breaks down.
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It has been argued that one must in general go beyond
the locality hypothesis of standard special relativity theory
and include the past history of the accelerated observer as
well [2]. Indeed, Bohr and Rosenfeld pointed out long ago
that field determinations cannot be performed instantane-
ously [3,4]. On the basis of these considerations, a nonlocal
special relativity theory has been developed [5]. In this
theory, the field measured by an accelerated observer has in
general an additional component that involves an average
of the field over the past world line of the observer with a
kernel that carries the memory of its past acceleration. The
basic scale associated with such acceleration-induced non-
locality is then the acceleration length L or, equivalently,
the acceleration time L=c.
The principle of equivalence of inertial and gravita-

tional masses implies a deep connection between inertia
and gravitation [1]. It is therefore natural to try to extend
this notion of nonlocality to the gravitational interaction.
This can be done via an averaging procedure involving a
scalar causal kernel that acts as the weight function for the
gravitational memory of past events. Indeed, such a
nonlocal generalization of Einstein’s theory of gravitation
has been devised in which nonlocality appears to simulate
dark matter [6–12]. It may appear natural to try to
establish a connection between the nonlocal kernels of
acceleration-induced nonlocality in Minkowski spacetime
and nonlocal gravity. However, such a relation does not
exist, as it would amount to a nonlocal extension of
Einstein’s strictly local principle of equivalence. In par-
ticular, the length-scale characteristic of nonlocality in
the gravitational case cannot be estimated on the basis of
the corresponding acceleration length. It is important to
emphasize here again that it is not possible to deduce the
scalar causal kernel of nonlocal gravity from the kernel of
accelerated observers in Minkowski spacetime; indeed,
one cannot invoke Einstein’s principle of equivalence in
this case due to its extreme locality. In the absence of a
deeper understanding of the gravitational interaction, we
adopt the view that the kernel of nonlocal gravity must be
determined from observational data regarding dark matter
in astrophysics.
Nonlocal gravity is a tetrad theory, where the tetrad

field is locally defined but satisfies integrodifferential
field equations. To construct a nonlocal generalization of
classical general relativity, it is first necessary to extend
the Riemannian structure of spacetime by introducing
an additional Weitzenböck connection. In the resulting
extended framework, known as teleparallelism, general
relativity (GR) is expressed in its equivalent teleparallel
form, namely, GR∥. This is formally analogous to electro-
dynamics and is in fact a gauge theory of the Abelian
group of spacetime translations—see Refs. [13–15] and
the references cited therein. Nonlocal general relativity
has been obtained from GR∥, the teleparallel equivalent
of GR, via a “constitutive” kernel [6–12]. A brief account

of this theory is provided in this introductory section for
the sake of completeness. The gravitational potentials in
nonlocal general relativity are given by the tetrad field
eμα̂ðxÞ, from which one obtains the spacetime metric
gμνðxÞ ¼ eμα̂eνβ̂ηαβ. In our convention, the Minkowski
metric tensor ηαβ is given by diagð−1; 1; 1; 1Þ; moreover,
Greek indices run from 0 to 3, while Latin indices run
from 1 to 3. The hatted Greek indices α̂, β̂, etc., refer to
anholonomic tetrad indices, while μ, ν, etc., refer to
holonomic spacetime indices. We use units such that
c ¼ 1, unless otherwise specified. The holonomic and
anholonomic indices are raised and lowered by means of
the metric tensors gμνðxÞ and ηαβ, respectively; further-
more, in order to change a holonomic index of a tensor
into an anholonomic index or vice versa, we project the
tensor on an appropriate tetrad field.
The arena for nonlocal gravity is the Weitzenböck

spacetime that is a parallelizable manifold. That is, the
tetrad frame field is globally teleparallel, so that the
curvature of the Weitzenböck spacetime vanishes and, just
as in the case of flat Minkowski spacetime, it is possible to
introduce Cartesian frames for which the corresponding
flat connection vanishes as well. We will work with
such Cartesian tetrad frames throughout this work. Free
test particles and null rays follow, respectively, timelike
and null geodesics of gμν, the metric of the Weitzenböck
spacetime.
The field equations of nonlocal gravity are expressed in

terms of the gravitational field strength Cμν
α̂, which is a

tensor defined by

Cμν
α̂ ¼ ∂μeνα̂ − ∂νeμα̂: (1)

This definition is reminiscent of the definition of the
electromagnetic field tensor in terms of the vector potential.
In our convention, Cμν

α̂ is in fact the torsion of the
Weitzenböck spacetime. Moreover, the theory contains
two auxiliary field strengths, namely, a modified torsion
tensor

Cμν
α̂ ≔

1

2
Cμν

α̂ − Cα̂½μν� þ 2e½μα̂Cν�β̂
β̂ (2)

and a tensor density that is linear in the modified torsion
tensor

Hμν
ρðxÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp
κ

�
Cμν

ρ −
Z

Ωμμ0Ωνν0Ωρρ0Kðx; x0Þ

× Cμ0ν0
ρ0 ðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
d4x0

�
; (3)

where κ ¼ 8πG=c4, K is the constitutive causal kernel of
the theory, andΩ is Synge’s world function [16]. In Eq. (3),
we assume that event x0 is connected to event x via a unique
future-directed timelike or null geodesic of gμν; then, 2Ω is
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the square of the corresponding proper spacetime distance
from x0 to x. Indices μ0; ν0; ρ0;… refer to event x0, while
indices μ; ν; ρ;… refer to event x. Moreover, we define

Ωμðx; x0Þ ¼
∂Ω
∂xμ ; Ωμ0 ðx; x0Þ ¼

∂Ω
∂x0μ0 (4)

and note that covariant derivatives at x and x0 commute for
any bitensor. Indeed, Ωμμ0 ðx; x0Þ ¼ Ωμ0μðx; x0Þ is a dimen-
sionless bitensor such that

lim
x0→x

Ωμμ0 ðx; x0Þ ¼ −gμμ0 ðxÞ: (5)

The derivatives of the bitensor Ωðx; x0Þ appear in Eq. (3) in
order to render this constitutive relation covariant under
arbitrary transformations of spacetime coordinates; in
particular, the integral here is a proper tensor of the third
rank in x, but what is integrated is a scalar function of the
integration variable x0. This constitutive relation is nonlocal
by virtue of the existence of kernel K and is reminiscent of
a similar situation in electrodynamics, where the constit-
utive relations between (E, B) and (D, H) could be
nonlocal due to memory effects. The nature of the causal
scalar kernelK has been discussed in detail in Refs. [6–11];
as memory fades, the kernel is expected to vanish for events
that occurred in the distant past. It is, in principle, possible
that K could be derivable from a future deeper theory;
however, we assume here that the nonlocal kernel is
ultimately determined via observational data [8]. Indeed,
to account for the rotation curves of spiral galaxies,
we associate nonlocality with a galactic length scale of
λ0 ∼ 1 kpc.
Let us observe that the field strength Cμν

α̂ and the
auxiliary field strengths Cμν

α̂ and Hμν
α̂ are all antisym-

metric in their first two indices. The field equations of
nonlocal gravity are analogous to Maxwell’s equations and
can be expressed as

∂ ½μCνρ�α̂ ¼ 0; (6)

∂νHμν
α̂ ¼

ffiffiffiffiffiffi
−g

p ðT α̂
μ þ Eα̂

μÞ: (7)

Here, T α̂
μ is the matter energy-momentum tensor, and Eα̂

μ

is the energy-momentum tensor of the gravitational field
defined by

ffiffiffiffiffiffi
−g

p
Eα̂

μ ≔ −
1

4
eμα̂ðCνρ

β̂Hνρ
β̂Þ þ Cα̂ν

β̂Hμν
β̂: (8)

We note that Eμν is traceless just as in electromagnetism.
The relationship between this tensor and the energy-
momentum pseudotensor of the gravitational field in GR
has been discussed in detail in Chap. 10 of Ref. [14].
It follows from Eq. (7) that

∂μ½
ffiffiffiffiffiffi
−g

p ðT α̂
μ þ Eα̂

μÞ� ¼ 0; (9)

which expresses the energy-momentum conservation law in
nonlocal gravity.
It is interesting to remark that, for our conventional

choice of a Cartesian tetrad frame, Eq. (6) is automatically
satisfied. This is reminiscent of the source-free part of
Maxwell’s equations expressed in terms of the vector
potential. Hence, the main field equation of nonlocal
gravity is Eq. (7), which is a nonlinear integrodifferential
equation for the tetrad field eμα̂. If the scalar kernel K
vanishes, the theory reduces to GR∥, the teleparallel
equivalent of GR. It must be emphasized that nonlocal
gravity’s basic ansatz—namely, the linear constitutive
relation that introduces the scalar kernel in Eq. (3)—is
hardly unique; indeed, the present approach appears to be
the simplest possible way of formulating a nonlocal
generalization of classical general relativity.
To clarify further the nature of this nonlocal gravity

theory, let us express Maxwell’s equations for the electro-
dynamics of media in the form

∂ ½μFνρ� ¼ 0 (10)

and

∂νHμν ¼ 4π

c
jμ; (11)

that are analogous to Eqs. (6) and (7), respectively. Here
ðE;BÞ ↦ Fμν, where Fμν ¼ ∂μAν − ∂νAμ is the electro-
magnetic field tensor and Aμ is the vector potential, while
ðD;HÞ ↦ Hμν, which is the auxiliary field tensor, and jμ

is the current of free charges. It is well known that the
constitutive relation between Hμν and Fμν is in general
nonlocal. Thus, in the treatment of such media, Maxwell’s
equations (10) and (11) do not formally change; only the
constitutive law connecting the two field strengths involves
a nonlocal kernel. In much the same way, Einstein’s
gravitational field equations (6) and (7), as expressed in
the teleparallel equivalent of general relativity, GR∥, require
a constitutive relation between Hμνρ and Cμνρ—or, equiv-
alently, Cμνρ. In GR∥ proper, we have the local relation
Hμνρ ¼ ð ffiffiffiffiffiffi−gp

=κÞCμνρ; however, this local constitutive
relation could be made nonlocal via a constitutive kernel
as in Eq. (3). Thus, we do not formally change the
gravitational field equations of GR∥; indeed, only the local
constitutive law is made nonlocal in this theory by the
introduction of a causal scalar kernel. This is then the
genesis of the nonlocal gravity theory.
No exact solution of the field equation of nonlocal

gravity is known at present; therefore, we have resorted
to the general linear approximation and its Newtonian limit
[6–12]. Thus, we limit our considerations to the weak-field
regime, since the nonlinear strong-field regime of nonlocal
gravity has not yet been investigated. In particular, exact
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cosmological models and the nature of black holes in
nonlocal gravity are beyond the scope of our treatment.
In connection with gravitational radiation, detailed inves-
tigations reveal that the implications of nonlocal gravity
theory for linearized gravitational waves are essentially
the same as in GR [11,12]; that is, the orbital decay of
relativistic binary systems due to gravitational radiation
damping as well as the standard GR treatment of linearized
gravitational radiation of frequency ≳10−8 Hz is expected
to be consistent with nonlocal gravity. Indeed, the galactic
nonlocality length scale of λ0 ∼ 1 kpc is much larger than
the orbital radius of a relativistic binary pulsar, so nonlocal
effects are expected to be negligibly small, just as they are
in the Solar System [8]; moreover, the frequency associated
with linearized gravitational waves of wavelength λ0 ∼ 1 kpc
is ∼10−11 Hz, which is much smaller than the frequency of
radiation that could be detectable with present methods.
For the relatively high-frequency gravitational radiation that
is of current observational interest (≳10−8 Hz), nonlocal
effects essentially average out and can therefore be safely
ignored in practice [11].
The main purpose of the present work is to discuss

further the Newtonian regime within the framework of
nonlocal gravity in connection with the problem of dark
matter and to compare the predictions of the theory with
observational data regarding galaxy rotation curves as well
as the dynamics of clusters of galaxies. We show in the next
section that nonlocality leads to a simple modification of
the Newtonian inverse-square force law that depends on
two free parameters α and μ. We determine these param-
eters in Sec. III by comparing the predictions of nonlocal
gravity theory with observational data regarding the rota-
tion curves of spiral galaxies. We show that nonlocal
gravity is consistent with the relevant astrophysical models
and the empirical Tully-Fisher relation. After fixing the
parameters of our nonlocal gravity model, we then turn our
attention in Sec. IV to the implications of nonlocal gravity
for the gravitational physics of the Solar System. We show
in Sec. V that the dynamics of rich clusters of galaxies is
consistent with our nonlocal gravity model. Section VI
contains a brief discussion of our main results.

