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A nice paper by Morrison [arXiv:1302.1860] demonstrates the recent convergence of opinion that has
taken place concerning the graviton propagator on de Sitter background. We here discuss the few points
which remain under dispute. First, the inevitable decay of tachyonic scalars really does result in their
2-point functions breaking de Sitter invariance. This is obscured by analytic continuation techniques which
produce formal solutions to the propagator equation that are not propagators. Second, Morrison’s de Sitter
invariant solution for the spin two sector of the graviton propagator involves derivatives of the scalar
propagator at M2 ¼ 0, where it is not meromorphic unless de Sitter breaking is permitted. Third, de Sitter
breaking does not require zero modes. Fourth, the ambiguity Morrison claims in the equation for the spin
two structure function is fixed by requiring it to derive from a mode sum. Fifth, Morrison’s spin two sector
is not “physically equivalent” to ours because their coincidence limits differ. Finally, it is only the
noninvariant propagator that gets the time independence and scale invariance of the tensor power spectrum
correctly.
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I. INTRODUCTION

The increasingly compelling evidence for primordial
inflation [1] has transformed quantum field theory on de
Sitter space from an esoteric exercise inmathematical physics
to the essential framework for deriving the initial conditions
of observational cosmology [2]. The best understood of these
initial conditions take the formof primordial scalar and tensor
perturbations [3]. It is important to understand that these
perturbations were not present before inflation; they formed
through a time-dependent process in which virtual particles
were ripped out of the vacuum by the accelerated expansion
of spacetime, and they have preserved a memory of con-
ditions at the time they were formed.
The basic perturbations are tree order effects and their

power spectra can be expressed in terms of plane wave
mode functions, evaluated after they have experienced first
horizon crossing [4]. Of course the laws of physics are
governed by an interacting quantum field theory so
primordial perturbations must affect one another, at some
level, and they must also affect other particles. Loop effects
of this sort could be expressed in terms of mode sums but it
is simplest to recognize these mode sums as propagators.
Hence the interest in scalar and tensor propagators on a
nearly de Sitter background.

The intrinsically time-dependent process through which
inflationary perturbations are generated would seem to
preclude de Sitter invariant propagators for either the
massless, minimally coupled (MMC) scalar or for the
graviton. This was recognized quite early for the MMC
scalar by exhibiting the time dependence of its coincidence
limit [5], and a formal proof was given soon afterwards [6].
However, opinions about the graviton propagator have been
divided between cosmologists—who argue that it must
break de Sitter invariance because free gravitons in trans-
verse-traceless-spatial gauge obey the same equation as
MMC scalars [7]—and mathematical physicists who argue
that this is a gauge artifact [8,9].
Explicit constructions of the graviton propagator have

produced equivocal results. On the one hand, adding a de
Sitter invariant gauge fixing term to the action yields
propagator equations for which explicit de Sitter invariant
solutions have been given [10], except for an infinite set of
discrete choices of the two gauge fixing parameters for which
infrared divergences preclude a de Sitter invariant solution
[11]. On the other hand, why should any choice of arbitrary
gauge fixing parameters lead to de Sitter breaking? And it
was shown early on that the solution with a noncovariant
gauge fixing parameter [12] manifests de Sitter breaking even
when the compensating gauge transformation is added [13].1

This has led to a curious state of affairs in which every
complete, dimensionally regulated graviton loop correction
[15–20] has been made using a propagator that mediates
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plausible de Sitter breaking effects—for example, that
scattering with inflationary gravitons induces secular growth
of fermion wave functions [16]—which mathematical phys-
icists suspect to be gauge artifacts.
Four recent insights have partially resolved this unsat-

isfactory situation:
(i) There is an obstacle to adding invariant gauge fixing

terms on any manifold, such as de Sitter, with a
linearization instability [21];2

(ii) Power law infrared divergences are incorrectly
subtracted off by the analytic continuation tech-
niques routinely employed by mathematical physi-
cists, leading to formal solutions of the propagator
equation which are not true propagators [23];

