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We study gravitational curvature effects in circular and radial geodesics in static, spherically symmetric
space-times, using Fermi normal coordinates. We first set up these coordinates in the general case, and then
use this to study effective magnetic fields due to gravitational curvature in the exterior and interior
Schwarzschild, Janis-Newman-Winicour, and Bertrand space-times. We show that these fields can be large
for specific parameter values in the theories, and thus might have observational significance. We discuss the
qualitative differences of the magnetic field for vacuum space-times and for those seeded by matter. We
estimate the magnitude of these fields in realistic galactic scenarios and discuss their possible experimental
relevance. Gravitational curvature corrections to the hydrogen atom spectrum for these space-times are also
discussed briefly.
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I. INTRODUCTION

Einstein’s general theory of relativity (GR) [1] is an
established theory of gravity, and many experimental tests
of this theory are well known. In particular, studying the
effect of space-time curvature on spin systems has a long
history (see, e.g., [2]) starting from the celebrated work of
de Sitter almost a century back [3]. Indeed, recent exper-
imental results from the Gravity Probe B experiment [4]
have successfully demonstrated the geodetic and frame-
dragging effects, further strengthening the basis of GR.
Another interesting direction ofwork has been the analysis

of gravitational effects on elementary particles. For example,
the Dirac equation was analyzed in general curved space-
times by Parker [5–7], who calculated the shifts in the
hydrogen atom spectra due to gravity. His results showed
that, for example, at the surface of the Sun, the typical
contribution of gravity effects will result in shifting the
energy levels of the hydrogen atom to the order of
10−50 GeV, which is unfortunately too small to detect by
present day experiments. Along these lines, one can also
think of possible apparent violations of Lorentz and CPT
invariance due to gravitational effects (see, e.g., [8]). These
are not actual violations but arise due to gravitation, and can
be detected by experiments. The EOT-Wash experiment [9]
has been actively seeking to detect such effects via torsion
balancemeasurements, andone of its objectives is tomeasure
gravitational interactions that couple to the spin of elemen-
tary particles. Here, the effect of gravity on an individual spin
is magnified by considering a balance consisting of a very
large number of such spins, and bounds have been placed on
magnetic fields that can arise due to gravitational effects.

Although a preliminary analysis of gravitational effects
on particles show that these might be hard to detect with
present day experiments [10], it is important and interesting
to understand scenarios where these might be large. In fact,
one might hope to understand qualitative features of space-
time itself, by analyzing such large effects, if they exist.
Naturally, gravitational effects should maximize near large
gravitating bodies, and GR predictions of physical effects
in this regime might be of interest in futuristic experiments.
For example, a concrete question to ask is whether there is
any observable enhancement of gravitational effects on
spinors near a massive object like a black hole or a neutron
star. Or, we could try to determine such effects near a
Galactic center which is dominated by dark matter. There
are two immediate problems that arise here. First, any such
computation will be model dependent, and more important,
a general relativistic prediction of a physical effect is
observer dependent; one needs to take care of subtleties
regarding the latter. There is ample literature on the subject
(see, e.g., [11]) which deals with important phenomeno-
logical issues, and in this work we try to complement these
by a more formal approach.
Consider an observer in free fall, i.e., in geodesic motion

in a gravitational background. We assume that the motion
does not backreact on the metric; i.e., our observer is treated
as a test particle in a gravitational background. Now say our
observer does an experiment on a spin system. By writing
the Dirac Lagrangian appropriate to a curved background,
one can show that this will have fermionic pseudovector
couplings, which in the nonrelativistic limit reduce to an

interaction energy of the form ~s:~b with ~s being the spin of
the particle [8,12,13]. This is what our geodesic observer
seeks to determine, perhaps with a torsion balance setup. To

calculate the effective magnetic field ~b due to gravitational
interactions (to be distinguished from the intrinsic magnetic
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field that arises due to motion of charged particles), we
need to make a choice of the coordinate system. A natural
choice, motivated from physical considerations is the Fermi
normal coordinate system, first introduced by Manasse and
Misner [14]. In Fermi normal coordinates, the metric is
locally flat all along the geodesic; i.e., the Christoffel
connections vanish everywhere on the geodesic, although
its derivatives may not be zero. In this coordinate frame, our
locally flat observer can measure an effective magnetic
field acting on the spin of the particle. The advantage of
using Fermi normal coordinates is that one can talk about
measurements carried out close to a singularity and not
necessarily in a weak field limit. We can therefore address
the question of the effect of gravity when it is large (of
course, possible quantum gravity corrections are ignored).
Although the implications of such measurements in present
day experiments are far from obvious, it might encode
valuable insights into the nature of space-time.
In this paper, we carry out such an analysis of

observers in circular and radial geodesic motion for the
Schwarzschild, Janis-Newman-Winicour (JNW) and
Bertrand space-times. While the former is a vacuum
solution of gravity, JNW space-times are sourced by a
scalar field that satisfies the Einstein-Klein-Gordon equa-
tions and the Bertrand space-times (BSTs) are seeded by
matter that can be given an effective two-fluid description
[15,16] and can be thought of as a candidate for galactic
dark matter. We highlight the important differences
between the nature of gravitational couplings on fermions
in these space-times and show that for Schwarzschild, JNW
and BST backgrounds, such couplings can be large on
highly relativistic orbits. For BST backgrounds, our results
indicate that it might be possible to obtain indications of
galactic dark matter in futuristic experiments.
This paper is organized as follows. In the next section,

after briefly reviewing aspects of general spherically
symmetric metrics in Fermi normal coordinates, we analyze
observers in circular geodesic motion and calculate the
effective magnetic field due to curvature couplings in
Schwarzschild, JNW and BST backgrounds. In Sec. 3,
we follow up this analysis for radial motion in the same
backgrounds. We comment on the important differences in
the results. Section 4 ends the paper with a summary and
possible directions for future research, where we also
present some results on the issue of gravitational correc-
tions to the hydrogen atom spectrum in BST and JNW
backgrounds. For the sake of completeness, we list, in two
appendixes, the nonzero components of the Riemann
curvature tensor in Fermi normal coordinates for circular
geodesics in Schwarzschild and Bertrand space-times.