II. NONLOCAL GRAVITY: NEWTONIAN REGIME

General relativity reduces to the Newtonian gravitation
theory in the correspondence limit, in which we formally let
c → ∞. The gravitational field equations of GR then
reduce to the Poisson equation

∇2ϕ ¼ 4πGρ; (12)

where ϕ is the Newtonian gravitational potential and ρ is
the density of matter. In nonlocal general relativity,
Poisson’s equation is modified such that the source on
the right-hand side of Eq. (12) acquires an additional

nonlocal component that can be interpreted as the density
of “dark” matter.
Consider matter of density ρ confined to a finite region of

space in Minkowski spacetime such that the resulting
gravitational field is everywhere weak and vanishes infi-
nitely far from the source. Treating the gravitational
perturbation of Minkowski spacetime to linear order within
the framework of nonlocal gravity, Eqs. (3) and (7) take
the form

∂
∂xσ

�
Cμ

σ
νðxÞ þ

Z
Kðx; yÞCμ

σ
νðyÞd4y

�
¼ κTμν; (13)

since Eμν can be neglected at the linear order. In the linear
weak-field approximation of nonlocal gravity, the preferred
frame field eμα̂ðxÞ is replaced by δαμ plus small perturbations
that constitute the gravitational potentials of linearized
nonlocal gravity. More specifically, we let

eμα̂ ¼ δαμ þ ψα
μ; eμα̂ ¼ δμα − ψμ

α; (14)

where the perturbation ψμν is treated to first order and the
distinction between holonomic and anholonomic indices
disappears at this level of approximation. The 16 compo-
nents of ψμν can be decomposed into its symmetric and
antisymmetric parts, namely, ψμν ¼ ψ ðμνÞ þ ψ ½μν�. It fol-
lows from the orthonormality of the preferred frame field
that the spacetime metric in the linear regime is given by
gμν ¼ ημν þ hμν, where hμν ¼ 2ψ ðμνÞ. It is then possible to
show that to linear order, the Einstein tensor is given by

Gμν ¼ ∂σCμ
σ
ν: (15)

Moreover, it follows from a detailed theoretical investiga-
tion regarding the nature of the nonlocal scalar kernel
Kðx; yÞ that in the linear approximation, we must have a
universal function of x − y, namely,

Kðx; yÞ ¼ Kðx − yÞ: (16)

In the Newtonian regime, there are no retardation effects,
as c → ∞; therefore, we can assume that

Kðx − yÞ ¼ δðx0 − y0Þkðx − yÞ: (17)

Moreover, the only relevant component of Eq. (13) in the
Newtonian limit is the μ ¼ ν ¼ 0 one with G00 ¼
ð2=c2Þ∇2ϕ, C0i0 ¼ ð2=c2Þ∂iϕ and T00 ¼ ρc2; then, using
the convolution property of kernel k, an integration by parts
and Gauss’s theorem, we finally arrive at the modified
Poisson equation. We note that the only significant part of
ψμν that survives in the transition to the Newtonian regime
is its symmetric part given by 2ψμν ¼ hμν, where, just as
in GR,
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hμν ¼ −
2ϕ

c2
diagð1; 1; 1; 1Þ: (18)

In this way, Eq. (13) reduces in the Newtonian regime to a
nonlocally modified Poisson equation that can be expressed
as the Fredholm integral equation

ΨðxÞ þ
Z

kðx − yÞΨðyÞd3y ¼ ψðxÞ; (19)

where Ψ ¼ ∇2ϕ and ψ ¼ 4πGρ. The nonlocal memory
term in Eq. (3) reduces here to an instantaneous average
over all space as retardation effects vanish in the Newtonian
regime; in fact, the nonlocal Newtonian regime may be
formally considered to be the limit of nonlocal gravity as
c → ∞. This transition—briefly outlined above—has been
discussed in detail in Refs. [7–11]; in particular, the
consequences of nonlocality for the gravitational physics
of the Solar System have been explored in Ref. [8]
and shown to be negligible at present based on a galactic
nonlocality scale length λ0 of order 1 kpc. This is
essentially because the dimension of the Solar System is
very small compared to λ0 ∼ 1 kpc, the nonlocality scale
that is necessary to provide a satisfactory explanation for
the rotation curves of spiral galaxies [8]. We revisit this
issue in Sec. IV, once we determine that λ0 ≈ 3� 2 kpc
from the comparison of Eq. (19) with the rotation curves
of spiral galaxies in Sec. III.
It is not known whether nonlocal gravity in its general

form can be derived from an action principle. There are, in
general, problems with action principles for nonlocal
theories if the kernel is not symmetric—and causal kernels
cannot be symmetric in time; in fact, this issue has been
discussed in detail in Ref. [7]. On the other hand, it is
possible to derive Eq. (19) from a variational principle if
we assume that kðx − yÞ is only a function of jx − yj
and therefore symmetric. Indeed, it turns out that k is
invariant under the exchange of x and y for all nonlocal
Newtonian kernels of interest in this paper. In this case,
the variation of S,

S ¼
Z

Ld3x; (20)

with

L ¼ 1

8πG

�
ð∇xϕÞ2 þ

Z
kðx − yÞð∇xϕÞ · ð∇yϕÞd3y

�
þ ρϕ

(21)

results in Eq. (19).
In Eq. (19), which is a Fredholm integral equation of the

second kind [17], the density of matter in effect determines
the sum of ∇2ϕ and its convolution with kernel k. We can
formally solve this equation via the Liouville-Neumann
method of successive substitutions. That is, we modify

Eq. (19) by moving the integral term to the right-hand side;
then, we replace ΨðyÞ in the integrand with its value given
by the modified Eq. (19). By repeating this procedure, we
eventually obtain an infinite (Neumann) series that may or
may not converge. If the Neumann series converges
uniformly, we obtain a unique solution of the form

ΨðxÞ ¼ ψðxÞ þ
Z

qðx − yÞψðyÞd3y; (22)

where q is the reciprocal kernel; indeed, k and q are
reciprocal of each other [17]. This result can be written as

∇2ϕ ¼ 4πGðρþ ρDÞ;

ρDðxÞ ¼
Z

qðx − yÞρðyÞd3y; (23)

where ρD has the interpretation of the density of “dark
matter.” That is, the nonlocal aspect of gravity appears in
Eq. (23) as an extra “dark” matter source whose density is
the convolution of the reciprocal kernel q with the density
of matter ρ. In this sense, nonlocality simulates dark matter.
Moreover, no such dark matter exists in the complete
absence of matter; i.e., ρD ¼ 0 if ρ ¼ 0.
In principle, we can determine the reciprocal convolution

kernel q from the comparison of the nonlocal theory with
observational data regarding the “flat” rotation curves of
spiral galaxies [18–20]. For any continuous function f that
is absolutely integrable as well as square integrable over all
space, let f̂ denote its spatial Fourier integral transform;
then, it follows from the definition of ρD in Eq. (23) and the
convolution theorem that q̂ ¼ ρ̂D=ρ̂ in the Fourier domain.
Moreover, under similar conditions, Eqs. (19) and (22)
imply that ð1þ q̂Þð1þ k̂Þ ¼ 1. It can be shown that if
ð1þ q̂Þ ≠ 0, then one can obtain kernel k from the knowl-
edge of the reciprocal kernel q [10]. Of the reciprocal
kernels k and q, if one is symmetric, and hence only a
function of jx − yj, then so is the other one.
It is interesting to recall here briefly the phenomeno-

logical Tohline-Kuhn modified-gravity approach to the
problem of dark matter in galaxies and clusters of galaxies.
An excellent review of this topic has been given by
Bekenstein [21]. Imagine the circular motion of stars in
the disk of a spiral galaxy. A “flat” rotation curve implies
that at any radius r outside the central core of the spiral
galaxy, all of the stars rotate with the same constant circular
speed vc. Thus, the centripetal acceleration of each star is
v2c=r. Assuming Newton’s fundamental laws of motion, the
radial gravitational force of attraction experienced by a star
must be equal to its mass multiplied by v2c=r. It follows that
the main component of the radial gravitational force in the
disk of a spiral galaxy must vary as 1=r with radial distance
r away from the center of the galaxy. Following this line of
thought, Tohline [22] assumed that the gravitational force
varies with distance as r−2 þ r−1=λ0, where λ0 ∼ 1 kpc is a
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constant length. Thus, for r ≫ λ0, the force of gravity varies
as 1=r on the scale of galaxies. Tohline showed that this
modified force law leads to the stability of a spinning
galactic disk [22]. Therefore, in Tohline’s approach, the
Newtonian gravitational potential for a point massM would
be modified by a logarithmic term, namely,

