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We study the bispectrum of matter density perturbations induced by the large-scale structure formation
in the most general second-order scalar-tensor theory that may possess the Vainshtein mechanism as a
screening mechanism. On the basis of the standard perturbation theory, we derive the bispectrum being
expressed by a kernel of the second-order density perturbations. We find that the leading-order kernel is
characterized by one parameter, which is determined by the solutions of the linear density perturbations, the
Hubble parameter, and the other function specifying nonlinear interactions. This is because our model,
which may be equipped with the Vainshtein mechanism, includes only one simple function that describes
mode couplings of the nonlinear interactions. This feature does not allow for varied behavior in the
bispectrum of the matter density perturbations in the most general second-order scalar-tensor theory
equipped with the Vainshtein mechanism. We exemplify the typical behavior of the bispectrum in a kinetic

gravity braiding model.
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I. INTRODUCTION

Researchers are interested in modified gravity models as
alternatives for explaining the accelerated expansion of the
universe without introducing the cosmological constant
[1-13]. The most general second-order scalar-tensor theory
was first constructed by Horndeski [14] and was redis-
covered in [15] as a generalization of the Galileon theories
[16-36]. In addition to the possibility of constructing
cosmological models with accelerated expansion, this
theory has the following interesting features. The equation
of motion is a second-order differential equation. Thus,
an additional degree of freedom is not introduced, which
is advantageous to avoid the appearance of ghosts.
Furthermore, the Galileon theory is endowed with the
Vainshtein mechanism [33], which is a screening mecha-
nism useful for evading local gravity constraints. In the
most general second-order scalar-tensor theory, the
Vainshtein mechanism may work depending on the model
parameters (e.g., [37-39]).

The results from the Planck satellite have shown that the
primordial perturbations almost obey Gaussian statistics
[40]. Even if the initial perturbations were completely
Gaussian, the non-Gaussian nature of the density perturba-
tions is induced in the large-scale structure formation through
nonlinear fluid equations under the influence of the gravi-
tational force. The bispectrum is often used to characterize
the nonlinear and non-Gaussian nature of the density
perturbations (e.g., [41-45]). Recently, the bispectrum and
nonlinear features in the structure formation in the Galileon
models have been investigated [46—52]. In the present paper,
we focus on the bispectrum in the most general second-order
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scalar-tensor theory, which we regard as an effective theory,
in order to elucidate the characteristic features of a wide class
of modified gravity models. An advantage of such a general
theory is that we can discuss general features of a wide class
of modified gravity models, which is useful for forecasting
their detectability in future large surveys.

In the present paper, we consider the bispectrum of the
matter density perturbations induced in the large-scale
structure formation after the matter-dominated era. We
present an expression of the bispectrum in the most general
second-order scalar-tensor theory based on the standard
density perturbation theory, which is written in terms of a
kernel of second-order perturbations. We find that the kernel
is characterized by only one parameter, which is determined
by the solutions of the linear density perturbations, the
Hubble parameter, and the other function that describes the
nonlinear interactions of the background universe. This
paper is organized as follows. In Sec. II, we apply the
standard perturbation theory to the most general second-
order scalar-tensor theory that may possess the Vainshtein
mechanism, and we find the solution of the second-order of
density perturbations. In Sec. III, we present the expression
of the bispectrum of the density perturbations, and we
investigate the influence of the modification of gravity. The
results are applied to a simple kinetic gravity braiding model
in Sec. IV. Section V presents a summary and conclusions.

II. FORMULATION

We consider the most general second-order scalar-tensor
theory on the expanding universe background. The action is
given by

© 2014 American Physical Society
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s= [ dr=giLas + L), (1)
where we define

K(¢,X) — G3(¢, X)U¢p + Go(. X)R
=+ G4XKD¢)2 - (vﬂvl/¢)2} + GS (¢7 X)

~ £ Gal(04) = 309(V, V.07 +2(9,9,9)).
2)

with four arbitrary functions of ¢ and X = —(9¢)?/2, K, G5,
G,, and Gs. Furthermore, G;y stands for 0G;/0X, R is the
Ricct scalar, Guv is the Einstein tensor, and £, is the matter
Lagrangian, which is assumed to be minimally coupled to
gravity. This theory is found in [15] as a generalization of the
Galileon theory, but is shown to be equivalent to Horndeski’s
theory in [16]. We consider a spatially flat expanding
universe and the metric perturbations in the Newtonian
gauge, whose line element is written as

‘CGG =
G, V'V

ds?> = —(1 +2®)dr* + a*(1 — 2W)dx>. 3)
We define the scalar field with perturbations by

¢ = (1) + 5¢(1,x), @)

with which we introduce Q = Hé¢/ .