(iii) When de Sitter invariant gauges are imposed as
strong operator conditions—as opposed to the aver-
age conditions effected by adding gauge fixing
functions—the resulting propagators show de Sitter
breaking [24–26]; and

(iv) The old, noncovariant gauge propagator [18], and all
of the new covariant gauge ones [27], give a result
that mathematical physicists accept as correct for the
linearized Weyl-Weyl correlator [28].3

The second point also explains the isolated infrared diver-
gences long encountered in constructions of the graviton
propagator [11]. Analytic continuation techniques only
register logarithmic divergences [30,31], and the problem-
atic parameter values are just those for which a power law
infrared divergence happens to become logarithmic.
A recent paper by Morrison [32] reveals how close the

two sides have grown. In particular, he has exploited the
formalism of covariant projection operators acting on scalar
structure functions which was developed to represent the
graviton self-energy [33] and later applied to the propagator
in exact de Donder gauge [24]. Using this formalism he has
explained carefully what must be done to extract a de Sitter
invariant solution, and he has exhibited the rather small
differences in the structure functions which distinguish the
de Sitter breaking solution from the invariant one. He has
also demonstrated that the two propagators agree when
smeared with transverse-traceless test functions in the sense
of Fewster and Hunt [34].
It would be reasonable to infer from Morrison’s work

that mathematical physicists have no further objections to
the noncovariant gauge propagator [12] which has been
used for every complete, dimensionally regulated graviton
loop so far computed [15–20]. Nevertheless, there are a few
issues that remain controversial. These concern the validity
of the analytic continuation techniques used in Morrison’s

construction and the distinction between formal solutions
of the propagator equation and true propagators.
This paper contains five sections of which the first is this

Introduction. In Sec. II we consider the contention by
mathematical physicists [32,35] that minimally coupled
scalars with tachyonic masses M2 < 0 nonetheless possess
de Sitter invariant propagators on D-dimensional de Sitter
space with Hubble constant H, except for the discrete
values M2 ¼ −NðN þD − 1ÞH2, where N ¼ 0; 1; 2;… In
Sec. III we revisit classic work on the MMC scalar [6,36] to
debunk the more recent argument that its de Sitter breaking
derives from the isolated zero mode in global coordinates,
which gravitons lack. In fact the MMC scalar’s infrared
finite de Sitter breaking derives from the late time approach
to scale invariance and time independence of its power
spectrum in the ultraviolet, not the infrared. Both of these
features are shared by the graviton. The infrared divergen-
ces of open coordinates derive from an infinite number of
modes being in this saturated state at finite times.
Section IV discusses what is wrong with the construction
which leads to a de Sitter invariant spin two structure
function, why the coincidence limit [25] shows that the de
Sitter invariant solution [32] is not physically equivalent to
the de Sitter breaking one [24], and why the time
independence and scale invariance of the tensor power
spectrum imply that the de Sitter breaking solution is
correct. Minor points are that the coincidence limit of the
graviton propagator appears in even simple one loop
diagrams [15–20]—so it cannot be dismissed—and that
no sequence of the transverse-traceless test functions of
Fewster and Hunt [34] approaches a delta function—so
they are not analogous to the scalar smearing functions long
employed by mathematical physicists. Our conclusions are
summarized in Sec. V.

II. SCALAR TACHYONS

Some mathematical physicists believe strongly that
tachyonic scalars possess de Sitter invariant propagators
for any mass-squared which avoids the discrete values
M2 ¼ −NðN þD − 1ÞH2, where N is a nonnegative inte-
ger [32,35]. They believe this because, except for those
special masses, the scalar propagator equation,

ffiffiffiffiffiffi
−g

p ½□ −M2�iΔðx; x0Þ
≡ ½∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νÞ −M2 ffiffiffiffiffiffi
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p �iΔðx; x0Þ
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has a de Sitter invariant solution,
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2Ignoring this problem in scalar quantum electrodynamics
leads to on-shell singularities in the scalar self-mass-squared [22].