II. CIRCULAR GEODESICS AND FERMION
CURVATURE COUPLINGS

We now consider an observer in circular geodesic motion
and set up Fermi normal coordinates to compute fermion

curvature couplings. We first set up the general formalism
to be used in this section and later on in the paper. We begin
with some statements which will set the notation and
conventions, and will motivate the rest of the work.

A. Fermi normal coordinates and effective
magnetic fields

In GR, in order to connect any result to possible
experiments, we need a coordinate system in which the
metric is locally flat along the entire geodesic on which our
observer moves. As alluded to in the Introduction, such a
system was envisaged in [14] by Manasse and Misner, and
let us briefly recapitulate their construction, which involves
a number of steps. First, we choose an arbitrary point on the
geodesicG as the origin and set up a tetrad basis there. This
basis is now parallely transported along the geodesic G and
for any event at a point Pwith Fermi normal coordinates xα,
and the time x0 is the proper time alongG at the intersection
of a spacelike hypersurface containing P, withG. The other
components of P are obtained by proceeding along a
spacelike geodesic on the hypersurface from the point of
intersection. The tetrad basis (called the Fermi normal
basis) should satisfy [14]

êα:êβ ¼ ηαβ; ∇ν0 ðêμ
0

α Þêν00 ¼ 0; (1)

where ∇ is the covariant derivative. Here, primes denote
coordinates in which the original space-time metric is
written (i.e., Schwarzschild or JNW or BST coordinates)
and the unprimed indices will denote Fermi normal
coordinates. Once we have set up the tetrad basis according
to the above prescription, we can write down the compo-
nents of the curvature tensor from those of the original
space-time, using the explicit forms for the tetrads. These
are given by

Rαβγδ ¼ êμ
0

α êν
0
β ê

ρ0
γ êσ

0
δ Rμ0ν0ρ0σ0 : (2)

Having obtained these, the metric around a geodesic G,
to second order in the coordinates can be shown to be given
by [14]

g00 ¼ −1þ R0l0mxlxmjG; g0i ¼
2

3
R0limjGxlxm;

gij ¼ δij þ
1

3
RiljmjGxlxm; (3)

where Latin indices are taken to be spatial, and it is to be
noted that the curvature components are evaluated on G,
where xi ¼ 0, i.e., on the geodesic, where the metric is that
of flat space-time (with Lorentzian signature), ηαβ ¼
ð−1; 1; 1; 1Þ. Also note that the dependence on the observ-
er’s time enters the metric only through the components of
the curvature that are evaluated at a given value of the
proper time along the geodesic. Now having set up such a
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coordinate system, we can analyze the covariant Dirac
Lagrangian

L ¼ ffiffiffiffiffiffi−gp ðiψ̄γαDαψ −mψ̄ψÞ; (4)

where γα are the usual Dirac matrices. First, a word about
the notation is in order. We have three types of space-time
metrics at play here: the original space-time that we start
from, a locally flat metric at the fermion and finally a
curved space-time around the geodesic given by the metric
of Eq. (3). Following our previous notation, the primed
coordinates will always refer to the original space-time. We
will now use the beginning Greek indices α; β;… to denote
the locally flat metric. The later Greek indices like μ; ν;…
will be used to denote the curved space-time surrounding
our geodesic.
In Eq. (4), the covariant derivative and the spin con-

nection have the standard definitions

Dα ¼
�
∂α − i

4
ωβγασ

βγ
�
; ωαβγ ¼ eαμð∂γe

μ
β þ Γμ

νρeνβe
ρ
γÞ;

σαβ ¼ i
2
½γα; γβ�; (5)

where Γμ
νρ is a Christoffel connection, and eμα denotes a

tetrad basis connecting the curved indices and flat indices
near the geodesic. It can be shown [10,11] that the terms
which come from the spin connection involve an inter-
action Lagrangian of the form ψ̄γαγ5bα, where the four
vector b can be written in a compact form,

bσ ¼ ϵαβγσeβμð∂αe
μ
γ þ Γμ

νρeνγe
ρ
αÞ≡ ϵαβγσeβμ∂αe

μ
γ ; (6)

where γ5 ¼ iγ0γ1γ2γ3, and it can be checked that b0 is
identically zero. Importantly, in a Hamiltonian approach,
this interaction Lagrangian can be cast into an effective

interaction energy of the form −~b:~s in the nonrelativistic
limit, as shown in [12] (see also [8]). This involves starting
from a relativistic Dirac Lagrangian and extracting a
nonrelativistic quantum Hamiltonian by following a
sequence of Foldy-Wouthuysen transformations with
appropriate field redefinitions. The fact that the interaction
Lagrangian of Eq. (6) can be cast into this nonrelativistic
form is the basis of gravitation induced apparent CPT
violation in the EOT-Wash experiment. In our case, as

explained in [10], the effective magnetic fields1 ~b will

change sign under parity, and hence gravitational curvature
couplings will not (apparently) violate CPT. These mag-
netic fields might, however, form the basis of other
detectable gravitational effects.
We should clarify here that in many of the examples

that we deal with in this paper, our results are for
relativistic orbits. This is the orbit that our observer
travels in, but we assume that the experiment is performed
on nonrelativistic fermions, in the observer’s coordinate
basis. So it makes sense to talk about fermion interactions
in the nonrelativistic limit of the Dirac equation. It might
be interesting to generalize our results beyond the non-
relativistic limit, by incorporating corrections in the
approach of [12]. However, this might be a difficult
exercise, and we will not pursue this topic for the purpose
of the present work.
To compute the magnetic fields, we will need the

tetrads [5,7]

eμ0 ¼ δμ0 − 1

2
Rμ

α0βjGxαxβ; eμi ¼ δμi − 1

6
Rμ

jikjGxjxk;
(7)

where i, j and k run over the spatial indices only. Hence, to
calculate the bi’s which is one of our main interests in this
paper, we require setting up the tetrad basis of Eq. (1) to
evaluate the components of the Riemann tensor in Fermi
normal coordinates. We then use this input in Eq. (6)
along with the tetrads in Eq. (7) to obtain the fields. The
effect of gravity will enter the field through the curvature
tensor. As we have mentioned, b0 vanishes identically,
and the expression for the spatial components ~b are given
by [10]

bi ¼
1

4
ϵ0γβiRγβ

0ljGxl þ
1

4
ϵ0γβiR0βγ

ljGxl: (8)