We consider the case where the Vainshtein mechanism
may work as a screening mechanism. The basic equations
for the cosmological density perturbations are derived in
Ref. [37]. Here we briefly review the method and the
results. The basic equations of the gravitational and scalar
fields are derived on the basis of the quasistatic approxi-
mation of the subhorizon scales. The models for which the
Vainshtein mechanism works can be found as follows. The
equations are derived by keeping the leading terms sche-
matically written as (00Y)", with n > 1, where 0 denotes a
spatial derivative and Y denotes any of ®, W, or Q. Such
terms make a leading contribution of the order (L300Y)",
where Ly is a typical horizon length scale. According to
Ref. [37], from the gravitational field equation, we have

Vz(ﬂ‘lf —Gr® - AIQ)

= 2a2H2 Q@ 2H2 (V2OV2Q — 9,0,20'0/0), (5)
612 BZ
QTVZ\IJ = Epm5 - A2VZQ — m Q(Z)
B .
—~ 2;2 (V2UV2Q — 0,0,99'9' Q)
C
“5ar @ ©®
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where p,, is the matter density, § is the matter density
contrast, and we define

Q@ = (V20)2 — (9,0,0)2 0
QW) = (V2Q)* —3V2Q(0,0,0)* + 2(9;0;0)*. (8)

From the equation of motion of the scalar field, we have

AV20 — A\ V2T — A, V2D + 2H2 o®

(V2UV2Q — 0,0,90'0/Q)

2H2

2H2 (V2BV2Q — 0,0,00'0/Q)

(v2q>v2\1/ — 0,0,50'010)

Q) — B =0, ©))

4H4 4H4

where we define

U = QOIV2H — 2V200,0,00' 9/
+20,0,0000400,0'P. (10)

The coefficients (F7, A;, By, etc.) in the field equations
here and below are defined in Appendix A. A;, B;, and C;
are the coefficients of the linear, quadratic, and cubic terms
of U, &, and Q, respectively.

Equations for the matter density contrast 6 and the
velocity field u’ are given by

06(1,x) 1 ; B
5 T 5Ol +o(tx))u(.x)] =0, (11
oul 1 1
”é‘t") (%) + -/ (0,3) 0 (1. X) = = D' B(1. ).
(12)

where the dot denotes differentiation with respect to t.
Gravity exerts an effect via the gravitational potential P,
which is determined by (5), (6), and (9). Here, we consider
the scalar mode of the density perturbations, and then we
introduce a scalar function by @ = Vu/(aH). Let us define
the Fourier expansion of the quantities 6 and 6:

5(1,x) = / dps(t,p)ePx, (13)

1
(27)*

. 1
w(t,x) _W/dSP

The Fourier expansion of ®, W, and Q is defined as in (13).
Then, (5) and (6) yield

i _
L aHo(1,p)e®x.  (14)
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B,
— pH(Fr¥(t.p) — Gr®(1,p) — A, Q(t.p)) = 2 [t p; Q.0] + 5[t p; 0, P, (15)
a? B,
—p2(GT\P(r,p)+A2Q(r,p))—7pm6(t,p) iy I[t,p; 0.0l — =, 5Tt p; 0. Y]
C 1
—304}14(2”)6/ dkldkzdk35<3)(k1 +k, +k;—p)
X [—kik3ks + 3ki (K - k3)* — 2(k; - ko) (K, - k3) (ks - k)]
x Q(t.k)Q(1, k) O(1, k3), (16)
where we define
Ip; Y. Z] = (21)3 / dkdk,6%) (K + Ky — p) (K13 — (k- kp)?)Y (1. k) Z(2, ky). (17)
T

Here, Y and Z denote any of Q, ®, or W. Equation (9) leads to

— p*(A0Q(t.p) — A ¥(1.p) — A, 2(1.p))

B, B, B,
= [thQ]+2H2 (,p: Q. V] +

B;
113 Q. )+ — 2 Tt ps 0, 0

2H2 2H2
C 1
4[(_)14 (27)° /dkldkzdk35( V(K + Ky + Ky — p)[—k}K3K3 + 3kF (K, - k3)? — 2(K; - Ky)(Ky - K3) (K3 - Ky)]
C 1
x Q1 k1)Q(1k2)Q (1 k3) + —p ) / dk dkydk38®) (K + ko + k3 — p)[—k3 K33 + (ki - Ky)?K3
+ 2kf(ky - k3)? —2(k; - ko) (k; - k3) (ks - ky)]Q(2. k) O(2, ko) ®(1. k3). (18)
Equations (11) and (12) are rewritten as
108(t.p) 1 k, -k,
a0 TR = / a1k (K + ko —p){ 1+ =5 0(. k)21 k). (19)
1 35’(@1)) H p? 11 (k- ko) [k + k|
— 2 0(t,p) — ——B(1,p) = —=—— [ dk,dk,6® (k, + k, —
H 6t +H2 ( ’p) asz ( 7p) 2(27[)3/ 1 2 ( 1 + 2 p) k%k%

x 0(1,k,)0(t.ks). (20)

We find the solution in terms of a perturbative expansion,
which can be written in the form

p)=> Y.(1p) @1)
n=1

where Y denotes 8,0, ¥, ®, or Q, and Y, denotes the nth
order solution of the expansion. In the present paper, we
aim to solve the second-order solution. At the first order of
the perturbative expansion, ®¢, Uy, and Q; are expressed
by 6, as (25), (26), and (27), respectively. The modified
gravity affects the matter density perturbation via @ in
the Euler equation at any order of perturbation. Using the
continuity equation (33), we find that §; obeys (34). At the

second order of the perturbative expansion, ®,, ¥,, and Q,
are expressed by the terms in proportion to 5, and W,, (46),
(47), and (48), and we find that 5, obeys (56). Note that the
homogeneous equation of (56) is the same as the equation
for ;. The source term of (56) is given by (64). From (56)
with (64), we find that the modification due to the nonlinear
interaction enters through only the function of N, (), while
the other parts have the same structure as those in general
relativity. These facts are important for our conclusion that
the second-order kernel is characterized by only one
parameter.