3The mathematical physics computation [28] had a number of
significant errors that were discovered by comparison with the
cosmological result [18] and then corrected [29].
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where the index ν and the de Sitter length function yðx; x0Þ
depend the upon M2 and the invariant length lðx; x0Þ as,

ν≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D− 1

2

�
2

−
M2

H2

s
; yðx;x0Þ≡ 4sin2

�
1

2
Hlðx;x0Þ

�
:

(3)

This belief is perplexing to cosmologists who feel that
tachyonic particles must decay, even on de Sitter space, and
that this decay is an inherently time-dependent process
which depends upon when the state is released and hence
must break de Sitter invariance because the result does not
depend only on the observation time. Much of the observed
phenomenology of the standard model would not make
sense otherwise. In this section we first explain, in very
simple terms, why tachyonic scalars decay, and then how
the use of analytic continuation techniques can lead to
employing formal solutions to the scalar propagator equa-
tion which are not true propagators. The key point is that
the quantum mechanical requirement that states have finite,
positive norm imposes restrictions on analytic continuation
which are being violated to discard the de Sitter breaking
secular terms. The section closes with a discussion of the
unacceptable phenomenology implied by this practice.

A. Why tachyonic scalars decay

The first thing to understand is that tachyonic scalars
decay equally in open coordinates,

ds2 ¼ −dt2 þ e2Htd~x · d~x; (4)

and in closed coordinates (which we specialize to D ¼ 4),

ds2 ¼ −dτ2 þH−2cosh2ðHτÞ½dχ2
þ sin2ðχÞdθ2 þ sin2ðχÞsin2ðθÞdϕ2�: (5)

Another important point is that the decay occurs for each
mode separately, so one need never worry about more than
a single degree of freedom evolving in whatever is the
appropriate time. This single degree of freedom is known as
a mode. The natural modes for open coordinates are spatial
plane waves e~k·~x and the associated mode functions are
uðt; kÞ; for closed coordinates the natural modes are the
4-dimensional spherical harmonics Yklmðχ; θ;ϕÞ and the
associated mode functions are ukðτÞ. Finally, it is important
to understand that there is only one scalar field operator,
φðxÞ, and it can be expanded in either coordinate system,

φðxÞ¼
Z

d3k
ð2πÞ3fuðt;kÞe

i~k·~xað~kÞþu�ðt;kÞe−i~k·~xa†ð~kÞg; (6)

¼
X∞
k¼0

Xk
l¼0

Xl
m¼−l

fukðτÞYklmðχ; θ;ϕÞaklm

þ u�kðτÞY�
klmðχ; θ;ϕÞa†klmg: (7)

The massive scalar Lagrangian is

L ¼ −
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
−
1

2
M2φ2 ffiffiffiffiffiffi

−g
p

: (8)

The Euler-Lagrange equation derived from (8) implies the
equations obeyed by uðt; kÞ and ukðτÞ,

½∂2
t þ 3H∂t þ k2e−2Ht þM2�uðt; kÞ ¼ 0; (9)

½∂2
τ þ 3H tanhðHτÞ∂τ þH2kðkþ 2Þsech2ðHτÞ
þM2�ukðτÞ ¼ 0: (10)

Similarly, the canonical commutation relations (which
ensure positive norm states) derived from (8) fix the
normalizations of the respective Wronskians,

uðt; kÞ _u�ðt; kÞ − _uðt; kÞu�ðt; kÞ ¼ ie−3Ht; (11)

ukðτÞu0�k ðτÞ − u0kðτÞu�kðτÞ ¼ isech3ðHτÞ: (12)

The close relation between the open coordinate mode
equations (9) and (11) and their closed coordinate analogs
(10) and (12) is evident. This is why claims for de Sitter
invariance are no better justified in closed coordinates than
in open coordinates. We shall have more to say about this in
Sec. II D and Sec. III.
Equations (9) and (10) make it quite apparent both why

tachyonic scalars decay, and why the decay is much
stronger on de Sitter than it is in flat space. Each equation
contains three terms which we can identify as an “accel-
eration,” a “friction force” and a “restoring force.” For open
coordinates these three terms are