Hence, knowing Rαβγδ, we can compute the effective
magnetic field in the nonrelativistic limit due to gravita-
tional interactions, and in cases of interest, this should be
contrasted with the intrinsic magnetic fields present in
some celestial objects.
One has to be careful with the coordinates of the event

here, since the metric in Fermi normal coordinates of
Eq. (3) is valid only close to the geodesic. If the meas-

urement is carried out on the geodesic where xl ¼ 0, ~b
vanishes identically. Typically, in computations related to
the hydrogen atom (which is in free fall) for example, the
hypothetical observer is located at the nucleus of the atom,
and the xis are hence of the order of the Bohr radius [5]. For
the purpose of our discussion, we will keep the observer’s
coordinate explicit, and in some cases where we discuss
quantitative results, we will take this to be of order unity,

1Throughout this work we deal with effective magnetic fields,
or gravitomagnetic fields that are not actual magnetic fields in the
sense that they do not arise due to movement of charges. To avoid
repetition of terminology, we will sometimes loosely call these
magnetic fields, although we make it clear to the reader that we
will only deal with effective magnetic fields due to gravitational
effects.
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since we are mainly interested in experiments involving
finite size apparatus.

A few words about the magnitudes of ~b is also in order.
Present day bounds on the effective magnetic fields can be

obtained from the fact that~b translates to a magnetic

field ~B ¼ ~b=μB where μ is the Bohr magneton. Using
μB ¼ 9.3 × 10−24 J=T, the fact that ~B can be measured up

to an accuracy of 10−12 Gauss translates into j~bj ∼
10−28–10−29 GeV [8,17]. Hence, if we consider a realistic

situation and ~b turns out to be of this order, then we can
hope to detect it. However, as we point out in the sequel, the
values of the magnetic fields that we obtain are much less
than present day bounds, and hence we can only hope that
these will be detected in futuristic experiments. However,
we do not rule out the fact that indirect evidence of strong
magnetic fields due to gravitational effects might be
possible to observe.
Before we begin our analysis, let us point out what we

expect. On physical grounds, we expect that large ~b should
occur in regions where gravitational effects are large and
our observer is close to an instability. For circular geo-
desics, vacuum solutions of Einstein’s equations dictate
that such instabilities can occur near a photon sphere [18]
which is defined as a timelike hypersurface, such that a null
geodesic that is tangent to this hypersurface at some point
of time will remain so in the future. For the Schwarzschild
black hole, the photon sphere is at r ¼ 3

2
Rs, with Rs being

the Schwarzschild radius, and at this value of the radial
coordinate, the energy and angular momentum per unit
mass of a test particle undergoing circular geodesic motion
becomes very large; i.e., the motion is highly relativistic.
Indeed, it is well known that the scalar-field power
spectrum from particles in circular geodesics in a
Schwarzschild background sharply peaks near the photon

sphere [19]. We expect that ~b should be large in this limit
for Schwarzschild and for similar limits in the JNW space-
times as well, where behavior of circular geodesics is
qualitatively similar to (but has a richer structure than)
Schwarzschild backgrounds. Here, we run into an impor-
tant issue of stability of orbits. Circular orbits near the
photon sphere in exterior Schwarzschild backgrounds are
unstable, and hence the physics of magnetic fields for such
orbits is somewhat unclear. However, as we will show, there
are stable orbits for which the fields will be large, and in
these cases the physicality of our results is guaranteed.
Also, for BSTs that we consider later, there is no photon
sphere. Here, stable circular orbits are possible close to the
central singularity, by construction. In this case, we expect
that the magnetic field becomes large only close to the
singularity. We will indeed see that these expectations
are met.
For radial geodesics, the situation is different. Here, in

general we would expect the field ~b to depend on the

energy of the observer, since generically this would appear
in the curvature (an important exception being the
Schwarzschild solution). Hence, in this case, the results
will depend on the observer’s velocity. More energetic
observers should feel the effect of gravity more than less
energetic ones, and this is what we also find from our
results.

B. Fermi normal coordinates for circular geodesics
in static, spherically symmetric space-times

We consider a general static, spherically symmetric
space-time with metric2

ds2 ¼ −c2AðrÞdt2 þ BðrÞdr2 þ GðrÞdΩ2; (9)

where AðrÞ, BðrÞ and GðrÞ may be arbitrary positive
functions of the radial coordinate, and dΩ2 ¼ dθ2 þ
sin2 θdϕ2 is the standard metric on the unit two sphere.
The form of the metric dictates that we have the conserved
quantities

ϵ ¼ c2AðrÞ_t; L ¼ GðrÞ _ϕ; (10)

which are the energy per unit mass and angular momentum
per unit mass of the test particle, respectively. Here and in
what follows, the dots denote derivatives with respect
to the proper time on the geodesic and the primes will
denote a derivative with respect to r. For timelike
geodesics, we have

_r2 þ VðrÞ ¼ 0; VðrÞ ¼ 1

BðrÞ
�
− ϵ2

c2AðrÞ þ
L2

GðrÞ þ c2
�
:

(11)

For circular orbits, using VðrÞ ¼ V 0ðrÞ ¼ 0, we obtain

ϵ ¼ c2AðrÞ ffiffiffiffiffiffiffiffiffiffiffi
G0ðrÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ðrÞAðrÞ −GðrÞA0ðrÞp ;

L ¼ cGðrÞ ffiffiffiffiffiffiffiffiffiffi
A0ðrÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞG0ðrÞ −GðrÞA0ðrÞp : (12)

Now one can set up the Fermi normal tetrad basis as follows
(the Schwarzschild case was worked out in [7]):

2We will keep the factors of the speed of light c explicit for the
moment, so that dimensional consistency of our results can be
verified at each stage. For qualitative discussions, we will set
c ¼ 1.
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êμ
0

0 ¼
�

ϵ

c3AðrÞ ; 0; 0;
L

cGðrÞ
�
; êμ

0
1 ¼

�
−L sinðϕðτÞδðrÞÞ

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞGðrÞp ; 0;

cosðϕðτÞδðrÞÞffiffiffiffiffiffiffiffiffi
BðrÞp ; 0;− ϵ sinðϕðτÞδðrÞÞ

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞGðrÞp �

;

êμ
0

2 ¼
�
0; 0;