ϕTðxÞ ¼ −
GM
jxj þ GM

λ0
ln

�jxj
λ0

�
; (24)

where λ0 is a constant galactic length of order 1 kpc.
Tohline’s suggestion was generalized by Kuhn and his
collaborators [21,23]. Indeed, Kuhn proposed a nonlocal
modification of Poisson’s equation of the form of Eq. (23)
with the kernel

qKðx − yÞ ¼ 1

4πλ0

1

jx − yj2 ; (25)

such that ϕT is a solution of Eq. (23) with Kuhn’s kernel qK
when ρðxÞ ¼ MδðxÞ. The Tohline-Kuhn approach may
appear to be in conflict with the empirical Tully-Fisher law
[24]. However, we take the view that for a fair comparison
with the Tully-Fisher relation [24], one should include the
electromagnetic radiation aspects of the issue as well [10].
We will return to this important topic at the end of Sec. III.
The “flat” rotation curve of a spiral galaxy extends out to

the edge of the galaxy. On the other hand, the gravitational
interaction must be defined over all space. Within the
framework of nonlocal gravity, we need to generalize
Kuhn’s kernel in order to ensure that the total effective
“dark mass” is finite for a realistic distribution of matter;
moreover, the corresponding Neumann series must be
uniformly convergent to ensure the existence of kernel k.
We therefore introduce two new parameters in order to
modify the behavior of Kuhn’s kernel near r ¼ 0 and
r ¼ ∞. Two explicit examples were worked out in detail in
Ref. [10] and further discussed in Ref. [12], namely,

q1 ¼
1

4πλ0

1þ μða0 þ rÞ
ða0 þ rÞ2 e−μr; (26)

q2 ¼
1

4πλ0

1þ μða0 þ rÞ
rða0 þ rÞ e−μr; (27)

where r ¼ jx − yj and λ0 is, as before, a parameter that is
expected to be of the order of 1 kpc. Parameters μ and a0
are such that 0 < μa0 ≪ 1; in fact, we assume that 0 <
μλ0 < 1 and 0 < a0=λ0 ≪ 1. The reciprocal kernels q1
and q2 are real positive functions that are integrable as well
as square integrable over all space. Moreover, q1 is finite
everywhere, and its Fourier integral transform is a real
positive function if a0=λ0 is sufficiently small compared
to unity, while q2 diverges only at r ¼ 0, and its Fourier
integral transform is always real and positive. It has been

shown in Ref. [10], using the Fourier transform method, that
it is then possible to infer the existence of the corresponding
symmetric kernels k1 and k2. Furthermore, k1 and k2 have
been numerically determined for λ0 ¼ 10 kpc, μ−1 ¼ 10λ0
and a0 ¼ 10−3λ0 in Ref. [10]; indeed, in this case −k1 and
−k2 turn out to be positive functions of r that fall off very
fast with increasing r and are effectively zero beyond 2.5λ0.
The behavior of the reciprocal kernel as r → 0 accounts

for the main difference between q1 and q2. Indeed, as
a0=λ0 → 0, q1 and q2 both become equal to q, where

q ¼ 1

4πλ0

ð1þ μrÞ
r2

e−μr: (28)

It is demonstrated in Appendix A that for the purposes of
the present work, it is permissible to ignore a0 in practice.
Henceforth, we adopt the two-parameter reciprocal kernel
[Eq. (28)] for the sake of simplicity. It is important to
emphasize, however, that more complicated kernels can
also be considered by suitable generalizations of Eqs. (26)
and (27). Indeed, in nonlocal gravity, qðxÞ is a universal
function of x that could depend on any number of constant
parameters.
Adopting the kernel in Eq. (28), we can solve for the

modified force law of the Newtonian regime of nonlocal
gravity and study the implications of this theory for the
motion of particles and light rays.

A. Modified force law

In nonlocal gravity, the test particle follows a geodesic of
the metric tensor gμν; therefore, in the Newtonian regime,
we recover the usual force law

d2x
dt2

¼ −∇ϕðxÞ; (29)

where ϕ is a solution of the modified Poisson equation (23)
with the kernel q given by Eq. (28) in the present context.
Let us note that in Eq. (23), the nonlocal relation between

the potential ϕ and matter density ρ is linear; therefore, it is
possible to write

ϕðxÞ ¼ G
Z

ξðx − yÞρðyÞd3y; (30)

where the Green function ξ is given by

∇2ξðxÞ ¼ 4π½δðxÞ þ qðxÞ�: (31)

Thus,GξðxÞ is the gravitational potential at x due to a point
particle of unit mass located at the origin of spatial
coordinates. It follows that the force on a test particle
can also be expressed as the vector sum of the forces over
the source, namely,
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−∇xϕðxÞ ¼ G
Z

½∇yξðx − yÞ�ρðyÞd3y: (32)

We conclude that, in computing the influence of an
extended distribution of matter, it does not in the end
matter whether one sums over the potential or the force, just
as in Newtonian gravity. The test particle in the gravita-
tional potential moves in such a way that v2 þ 2ϕ is
conserved.
Let FðrÞ be the magnitude of the radial attractive force of

gravity between point massesm1 and m2 that are a distance
r apart; then, F ¼ Gm1m2fðrÞ, where fðrÞ ¼ ∂ξ=∂r. It
follows from Eq. (31) that

1

r2
d
dr

ðr2fÞ ¼ 4π½δðxÞ þ qðxÞ�: (33)

The solution of this equation is

fðrÞ ¼ 1

r2

�
1þ α − α

�
1þ 1

2
μr

�
e−μr

�
; (34)

where we have introduced a new parameter α defined by

αμλ0 ¼ 2; (35)

and we have chosen the integration constant in Eq. (34) to
be α in order to ensure that we recover the Newtonian
inverse-square force law for μr → 0. Here, λ0 is, as before,
a constant galactic length scale characteristic of nonlocality,
and 2=ðμλ0Þ ¼ α, where α > 2 is a dimensionless param-
eter. In the explicit numerical examples worked out in
Ref. [10], for instance, α ¼ 20.
We conclude that in the Newtonian regime of nonlocal

gravity, the Newtonian gravitational force is modified such
that it behaves like a Yukawa-type interaction. That is, for
two test particles m1 and m2, their mutual gravitational
attraction can be essentially characterized by a universal
Yukawa-type force given by

FðrÞ ¼ Gm1m2

r2

�
1þ α

�
1 −

�
1þ 1

2
μr

�
e−μr

��
: (36)

It is useful to express FðrÞ in the form

FðrÞ ¼ Gm1m2

r2
þGm1m2

λ0r
UðμrÞ; (37)

where UðxÞ is given by

UðxÞ ¼ 2e−x

x

�
ex − 1 −

1

2
x

�
: (38)

It is clear from Eq. (37) that the basic nonlocality length
scale is λ0, since for λ0 → ∞, we recover the Newtonian
inverse-square force law; indeed, for λ0 → ∞, the

reciprocal kernel vanishes in Eq. (28), and thus Eq. (23)
reduces to the Poisson equation.
For x∶0 → ∞, UðxÞ is a positive function (U ≥ 0) that

starts from U ¼ 1 at x ¼ 0 and then decreases monoton-
ically as x increases and tends to zero as x → ∞, such that
xUðxÞ → 2. For 0 < x ≪ 1, we can write

UðxÞ ¼ 1 −
1

6
x2 þ 1

12
x3 −

1

40
x4 þOðx5Þ: (39)

Thus, for μr < 1, neglecting terms of order ðμrÞ2 in the
expansion of UðμrÞ, we find that Eq. (37) reduces to the
Tohline-Kuhn force [22,23]

FTKðrÞ ¼
Gm1m2

r2
þGm1m2

λ0r
; (40)

which leads to flat rotation curves of spiral galaxies, but
also involves a logarithmic potential that diverges at
infinity. It turns out that the corresponding effective amount
of dark matter is then infinite. To correct this situation in
our nonlocal framework, parameter μ ≠ 0 is indispensable.
For instance, it follows from Eq. (36) that

Fðr → ∞Þ → Gm1m2

r2
ð1þ αÞ: (41)

From the viewpoint of the test particle of mass m1, say, m2

has effective mass ð1þ αÞm2, consisting of m2 and its
“dark” component αm2, and vice versa. Alternatively, we
may say that on the largest (cosmological) scales, the
effective gravitational constant is Gð1þ αÞ.
We should note here the remarkable similarity of

Eq. (36) with the corresponding force law in the weak-
field regime of the modified gravity (“MOG”) theory [25].
In fact, the corresponding MOG result can be obtained
from Eq. (36) by replacing the factor of 1

2
in front of μr

with unity. Within the MOG framework, the extra factor of
1þ α is interpreted as leading to an effective gravitational
constant given by Gð1þ αÞ.
It is useful to calculate here the gravitational potential

ϕðrÞ due to a point source of massM such that ϕ → 0when
r → ∞, as expected. From

ϕðrÞ ¼ GM
Z

r

∞
fðr0Þdr0; (42)

we find

ϕðrÞ ¼ −
GM
r

½1þ αð1 − e−μrÞ� þ GM
λ0

Z
r

∞

e−μr
0

r0
dr0:

(43)

The last integral can be expressed as −E1ðμrÞ, where E1ðuÞ
for u > 0 is the exponential integral function [26]
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E1ðuÞ ≔
Z

∞

u

e−t

t
dt: (44)

This positive function is such that for u > 0,

e−u

uþ 1
< E1ðuÞ ≤

e−u

u
; (45)

see formula 5.1.19 in Ref. [26]. Moreover, let us note that

E1ðxÞ ¼ −C − ln x −
X∞
n¼1

ð−xÞn
n n!

; (46)

where C ¼ 0.577… is Euler’s constant. In fact, E1ðuÞ is a
monotonically decreasing function that behaves like − ln u
near u ¼ 0 and vanishes exponentially as u → ∞.
We now turn to the motion of rays of radiation in the

gravitational potential ϕ.

B. Light deflection

The Yukawa-type force law leads to changes in the
dynamics of galaxies and clusters of galaxies. Moreover,
rays of radiation follow null geodesics of the metric gμν;
therefore, light rays are also affected by the Yukawa-type
potential ϕðrÞ. Indeed, as in general relativity, gμν ¼
ημν þ hμν, where hμν ¼ −ð2ϕ=c2Þ diag(1, 1, 1, 1) and ϕ
is the modified Newtonian potential given by Eq. (23).
As is well known, in the first post-Newtonian approxi-

mation of general relativity, the net deflection angle of a
light ray due to a “Newtonian" potential ϕ is given by twice
the Newtonian expectation. For instance, let F ðrÞ be the
attractive gravitational force on a test point particle of unit
mass located outside of a spherical source of massM; then,
the net deflection angleΔ of a light ray propagating outside
the source is given by

Δ ¼ 4ζ

c2

Z π
2

0

F
�

ζ

sin θ

�
dθ
sin θ

; (47)

where ζ ¼ r sin θ is the impact parameter of the light ray and
the scattering angle θ∶0 → π, as the unperturbed light ray is
bent by the gravitational attraction of the spherical mass.
To illustrate Eq. (47), let the spherical mass be a point

source of mass M such that F ðrÞ ¼ GMfðrÞ. The calcu-
lation of the deflection angle is then straightforward, and
the result is that the net deflection angle Δ is given by

Δ ¼ 4GM
c2ζ

f1þ α½1 − IðμζÞ�g; (48)

where

IðμζÞ ¼
Z π

2

0

�
sin θ þ 1

2
μζ

�
e−

μζ
sin θ dθ (49)

is such that for 0 < μζ ≪ 1, I ≈ 1 − πμζ=4. It follows that
in this case Δ ≈ ΔE þ 2πGM=ðc2λ0Þ, so that the Einstein
deflection angle ΔE ¼ 4GM=ðc2ζÞ increases by a constant
amount in proportion to the mass of the source. This result
is the same as that given in Ref. [8] based on the Tohline-
Kuhn force [Eq. (40)]. Moreover, for impact parameters
ζ ≫ μ−1, we note that IðμζÞ vanishes exponentially as
μζ → ∞, so that Δ → ΔEð1þ αÞ, where the extra constant
factor of α takes due account of the effective “dark matter”
associated with mass M. The implications of these results
for gravitational lensing in general, and the Bullet Cluster
[27,28] in particular, are beyond the scope of this paper and
will be discussed elsewhere.
Consider next a homogeneous sphere of constant density

ρ and fixed radius r0 as the source. What is the attractive
force F due to the gravitational influence of the sphere’s
massM ¼ ð4π=3Þr30ρ on a test particle of unit mass held at
a distance r, r > r0, from the center of the sphere? To
calculate F , one must first compute the force that would
be directed toward the center of the sphere due to each
spherical shell of radius r0 and then integrate over r0 from
0 → r0. It follows that the net force of attraction pointing
toward the center of the sphere is given by