Acceleration ⟷ üðt; kÞ; (13)

Friction Force ⟷ −3H _uðt; kÞ; (14)

Restoring Force ⟷ −ðM2 þ k2e−2HtÞuðt; kÞ: (15)

For M2 > 0 the restoring force makes the mode accelerate
in the direction opposite to its current value. So if uðt; kÞ is
positive, its acceleration is negative; while if uðt; kÞ is
negative, its acceleration is positive. The behavior in that
case is either underdamped or overdamped oscillations,
depending upon the relation between the friction force and
the restoring force.
Tachyonic scalars haveM2 < 0, which tends to make the

mode accelerate in the same direction it already is: if uðt; kÞ
is positive, a tachyonic mass term tends to make it
accelerate in the positive direction; and if uðt; kÞ is
negative, a tachyonic mass term makes it accelerate in
the negative direction. This effect is resisted by the spatial
gradient term k2e−2Ht, but that redshifts to zero at late
times, so that all modes eventually experience an
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antirestoring force. That is why the instability is worse than
in flat space. The effect of a tachyonic mass is to make the
mode function uðt; kÞ → KðkÞ × eλt grow exponentially at
late times with time constant,

λ ¼ −
3

2
H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

2
H

�
2

−M2

s
: (16)

The asymptotic late time behavior of the closed coordinate
mode function ukðτÞ is not a bit different for τ → þ∞, but it
also shows exponential growth for all modes as τ → −∞.
There should be nothing surprising about this analysis; it

is elementary Newtonian mechanics. We are describing the
modes in terms of point particle motions and it is a fact that
balls in uniform gravitational fields tend to roll down
parabolic hills with ever-increasing speed. The Hubble
friction term decreases the exponential time constant
somewhat but it cannot prevent the decay.
There are classical configurations which fail to experi-

ence exponential growth for M2 < 0. For example, if one
chooses the initial conditions so that uð0; kÞ ¼ 0 and
_uð0; kÞ ¼ 0 then the solution is uðt; kÞ ¼ 0 for all time.
One can also arrange the initial conditions so that the mode
approaches zero at late times. If we were doing classical
mechanics—or just trying to solve the propagator
equation—there would be no objection to these solutions.
However, the quantum mechanical requirement of positive
norm states (11) and (12) precludes the mode function
having just the exponentially falling solution.
A true propagator is the expectation value in some

normalized state we might call jΩi of the time-order
product of two field operators. Substituting the open
coordinate and closed coordinate free field expansions
(6) and (7) gives,4

hΩjT½φðxÞφðx0Þ�jΩi ¼
Z

d3k
ð2πÞ3 e

i~k·ð~x−~x0Þfθðt − t0Þuðt; kÞ

× u�ðt0; kÞ þ θðt0 − tÞu�ðt; kÞ
× uðt0; kÞg; (17)

¼
X∞
k¼0

Xk
l¼0

Xl
m¼−l

YklmY�
klmfθðτ − τ0Þ

× ukðτÞu�kðτ0Þ þ θðτ0 − τÞu�kðτÞ
× ukðτ0Þg: (18)

Based on the analysis we have given of the mode equations
(9) and (10), these mode sums cannot be de Sitter invariant

because the mode functions all show the same exponential
growth at late times,

uðt; kÞu�ðt0; kÞ → jKðkÞj2 × eλðtþt0Þ; (19)

ukðτÞu�kðτ0Þ → jKkj2 × eλðτþτ0Þ: (20)

The positive-definite constant of proportionality depends
upon the time at which the tachyonic mass term M2 < 0
dominates the gradient term [k2e−2Ht for open coordinates,
H2kðkþ 2Þsech2ðHτÞ for closed coordinates]. For k so
small that the tachyonic mass term always dominates, the
constant of proportionality depends upon the time at which
the state was released.5