Now we start from the first-order equations, which can
easily be solved as follows [53]. From (15), (16), and (18),
we have
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Frp*¥(t,p) — Grp*®(1.p) — A1 p*Qy(1,p) =0, (22)

2

— L pudi(t,p), (23)

Grp*V,(1,p) + A p* 04 (1.p) = 5

Aop*Qi(t,p) — A p*¥(1,p) — Ay p* @ (1,p) =0, (24)

which give the solutions

2H2
@(1.p) = == k()5 (1.p), (25)
2H2
Wi (r.p) =— “pz ky (1)3,(1.p). (26)
2H2
0(1.p) = — 5K (1)3, (1. D). 27)
Here, we define
_ pmR(1) _ pmS(1) a7 (1)
K<I><t>_HZZ(t)7 K‘P(t)_HQZ(t)’ KQ(t)_HZZ(t>’
(28)
and
R(1) = AgFr — AT, (29)
S(t) = AgGr + AjA,, (30)
T(t) = A\Gr + Ay Fr, 3D

Z(1) = 2(AgGF + 2A1A2Gr + A5 F 7). (32)
The first-order equation of (19) is

1 95,(t,p)

“H 01 (33)

0,(t,p) =

Substituting (33) and (25) into the first-order equation of
(20), we have

8251 (t,p) 851 (t’p)
or +2H ot

+ L(1)8,(t,p) =0, (34)
where we defined

L(t) = —xoH? (35)

_ (AoF7 — AT)Pm
2(AgG7 +2A1A2Gr + A3 F )

(36)

This second-rank differential equation has the growing
mode solution D_(¢) and the decaying mode solution
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D_(t). Neglecting the decaying mode solution, we write
the first-order solution,

61(t,p) = D (1)5L(P), 37)
where &y (p) is a constant, which is determined by the initial
density fluctuations. We assume that & (p) obeys the
Gaussian random statistics. Here we adopt the normaliza-
tion D, (a) = a at a < 1. The first-order solutions for the
other quantities can be expressed in terms of §, (¢, p).

Then, we consider the second-order equations of the
perturbative expansion. From (15), (16), and (18), the
second-order equations are

— pA(FrUy(t.p) — Gr®,(1.p)

[t p; Ql? Ql]

—Ale(t,p))

2 sz [t p; Qlﬂ ]7 (38)

— pH(GrV¥s(t.p) + A0,(1.p)

az
=5 - P02 (. P) — 555 L[t p: 01, Q1]
2H2 Lt p: 01, ¥, (39)
— P2(Ag0s (1, p) — A U5 (1,p) — Ay D, (1. p))
B,
= 2H2 [[ p; Ql’Ql] sz [t p; 0, ¥ ]

B, B;
+ e Tl6p 01, 1)+ — 5 Tl p 01, @1 (40)

Using the first-order solutions (25), (26), (27), and (37), the
above equations are rewritten as

— pH(FrUs(1,p) — GrPy(t,p) — A1 Qs (1. p))

1
= D2 (t)a*H? <§BIK2Q + B3K<I>KQ> W, (p), 1)

—p*(GrVs(1,p) +A,05(1,p))
2

a 1
:?pm62(tvp) +D%(1)a’H? <_§BZK2Q —B3K@KQ>Wy(P),

(42)
— P*(A00x(1,p) — A U5 (1, p) — Ay D5 (2, p))
= DX (t)a*H*(—Bokg, + Bikyko
+ Bykokg + Bikgky )W, (P). (43)

where we defined
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1
W) = / dkdka6 (K + ks — p)y(Ky. ko)
x 6y (ky)dL(k,), (44)
Kk, -k,)?
y(k;. ky) =1 —% 45)

These equations yield

a’H?
D, (1,p) = - (ko (1)8,(1,p) + D ()70 ()W, (P)),
(46)
a*H?
U, (t,p) = — 2 (kg (1)85(2, p) + DL(1) 74 ()W, (D)),
47)
0:(1.p) = == (o )32(1.p) + DF (D70 1)V, (B)).
(48)

where we defined

T@([) = 2BOTKQ — 3B SK'Q — 3BzRKQ — 6B3RK\I,KQ)

g (
(49)

1
Tq,(t) = z (2BoA2gTK2Q + Bl (A%KQQ — 2A2gTK\1;KQ)
— By (8K} + 2A,Grkokg)

— 233 (SK'q;KQ — A%K@KQ + AngK'q;.K'\p)), (50)
1
To(t) = —Z (2BoGikp + B1(AyGrkg — 2G7kykg)