F ðr > r0Þ ¼
GM
r2

ð1þ αÞ − παGρ
2r2μ3

×

�
½3ðμrþ 1ÞW1ðμr0Þ þW2ðμr0Þ�e−μr

−
Z

μðrþr0Þ

μðr−r0Þ
uðu − μrÞðu − 2μrÞE1ðuÞdu

�
;

(50)

where

W1ðtÞ ¼ ðt − 1Þet þ ðtþ 1Þe−t; (51)

W2ðtÞ ¼ ðt2 − 2tþ 2Þet − ðt2 þ 2tþ 2Þe−t: (52)

The substitution of Eq. (50) in Eq. (47) leads to the net
deflection angle of a light ray in this case.
For μr → ∞, it is possible to show that the integral in

Eq. (50) behaves as exp ð−μrÞ, so that very far from the
source, the force of attraction is simply given by the
Newtonian force augmented by the “dark matter” factor
ð1þ αÞ. This result is ultimately based on the relations

Z
unE1ðuÞdu ¼ unþ1

nþ 1
E1ðuÞ þ

1

nþ 1

Z
une−udu; (53)

Z
une−udu¼−

�
unþ

Xn
k¼1

nðn−1Þ…ðn−kþ1Þun−k
�
e−u;

(54)

as well as the following asymptotic expansion:
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Z
∞

z

e−u

un
du ∼

e−z

zn

�
1 −

n
z
þ nðnþ 1Þ

z2

−
nðnþ 1Þðnþ 2Þ

z3
þ � � �

�
; (55)

all for n ¼ 1; 2; 3;…, and based on the method of
integration by parts. It is interesting to note that for
n ¼ 0; 1; 2;…,

Z
∞

0

unE1ðuÞdu ¼ n!
nþ 1

: (56)

It is clear that the formula for the deflection angle given
by Eq. (47) must be modified if the light ray passes through
the spherical mass. One must consider separately the
exterior regions with r > r0 and the interior region with
r < r0. For the interior region, one finds

F ðr < r0Þ ¼
GMr
r30

ð1þ αÞ − παGρ
r2μ3

�
−2μrþ 3μr

×
Z

μðr0þrÞ

0

u2E1ðuÞdu

þ ½μ2r20 sinhðμrÞ þ ðμr0 þ 1ÞQðμrÞ�e−μr0

−
1

2

Z
μðr0þrÞ

μðr0−rÞ
uðuþ μrÞðuþ 2μrÞE1ðuÞdu

�
;

(57)

where

QðxÞ ≔ 3x cosh x − sinh x: (58)

One can easily check that for r ¼ r0, Eqs. (50) and (57)
give the same result.
Finally, we consider in Eq. (50) the special case where

0 < μr ≪ 1, as, for instance, in the gravitational physics of
the Solar System if the Sun is assumed to be a sphere of
uniform density. In this case, Eq. (36) reduces to the
Tohline-Kuhn force [Eq. (40)], and a detailed calculation
reveals that

F ðr > r0Þ ¼
GM
r2

þGM
rλ0

�
1 −

1

5

r20
r2

þO
�
r40
r4

��
; (59)

in agreement with Eq. (53) of Ref. [8]. It follows that for
r ≫ r0, one may neglect the small corrections in Eq. (59) to
the Tohline-Kuhn force [Eq. (40)], which can therefore be
used for estimating the effects of nonlocality in the Solar
System as in Sec. IV.
The rest of this paper is devoted to the confrontation of

the nonlocal gravity theory with observational data.

III. OBSERVATIONAL TESTS: ROTATION
CURVES OF SPIRAL GALAXIES

To investigate the rotation curves of spiral galaxies
within the framework of nonlocal gravity, we assume that
there is no actual dark matter; therefore, such a galaxy
essentially consists of baryonic matter in the form of stars
and interstellar gas. We ignore dust in our analysis, as the
mass of the dust is at most a few percent of the mass of the
interstellar matter. Using Eq. (36), the effective gravita-
tional acceleration of a test particle due to an extended
distribution of matter with density ρðxÞ can be written in
the form

aðxÞ ¼ −G
Z

ρðx0Þðx − x0Þ
jx − x0j3

�
1þ α

− αe−μjx−x0j
�
1þ μ

2
jx − x0j

��
d3x0: (60)

Assuming cylindrical symmetry for the galactic disk and
introducing cylindrical polar coordinates r̂, θ and z with
r̂ ¼ ðr̂; θÞ, the radial component of the acceleration is given
approximately by

ar̂ðr̂Þ ¼ G
X∞
r̂0¼0

X2π
θ0¼0

Σðr̂0Þ
jr̂ − r̂0j3 ð−r̂þ r̂0 cos θ0Þ

×

�
1þ α − αe−μjr̂−r̂0j −

1

2
μαjr̂ − r̂0je−μjr̂−r̂0j

�

× r̂0Δr̂0Δθ0; (61)

where we have divided the vertically compressed disk into a
large, but finite, number of discrete elements. Here, Σðr̂Þ
represents the isotropic column density of a spiral galaxy,
and jr̂ − r̂0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 þ r̂02 − 2r̂r̂0 cos θ0

p
, where we have set

θ ¼ 0 with no loss in generality. For the function Σðr̂Þ in
Eq. (61), one can either use the observed column density of
baryonic matter directly or employ a fitting function.
Adopting the latter alternative in our work, we use [29]

Σðr̂Þ ¼ Σ0 exp

�
−
r̂

R̂

�
; (62)

where the central column density Σ0 and R̂ must be
determined for stars and gas separately. Adding the
integrated mass of the disk, 2πΣ0R̂

2, for each component,
we obtain the total mass of the disk Mdisk.
What is actually measured via astronomical observation

is the surface density of the luminosity of a galaxy, which
decreases from the center towards the edge of the galaxy.
From the intrinsic galactic luminosity L, we can obtain the
total mass of stars in the galaxy, M⋆, from the stellar
mass-to-light ratio M⋆=L ¼ ϒ⋆. Moreover, the mass of the
gaseous component of the galaxy can be obtained from the
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total mass of the hydrogen gas, MH, via Mgas ¼ 4
3
MH, due

to the hydrogen-to-helium abundance in big bang nucleo-
synthesis, while MH can be determined from the 21 cm
radiation of the atomic hydrogen. In our analysis of the
rotation curves of galaxies, we will henceforth follow the
same general approach as has already been used in
Ref. [25] for testing the weak-field approximation of the
MOG model. For the first part of our analysis, we choose a
subsample of galaxies in The HI Nearby Galaxy Survey
(THINGS) catalog with precise velocity and gas profiles
[30]. The rotation curves have been measured by the
Doppler effect, using 21 cm radiation of neutral hydrogen
gas. In this wavelength, moreover, we use the observed
surface density of the brightness of these galaxies given in
Ref. [31]. For the stellar contribution, we use the luminosity
of stars in the 3.6 μm band. In shorter wavelengths, there
would be more absorption and scattering of radiation by
dust particles; therefore, it is advantageous to employ
longer wavelengths for measuring the surface brightness
of galaxies. In addition, longer wavelengths probe old
stellar populations, while shorter wavelengths would be
more sensitive to populations of young stars. In the present
study, we take the stellar luminosity distributions for this
sample of galaxies in the 3.6 μm band images from the
SINGS (SIRTF Nearby Galaxies Survey, now known as the
Spitzer Infrared Nearby Galaxies Survey) catalog [32].
Our first aim in this section is to fit the rotation curves of

12 galaxies from the THINGS catalog and find the best-
fitting values for the parameters α and μ of the reciprocal
kernel of nonlocal gravity (NLG) in the Newtonian regime,

as well as ϒ3.6⋆ , the stellar mass-to-light ratio in the 3.6 μm
band. We include ϒ3.6⋆ as a parameter, since its value
depends on the astrophysical model employed and is rather
uncertain in practice due to various factors including the
initial mass function of stars, the presence of dust in the
galaxy and the inclination angle of the galaxy with respect
to the observer. Indeed, ϒ⋆ has not been measured for any
galaxy. However, it has been measured for the stars in our
cosmic neighborhood via the Hipparcos satellite [33]; in
this way, the local average value of ϒ⋆ in the B band has
been found to be about 1.4 M⊙=L⊙. Table I contains the
list of 12 galaxies in the THINGS catalog, consisting
of six low-surface-brightness (LSB) and six high-surface-
brightness (HSB) galaxies, with their corresponding param-
eters and the best-fitting values for the three parameters of
our model, namely, α, μ and ϒ3.6⋆ , within 1σ error.
Appendix B contains a brief account of our model-fitting
scheme. Figure 1 shows the rotation curves of the 12
galaxies with the corresponding best fits. Combining the
observational data for the 12 galaxies along the lines
mentioned in Appendix B, we find α ¼ 10.94� 2.56
and μ¼ 0.059�0.028 kpc−1, which are thus the “average”
values and the corresponding error estimates for the
parameters of the nonlocal gravity (NLG) theory.
Summing the reduced χ2 values given in Table I for the
12 THINGS galaxies and dividing the result by 12 results in
the average value of reduced χ2, given by χ̄2 ¼ 1.13.
In the rest of this section, we fix the parameters of

nonlocal gravity on the basis of the THINGS data; namely,
we set

TABLE I. Galaxies from the THINGS catalog [30] with the best-fit parameter values obtained from fitting the observed rotation curves
to the theoretical nonlocal gravity rotation curves. The columns contain (1) the name of the galaxy, (2) the type of galaxy, (3) the distance
of the galaxy, (4) the color of the galaxy in the J − K band, (5) the best-fitting value of α, (6) the best-fitting value of μ, (7) the stellar
mass-to-light ratio for each galaxy ϒ3.6⋆ in the 3.6 μm band, and (8) the χ2 per degree of freedom from fitting. The error estimates are
obtained from the likelihood functions given in Fig. 1. The observational data for the rotation curves of spiral galaxies are taken from the
THINGS catalog [30]; moreover, the stellar luminosities of the galaxies in the 3.6 μm band are taken from the SINGS catalog [32].