1ffiffiffiffiffiffiffiffiffiffi
GðrÞp ; 0

�
; êμ

0
3 ¼

�
L cosðϕðτÞδðrÞÞ
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞGðrÞp ;

sinðϕðτÞδðrÞÞffiffiffiffiffiffiffiffiffi
BðrÞp ; 0;

ϵ cosðϕðτÞδðrÞÞ
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞGðrÞp �

; (13)

where we have defined

δðrÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ðrÞðAðrÞG0ðrÞ −GðrÞA0ðrÞÞ

AðrÞBðrÞGðrÞ

s
: (14)

For example, for the Schwarzschild black hole, this factor is

δðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3Rs

2r

q
, where Rs ¼ 2GM

c2 is the Schwarzschild

radius and G denotes Newton’s constant.
It can be checked that the form of the tetrad above satisfies

the conditions in Eq. (1). Now we can compute the
components of the curvature tensor in the coordinates of
Eq. (9) and use Eqs. (2) and (13) to obtain the curvature
components in Fermi normal coordinates. The calculations
are lengthy, but can easily be performed using a standard
MATHEMATICA routine. The expressions are large, and we
omit them for brevity.We useEq. (8) to evaluate the effective
magnetic field due to curvature couplings and find that

b0 ¼ 0;

b1 ¼
ffiffiffiffiffiffiffiffiffi
A0G0p ½GA0G0 þ Að4BG −G02Þ�
16BA1=2G3=2ðAG0 −GA0Þ y cosðϕðτÞδÞ;

b2 ¼
PðrÞ
QðrÞ ;

b3 ¼
ffiffiffiffiffiffiffiffiffi
A0G0p

½GA0G0 þ Að4BG −G02Þ�
16BA1=2G3=2ðAG0 −GA0Þ y sinðϕðτÞδÞ; (15)

where PðrÞ and QðrÞ are defined as

PðrÞ ¼
ffiffiffiffiffiffiffiffiffi
A0G0p

½Bð2A2GG00 −A2G02 þG2ðA02 − 2AA00ÞÞ
þAGB0ðGA0 −AG0Þ�ðx cosðϕðτÞδÞ þ z sinðϕðτÞδÞÞ;

QðrÞ ¼ 16B2ðAGÞ3=2ðAG0 −GA0Þ; (16)

and x, y, z are the observer’s spatial coordinates. If xi ¼ 0,
i.e., the measurements are carried out on the geodesic, the
magnetic field is zero as expected, as Fermi normal
coordinates are flat there. In what follows, we will present
our results by setting xi ∼Oð1Þ. In graphical analysis, we
will calculate the fields in units of the observer’s typical
length, which we denote by Ro. In spherical polar coor-
dinates, this will be the radius of the event.
Equation (15) is the master equation for this section, and

it can be used to compute the effective magnetic field for
any static, spherically symmetric metric. Having outlined
the general calculation scheme, we will now specialize to

our cases of interest. The first case we consider is fermions
in circular motion in the background of the Schwarzschild
solution.

C. Circular geodesics in exterior and interior
Schwarzschild space-times

We start with the familiar exterior Schwarzschild metric

ds2 ¼ −
�
1 − Rs

r

�
c2dt2 þ

�
1 − Rs

r

�−1
dr2 þ r2dΩ2:

(17)

The energy and angular momentum per unit mass of a
particle in circular geodesic is given in the Schwarzschild
background as

ϵ ¼ c2ð1 − Rs
r Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3Rs
2r

q ; L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r2Rs

2r − 3Rs

s
: (18)

In this case, our calculation yields, from the master
Eq. (15),3

b1 ¼ Ay cos ðϕðτÞδÞ;
b2 ¼ Aðx cos ðϕðτÞδÞ þ z sin ðϕðτÞδÞÞ;
b3 ¼ Ay sin ðϕðτÞδÞ; (19)

where we have defined

A ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
sðr − RsÞ

p
4
ffiffiffi
2

p
r3ð2r − 3RsÞ

: (20)

Let us analyze this result in some detail.4 First, we note
from Eq. (19) that the magnetic field blows up close to
r ¼ 3

2
Rs, the location of the photon sphere (below this

radius, circular orbits do not exist). As alluded to earlier in

3We list in Appendix A the nonzero components of the
Riemann tensor for circular geodesics in Schwarzschild back-
grounds, also obtained in [20].

4For ease of notation, we will henceforth write the magnetic
fields in units of the observer’s coordinates, ignoring the angular
factor. This will not lead to any loss of generality of our results,
while avoiding cluttering notations. Thus, we will calculate
bi=Ro, where Ro is a typical coordinate of the observer defined
at the end of Sec. II B. However, we will keep denoting this as bi.
The full expression for the fields will typically look like that in
Eq. (19).
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this section, although the circular orbit is unstable at this
radius, this implies that a gravitational contribution to the
magnetic field can be very large here. To get a physically
meaningful situation, we should have an object whose
radius is of the order of its Schwarzschild radius. A neutron
star is a candidate which fits this requirement, and hence
our result is indicative of the fact that near the photon
sphere of a neutron star, GR effects can generate a very
large magnetic field on a fermion in circular motion. Of
course, as said in the Introduction, this is to be distin-
guished from the intrinsic magnetic fields of such objects
whose physics is very different. The field falls off as ∼r−7

2

as a function of the radial distance, for large r. In Fig. 1, we
plot the magnetic field as a function of the distance, with
Rs ¼ 1. As a numerical estimate, upon restoring factors of
ℏ and setting Rs ¼ 103m (a typical Schwarzschild radius

for a neutron star) we obtain j~bj ∼ 10−24 GeV at a distance
r ¼ 3Rs, where stable orbits exist. We also note that in the
direction of the magnetic field, given say in the x-z plane of
the observer by tan−1ðb3b1Þ, the r dependence enters only via
δðrÞ. Far from the black hole, this quantity is small, and
hence in this regime, the direction of the magnetic field will
be independent of the Schwarzschild radial coordinate r.
In is instructive to contrast the results above with those

obtained from an interior Schwarzschild solution. To
simplify notations, we will define

α ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Rs

R

r
; κ ¼ Rs

R3
; X ¼

�
α− 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− κr2

p �
2

:

(21)