+ By (Tky — 2G7Keko)
+ 283 (TK'\I,K'Q 4 AngK(pK'Q — g%K(I)K\I,)). (51)

The second-order equations of (19) and (20) are

1 652(t’ p)
o +60,(t,p)
1
= — =3 [ dk1dky39) (ky + Ky —p)a(k;, k)
(2x
Hl(t,kl)él(t, kz), (52)
1 892 t, p p2
—+ < )92 (t,p) —ﬁ@z(ﬁp)
- 3/d ko5 (k; + ks — p)B(ky. ko)
(271
XHI t, kl)el(t k2) (53)
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where we define

k; -k,
ko

alk, k) =1+ (54)

(k; - k) |k + k|

k. k,) =
ﬂ( 1 2) 2k%k%

(55)

Combining (52) and (53), and using the first-order solution
and (46), we have

P55(1,p) | 5, 052(1,P)

o1 25+ L(1)3:(1.p) = Sy(t.p). (56)

where we define

S5(t,p) = (D3.(1) = L(1)D%(1))Wa(p) + D% (1) Wy(p)
+ N, (DL()W,(p), (57)
Walb) = 5 [ ke (ks + o —p)
x a(ky, k,)d(ky)d (ks), (58)
Wy(p) = (271[)3 / dkdk,5% (k| + Kk, — p)
x p(ky, ky)d(ky)d(ks), (59)
and
N, (1) =toH?

4
I (ZB()KBQ — 3BIK\IJK2Q — 3B2K¢.K'2Q — 6B3K(I>K\I;KQ).

m

(60)

In deriving (57), we use (34). Because of the symmetry
with respect to the interchange of k; and k,, we define
a¥(ky, k,) as follows:

k; -k, (ki +k3)

6)(k,,k,) =1
a ( 1 2) + 2k%k%

(61)

Using the symmetry, we redefine W, (p) as

1
53 / dkdk,3% (ki + Ky —p)al®) (k. ky)

Wa(p) =
x 3y (k)L (ky). (62)
By the relation

B(ki.k,) = a¥(k;.ky) — (k. ky) or
Wy(p) = Wa(p) = W, (p), (63)
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Eq. (57) reduces to

Ss(t.p) = DL(){(2f*H* = L(1))Wa(p)
+ (N, (1) = fPH)W, (p)}. (64)
where we define the growth rate as f = dInD_(t)/dIna.
Note that the homogeneous equation of (56) is the same

as that of the first-order equation. Therefore, we have the
second-order solution:

8,(t,p) = c(p)D,(t) + c_(p)D_(1)

'y DAO)D_ (1) =D ()D_(7)
+ [ v

Ss(1.p),
(65)

where ¢, (p) and c_(p) are constants, and W(z) is the
Wronskian ~ W(r) = D, (1)D_(t) — D_(t)D_(r). From
equations for D (¢) and D_(t), Eq. (34), the Wronskian
obeys W(t) +2HW(t) = 0, which yields

wie) =< (66)

a*’
where C is a constant. In the present paper, we assume the
initial density perturbations obey the Gaussian statistics,

and we set ¢, (p) = 0. Then, the second-order solution is
written in the form

32(6) = D3, (KOW.lp) =S W, 0) ). (@

with

0 D)D)~ D (D (1)
"(’)‘Dio)A W

x DX(1)(2f*H? — L(¢))dt, (68)

7 (D)D)~ D, ()D_(7)
0= 551, W)
t

x DX()(f2H? = N, (¢'))dr. (69)

These expressions are a generalization of the results
in Ref. [51]. In Sec. IV, we numerically evaluate the
function A(z) without neglecting the decaying model in a
specific model.

In the case of the matter-dominated universe within
general relativity, a(t) « >3, D_(t) = a, D_(t) = a3/,
L(t) = —3/(2H?), and N, (1) = 0, then the second-order
solution reduces to

3:(00) = DL (Walp) =200 00)
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That is, one finds k() = A(r) = 1 in the Einstein—de Sitter
universe. Even in the general second-order scalar-tensor
theory, we may consider models where the matter-
dominated era is realized in the early stage of the universe.
In this stage, the effect of the scalar field perturbations
would be negligible, and we may naturally expect that the
matter density perturbations grow in the same way as those
in general relativity. In this case, x(¢r) =1 and A(f) =1
at a < 1.

Interestingly, we can show that (68) generally reduces to
k(t) =1 for all times. Using the expression for the
Wronskian (66), Eq. (68) is rewritten as

1

k(1) = CTM/; a*(¢)(D_()D,.(t') = D (t)D_())

x (2% () + D, (!)(D. (1) + 2HD . (1)}t
(71)

where we used the fact that D_(¢') satisfies (34) to
eliminate the term L(#'). Partially integrating the term
D, (7) in (71), we have

1

0 = 5 |, FOAD-ID2)

—D_(!)D () }D.(¢)dr. (72)
Using the Wronskian, we finally obtain
k() =1, (73)

for all times. Therefore, the kernel (81) depends on only the
parameter A(7), which is determined by the solution of the
linear density perturbation, H(¢) and the function N, ().
This conclusion is a generalization of the results in
Ref. [46]. The authors of Ref. [46] investigated the standard
density perturbation theory in the Dvali, Gabadadze and
Porrati model, and a similar result is obtained at the second
order of perturbation (Appendix B.1 in their paper). The
result is explained by a*)(k;,k,) and y(k;,k,) being
independent of each other and the modification of gravity
coming through only the terms in proportion to y(k, k,) at
the second order of perturbation. Therefore, the term in
proportion to @) (k;, k,) is not modified.