Distance μ ϒ3.6⋆ ðNLGÞ
Galaxy Type (Mpc) J − K α (kpc−1) ðM⊙=L⊙Þ χ2=Nd.o.f.
(1) (2) (3) (4) (5) (6) (7) (8)

NGC 3198 HSB 13.8 0.940þ0.051
−0.051 6.59þ1.31

−0.84 0.024þ0.006
−0.005 0.89þ0.10

−0.09 0.50

NGC 2903 HSB 8.9 0.915þ0.024
−0.024 6.51þ0.75

−0.98 0.070þ0.007
−0.008 1.29þ0.10

−0.10 1.6

NGC 3521 HSB 10.7 0.953þ0.027
−0.027 7.06þ1.92

−1.32 0.022þ0.007
−0.011 0.85þ0.06

−0.05 1.50

NGC 3621 HSB 6.6 0.860þ0.042
−0.042 14.67þ0.91

−1.29 0.024þ0.007
−0.006 0.52þ0.10

−0.04 1.30

NGC 5055 HSB 10.1 0.961þ0.027
−0.027 7.28þ1.08

−1.01 0.038þ0.008
−0.008 0.52þ0.08

−0.08 0.37

NGC 7331 HSB 14.7 1.03þ0.024
−0.024 4.67þ0.84

−1.01 0.034þ0.005
−0.006 0.44þ0.06

−0.04 0.79

NGC 2403 LSB 3.2 0.790þ0.031
−0.031 17.68þ1.00

−0.70 0.024þ0.007
−0.006 0.67þ0.08

−0.07 3.04

DDO 154 LSB 4.3 � � � 20.01þ0.64
−0.43 0.227þ0.010

−0.008 1.66þ0.07
−0.09 1.49

IC 2574 LSB 4.0 0.766þ0.115
−0.115 13.48þ1.48

−1.66 0.058þ0.014
−0.007 0.36þ0.03

−0.10 0.36

NGC 0925 LSB 9.2 0.867þ0.063
−0.063 14.67þ0.77

−0.84 0.089þ0.008
−0.009 0.25þ0.04

−0.05 0.93

NGC 2366 LSB 3.4 0.667þ0.146
−0.146 12.43þ1.07

−1.06 0.067þ0.036
−0.008 1.24þ0.10

−0.25 0.062

NGC 2976 LSB 3.6 0.821þ0.036
−0.036 6.57þ0.98

−1.61 0.028þ0.036
−0.007 1.11þ0.84

−0.09 1.67
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α ¼ 10.94� 2.56;

μ ¼ 0.059� 0.028 kpc−1: (63)

We have verified that there is no degeneracy here; that is,
in all of our numerical work, we have always found one
global minimum in the ðα; μ;ϒ3.6⋆ Þ space. Moreover, it
follows from Eq. (35) that λ0 ¼ 2=ðαμÞ, so that in our
model

λ0 ≈ 3� 2 kpc: (64)

A. Ursa Major galaxies

Next, we choose 27 galaxies from the Ursa Major cluster
for testing nonlocal gravity (NLG) theory. The Ursa Major
cluster of galaxies is a spiral-rich member of the Virgo
supercluster and is located at a distance of about 18.6 Mpc.
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FIG. 1. The best fit for the THINGS galaxies listed in Table I, with the corresponding marginalized likelihood functions of α, μ and
ϒ3.6⋆ . Both HSB and LSB galaxies are represented here. Table I contains the best-fit values of the parameters with the corresponding
error estimates.
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We adopt as universal parameters the best values of α and μ
obtained from fitting THINGS galaxies and displayed in
Eq. (63); namely, α ¼ 10.94 and μ ¼ 0.059 kpc−1, and let
the stellar mass-to-light ratio ϒ⋆ of the galaxies be the only
free parameter in our analysis. We find the best values of
ϒ⋆ by fitting the observed rotation curves of galaxies with
the NLG theory.
The 27 Ursa Major galaxies that we consider here are

listed in Table II with the best-fitting ϒ⋆ and the corre-
sponding χ2 per degree of freedom for each galaxy. To fit

the data, we use the disk parameters R̂, MB and MH from
the observation of spiral galaxies [34–36], given in Table II,
and calculate the rotation curves of these galaxies. Here,
MB is the extinction-corrected absolute magnitude of the
galaxy in the B band. From the best value for the stellar
mass-to-light ratio ϒ⋆, we can determine the overall mass
of the disk from Mdisk ¼ LBϒ⋆ þ 4

3
MH, where LB is the

intrinsic luminosity of the galaxy in the B band. For the
galaxies in this list, the average value of reduced χ2 for all
the galaxies is χ̄2 ¼ 1.015. Figure 2 represents the
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observational data with the best fits to the rotation curves of
the chosen galaxies.
Next, we must show that the approach that we have

adopted in this section is consistent with the astrophysics of
star formation as well as the Tully-Fisher relation. These
issues will now be addressed in turn.

B. Stellar mass-to-light ratio versus color for galaxies

The stellar mass-to-light ratio is correlated with the color
of galaxies according to the theories of star formation

[38,39]. Such a relationship is expected to depend upon the
initial mass function (IMF) as well as the way stars are
actually formed. Uncertainties exist, however, due to the
choice of the IMF and the Stellar Population Synthesis
(SPS) models. Furthermore, galaxies may appear redder
and fainter than they actually are due to the presence of dust
in their interstellar media.
Assuming the Salpeter mass function [40], for instance,

the relation between the mass-to-light ratio ϒB⋆ in the B
band and color for galaxies is given by [39]
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log10ðϒB⋆Þ ¼ 1.74ðB − VÞ − 0.94: (65)

In the case of Kroupa’s IMF, the slope of Eq. (65) does not
change, but the mass-to-light ratio shifts by −0.35 dex.
In longer wavelengths, the uncertainty in the relation

between the stellar mass-to-light ratio and color for galaxies
decreases significantly near the infrared (NIR). Therefore,
we adopt here the results of the analysis of the magnitudes
of galaxies in the J, H and K bands [38], as well as the
observations in the 3.6 μm band. On the basis of the SPS
models, the relation between the mass-to-light ratio in the
K band and color in the J − K band is given by [38]

log10ðϒK⋆ Þ ¼ 1.43ðJ − KÞ − 1.38: (66)

Moreover, we can relate ϒ3.6⋆ to the J − K band from the
relation between ϒK⋆ and ϒ3.6⋆ [41], namely,

ϒ3.6⋆ ¼ 0.92ϒK⋆ − 0.05: (67)

As before, in the case of Kroupa’s IMF, the constant term in
Eq. (66), −1.38, is reduced to −1.53.
We can now determine whether the mass-to-light

ratio derived from the NLG theory is in general agreement
with the stellar synthesis models. To this end, we plot

TABLE II. Galaxies from the Ursa Major cluster [34–36] with the best-fitting stellar mass-to-light ratio ϒ⋆ for each galaxy.
The columns contain (1) the name of the galaxy, (2) the type of galaxy, (3) the distance of the galaxy, (4) the extinction-corrected
absolute magnitude of the galaxy in the B band, (5) the characteristic length R̂ of the galaxy, (6) the mass of neutral hydrogen, (7) the
overall mass of the galaxy calculated from Mdisk ¼ LBϒ⋆ þ 4

3
MHI, (8) the reddening-corrected color [37], (9) the internal extinction of

the galaxy in the B band, (10) the best-fit value for the stellar mass-to-light ratio ϒ⋆, normalized to the solar value, and (11) the reduced
χ2 for the best fit to the data.

Distance MB R̂ MHI Mdisk B − V AB ϒ⋆ χ2

Galaxy Type (Mpc) (mag) (kpc) (1010M⊙) (1010M⊙) (mag) (mag) (M⊙=L⊙) (Nd.o.f.)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 3726 HSB 17.4 −20.76 3.2 0.60 1.71 0.45 0.06 0.272þ0.020
−0.020 1.70

NGC 3769 HSB 15.5 −19.32 1.5 0.41 0.82 0.64 0.084 0.390þ0.16
−0.06 0.93

NGC 3877 HSB 15.5 −20.60 2.4 0.11 1.80 0.68 0.084 0.85þ0.05
−0.05 0.42

NGC 3893 HSB 18.1 −20.55 2.4 0.59 2.22 0.56 0.077 0.49þ0.04
−0.04 2.94

NGC 3917 LSB 16.9 � � � 2.8 0.17 1.13 0.60 0.077 0.68þ0.03
−0.03 0.37

NGC 3949 HSB 18.4 −20.22 1.7 0.35 1.44 0.39 0.078 0.42þ0.04
−0.03 0.87

NGC 3953 HSB 18.7 −21.05 3.9 0.31 3.80 0.71 0.109 0.80þ0.03
−0.03 3.09

NGC 3972 HSB 18.6 � � � 2.0 0.13 0.87 0.55 0.051 0.72þ0.04
−0.04 0.99

NGC 4010 LSB 18.4 −20.51 3.4 0.29 1.09 � � � 0.088 0.79þ0.07
−0.07 0.48

NGC 4013 HSB 18.6 −20.08 2.1 0.32 2.13 0.83 0.060 0.82þ0.03
−0.01 2.94

NGC 4051 HSB 14.6 −20.71 2.3 0.18 1.42 0.62 0.047 0.52þ0.04
−0.05 2.12

NGC 4085 HSB 19.0 −19.12 1.6 0.15 0.87 0.47 0.066 0.56þ0.08
−0.08 0.24

NGC 4088 HSB 15.8 −20.95 2.8 0.64 1.94 0.51 0.071 0.37þ0.03
−0.03 1.16

NGC 4100 HSB 21.4 −20.51 2.9 0.44 2.18 0.63 0.084 0.47þ0.02
−0.02 0.82

NGC 4138 LSB 15.6 −19.50 1.2 0.11 1.59 0.81 0.051 1.75þ0.18
−0.18 0.74

NGC 4217 HSB 19.6 −20.33 3.1 0.30 2.46 0.77 0.063 0.68þ0.03
−0.03 1.60

NGC 4157 HSB 18.7 −20.72 2.6 0.88 2.39 0.66 0.077 0.42þ0.03
−0.03 0.65

NGC 4183 HSB 16.7 −19.46 2.9 0.30 0.82 0.39 0.055 0.40þ0.04
−0.04 0.64

NGC 4389 HSB 15.5 � � � 1.2 0.04 0.40 � � � 0.053 0.58þ0.08
−0.08 1.54

UGC 6399 LSB 18.7 −17.56 2.4 0.07 0.52 � � � 0.061 1.49þ0.12
−0.12 0.02

UGC 6446 LSB 15.9 −18.08 1.9 0.24 0.34 0.39 0.059 0.095þ0.005
−0.075 0.61

UGC 6667 LSB 19.8 −17.83 3.1 0.10 0.53 0.65 0.058 0.94þ0.09
−0.09 0.42

UGC 6917 LSB 18.9 −18.63 2.9 0.22 0.74 0.53 0.098 0.80þ0.05
−0.07 0.48

UGC 6923 LSB 18.0 � � � 1.5 0.08 0.32 0.42 0.096 0.71þ0.10
−0.10 0.42

UGC 6930 LSB 17.0 � � � 2.2 0.29 0.66 0.59 0.108 0.45þ0.06
−0.06 0.68

UGC 6983 LSB 20.2 −18.58 2.9 0.37 0.73 0.45 0.096 0.43þ0.06
−0.06 0.44

UGC 7089 LSB 13.9 � � � 2.3 0.07 0.34 � � � 0.055 0.70þ0.09
−0.09 0.12
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in Fig. 3 the mass-to-light ratios both for the Ursa
Major galaxies in the B band and for the galaxies in
the THINGS catalog in the 3.6 μm band, and we compare
the results with Eqs. (65) and (66), respectively. Let us
note that the colors and the magnitudes of galaxies in
the Ursa Major cluster are extinction corrected, and that

we have divided the galaxies in this plot into HSB
and LSB galaxies in order to examine their behaviors
based on their types. Moreover, we compare our results
with the average stellar mass-to-light ratio of stars
around the solar neighborhood using the Hipparcos
catalog [33].
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FIG. 2. The best fit to the rotation velocity curves of the sample of Ursa Major galaxies. We fix α ¼ 10.94 and μ ¼ 0.059 kpc−1 from
the fits to the THINGS catalog, and we take the stellar mass-to-light ratio ϒ⋆ as the free degree of freedom.
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Though we have demonstrated the physical correlation
between ϒ⋆ and the color of galaxies, uncertainties
still exist in the analytical relationship between these
two parameters. Finally, we remark that near-infrared
observations provide more reliable values for the stellar
mass-to-light ratio than visual-band observations.
It is important to point out that on the basis of the results

presented here, we can conclude that our approach is

generally consistent with the theoretical astrophysical
models of star formation.