Then the well known interior Schwarzschild solution,
describing a fluid of constant density, is given by

ds2 ¼ −c2Xdt2 þ dr2

1 − κr2
þ r2dΩ2; (22)

the solution being valid for r ≤ R, R being the matching
radius where the interior solution goes over to an external
Schwarzschild one. Here, we will use the conserved energy
and angular momentum per unit mass, given as

ϵ ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2

p − 2αÞ3
4ð1 − 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2

p
Þ

s
;

L ¼ cr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2

p − 1

r
; (23)

respectively. In this case, general results for the magnetic
field derived from our master Eq. (15) is lengthy and not
very illuminating. We find that for small values of r, the
fields start from small values, and their magnitudes increase
as r increases. This is expected, as our observer experiences
more gravitating mass as the radial distance increases, and
hence the effective magnetic field also increases. Thus, the
magnetic field will be strongest at the matching radius. At
this value r ¼ R, the expressions for the fields simplify, and
we get

b1 ¼ b3 ¼ −b2 ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
sðR − RsÞ

p
4
ffiffiffi
2

p
R3ð2R − 3RsÞ

: (24)

Note the similarity of this expression with the results
obtained from the exterior Schwarzschild solution
[Eqs. (19) and (20)]. The solutions match but for a negative
sign in b2. Of course, this is insignificant, since the fields
depend on the derivatives of the metric, and these need not
be continuous at the matching radius. We see, however, that
in this case also, a large magnetic field might be generated
in the interior region, if (r ¼) R ¼ 3

2
Rs, but importantly,

circular orbits are stable here. That is, at r ¼ R, the
conserved energy and angular momentum per unit mass
blows up; i.e., the circular orbit is highly relativistic but is
stable as can be checked by calculating the effective
potential. Typically, such a situation might again be of
relevance in the context of highly gravitating objects like
black holes or neutron stars. In Fig. 2, we show this result
graphically. Here we have set Rs ¼ 1 and R ¼ 1.5. Note
that in the context of the interior Schwarzschild solution, R
has to satisfy the Buchdahl bound, i.e., R > 9=8, so that the
pressure of the interior fluid is finite.

D. Circular geodesics in JNW space-times

Next, we move on to consider circular geodesics in the
Janis-Newman-Winicour space-times. These are space-
times sourced by a scalar field; i.e., this is an Einstein-
Klein-Gordon system, given by the metric

1.5 2.0 2.5 3.0 3.5 4.0
r0.0

0.2

0.4

0.6

0.8

1.0
bi Ro

FIG. 1 (color online). Effective magnetic field in units of the
observer’s length scale, as a function of distance for the exterior
Schwarzschild solution, with Rs ¼ 1.
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ds2JNW ¼ −c2
�
1 − B

r

�ν
dt2 þ 1

ð1 − B
rÞν

dr2

þ r2
�
1 − B

r

�1−ν
dΩ2: (25)

Here, ν is a parameter that ranges from 0 to 1. As is well
known, the singularity of this space-time at r ¼ B is
globally naked. Also, the source of the JNW space-time
is a scalar field,

ψ ¼ q

B
ffiffiffiffiffiffi
4π

p ln

�
1 − B

r

�
; (26)

where q is a parameter that denotes its magnitude. The
ADM mass M is related to B and q by B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
,

and also ν ¼ 2M=B.5 Setting ν ¼ 1, i.e., q ¼ 0, one
recovers the Schwarzschild metric. For JNW space-times,
we use the conserved energy and angular momentum per
unit mass as

ϵ ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − B

r

�
ν
�
1þ Bν

2r − 2Bν − B

�s
;

L ¼ cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bνð1 − B

rÞ1−ν
2r − 2Bν − B

s
:

(27)

Now we can calculate the magnetic fields as before. For
illustration, we will set B ¼ 1, in which case the fields take
a simple form

b1 ¼ b2 ¼ b3

¼ ðr− 1Þν−2r−ν−2ðνð6r− 3Þ− 2ν2− 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð2r− ν− 1Þp

16ð2r− 2ν− 1Þ :

(28)

For ν → 1, this goes over to the Schwarzschild result, as
expected. To analyze Eq. (28), we first note that the photon
sphere for the JNW singularity is at

rps ¼
B
2
ð1þ 2νÞ: (29)

This is the radius at which the energy and angular
momentum per unit mass of Eq. (27) diverges. It is also
known from an analysis of the stability of circular orbits
that three distinct regions in ν need to be considered.
Defining

r� ¼ B
2

�
1þ 3ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ν2 − 1

p �
; (30)

the ranges of stable orbits corresponding to different values
of ν are (see, e.g., [21])

Case1∶ 0< ν<
1ffiffiffi
5

p ; B < r <∞;

Case2∶
1ffiffiffi
5

p < ν<
1

2
; B < r < r− and rþ < r<∞;

Case3∶
1

2
< ν< 1; rþ < r<∞: (31)

Now from Eq. (28), we see that the magnetic field becomes
very large near the photon sphere, whenever it exists.
Specifically, from this equation, bi diverges at r ¼ rps ¼
1
2
ð1þ 2νÞ and at r ¼ B ¼ 1. Let us first consider case I. As

a representative value, we choose ν ¼ 0.43. Here, stable
orbits exist at all radii. In Fig. 3, we have shown this case
with the solid blue line, where the field is plotted as a
function of the radial distance r. They diverge close to the
singularity at r ¼ 1. Next, we consider case 2, where we
have chosen ν ¼ 0.49. Stable orbits exist for r < 1.01 and
for r > 1.46. The dashed red curve of Fig. 3 depicts the
fields in this case. We see that there is a divergence in the
fields at r ¼ 1. There is a maximum of the field at
r ¼ 1.007, where in units of the observer’s coordinates,
bi ∼ 17 (in appropriate energy units). At both these values
of r, the orbits are stable. For case 3, we find that the fields
become large only near the photon sphere, where circular
orbits are highly relativistic, but unstable. In Fig. 4, we
show this situation for ν ¼ 0.7 (solid blue curve) and for
ν ¼ 0.8 (dashed red curve). The radii of the photon sphere
are at r ¼ 1.2 and r ¼ 1.3, respectively.
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r0.0

0.5

1.0

1.5

2.0
bi Ro

FIG. 2 (color online). Effective magnetic field in units of the
observer’s length scale, for the interior Schwarzschild solution,
with Rs ¼ 1, R ¼ 1.5.