Finally, in this section, we present the expression of the
velocity divergence at the second order of perturbation. We
obtain the expression by inserting &,(z,p), 0;(¢,p), and
5,(t,p) into (52),

0:(1:0) = =02 (0)f (Walw) = 300 0) ). )

where we defined
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A1)

Zolt) = 200) + 3 (75)

In the Einstein—de Sitter universe, we have 4(z) = 1.

II1. BISPECTRUM

In this section, we consider the bispectrum of the density
perturbations in the most general second-order scalar-
tensor theory on the cosmological background. The power
spectrum and the bispectrum are defined by

(5(1,k,)5(1,k,)) = (27)363) (k| + ko) P(1,k;),  (76)

(6(t.ky)o(t. ky)o(t. k3))
= (22)%6®) (k| + k, +k3)B(t, ki, k. k3), (77)

respectively. The three-point function at the lowest order of
the standard perturbation theory is evaluated as

(0(2.k1)5(1. k,)5(1. K3))
= D (1)((0L(k)dL(K2)dk (1, k3)) + 2 cyclic terms),
(78)

where we define

2Aw,). (19

(1K) = W (k) ==

The first term in parentheses in the right-hand side of (78) is
(6L (ky)dL(ky)dk (7 K3))
d’q
= /WFz(I,QIJQ —q)
x (o(k1)oL(k2)oL(q1)dL (ks —qp)),  (80)

where we define the kernel
— o) G
Fy(t.ki.Ky) = a (klka)_7/1(t)7<k1’k2>' 81)

Using the definition of the linear matter power spectrum,
(6L(k )L (ky)) = (27)360) (ky + ko) Pyy(ky),  (82)
and Wick’s theorem, we have

(01 (ky)op(ko)dok (2. K3))
=2(27)36%) (k; + ky + K3)Fa(t. k. ko) Pyy (ky ) Py (Ky).
(83)
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where we use F, (1, —k |, —k,) = F,(t, Kk, k). Finally, we
have the expression for the bispectrum at the lowest order
of the perturbation theory,

B(l, kl,kz,k?,) :Di(t)B4(t,k1,k2,k3) (84)
with
By(t.ky, ky, k3) = 2F,(t, ki, k) Py (ky) Py (k)
+ 2 cyclic terms. (85)

The reduced bispectrum is given by

Q123(t. ky, ks, 617)
_ B4(t’kl9k2’k3)
Pyi(ky)Pyy(ky) + Py (ko) Py (ks) + Pyy(k3) Py (ky)
(86)

at the lowest order of perturbations. Note that the (reduced)
bispectrum is described by the kernel (81), which depends
on only the parameter A(¢), which is given by (69).

Because k; + k, +k; =0 is satisfied, the reduced
bispectrum is a function of only three parameters, which
we take as k| = |k, k, = |k»|, and the angle ,, between
k, and k,. Explicit expressions for o¥)(k; k;), and
y(k;.k;), where (i,j) denotes any of (1,2), (2,3),
or (3,1), are summarized in Appendix B. Each panel of
Fig. 1 shows a typical behavior of Q;,3 as a function of 6,
with fixed k; and k,, whose values are described in the
caption. In each panel, we adopt a different value of A(¢) =
1 (blue solid curve), A(z) = 1.2 (red dotted curve), and
A(t) = 0.8 (yellow dashed curve), assuming a spatially flat
universe with the CDM model and the cosmological
constant A, whose density parameters are Q; = 0.3 and
Q, = 0.7, for the linear matter power spectrum Py, (k).
Note that the reduced bispectrum depends on time ¢ through
only A(z). One can see the following features. First, the
overall amplitude of Q1,3 depends on the value of k; and
k,. However, when the values of k; and k, are fixed, the
reduced bispectrum is enhanced for 4 < 1 but reduced for
A> 1. This feature is explained by kernel (81) and the
fact y(k;. k;) > 0.

With the limit 6, =0, we have y(k,k;)=
r(K,, k3) = y(ks, k;) =0 (see also Appendix B). Then,
Q1,3 is independent of 4 at 8, = 0. With the limit ,, = =,
0,3 behave differently depending on the conditions
ki =k, and k;#k, If ky#k,, then we have
r(ki,k,) = y(k,, k3) = y(ks, k;) = 0, which is the same
as with the limit ,, = 0. In the case k; = k,, however, we
have }/(kl, k2) = O’ }’(kz, k3) = Y(k3v kl) =1 and
k3 =0; that is, P;(k3) =0. Then the bispectrum
approaches zero with this limit, though the rate of con-
vergence depends on A(z), as is discussed in the next
section.
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FIG. 1 (color online).
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k; =k x5= 0.05hMpc™!