C. Tully-Fisher relation

We wish to determine here if the nonlocal gravity theory
is in general agreement with the Tully-Fisher relation.
In 1977, Tully and Fisher [24] showed that there is an
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empirical correlation between the intrinsic infrared lumi-
nosity of a spiral galaxy L and the corresponding asymp-
totic rotation speed vc, which may be roughly expressed as
L ∝ v4c. To test this empirical law using the nonlocal gravity
model, we obtain the extinction-corrected absolute magni-
tude of a galaxy from observational data—namely, via
the apparent magnitude, distance and extinction factor.
However, for the rotation velocity, we use the best-fitting

parameters of our nonlocal gravity model, Eq. (63), to
calculate the corresponding rotation curve as in Fig. 2. The
result can be expressed as a plot of MB, the absolute
magnitude of a galaxy in the B band, versus Vflat in units of
km s−1, the rotation speed obtained from the flat part of the
rotation curve.
To calculate Vflat from the rotation curve, we follow here

the convention adopted in Ref. [42]: (a) for a galaxy with a
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rising rotation curve, Vflat cannot be measured; (b) for a
galaxy with a “flat” rotation curve, Vflat ¼ Vmax, where
Vmax denotes the maximum of the rotation curve; and
(c) for a galaxy with a declining rotation curve, Vflat is

calculated by averaging the outer part of the rotation curve.
Figure 4 displays the distribution of galaxies in terms of
absolute magnitude versus the logarithm of Vflat in the
subset of the Ursa Major catalog. Here Vflat is calculated on
the basis of the nonlocal gravity model. The best fit to the
data points is given by

MB ¼ −7.50 log10ð2VflatÞ − 1.47; (68)

where Vflat is in units of km s−1. Our result for the Tully-
Fisher relation in the B band is compatible with the
observational results given in Ref. [42].

IV. NONLOCAL GRAVITY: SOLAR SYSTEM

The parameters of the nonlocal gravity model have been
determined via the rotation curves of spiral galaxies in the
previous section—see Eqs. (63) and (64). With the model
parameters α¼ 10.94�2.56 and μ¼ 0.059�0.028 kpc−1,
we can now revisit the implications of nonlocal gravity for
gravitational physics in the Solar System [8].
In our nonlocal gravity model, the attractive Newtonian

inverse-square force FN is modified by the addition of a
repulsive Yukawa-type force as in Eq. (36), such that

δF
FN

¼ α

�
1 −

�
1þ 1

2
μr

�
e−μr

�
: (69)

At a radius of r ¼ 10 astronomical units, say, μr ∼ 10−9,
so that

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

2

3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B-V

Kro
up

a
di

et 
Sa

lp
ete

r

ϒ *B

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

2

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

J-K

ϒ *3.
6

Kro
up

a

die
t S

alp
ete

r

FIG. 3 (color online). Stellar mass-to-light ratio (in logarithmic scale) versus color for galaxies in the Ursa Major catalog (left panel)
and in the THINGS catalog (right panel). Here ϒ⋆ is given in the B band for the Ursa Major galaxies and in the 3.6 μm band for the
THINGS galaxies. We depict as solid lines both the “diet” Salpeter and the Kroupa IMF theoretical models, with the margins to the
models shown as dotted lines in both panels. The black circles in the left panel represent HSB galaxies, and red squares represent LSB
galaxies. For the sake of comparison, the blue star with coordinates (0.6, 1.4) represents the local value of ϒ⋆ in our Milky Way
neighborhood [33]. All of the black circles in the right panel represent THINGS galaxies.
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the observational data. The best fit to the data is given by
MB ¼ −7.50 log10ð2VflatÞ − 1.47.
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δF
FN

≈
r
λ0

∼ 10−8; (70)

where λ0 ≈ 3� 2 kpc in our model in accordance with
Eq. (64). It follows from Eq. (70) that within the Solar
System, the force law reduces to the Tohline-Kuhn force
given in Eq. (40), since 0 < μr ≪ 1. The observational
consequences of this perturbation due to nonlocal gravity
have been investigated in detail in Ref. [8]. Nonlocal
gravity is indeed consistent with current Solar System
observations, since the new effects turn out to be rather
small even compared to the main Einsteinian relativistic
gravitational effects. To illustrate this point, we mention
briefly here the extra bending of light rays by the Sun and
the extra retrograde perihelion precession of Mercury.
Our discussion is based on the theoretical results presented
near the end of Sec. II. That is, assuming for the sake of
simplicity that the Sun is a uniform sphere of radius r0, the
gravitational force due to the Sun experienced by a test
particle of unit mass located at r > r0 from the center of the
Sun is given by Eq. (59), which, for our present purposes,
may be approximated by the Tohline-Kuhn force (40).
The deflection angle of light rays by an astronomical

mass M due to an additional attractive force of the form
GMm=ðλ0rÞ is larger than the Einstein angle by a constant
amount given by 2πGM=ðc2λ0Þ ¼ ðM=M⊙Þϑ⊙, where

ϑ⊙ ¼ 2πGM⊙
c2λ0

∼ 10−16 rad; (71)

which is nearly 10 orders of magnitude smaller than the
Einstein deflection angle.
The situation for the perihelion precession of Mercury is

more hopeful, however [8,23,43]. The extra force due to
our nonlocal gravity model—see, for example, Eq. (59)—is
essentially radial and conservative; therefore, its influence
on planetary orbits is such that a Keplerian ellipse remains
planar and keeps its shape on the average, but it has a
retrograde precessional motion. The pericenter precession
frequency is given by [8,23,43]

_w ¼ −
1

2λ0

�
GM
A

�
1=2

IðeÞ; (72)

where A and e are the semimajor axis and the eccentricity
of the orbit, respectively. Here,

IðeÞ ¼ 2

e2
½ð1 − e2Þ1=2 − ð1 − e2Þ� (73)

decreases monotonically from unity at e ¼ 0 to zero
at e ¼ 1.
For the orbit of Mercury, A ≈ 6 × 1012 cm and e ≈ 0.2,

so that for Mercury, _w ≈ −0.2� 0.1 seconds of arc per
century. We note that this is about −4 × 10−3 of the
observed excess value for Mercury, which was successfully

explained by Einstein on the basis of his general relativity
theory. In the Solar System, the rate of precession of
perihelion is measured by optical methods with an uncer-
tainty of about 0.4 seconds of arc per century. On the other
hand, the uncertainty can be reduced to about 0.2 seconds
of arc per century via radar measurements [44]. Since
Shapiro’s review [44], the uncertainty in the radar obser-
vations of Mercury has improved by about an order of
magnitude. Moreover, the Newtonian contribution to the
perihelion precession of Mercury due to solar oblateness is
about 0.03 seconds of arc per century [45], while the
corresponding contribution of the asteroid belt is expected
to be smaller by perhaps 2 orders of magnitude. There are,
however, problems in the interpretation of observational
data [44]. Nevertheless, future improvements in the meas-
urement of planetary perturbations and their interpretations
may make it possible to detect the effect of nonlocal gravity
in the Solar System.

V. OBSERVATIONAL TESTS: CHANDRA X-RAY
CLUSTERS OF GALAXIES

Clusters of galaxies are filled with hot ionized gas that
is luminous in x rays. The low-density gas contains
∼10−3 atoms=cm3 and has a temperature of order 108 K.
Most of the electrons originate from hydrogen and helium
atoms that are fully ionized. We assume, as usual, that in
the plasma, the mass density of protons is nearly 3

4
ρg,

and the mass density of helium ions is nearly 1
4
ρg, where ρg

is the mass density of the cluster gas. The gas contains most
of the baryonic mass of rich clusters and is roughly at the
virial temperature T that is related to the radial (i.e., line-of-
sight) velocity dispersion σr of the galaxies in the cluster,
namely, kBT ≈ μpmpσ

2
r , where μp is the mean atomic mass

of the plasma (electrons and ions) in amu, μp ≈ 0.6, andmp
is the proton mass. In this section, we employ the gas
density profile ρgðrÞ of a cluster and the corresponding
temperature profile TðrÞ, obtained from the observational
data provided by the Chandra x-ray telescope, to extract the
magnitude of the gravitational acceleration gðrÞ inside the
cluster. To this end, we assume that the gas is in hydrostatic
equilibrium, so that dP=dr ¼ −ρggðrÞ, where the gas
pressure P is given by P=ðkBTÞ ¼ ρg=ðμpmpÞ in accor-
dance with the ideal gas law [46]. It follows that for a
spherically symmetric system in hydrostatic equilibrium,
the magnitude of acceleration on a test point particle is
related to the observable parameters by [46]

kBTðrÞ
μpmpr

�
d ln ρgðrÞ
d ln r

þ d lnTðrÞ
d ln r

�
¼ −gðrÞ: (74)

In order to have correct dynamics with only baryonic matter
and no actual dark matter, the left-hand side of this equation
should be equal to the right-hand side given by Eq. (36)
of our nonlocal gravity model. In Eq. (36), for μr ≫ 1,
the force between two point particles reduces to the
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inverse-square force law augmented by the constant factor
of 1þ α. Thus, in this case, a homogeneous spherical shell
of matter exerts no force on a test particle in its interior but
attracts an exterior test particle as though the mass of the
shell were concentrated at its center. The radius of a cluster
is of order 1000 kpc; therefore, in the outer parts of the
cluster and away from the central region that has the highest
mass density, consider the determination of the acceleration
of gravity on a point mass at fixed radius r. Except for the
mass interior to a sphere of radius ∼μ−1 ≈ 17 kpc about our
fixed point mass, we can safely neglect the repulsive
Yukawa force in Eq. (36) in comparison with the attractive
Newtonian force. As the mass within the sphere of radius
∼μ−1 ≈ 17 kpc is very small compared to the mass of the
cluster, we can simply estimate gðrÞ using the Newtonian
inverse-square force law augmented by 1þ α, as discussed
in detail in Sec. II. It follows that at a radial distance r
well beyond the central regions of a cluster, we have the
approximate expression gðrÞ ≈ ð1þ αÞGMdynðrÞ=r2, and
therefore Eq. (74) can be written approximately as

MdynðrÞ≈−3.68× 1010
rTðrÞ
1þ α

�
d lnρgðrÞ
d lnr

þ d lnTðrÞ
d lnr

�
M⊙;

(75)

where r is the radial distance from the center of the cluster
in kpc, MdynðrÞ is the dynamical mass of the cluster within
a sphere of radius r and TðrÞ is the temperature of the gas
in keV.
We now proceed to the determination of the gas density

and temperature profiles for Chandra x-ray clusters via the
best fit to the observational data. In this way, we compute
the dynamical mass of the cluster within the radial distance
r from Eq. (75) and compare the result to the baryonic mass
of the cluster—namely, the net mass of gas and stars, which
we obtain by volume integration of ρg from a radius of
100 kpc out to radius r and the addition of the mass of the
stars up to radius r, without resorting to any actual dark
matter. We start the integration of the gas density profile
from r ¼ 100 kpc rather than from r ¼ 0, since there are
high measurement uncertainties in the density of gas at the
central part of the cluster; moreover, the contribution of the
central region with r < 100 kpc to the mass of the whole
cluster with a radius of ∼1000 kpc is expected to be rather
small. The mass of the cluster is dominated by its baryonic
content, and we expect that the baryonic mass and the
dynamical mass would essentially agree if the gravitational
force that balances gas pressure within the cluster were
correctly represented by nonlocal gravity.