5We will set G ¼ c ¼ 1 here. Setting B ¼ 1 fixes M ¼ ν
2
for

a given value of ν. This sets the value of q via q2 ¼ 1
4
−M2.
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E. Circular geodesics in Bertrand space-times

We will now consider circular geodesics in BSTs. First
let us recall a few definitions. BSTs were discovered by
Perlick [22], as solutions of Einstein gravity where each
spatial point admits a closed stable orbit. This generalizes
the well known Bertrand’s theorem [23] to GR. That such
space-times can be good candidates for galactic dark matter
was pointed out in [15] from the assumption that stars away
from Galactic centers follow approximately circular orbits.
The metric for a BST (of type II, in the classification of
[22]) is given by

ds2BST ¼ − c2dt2

Dþ α
r

þ dr2

β2
þ r2dΩ2: (32)

Here, α and D are positive, β is a rational number, and
rs ¼ α

D is related to the galactic length scale, in the sense

that if we take rs to be of the size of the galaxy, then in the
Newtonian limit, reasonable estimates to the mass of the
galaxy can be obtained. Indeed, a phenomenological
definition of the circular velocity of matter (considered
as a perturbation over the BST background such that
backreaction effects are neglected) gives results that match
well with experimental data on low surface brightness
galaxies. In a Newtonian approximation, these also repro-
duce the popular Navarro-Frenk-White (NFW) [24] and
Hernquist [25] density profiles for the dark matter distri-
bution, in appropriate limits [15]. We will consider this
model in a phenomenological spirit and estimate effective
magnetic fields for observers in geodesic motion in this
matter distribution, even close to the Galactic center. Note
that there is a central singularity at r ¼ 0 in the metric of
Eq. (32) which is naked.

Here, we evaluate ~b by setting β ¼ 4=5.6

b1 ¼
αð17αþ 9DrÞ

50
ffiffiffi
2

p
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðαþDrÞp ðαþ 2DrÞ ¼ b3;

b2 ¼
ffiffiffi
2

p ð α
αþDrÞ3=2ðαþ 4DrÞ
25r2ðαþ 2DrÞ : (33)

First of all, we note from the above expressions that for
small distances Dr ≪ α, bi ∼ r−2. For large distances, we
have b1 and b3 ∼r−

5
2 while b2 ∼ r−7

2. Specifically, in the first
case, we see that bi becomes independent of α and D, and

∼r−2, whereas in the opposite limit, we obtain b1, b3 ¼
K1r

1
2
sr−

5
2 and b2 ¼ K2r

3
2
sr−

7
2, where K1 and K2 are numerical

constants. The fact that the fields blow up as r → 0 is
expected, since the energy density in BSTs also blows up in
this limit [15]. Also, we see that the direction of the
magnetic field in one of the planes of the observer (the X-Y
plane in this case) is dependent on r,

b2
b1

¼ 4αðαþ 4DrÞ
ðαþDrÞð17αþ 9DrÞ ; (34)

a result that is qualitatively different from a Schwarzschild
background.
Now, we note that from a Newtonian perspective, a fit of

the circular velocities of galactic rotation curves relates the
parameters α and D to the maximum value of the circular
velocity and the Newtonian mass of the galaxy as [Eqs. (8)
and (12) of [15]]

α ¼ c2GM
8ðvmax

c Þ4 ; D ¼ c2

8ðvmax
c Þ2 ; (35)
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FIG. 4 (color online). Effective magnetic fields as a function of
the radial distance for JNW space-time with ν ¼ 0.7 (solid blue
lines) and ν ¼ 0.8 (dashed red lines).
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FIG. 3 (color online). Effective magnetic fields as a function of
the radial distance for JNW space-time with ν ¼ 0.43 (solid blue
line) and ν ¼ 0.49 (dashed red line).

6Nonzero components of the Riemann tensor for circular
geodesics in BSTs are listed in Appendix B.
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where α
D can be taken to be an estimate of the size of the

galaxy. If we input these values in the expressions for the
magnetic field of Eq. (33), we obtain

b1 ¼ b3 ¼
17GM þ 9rðvmax

c Þ2

50r2ðGM þ 2rðvmax
c Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2rðvmax

c Þ2
GM

q ;

b2 ¼
ffiffiffi
2

p �
GM

GMþrðvmax
c Þ2
�
3=2ðGM þ 4rðvmax

c Þ2Þ
25r2ðGM þ 2rðvmax

c Þ2Þ : (36)

Now we can take a typical estimate of M ∼ 108M⊙ and
vmax
c ¼ 30 km=s (which describe the galaxy NGC4395 to a

good approximation), to obtain bi ∼ 10−26 GeV for
r ∼ 104 m.7 This is, of course, a somewhat unrealistic
estimate, since we have taken r to be very small compared
to the galactic scales, but might be observationally impor-
tant. If we take r ¼ α=D, which is an estimate for the
galactic size, we obtain

bi ∼
ðvmax

c Þ4
G2M2

; (37)

and taking the typical values of M and vmax
c indicated

above, we obtain bi ∼ 10−55 GeV which is too small to
detect in present experiments.

III. RADIAL GEODESICS AND FERMION
CURVATURE COUPLINGS

We now turn to observers in radial geodesics as
described by Fermi normal coordinates. We will first
demonstrate the general construction of Fermi normal
coordinates for radial motion in static, spherically sym-
metric space-times, and present the results for the effective
magnetic field in the general case. Then we will specialize
to some examples.