00 02 04 06 08 10
O12/m

k; =k x 5= 0.5hMpc™!

00 02 04 06 08 10
O12/m

Q123 as a function of 6,, with k; = k, = 0.01h Mpc~! (upper left panel), k; = k, = 0.1h Mpc~! (lower left

panel), k; = 5 x k, = 0.05h Mpc~! (upper right panel), and k; = 5 x k, = 0.52 Mpc~! (lower right panel). For the linear matter power
spectrum Py (k), we adopt the spatially flat universe with the cold dark matter (CDM) model and the cosmological constant A, whose
density parameters are Q;, = 0.3 and Q, = 0.7, respectively. Note that the reduced bispectrum depends on time ¢ through only (), for
which we adopt different values of A(¢) = 1 (blue solid curve), A(¢) = 1.2 (red dotted curve), and A(z) = 0.8 (yellow dashed curve),

irrespective of the ACDM model.

All the influence of the nonlinear interaction of the
modified gravity arises through only the parameter (),
which appears as the term in proportion to y(k;, k) in the
kernel (81). The bispectrum of the matter density pertur-
bations behaves in a restricted way only, which is a feature
of the general second-order scalar-tensor theory equipped
with the Vainshtein mechanism.

IV. KINETIC GRAVITY BRAIDING MODEL

In this section, we consider a simple example to
demonstrate how the modification of gravity influences
the behavior of the bispectrum at a quantitative level. We
consider the kinetic gravity braiding model investigated in
Refs. [31,52], whose action is written as

M2
S = /d“x\/—_g{Tle + K-GO+ Ly|, 87

with the Planck mass M, which is related with the
gravitational constant Gy by 8zGy = 1 /Mgl. Comparing
this action (87) with that of the most general second-order
scalar-tensor theory, the action of the kinetic gravity
braiding model is produced by setting

M2,
G4:Tp, Gs = 0. (88)
In Ref. [52], K and G; are chosen as
7”2 n
K =-X, Gy=M,|-5X] , 89
3 pl <Ml2,1 ) ( )

where n and r, are parameters. In this model, we have

AO]:Tpm
L(t) =— , 90
) 2(AoGr + A3Fr) e
BOA%]:%/)IZH
N, (t) = . 91
= 4aG + BF ob

Useful expressions of the kinetic gravity braiding model are
summarized in Appendix A.
When we consider the attractor solution, which satisfies

3pHGxx = 1, (92)

the Friedmann equation is written in the form
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FIG. 2 (color online). A(#) as a function of @ in the ACDM
model (blue solid curve) and the kinetic gravity braiding model
with n = 1 (red dotted curve), n = 2 (yellow dashed curve), and
5 (green thick curve).

H\? Q
- :_3+
HO a

where H, is the Hubble constant and € is the density
parameter at the present time, and the model parameters
must satisfy

H O\ —-2/(2n-1)
(1—-9) (H_()) . 93)

on—=1\ 1/2n 1 (2n—1)/4n
Hyr,. = . 94
= (%) e oY
On the attractor solution, L(#) and N, () reduce to
32n+ (3n—1)Q,(1)
L(t)=—= "L H?, 95
===, ©3)
ki = ky= 0.01hMpc™!
0.0007 ‘ : : :
T -0.005}
5
S-0o010f
S -oorst n=2 T )
---n=95 e
00 02 04 06 08 10
O12/m
0.0007
T —0.005}
S
S -0.010!
S —001s! o

0.0

FIG. 3 (color online).
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9 (1 — Qm(t))(zn B Qm<t))3

Ny(t) =7

RO ET RO

(96)

where Q,,(a) is defined by Q,(a) =QyH}/H(a)*a>.
Note that the quasistatic approximation on the scales of
the large-scale structure holds for n < 10 (see [52]).

Figure 2 shows the evolution of A(#) as a function of a for
the kinetic gravity braiding model with n = 1, 2, 5 and the
ACDM model. For a <« 1, we have A(¢) = 1, which is
the prediction of the Einstein—de Sitter universe. However,
the accelerated expansion arises due to domination of the
Galileon field as a approaches 1, and so the value of A(7)
starts to deviate from 1.

The deviation of A(¢) from 1 is small. The value of A(7) at
the present epoch is 0.994 under the ACDM model with the
density parameter Qq = 0.3. The value of A(¢) at the present
epoch is 1.003, 1.011, and 1.019 under the kinetic gravity
braiding (KGB) model with n = 1, 2, 5, respectively. Our
results demonstrate the validity of the approximation
setting A(¢) = 1, which is usually adopted in the standard
density perturbations theory.

Figure 3 shows the relative deviation of the bispectrum
at the present epoch under the KGB model from
that under the ACDM model, Q»3(t, ky, ko, 6012)/
O123a(t ki, ky,015) — 1, as a function of 6€,,, where
O123a(t, k1, ky,015) is the reduced bispectrum of the
ACDM model. The relative deviation from the ACDM
model is less than 2%. For the case k; # k,, the deviation
between the models does not appear at 8, = 0, z, which is
simply understood by the fact that y(k; k;) = 0 there.

k;= 5xks = 0.05hMpc™!