At this stage one might wonder how anyone can extract a
de Sitter invariant result (2) and (3) from mode sums (17)
and (18) which must obviously break de Sitter invariance
for M2 < 0. This is especially curious if, at the same
time, they admit there is de Sitter breaking for the
special values of M2 ¼ −NðN þD − 1ÞH2, where N is
a nonnegative integer [32,35]. This implies believing that,
while a tachyonic scalar at one of those values decays,
making the mass a little more tachyonic would prevent
the decay.
We will see that the truth is less paradoxical. They have

analytically continued the mode sums (17) and (18) from
positive mass-squared—for which there is no de Sitter
breaking decay—to negative mass-squared. These analytic
continuations preserve the equation of motion (9) and (10)
but not the canonical normalization (11) and (12) which
ensures that states have positive norm. The resulting mode
sum is a formal solution to the propagator equation (1)
which is not a true propagator in the sense of being the
expectation value of the time-ordered product of two fields
in the presence of some positive norm state [38].
The problematic nature of analytic continuations which

avoid de Sitter breaking is the same for both open and
closed coordinates. In both cases de Sitter breaking derives
from more and more large k modes reaching the saturated
condition (19) and (20) as time progresses, and this can
only be avoided by including negative norm states in the
mode sum. However, there are interesting differences
between the two coordinate systems as regards infrared
(small k) modes. In open coordinates an infinite number of
infrared modes are in the saturated condition (19) even at
early times, whereas only a finite number of closed
coordinate modes have reached the analogous form (20)
at any finite time. This results in the open coordinate mode
sum possessing an infrared divergence which is absent from
the closed coordinate mode sum. We will explore this
infrared divergence further in the next two subsections to4Note that these expansions assume the Heisenberg field

equation is obeyed in the strong operator sense which is standard
for quantum field theory. There have been attempts to avoid de
Sitter breaking for tachyons by weakening the sense in which the
field equations hold [37].

5The massless limit is also interesting. In that case all modes
approach a constant (H=

ffiffiffiffiffiffiffi
2k3

p
) at late times, which also precludes

a de Sitter invariant result.
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see that the special thing about M2 ¼ −NðN þD − 1ÞH2

is one of the power law infrared divergences happens to
become logarithmic, and hence visible to analytic regu-
larization techniques. What happens in closed coordinates
will be discussed in Sec. III.

B. Analytic continuations miss power law divergences

In quantum field theory we are familiar with two sorts of
divergences: ultraviolet and infrared [39]. Both require
regularization in order to render potentially divergent
expressions well defined so that they can be analyzed.
And it can happen that a regularization technique fails
to register the presence of a certain class of divergences.
For example, dimensionally regulating [40] the quartically
divergent vacuum energy of free photons gives zero,

2 ×
Z

d3k
ð2πÞ3

k
2
→ ðD − 2Þ ×

Z
dD−1k
ð2πÞD−1

k
2
¼ 0: (21)

String theorists are familiar with how the application of zeta
function regularization [41] to the central charge of the
Virasoro algebra converts the sum of positive integers into a
finite, negative number,

1þ 2þ 3þ… ¼
X∞
n¼1

1

n−1
→ lim

s→−1
ζðsÞ ¼ −

1

12
: (22)

The suppression of obviously positive divergences in
expressions (21) and (22) is known as an “automatic
subtraction.” The origin of the name can be understood
if one regulates the ill-defined sum on the left-hand side of
(22) using an exponential cutoff,

fðϵÞ ≡
X∞
n¼1

n × e−ϵn ¼ e−ϵ

ð1 − e−ϵÞ2 ¼
1

4sinh2ðϵ
2
Þ : (23)

This sort of method is known as a “physical regularization”
because it shows the quadratic divergence in the unregu-
lated limit of ϵ → 0 ,

fðϵÞ ¼ 1

ϵ2
−

1

12
þOðϵ2Þ: (24)