A. Fermi normal coordinates for radial geodesics
in static, spherically symmetric space-times

We start with the general metric of Eq. (9). For radial
geodesics, we set up the tetrad

êμ
0

0 ¼
�
_t
c
;
_r
c
; 0;0

�
; êμ

0
1 ¼

 
_r
c2

ffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
; _t

ffiffiffiffiffiffiffiffiffi
AðrÞ
BðrÞ

s
; 0; 0

!
;

êμ
0

2 ¼
�
0; 0;

1ffiffiffiffiffiffiffiffiffiffi
GðrÞp ; 0

�
; êμ

0
3 ¼

�
0; 0; 0;

1ffiffiffiffiffiffiffiffiffiffi
GðrÞp

sinθ

�
;

(38)

where the dot denotes a derivative with respect to the proper
time along the radial geodesic. Now one can check that the

conditions of Eq. (1) are satisfied, upon using the radial
geodesic equation in this background. We also use the
normalization condition for radial geodesics,

_t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ BðrÞ_r2

c2AðrÞ

s
¼ ϵ

c2AðrÞ ; (39)

where ϵ is the conserved energy per unit mass of our test
particle, as before. Now we can compute the effective
magnetic field. We find that b0 ¼ b1 ¼ 0, and

b2 ¼ zB; −b3 ¼ yB;

B ¼ 1

16cBG2
z_r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ_r2 þ c2

AðrÞc2

s
ðMðrÞ þ NðrÞÞ: (40)

where we have defined

MðrÞ ¼
ffiffiffiffi
A
B

r
BG02;

NðrÞ ¼ G

� ffiffiffiffi
B
A

r
A0G0 þ

ffiffiffiffi
A
B

r
ðB0G0 − 2BG00Þ

�
: (41)

Equation (40) is the master equation for this section, and we
will now proceed to analyze special cases of this result.

B. Radial geodesics in Schwarzschild,
JNW and Bertrand space-times

For the exterior vacuum Schwarzschild solution, we set
up the Fermi normal coordinates as prescribed in [14] [or
from Eq. (38)]. Here, we find that all components of the
effective magnetic field are identically zero. Interestingly,
the situation changes for interior Schwarzschild solutions,
described by Eqs. (21) and (22). Here, we find that the
magnetic field at the interior is nonzero, and it does not fall
off to zero at the matching radius, as one would have
naively expected. In fact, at the matching radius r ¼ R, we
find that

b2 ¼
3Rsϵ

8c4R2ðR − RsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − c4

�
1 − Rs

R

�s
: (42)

This can be large for R close to Rs and for large values of ϵ.
Hence, there is a discontinuity for ~b at the matching radius.
This is not surprising, since, as mentioned before, the fields
depend on the derivatives of the metric, which can be
discontinuous at the matching radius. In Fig. 5, we show
the behavior of the field b2 (in units of the observer’s
coordinates) as a function of the radial coordinate, for
ϵ ¼ 5 and 6 (in units of c2). The same qualitative feature is
seen for a fermion in radial geodesic motion in a JNW
background of Eq. (25). Here, we find that

7Upon restoring all units, the bi’s are of dimension L−1. This
has to be multiplied by ℏc in order to get the field in GeV.
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b3 ¼ −b2 ¼
ϵB2ðν2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − c4ð1 − B

rÞν
q

16c4r2ðB − rÞ2 : (43)

Recalling that for radial geodesics in the JNW geometry,
we have

_t ¼ ϵ

c2

�
1 − B

r

�−ν
; _r ¼

�
ϵ2

c2
− c2

�
1 − B

r

�
ν
�1

2

; (44)

we see that the field vanishes for _r ¼ 0 and in general can
be large for large values of ϵ and small values of r.
Finally, we repeat the analysis for radial geodesics in

BST backgrounds. First, let us recapitulate a few details
[15]. For radial geodesics, it can be checked that

_t ¼ ϵ

c2

�
Dþ α

r

�
; _r ¼ β

�
ϵ2

c2

�
Dþ α

r

�
− c2

�1
2

: (45)

Hence, the radial velocity is given by

vrad ¼
βc

ffiffiffi
r

p
εðαþDrÞ ½ϵ

2ðDrþ αÞ − c4r�12: (46)

From Eq. (46) we see that the radial velocity thus becomes
zero if the energy per unit mass satisfies

ϵ2 ¼ c4r
αþDr

; (47)

which can also be turned around to provide a maximum
value of the radius at which the particle reaches zero
velocity. Now, after transforming to Fermi normal coor-
dinates, we calculate the components of the effective
magnetic field and find that (with b0 ¼ b1 ¼ 0),

b2 ¼ −b3 ¼ 2αϵ

25c4r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðαþDrÞ − c4r

αþDr

s
; (48)

where we have set the parameter β ¼ 4=5. Hence, the field
is dependent on the energy of the observer and is zero for
the value of ϵ given in Eq. (47). Now if we use Eq. (35) to
obtain the field in a galactic scenario, we obtain

b2 ¼
GMϵ

100c2ðvmax
c Þ4r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðGMþ ðvmax

c Þ2rÞ− 8c2ðvmax
c Þ4r

GMþ ðvmax
c Þ2r

s
:

(49)

For a highly relativistic particle, this can be large. For
example, if we take M ¼ 108M⊙, with vmax

c ¼ 20 Km=s
and set ϵ ¼ 1016 ðm=sÞ2, then we obtain, at a radius of
∼106 m, b2 ∼ 10−11 GeV. This can be significant in
futuristic experiments.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have considered the effective magnetic
field due to curvature couplings in fermions. These arise
purely due to gravity effects and are different in origin from
intrinsic magnetic fields. Using Fermi normal coordinates,
we have computed these for the Schwarzschild, JNW and
Bertrand space-times, for observers in circular and radial
geodesics. Our results establish the qualitative difference in
the fields in various cases. We show that these fields can be
large for specific parameter values in the theories, and hence
might be indirectly observed in futuristic experiments.
For circular geodesics, whereas the direction of the

effective magnetic field remains a constant as a function
of the radial coordinate for the Schwarzschild and JNW
backgrounds, this is not true for naked singularity back-
grounds seeded by galactic dark matter. It was also shown
that for Schwarzschild and JNW backgrounds, there is a
large enhancement of the effective magnetic field not only
near the photon sphere but also in regimes where circular
orbits are stable. As we have mentioned, this might have
implications for highly gravitating objects like black holes
or neutron stars. However, such enhancement is not
observed in BST backgrounds. For the latter, large fields
are seen by circular observers only close to the singularity.
For observers on radial geodesics, our results show that

whereas an external Schwarzschild observer will not see any
effective magnetic field, the same is not true for internal
Schwarzschild, JNW,andBSTobservers.This is an important
distinction between vacuum space-times and those seeded by
matter, and should be investigated further. In these cases, the
field is dependent on the observer’s energy and can be
considerably large for highly relativistic observers.
Before we conclude, we mention that our results for the