0.0007
T
< —0.005¢
S \
= -0.010} \
S \
-0.015} . ]
0.0 0.2 0.4 0.6 0.8 1.0
Op2/m
k;= 5xk; = 0.5hMpc™!
0.000F " " " "
T
< —0.005¢
S
= —0.010}
S
—0.0]5—‘ ‘ ‘ v ‘ ]
0.0 0.2 0.4 0.6 0.8 1.0
0p2/m

Relative deviation of the reduced bispectrum at the present epoch under the kinetic gravity braiding model with

n = 1 (blue solid curve), n = 2 (red dotted curve), n = 5 (yellow dashed curve) from that under the ACDM model Q,3,, as a function
of 0,,, where k; and k, are fixed, whose values are noted on each panel. Here the density parameter is fixed as Qy = 0.3.
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In the case k; =k, with the limit 6, =z, we have
a¥ (ki ky) ~ (1= 615)*, oV (ky k) =a) (ks k) =
3/4, (ki ky) ~ (7 —015)% r(ks Ks) = (ks ky) = 1,
and P(ks) « k3’ o ( — 61,)", where ng is the spectral
index. (See Appendix B for details.)

Then, the bispectrum has the asymptotic form

3 2

By(t, ky, ky,01) N4<Z—51(I)>P11(k3)P11(k1) o7

around the limit 8, = z. This leads to the ratio of the
reduced bispectrum in this limit,

Q123(t7k1’k179]2> _ 21_8/1(t)
Quosn(t ki ky,01p) 21 —82,(1)°

(98)

where 1, (7) is the parameter A(¢) of the ACDM model,
which explains the behavior shown in the left panels
of Fig. 3.

The behavior of the reduced bispectrum is almost the
same when the ratio k;/k, is the same. This is because
the functions o) (k;, k) and y(k;, k ;) depend only on the
ratio k; /k, and 0, (see also Appendix B). Recently, the
bispectrum in the covariant cubic galileon cosmology is
investigated in Ref. [51]. Our kinetic gravity braiding
model with n = 1 is a cubic Galileon model; however,
there is the difference between our model and the
covariant cubic Galileon cosmology in Ref. [51]. The
cosmic accelerated expansion in the covariant cubic
Galileon model is derived by a potential of the scalar
field. This causes the differences in the evolution of
the background universe and the linear density
perturbations.

V. SUMMARY AND CONCLUSIONS

In the present paper, we investigated the bispectrum of
the matter density perturbations induced by gravitational
instability in the most general second-order scalar-tensor
theory that may possess the Vainshtein mechanism. We
discussed a general feature of this wide class of modified
gravity models in the most general second-order scalar-
tensor theory. We analytically obtained the expression of

|

PHYSICAL REVIEW D 89, 104007 (2014)

the bispectrum of the second-order perturbations on the
basis of the standard density perturbation theory. The
bispectrum is expressed by the kernel (81), depending
on only the parameter A(¢), which is determined by the
growing and decaying solutions of the linear density
perturbations D (¢), the Hubble parameter H(z), and the
other function N, (¢) for the nonlinear interactions. These
simple results come from the fact that the basic equations
for the gravitational and scalar fields have the same form as
the nonlinear mode couplings, which are derived as the
leading terms under the quasistatic approximation within
the subhorizon scales. Thus, all the effects of the modified
gravity in the bispectrum come via the parameter A(¢) in the
kernel (81), which has a simple structure. This makes the
behavior of the bispectrum less complex. As an application
of our results, we exemplified the behavior of the bispec-
trum in the kinetic gravity braiding model proposed in
Ref. [52]. We investigated the evolution of A() in this
model and demonstrated the deviation of the reduced
bispectrum from that of the ACDM model is less than
2%. Higher order solutions of the density perturbations can
be obtained in a similar way, which is left as a future
problem.
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APPENDIX A: DEFINITION OF THE
COEFFICIENTS

We first summarize the definitions of the coefficients in
the field equations presented in Sec. IL

RCIC) Gr E+P
AOfH2+H+.7-'T 2Gr 24 TR (A1)
A :%+g -F (A2)
1 H T T»
0
Azng—ﬁ, (A3)
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By = 7 {pGsx + 3(X 4+ 2HX)Guxx + 2XXGyxxx — 3¢Gayx + 20X Guyxx + (H + H*)pGsy

+ G2HX + (H + H*)X]Gsxx + HpXXGsxxx — 2(X + 2HX)Gsyx — pXGspypx — X(X — 2HX)Gsyxx}.  (Ad)

B, = 2X[Gyx + ¢(Gsx + XGsxx) — Gs; + XGsyxl, (AS)
By = —2X(Gux + 2XGyxx + HpGsx + HPpXGsyxx — Gsp — XGsyx), (A6)
B; = HPpXGsy, (A7)
Co = 2X*Guxx + 2TX2 (2¢Gsxx + $XGsxxx — 2Gspx + XGsyxx). (A8)
C, = HpX(Gsy + XGisyy). (A9)
where we also defined
Fr=2[Gs — X(¢Gsx + Gsy)l. (A10)
Gr = 2[Gy — 2XGyx — X(HGsy — Gsy)). (A1)