A. Gas density profile

The temperature of the hot gas in the cluster is of the
order of keV, and the hot plasma mainly emits x rays as a
result of thermal bremsstrahlung via the free-free radiation
process. There are line emissions by the ionized heavy

elements as well. A detailed discussion of the various
emission mechanisms is contained in Ref. [46]. It turns out
that the net amount of emitted radiation is proportional to
the product of the number densities of electrons ne and
protons np. Moreover, this product is related to the gas
density as well; that is,

ρgðrÞ ≈ 1.24mp½neðrÞnpðrÞ�12: (76)

In Ref. [47], the properties of 13 nearby relaxed galaxy
clusters in the Chandra catalog were studied by constructing
three-dimensional radial profiles of gas density and temper-
ature that were then projected along the line of sight and fit to
observational data. We use the three-dimensional models
provided in Ref. [47] to compute MdynðrÞ from Eq. (75).
To fit the observational data for the Chandra x-ray

clusters, the so-called β model, which provides the standard
expression for the density function neðrÞnpðrÞ of the
form [48]

n20
ð1þ r2=r2cÞ3β

; (77)

has been modified in Ref. [47] in such a way that (i) it has a
cusp at the center; (ii) at large radii, x-ray brightness is
steeper than that given by the β-model; and (iii) a second
β-model component is added with a smaller core radius in
order to have more freedom near the center of the cluster.
Following Ref. [47], we thus assume

neðrÞnpðrÞ ¼
ðr=rcÞ−α0

ð1þ r2=r2cÞ3β−α0=2
n20

ð1þ rγ=rγsÞε=γ

þ n00
2

ð1þ r2=r0c2Þ3β0
; (78)

where γ ¼ 3 throughout. Moreover, a limitation is placed
on ε—namely, ε ≤ 5—in order to avoid unphysical radial
variations in density [47].
Table III represents the best fit to the density function

[Eq. (78)] for ten clusters of galaxies in the Chandra
catalog [47]. Each cluster is considered to be a spherical
configuration of matter with an effective radius of r500;
more precisely, r500 is defined to be the cluster radius
within which the average overdensity is 500 times the
critical density of the Universe at the redshift of the cluster
in the dark matter model. The particular radial function
[Eq. (78)] adopted in Ref. [47] to represent ρ2g has nine
unknown parameters, and there are various degeneracies
among them. The numerical values of these parameters
have been specified in Ref. [47] and adopted here in
Table III. No error estimates for the model parameters
were given in Ref. [47]; hence, there are no error estimates
for the nine parameters of the gas density profiles in
Table III.
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B. Temperature profile

The temperature TðrÞ that appears in Eq. (75) is in fact
T3DðrÞ, the three-dimensional radial profile of the gas
temperature, which has to be properly projected along the
line of sight [49], since it is the projected two-dimensional
profile that can be compared directly with observational data.
The plasma in the cluster can be divided into two regions: a
cooling zone near the center, and the outer part of the cluster.
The temperature profiles for these two regions have been
modeled by two different functions [47]. At the center of a
cluster, the temperature decreases due perhaps to radiative
cooling in this region; hence, it is useful to define [50]

ΘinðrÞ ¼
ðx0 þ Tmin=T0Þ

x0 þ 1
; x0 ≔

�
r

rcool

�
acool

: (79)

For the outside of the central cooling zone, it is useful to
define [47]

ΘoutðrÞ ¼
ðr=rtÞ−a0

½1þ ð rrtÞb�c
0=b ; (80)

where rt represents the radial transition region. The overall
three-dimensional temperature profile of a cluster is then
given by [47]

T3DðrÞ ¼ T0ΘinðrÞΘoutðrÞ: (81)

Table IV represents the best fits to the temperature profiles
[Eq. (81)] of the ten clusters of galaxies in the Chandra
catalog [47]. The numerical values of the eight model
parameters given in Table IV are based on Ref. [47].
No error estimates for these parameters were provided
in Ref. [47].
Appendix C contains explicit expressions for the

logarithmic derivatives of the gas density and temperature
profiles that appear in Eq. (75). We use these functions with
the parameters given in Tables III and IV for the clusters of

TABLE III. The parameters of the gas density profiles for the sample of ten clusters of galaxies observed by the Chandra telescope and
studied in Ref. [47]. This table has been constructed from the results given in Ref. [47]. The first column specifies the name of the
cluster, and the second column specifies the radius of the outer boundary (i.e., r500) where the cluster is observed in x rays; that is, r500 is
a useful measure of the size of the cluster. Other columns represent the best-fit values of the parameters of the three-dimensional density
profile (78).

r500 n0 rc rs n00
Cluster (kpc) (10−3 cm−3) (kpc) (kpc) α0 β ε (10−1 cm−3) r0c β0

A133 1007� 41 4.705 94.6 1239.9 0.916 0.526 4.943 0.247 75.83 3.607
A383 944� 32 7.226 112.1 408.7 2.013 0.577 0.767 0.002 11.54 1.000
A478 1337� 58 10.170 155.5 2928.9 1.254 0.704 5.000 0.762 23.84 1.000
A907 1096� 30 6.257 136.9 1887.1 1.556 0.594 4.998 � � � � � � � � �
A1413 1299� 43 5.239 195.0 2153.7 1.247 0.661 5.000 � � � � � � � � �
A1795 1235� 36 31.175 38.2 682.5 0.195 0.491 2.606 5.695 3.00 1.000
A1991 732� 33 6.405 59.9 1064.7 1.735 0.515 5.000 0.007 5.00 0.517
A2029 1362� 43 15.721 84.2 908.9 1.164 0.545 1.669 3.510 5.00 1.000
A2390 1416� 48 3.605 308.2 1200.0 1.891 0.658 0.563 � � � � � � � � �
MKW4 634� 28 0.196 578.5 595.1 1.895 1.119 1.602 0.108 30.11 1.971

TABLE IV. The parameters of the three-dimensional temperature profiles for the sample of ten clusters of galaxies observed by the
Chandra telescope and studied in Ref. [47]. This table has been constructed from the results given in Ref. [47]. The first column specifies
the name of the cluster, and the other columns specify the parameters of the temperature profile [Eq. (81)].

Cluster T0

(keV)
rt

(Mpc)
a0 b c0 Tmin=T0 rcool

(kpc)
acool

A133 3.61 1.42 0.12 5.00 10.0 0.27 57 3.88
A383 8.78 3.03 −0.14 1.44 8.0 0.75 81 6.17
A478 11.06 0.27 0.02 5.00 0.4 0.38 129 1.60
A907 10.19 0.24 0.16 5.00 0.4 0.32 208 1.48
A1413 7.58 1.84 0.08 4.68 10.0 0.23 30 0.75
A1795 9.68 0.55 0.00 1.63 0.9 0.10 77 1.03
A1991 2.83 0.86 0.04 2.87 4.7 0.48 42 2.12
A2029 16.19 3.04 −0.03 1.57 5.9 0.10 93 0.48
A2390 19.34 2.46 −0.10 5.00 10.0 0.12 214 0.08
MKW4 2.26 0.10 −0.07 5.00 0.5 0.85 16 9.62
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galaxies observed by the Chandra telescope and studied in
Ref. [47] to calculate the dynamical mass in the framework
of the nonlocal gravity theory. We then compare the
dynamical mass from Eq. (75) with the baryonic mass
from the sum of the masses of stars and gas. It is important
to note that the models given in Ref. [47] are expected to be
reasonably reliable at intermediate cluster radii, but not at
either very small or very large cluster radii [51].
For the calculation of the baryonic mass of the cluster

within a sphere of radius r, we first integrate ρg using
Eqs. (76) and (78) over the volume of a sphere of radius r.
To this result, we must then add the mass of the stars
within a sphere of radius r. We assume, for the sake of
simplicity, that the stellar component of a cluster follows
an isothermal distribution in the cluster; therefore,
ρ⋆ ∝ 1=r2, where ρ⋆ is the density of stars in the cluster.
It follows that the mass of the stars within a sphere of
radius r increases linearly with r; hence, the result is
ðr=r500ÞMstars, where Mstars is the net mass of the stars
within the cluster.
For the stars’ net mass, we use a simplified version of an

empirical relation given in Ref. [52], namely,

Mstars

1012M⊙
≈ 1.8

�
M500

1014M⊙

�
0.71

; (82)

noting that here M500 is the mass of the cluster in the dark
matter model and is given in Table V. Equation (82)
assumes a Hubble constant of H0 ¼ 71 km s−1 Mpc−1;
moreover, there is a systematic uncertainty here regarding

the stellar mass-to-light ratio, which we have simply
ignored. Furthermore, it is mentioned in Ref. [52] that
the original form of this empirical relation is expected to
hold with a scatter of 31%.
Figure 5 compares the dynamical mass within a sphere of

radius r according to nonlocal gravity and the correspond-
ing observed baryonic mass of the cluster. To provide an
estimate of the measurement error for the observed bar-
yonic mass, we use the uncertainty in the determination of
the x-ray flux, which in turn results in the uncertainty in the
gas fraction of the cluster given in Table 3 of Ref. [47];
hence, we deduce the error bars in Fig. 5. Based on our
theoretical model, we expect general agreement between
theory and observation in the outer midregions of the
clusters, and this is essentially confirmed by the results
displayed in Fig. 5.
Finally, it is interesting to compare the total dynamical

mass of the cluster, Mc
dyn ≔ Mdynðr500Þ, with the total

baryonic mass of the cluster, Mc
bar ≔ Mbarðr500Þ, for the

clusters under consideration here. The overall dynamical
and baryonic masses of the clusters up to radius r500 are
given in Table V. Let M ≔ Mc

dyn=M
c
bar; then, we expect

from NLG theory that M should be essentially unity.
On the other hand, significant observational uncertainties
exist in the determinations of Mc

bar and Mc
dyn. As in

Ref. [53], we simply compute the best fit to the linear
relation Mc

dyn ¼ MMc
bar. The result is given in Figure 6.

The best-fitting ratio is given by M ¼ 0.84� 0.04, which
is in general agreement with the NLG theory in view of
the presence of various uncertainties in our estimates of the
dynamical and baryonic masses of the clusters.

TABLE V. The dynamical mass in nonlocal gravity versus the observed baryonic mass of clusters. In this table, the dynamical masses
of clusters in nonlocal gravity, based on Eq. (75), are compared with the observed baryonic masses of the clusters. The columns describe
(1) the name of the cluster from the Chandra catalog [47]; (2) the mass of the cluster in the dark matter model up to r500—this quantity,
given in Ref. [47], is needed in Eq. (82), and its error estimate results from the uncertainty in the measurement of the temperature and
x-ray flux; (3) the mass of gas obtained by integrating the gas density over the volume of the cluster up to r500—the error estimates are
adapted from Ref. [47]; (4) the mass of stars from the empirical relation [Eq. (82)]; (5) the overall baryonic mass—here, we neglect the
error estimates associated with the contribution of stars, since it is small in comparison with the contribution of the gas to the total
baryonic mass; and (6) the total dynamical mass inferred from Eq. (75).