JNW and the BST can be used to make a comparative
analysis of gravitational effects on the hydrogen atom
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FIG. 5 (color online). Effective magnetic fields as a function of
the radial distance for the interior Schwarzschild space-time with
ϵ ¼ 5c2 (solid blue line) and ϵ ¼ 6c2 (dashed red line).
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spectra, which has been well studied in the literature [5,6]
by using degenerate perturbation theory. We will consider
only nonrelativistic energy shifts and will simply state our
main results here. For the 1S and 2S states of the hydrogen
atom, in Schwarzschild backgrounds, the nonrelativistic
energy shifts are zero [Eqs. (6.1) and (6.15) of [7]]. The
essential reason is that these are proportional to the R00

component of the Ricci tensor, which is identically zero for
radial and circular geodesics in the Schwarzschild geom-
etry, in Fermi normal coordinates. For JNW and BST
backgrounds, this ceases to be the case (see Appendix B for
the explicit expression of R00 for circular geodesics in BST
geometries). Hence, for these naked singularity back-
grounds, the 1S and 2S levels of hydrogen will receive
gravitational corrections, contrary to the situation for black
hole backgrounds.
We have calculated this shift and find that for radial

geodesics, it can be large near the singularity for JNW
space-times and for small radial distances for BSTs. We
also calculated the shifts in the energy of some of the other
states listed in [7] [Eqs. (6.1)–(6.23) of that paper] and find
that in general, gravitational effects in JNW and BST
backgrounds will be large only near the naked singularity,
for radial geodesics.
We also calculated the energy shifts for circular geo-

desics and find that for JNW backgrounds, shifts in the
hydrogen atom spectrum are qualitatively similar to those
in Schwarzschild backgrounds; i.e., they become large only
near the photon sphere [a result that is evident for the
Schwarzschild geometry from Eqs. (6.15)–(6.23) of [7]] or
near the naked singularity if the photon sphere is absent.
The second situation is more interesting as it allows for
stable orbits, as we have seen in Sec. II D. For BSTs, these
are large only near the central singularity.
To conclude, we have presented a comprehensive GR

analysis of effective magnetic fields seen by fermions in
geodesic motion in curved space-times. Our results com-
plement and add to the existing literature on the subject. We
show evidence of large magnetic fields induced by gravity
near a very massive gravitating object or near the center of a
galaxy. We have also demonstrated qualitative differences
in magnetic field, depending on the nature of space-time.
Experimental signatures of these effects in futuristic experi-
ments may be important to analyze.
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APPENDIX A

The nonzero components of the Riemann tensor in Fermi
normal coordinates for circular geodesics in the back-
ground of Schwarzschild black hole (at θ ¼ π=2) are listed
below. These also appear in [20].

R0101 ¼
rþ 3ðr − RSÞ cosð2δϕÞ

2r3ð2r − 3RSÞ
RS;

R0103 ¼
3RSðr − RSÞ
2r3ð2r − 3RSÞ

sinð2δϕÞ;

R0113 ¼ −
3RS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSðr − RSÞ

p
ffiffiffi
2

p
r3ð2r − 3RSÞ

cosðδϕÞ;

R0202 ¼ −
RS

r2ð2r − 3RSÞ
;

R0212 ¼
3RS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSðr − RSÞ

p
ffiffiffi
2

p
r3ð2r − 3RSÞ

sinðδϕÞ;

R0303 ¼
r − 3ðr − RSÞ cosð2δϕÞ

2r3ð2r − 3RSÞ
RS;

R0223 ¼ −R0113; R0313 ¼ −R0212;

R1212 ¼ −R0303; R1223 ¼ −R0103;

R1313 ¼ −R0202; R2323 ¼ −R0101;

where RS ¼ 2GM
c2 , and δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3RS

2r

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3GM

c2r

q
. In

Fermi normal coordinates, it is easy to check that R00 ¼ 0.

APPENDIX B

The nonzero components of Riemann tensor in Fermi
normal coordinates for circular geodesics in the back-
ground of Bertrand space-time (at θ ¼ π=2) are listed
below:

R0101 ¼ αβ2
Drþ ðαþ 3DrÞ cos 2ϕ
2r2ðαþDrÞðαþ 2DrÞ ;

R0103 ¼ αβ2
ðαþ 3DrÞ sin 2ϕ

2r2ðαþDrÞðαþ 2DrÞ ;

R0113 ¼ −
α3=2β2ðαþ 4DrÞ cosϕ

r2ð2ðαþDrÞÞ3=2ðαþ 2DrÞ ;

R0202 ¼ −
α

r2ðαþ 2DrÞ ;

R0212 ¼
ffiffiffi
α

p ðαð2 − β2Þ þ 2Drð1 − β2ÞÞ sinϕ
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðαþDrÞp ðαþ 2DrÞ ;

R0223 ¼
ffiffiffi
α

p ðαð2 − β2Þ þ 2Drð1 − β2ÞÞ cosϕ
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðαþDrÞp ðαþ 2DrÞ ;

R0303 ¼ αβ2
Dr − ðαþ 3DrÞ cos 2ϕ
2r2ðαþDrÞðαþ 2DrÞ ;

R0313 ¼ −
α3=2β2ðαþ 4DrÞ sinϕ

r2ð2ðαþDrÞÞ3=2ðαþ 2DrÞ ;

R1212 ¼
β2ðαþ 2DrÞð3αþ 2DrÞ − 4ðαþDrÞ2

2r2ðαþDrÞðαþ 2DrÞ sin2 ϕ;

FERMI NORMAL COORDINATES AND FERMION … PHYSICAL REVIEW D 89, 104008 (2014)

104008-11



R1223 ¼
β2ðαþ 2DrÞð3αþ 2DrÞ − 4ðαþDrÞ2

4r2ðαþDrÞðαþ 2DrÞ sin 2ϕ;

R1313 ¼
α2β2ðαþ 4DrÞ

4r2ðαþDrÞ2ðαþ 2DrÞ ;

R2323 ¼
β2ðαþ 2DrÞð3αþ 2DrÞ − 4ðαþDrÞ2

2r2ðαþDrÞðαþ 2DrÞ cos2 ϕ:

For this space-time, it can be checked that in Fermi normal
coordinates,

R00 ¼ − αðαþDrð1 − β2ÞÞ
r2ðαþDrÞðαþ 2DrÞ :
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