The zeta function result (22) is the ϵ → 0 limit of fðϵÞ with
the power law divergence 1=ϵ2 subtracted off. Hence the
name, “automatic subtraction.” Dimensional regularization
can be similarly derived by automatically subtracting power
law divergences from a nonlocal exponential cutoff which
produces incomplete Gamma functions [42].
Dimensional regularization and zeta function regulari-

zation are known as “analytic regularizations” because they
work by considering the divergent expression to be an
analytic function of some parameter—the spacetime
dimension D or the power s to which the eigenvalues of
some operator are raised. The function makes sense for
certain parameter values and is then defined for all others
by analytic continuation. A hallmark of analytic continu-
ation techniques is that they fail to register power law
divergences such as those in expressions (21) and (22). On
the other hand, they do show the presence of logarithmic
divergences. One can see this by comparing the dimen-
sionally regulated result for the vacuum energy of a massive
scalar,

Z
d3k
ð2πÞ3

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
→ μ4−D

Z
dD−1k
ð2πÞD−1

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
;

(25)

¼ −
Γð− D

2
Þ

2ð4πÞD2
�
μ

m

�
4−D

m4; (26)

¼ −
m4

32π2

�
1

4 −D
−
γ

2
þ 3

4
þ 1

2
ln

�
4πμ2

m2

�
þOð4 −DÞ

�
:

(27)

with the same quantity evaluated using a physical regu-
larization such as a momentum cutoff,

Z
d3k
ð2πÞ3

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
→

1

4π2

Z
Λ

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; (28)

¼ 1

32π2

�
ð2Λ3 þm2ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
−m4 ln

�
Λ
m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2

m2
þ 1

r ��
; (29)

¼ 1

32π2

�
2Λ4 þ 2m2Λ2 −m4 ln

�
2Λ
m

�
þ 1

4
m4 þO

�
m2
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��
: (30)
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The dimensionally regulated result (27) agrees with the
logarithmic divergence of the momentum cutoff (30) under
the correspondence,

ln

�
2Λ
m

�
↔

1

4 −D
: (31)

However, the quartic and quadratic divergences in the
physical regularization (30) have been automatically sub-
tracted from the analytic regularization (27).

C. Infrared divergences must not be subtracted

Many features of infrared divergences are the same as for
ultraviolet divergences. In particular, both require regulari-
zation for careful analysis, and analytic regularization
techniques automatically subtract off power law divergen-
ces from both. However, what this means differs greatly.
As the name indicates, ultraviolet divergences originate

from short distance dynamics, far beyond the reach of any
experiment. The cure for an ultraviolet divergence is
renormalization. In the sense of Bogoliubov-Parasiuk-
Hepp-Zimmerman [43] (BPHZ) which is relevant to
quantum gravity, this means systematically adding new
local interactions to absorb primitive divergences, order-by-
order as they occur in the loop expansion. This can always
be done, so the only effect of an unphysical regularization
technique which happens to automatically subtract off a
certain class of divergences is to spare one the effort of
constructing the relevant counterterms and using them to
absorb the subtracted divergences. In that case no physical
error results from using an analytic regularization tech-
nique; indeed, it is the faster and simpler way to calculate.
Infrared divergences are very different. They come from

dynamical laws that have been thoroughly tested and are
not subject to change. The appearance of an infrared
divergence is a quantum field theory’s way of indicating
that something is physically wrong with the question that is
being asked of it. The proper course of action in this case is
to consider carefully what unphysical assumption led to the
divergence, and then pose a more physically meaningful
question. It is a mistake to ignore the problem and continue
to ask the same, unphysical question. However, the naive
use of an analytic regularization technique makes it difficult
to recognize this mistake, unless the infrared divergence
happens to be logarithmic.
Flat space quantum electrodynamics (QED) provides the

classic example. Infrared divergences in that theory derive
from the exchange of soft photons between the external
legs of exclusive amplitudes. The physical problem with
exclusive amplitudes is that any real detector has a finite
energy resolution, so there is no experimental way to
distinguish final states which differ by the inclusion of a
very low energy photon [39]. When the question being
asked is made physically meaningful by including the
emission of arbitrary soft photons whose total energy is less

than some fixed detector resolution, the result becomes
infrared finite [44]. It also depends upon the detector
resolution in a way that agrees with experiment.
Quantum gravity with zero cosmological constant man-