(2) M500 (3) Mgas (4) Mstars (5) Mc
bar (6) Mc

dyn
(1) Cluster (1014M⊙) (1013M⊙) (1013M⊙) (1013M⊙) (1013M⊙)
A133 3.14� 0.36 2.61� 0.54 0.408 3.02� 0.54 3.41þ0.94

−0.60

A383 3.10� 0.32 3.72� 0.59 0.398 4.12� 0.59 3.47þ0.94
−0.66

A478 7.83� 1.04 9.06� 2.04 0.765 9.82� 2.04 6.43þ1.79
−1.13

A907 4.71� 0.39 5.46� 0.72 0.528 5.99� 0.72 4.22þ1.06
−0.67

A1413 7.78� 0.83 7.86� 1.34 0.527 8.39� 1.34 7.70þ2.20
−1.36

A1795 6.57� 0.69 6.18� 0.90 0.644 6.83� 0.90 5.87þ1.61
−1.06

A1991 1.28� 0.20 1.25� 0.27 0.208 1.45� 0.27 1.30þ0.36
−0.23

A2029 8.29� 0.79 9.47� 1.46 0.788 10.26� 1.46 8.86þ2.42
−1.57

A2390 10.88� 1.05 14.48� 2.46 0.787 15.26� 2.46 11.42þ3.13
−2.03

MKW4 0.74� 0.09 0.47� 0.08 0.149 0.62� 0.08 0.63þ0.18
−0.11
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FIG. 5 (color online). The mass profile of a cluster is plotted as a function of the distance from the center of cluster for the sample of ten
Chandra x-ray clusters studied in Ref. [47]. The thick red line results from the integration of the observed distribution of gas plus stars,
while the thin black lines represent the dynamical mass calculated from Eq. (75), given by nonlocal gravity for α ¼ 10.94� 2.56.
The error bar at the end of the red line gives an indication of the measurement error along the red line.
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FIG. 5 (color online). (Continued.)
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FIG. 6 (color online). Left panel: The best linear fit to the relation between the dynamical masses according to nonlocal gravity and
the observed baryonic masses of the ten Chandra x-ray clusters of Table V. Here the best-fitting slope is Mc

dyn=M
c
bar ¼ 0.84� 0.04.

Right panel: The likelihood function for the parameter M ¼ Mc
dyn=M

c
bar.
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VI. DISCUSSION

The recent classical nonlocal generalization of Einstein’s
general relativity involves a scalar causal kernel that
must be determined via observation. The situation here
is somewhat similar to the electrodynamics of media, where
Maxwell’s original equations remain formally unchanged,
but new physics is contained in the constitutive relations
that are in general nonlocal. In nonlocal general relativity,
Einstein’s equations expressed in their equivalent tele-
parallel form remain formally unchanged as well; however,
the nonlocal constitutive relation introduces new aspects
of the gravitational interaction via the scalar kernel. Indeed,
nonlocality is here significant on galactic scales and can
simulate dark matter. That is, in this theory there is no
actual dark matter, and what appears as dark matter in
astrophysics is essentially a manifestation of the nonlocal
aspect of the gravitational interaction.
The implications of nonlocal gravity theory have thus far

been investigated in the linear domain, which, just as in
general relativity, involves linearized gravitational waves as
well as the Newtonian regime of the theory. It has been
shown in recent investigations that for gravitational radi-
ation, the situation in nonlocal gravity is essentially the
same as in general relativity [11,12]. The present paper
therefore deals with the Newtonian regime of nonlocal
gravity, where we assume a simple kernel with two
parameters α and μ and find a modified force law, where
the Newtonian inverse-square attraction is combined with a
Yukawa-type repulsion, which decays with radial distance r
as exp ð−μrÞ. From the new force law, we determine the
rotation curves of spiral galaxies and compare the theory
with observational data in order to fix the parameters of our
model. We find that for the best value of μ, μ−1 ≈ 17 kpc,
and for r ≫ μ−1, the force of gravity is Newtonian, except
that Newton’s gravitational constant G must be replaced by
Gð1þ αÞ, where the best value of α is ≈11. Regarding our
confidence in the values of these parameters, it is important
to point out that in our comparison of the theory with
observation in Sec. III, we always find one global minimum
in the ðα; μ;ϒ3.6⋆ Þ space; furthermore, our work on the
clusters of galaxies in Sec. V crucially depends on the value
of α. We then demonstrate that our approach is consistent
with the known astrophysical correlation between the stellar
mass-to-light ratio and the color of galaxies. Moreover, our
results are consistent with the Tully-Fisher relation for spiral
galaxies. Extending our nonlocal gravity theory to clusters of
galaxies, we show that cluster dynamics is consistent with
the measured baryonic content of galaxy clusters.
Nonlocal gravity theory introduces a modification of the

Newtonian gravitational force that accounts for gravitational
physics from the scale of the Solar System to that of a galaxy
cluster without any recourse to dark matter. It remains to
study gravitational lensing as well as nonlocal cosmological
models in order to have a more complete confrontation of
nonlocal general relativity with experiment.
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APPENDIX A: KERNEL PARAMETER a0

The purpose of this appendix is to show that neglecting
a0, 0 < a0=λ0 ≪ 1 and 0 < a0μ ≪ 1 in the reciprocal
kernel of nonlocal gravity theory in the Newtonian regime
has a negligible influence on the conclusions of this paper.
Solving the modified Poisson equation with either kernel

q1 or q2, given by Eq. (26) or Eq. (27), respectively, results
in the modification of the Newtonian inverse-square force
law given by

FðrÞ ¼ Gm1m2

r2

�
1 − EðrÞ þ α

�
1 −

�
1þ 1

2
μr

�
e−μr

��

(A1)

instead of Eq. (36). Here, EðrÞ is either E1ðrÞ or E2ðrÞ,
given by

EiðrÞ ¼ 4π

Z
r

0

½qðρÞ − qiðρÞ�ρ2dρ; i ¼ 1; 2; (A2)

where qðrÞ is our adopted reciprocal kernel given by
Eq. (28) that is obtained from either q1 or q2 by ignoring
parameter a0. We find that

E1ðrÞ ¼
a0
λ0

�
−

r
rþ a0

e−μr þ 2eμa0 ½E1ðμa0Þ

− E1ðμa0 þ μrÞ�
�

(A3)

and

E2ðrÞ ¼
a0
λ0

eμa0 ½E1ðμa0Þ − E1ðμa0 þ μrÞ�; (A4)

where E1ðuÞ is the exponential integral function defined
in Eq. (44).
It turns out that E1ðrÞ and E2ðrÞ are positive, monoton-

ically increasing functions that start from zero at r ¼ 0 and
asymptotically approach E1ð∞Þ ¼ 2E∞ and E2ð∞Þ ¼ E∞,
respectively, where

E∞ ¼ a0
λ0

eμa0E1ðμa0Þ: (A5)

Here 0 < a0=λ0 ≪ 1 and 0 < μa0 ≪ 1; hence, it follows
from Eq. (46) that 0 < E∞ ≪ 1 for sufficiently small a0=λ0.
For instance, with a0=λ0 ¼ 10−3 and the parameters of our
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nonlocal gravity model as in Eq. (63), we have E∞ ≈ 0.008.
We conclude that a0=λ0 can always be chosen to be so
small that EðrÞ is such that 0 ≤ EðrÞ ≪ 1 and can therefore
be neglected in comparison to unity in Eq. (A1) for the
considerations of this paper.

APPENDIX B: MODEL FITTING

For the rotation curve of each spiral galaxy under
consideration in this paper, let there be N observational
data points such as vi � σi at radial distance ri for
i ¼ 1; 2; 3;…;N . The errors in the measurement data
are assumed to be Gaussian. The nonlocal gravity model
predicts instead a rotation curve given by Vðr;pÞ, where
p ¼ ðp1; p2;…; pnÞ represents the set of n free-model
parameters that should be determined from a comparison of
the model with the data. For instance, for each THINGS
galaxy in the present work, n ¼ 3 for α, μ and ϒ3.6⋆ .
Assuming that the data points are independent of each
other, the goodness of fit of the data to the model is
measured via the χ2 statistic, namely,

χ2 ¼
XN
i¼1

�
vi − Vi

σi

�
2

; (B1)

where Vi ≔ Vðri;pÞ, and χ2 is thus a function of the
parameters of the model. The number of degrees of
freedom, Nd:o:f., is defined to be

Nd:o:f: ¼ N − n: (B2)

The χ2 probability distribution is given by

Pðχ2Þ ¼ 1

2νΓðνÞ ðχ
2Þν−1e− 1

2
χ2 ; (B3)

where

2ν ≔ Nd:o:f:: (B4)

The mean value of χ2 according to Eq. (B3) is Nd:o:f:, and
its variance is 2Nd:o:f.. Therefore, if the model is correct, we
expect that the value of χ2 with the best-fitting parameters
for the model is near its mean, so that the reduced χ2

defined by χ2=Nd:o:f. is near unity.
To find the best-fitting parameters of the model from the

minimum of the χ2 statistic, we calculate the values of χ2

over a large grid of parameters. For Gaussian variables, the
corresponding likelihood is proportional to exp ð−χ2=2Þ;
therefore, a normalized probability distribution can be
determined in this way for (p1; p2;…; pn) over the grid.
The marginalized likelihood distribution for one parameter
is obtained from the grid probability distribution by
summing over the values of the other parameters.
Finally, for a set of galaxies, we obtain the best-fitting

parameters α and μ of our model by the net χ2 of the set,
which we obtain by summing the χ2’s of the different
galaxies, as they are assumed to be independent. For
instance, for the 12 THINGS galaxies in Sec. III, the
combined likelihood distribution is assumed to be propor-
tional to

exp

�
−
1

2

X12
j¼1

χ2j

�
; (B5)

from which we obtain the best-fitting parameters of our
nonlocal gravity model given in Eq. (63).

APPENDIX C: FORMULAS FOR
CALCULATING Mdyn

In Eq. (75), we need the radial derivatives of the
three-dimensional gas density and temperature profiles.
The required terms are given by

d ln ρgðrÞ
d ln r

¼ 1

HðrÞ
�
−n02α0

�
1þ r2

rc2

�
0.5α0−3β� r

rc

�
−α0

ð1þ rγrs−γÞ−
ε
γ

× n02ðα0 − 6βÞ
�
1þ r2

rc2

�−1þ0.5α0−3β� r
rc

�
−α0þ2

ð1þ rγrs−γÞ−
ε
γ − 6n00

2β0
�
r
r0c

�
2
�
1þ r2

rc02

�−1−3β0

− n02ε

�
r
rc

�
−α0

�
r
rs

�
γ
�
1þ r2

rc2

�
0.5α0−3β

ð1þ rγrs−γÞ−1−
ε
γ

�
; (C1)

where

HðrÞ ¼ 2

�
n00

2

�
1þ r2

r0c2

�−3β0

þ n02
�
1þ r2

rc2

�
0.5α0−3β� r

rc

�
−α0

ð1þ rγrs−γÞ−
ε
γ

�
(C2)

and
d lnTðrÞ
d ln r

¼ acool

�
r

rcool

�
acool T0 − Tmin

½1þ ð r
rcool

Þacool �½Tmin þ T0ð r
rcool

Þacool � − a0 −
c0ð rrtÞb
1þ ð rrtÞb

: (C3)
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