® = —XGsx + 2HG, — 8HXG,x — 8HX*Gyxx + ¢Gyy + 2XPGayy
— H2p(5XGsy + 2X*Gsxx) + 2HX(3Gsy + 2X Gsyy ), (A12)

£ =2XKy — K + 6X¢pHGsx — 2X G35 — 6H>G, + 24H>X (Gyx + XGyxx) — 12HX PGy
— 6H}pGyy + 2H3XP(5Gsy + 2XGsyy) — 6H* X (3Gsy + 2X Gy ), (A13)

P =K —2X(Gsy + §Gsy) + 2(3H? + 2H)G, — 12H?>XG,x — 4HXG
— 8HXGx — SHXXGyxx + 2(¢p + 2H()Gyyy + 4X Gy + 4X (¢ — 2Hp) Gy
—2X(2H¢ + 2HH § +3H?))Gsy — 4H*X*PGsxx + 4HX(X — HX)Gsyx

+2[2(HX) + 3H?X|Gs,, + 4HX$Gsg,- (Al4)
|

In the kinetic gravity braiding model considered in Sec. IV, x 2\ n /24 -
the coefficients are written as follows: Ay =—5—2nM Te ib + nﬂ xn, (A20)

H? "\My) \H H

‘FT — Mlz)l’ gT — Mgl’ (A15) 5 . X
2\ n Ay = By = nM,, (1&2) %X", (A21)
e pyn
O =—nM, (M—zl) X" + HM, (A16) Pl
p

A1:B1:BZZB3:C0:C1: . (A22)

. 2 \". .
0 = —n(2n + )My, <M_Cz> X" + HMf)p (A1) Tn the present paper, we consider the attractor solution
ol satisfying (92), thus obtaining

2

£ =—X +6nM, <#> PHX" — 3HM?

2. (AI18) . 1 ¢H
pl

A P i (A23)

2 \n 2
) GX" + (BH? +2H)M2,, (A19) A (@2n-1)39,(q) (A24)

P=-X—-2nM <r
=—X—-2n
o H? 2(2n —Q,,(a)) ’

<
2
M,
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My(1—Q,(a))(2n + (3n — 1)Q,(a))

A=~ 2n—Q,,(a) > (A2Y)
Ay = My(1 - Q,(a)), (A26)
By = Mpy(1 - Q,(a)), (A27)

where we define Q,,(a) = p,,(a)/3M}H*.

APPENDIX B: EXPLICIT EXPRESSIONS
OF a AND y

For the bispectrum, we may write the wave number
vector that satisfies k| + k, + k3 = 0 as follows:

ki = (0,0,k)), B1)
k2 = (O, k2 Sin 012, k2 COS 912), (BZ)
k3 = (O, —k2 Sin0121_k] —k2 0059]2), (B3)

where 0, is the angle between the vectors k; and k,. Then,
we have

k,-k
I;kzz = cos 0y, (B4)
k2 . k3 _ —k2 — kl COS 912 (BS)
k2k3 \/k% + k% + 2k1k2 CcoS 012 '
k3 . k] B _kl — k2 COSBIZ (B6)

k3kl - \/k% + k% + 2k1k2 COoSs 912 ’

where we use k3 = \/k? + k3 + 2k k, cos 6}, Introducing
the constant ¢ by k; = ck,, we have

ky =k \/62 +2ccos By, + 1, B7)

PHYSICAL REVIEW D 89, 104007 (2014)

k, ks ¢+ cos 0,

=- , (B8)
kaks V2 +2ccosby, + 1
ki -k ccosf, +1 (B9)
ksky VA +2ccosbp, + 1

For convenience, we summarize the explicit expressions of
al(k;, k;) and y(k;. k;). The above relations yield

(c®> +1)cos b,

©(ky. ky) =1
a ( 1> 2) + 2C )

(B10)

(2¢* +2ccos0, + 1)(c + cos b))
2¢(c® +2ccos By, + 1)

a¥(ky, ky) =1— ,

(B11)

(c® +2ccosBy +2)(ccos O, + 1)

(ks k) =1— 7
a¥(ks, k) 2(c* +2ccos b, + 1)
(B12)
r(ki.ky) =1—cos’0p,, (B
sin2912
Ko k) — , B14
7( 2.K3) c2+20005912+ 1 ( :
c%sin%0
y(ks, k) = 3 (B

2 +2ccosf, +1°

Thus, &) and y depend on only ¢ and 6,,, which means
that F, (¢, k;, k) depends on only ¢ and 6,,, irrespective of
t. Tt is trivial that a'*)(k;,k,) and y(k,,k,) are invariant
under the interchange between k; and k,, or the replace-
ment of ¢ with 1/c. Note also that a*)(k,,k;) and
7(ky,k;) are transformed into o) (ks k;) and
y(ks, k), respectively, by the replacement of ¢ with 1/c.
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