ifests very similar infrared divergences, whose resolution is
also achieved by accounting for soft graviton emission [45].
On the other hand, infrared divergences can indicate the
breakdown of unphysical assumptions about the symmetry
of a state. Veneziano considered the perturbative massless
limit of a real scalar field theory with cubic self-interactions
in flat space [46]. He showed that including the emission of
soft scalars will not cure that theory’s infrared divergences.
One must instead allow the vacuum to decay, which of
course breaks time translation invariance [47].
Ford and Parker discovered an example of great rel-

evance to our discussion in 1977 [48]. They considered a
massless, minimally coupled scalar on a spatially flat, FRW
background,

ds2 ¼ −dt2 þ a2ðtÞd~x · d~x⇒HðtÞ≡ _a
a
; ϵðtÞ≡−

_H
H2

:

(32)

The Fourier plane wave modes of this system are harmonic
oscillators with a time dependent mass (mðtÞ ∼ a3ðtÞ) and
frequency (ωðtÞ ¼ k=aðtÞ). At any instant the ground state
energy of each mode is k=2aðtÞ, although which state is the
instantaneous ground state changes with time. Ford and
Parker specialized to power law scale factors for which the
slow roll parameter ϵ is an arbitrary constant. A natural
vacuum state—and the one analogous to Bunch-Davies
vacuum for de Sitter [49]—is the state which was minimum
energy in the distant past. Ford and Parker worked inD ¼ 4
spacetime dimensions but it is useful to give the mode
function for general D,

uðt; kÞ ¼ a−ðD−1
2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4ð1 − ϵÞH
r

Hð1Þ
ν

�
−k

ð1 − ϵÞHa

�
with

ν ¼ D − 1 − ϵ

2ð1 − ϵÞ : (33)

The Fourier mode sum for the corresponding propagator
would be6

Z
dD−1k
ð2πÞD−1 e

i~k·ð~x−~x0Þfθðt − t0Þuðt; kÞu�ðt0; kÞ

þ θðt0 − tÞu�ðt; kÞuðt0; kÞg: (34)

6We might note that setting ϵ ¼ 0 and ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1

2
Þ2 − M2

H2

q
in

expression (33) gives the mode function for a massive scalar in
open de Sitter coordinates. The closed coordinate mode functions
[50] were derived by analytically continuing from Euclidean de
Sitter [51].
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Ford and Parker showed that expression (34) suffers from
infrared divergences throughout the range from ϵ ¼ 0 (de
Sitter) to ϵ ¼ 3

2
(matter domination). This is obvious from

the small k form of the mode functions (33),

uðt; kÞu�ðt0; kÞ → 4jνjð1 − ϵÞj2νjΓ2ðjνjÞ
4πð1 − ϵÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HaD−1H0a0D−1

p

×
�
HaH0a0

k2

�jνj
f1þOðk2Þg: (35)

For most values of ϵ and D the infrared divergences
Ford and Parker found are of the power law type that
would be invisible to an analytic regularization. One can
see this by evaluating (34) for the infrared-finite case of
ϵ > 2ðD − 1Þ=D, and noting that it produces an analytic
function [52,53],

½ð1 − ϵÞ2HH0�D2−1 Γð
D−1
2

þ νÞΓðD−1
2

− νÞ
ð4πÞD2ΓðD

2
Þ

× 2F1

�
D − 1

2
þ ν;

D − 1

2
− ν;

D
2
; 1 −

y
4

�
; (36)

where the constant ϵ length function (with infinitesimal δ to
fix the branch) is

yðx; x0Þ

≡HaH0a0
�
ð1− ϵÞ2∥~x− ~x0∥2 −

�
−

1

Ha
þ 1

H0a0
− iδ

�
2
�
:

(37)

Expressions (36) and (37) are well defined for all values of
ϵ and D except for the two discrete series,

ϵ ¼ 2N
D − 2þ 2N

or ϵ ¼ 1þ D − 2

Dþ 2N
: (38)

Comparison with expression (35) reveals that these are just
the values for which either the leading small k contribution
from the mode functions—or one of its k2N corrections—
combines with the kD−2dk from the measure to give the
dk=k needed to produce a logarithmic infrared diver-
gence [31].
This example is perfect for our purposes because

expressions (36) and (37) are how a mathematical physicist
would define the MMC scalar propagator ( and the spin two
structure function of the graviton propagator) for a con-
stant ϵ cosmology. For ϵ > 0 this example also avoids the
charged issue of de Sitter invariance: there are no sym-
metries but homogeneity and isotropy, nor can there be any
appeal to the full de Sitter manifold. And the analogy with
expressions (17) and (2) and (3) could hardly be clearer:
even though the original mode sum (34) harbors infrared
divergences throughout the range 0 ≤ ϵ ≤ 2ðD − 1Þ=D,

these have been automatically subtracted in (36)–(37),
except for the discrete cases (38). At those values our
mathematically-minded colleague would say that there is
an infrared divergence which precludes the assumption (33)
of minimum energy in the distant past. But he would insist
that (36) must be the correct propagator because it solves
the propagator equation away from these values. Before
discussing what is wrong with that view we should follow
our own injunction by describing why the infrared diver-
gence of Ford and Parker happens and how to fix it.
The unphysical thing about (34) is that it assumes each

mode of the initial state was prepared so that it is minimum
energy in the distant past (33). This is possible for initially
subhorizon modes but causality precludes a local observer
from having much effect on modes which are initially
superhorizon. Of course the same obstacle exists for a local
observer to guarantee to prepare the initially superhorizon
modes in any other state. However, it is especially prob-
lematic to reach the state which was minimum energy in the
distant past because the occupation number (relative to the
instantaneous ground state) tends to grow like Nðt; kÞ ∼
½HðtkÞaðtÞ=2k�2 [54], so it is quite highly excited for small
k, and becoming more so rapidly. The chance of acciden-
tally hitting this state for a dense set of superhorizon modes
is zero. Hence the naive mode sum (34) represents an
unphysical question which should be reformulated sensibly
rather than being blindly defined by analytic continuation.
Two plausible fixes have been proposed to the infrared

problem of Ford and Parker:
(i) One can retain infinite space in (34) but assume

initial values for the superhorizon modes which are
less singular than (33) [55]. Of course the time
dependence of the mode functions is determined by
the scalar field equation but their initial values and
those of their first time derivatives can be freely
specified. As long as there is no infrared divergence
initially then none can develop [56].

(ii) One can also work on a compact spatial manifold,
such as the torus TD−1, for which there are no
initially super-horizon modes [57]. Doing this
changes (34) from an integral to a sum, but it is
generally valid to approximate this sum as an
integral with a nonzero lower limit.

In practice there is not much difference between the two
fixes in that they both cut off initially superhorizon modes.
Note that both fixes endow the propagator with a secular
dependence associated with the time elapsed from the
initial value surface [31].

D. Distinguishing Green’s functions from propagators

The problem with using expression (36) and (37) for the
propagator of a MMC scalar on a constant ϵ geometry is
that it does not represent the expectation value of the time-
ordered product of φðxÞφðx0Þ in the presence of any
normalizable state. The same comments apply to using
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(2) and (3) for the propagator of a tachyonic scalar on de
Sitter. Neither statement should come as any surprise. In
both cases direct examination of the mode sums—(34)
and (17)—show infrared divergences, and in both cases
analytic regularizations were used to automatically subtract
the power law divergences. These infrared divergences are
not required to solve the propagator equation but they are
necessary to make the result a propagator. And note that
the real problem is making subtractions, which corre-
sponds to adding negative (and sometimes imaginary) norm
states. The subtractions are finite in closed coordinates, but
they are equally invalid.
It should be obvious that there are many solutions to the

propagator equation which are not true propagators. For
example, consider i=2 times the sum of the advanced and
retarded propagators. Distinguishing a solution to the
propagator equation from a true propagator can sometimes
be difficult, especially if one is more interested in certain
symmetries than in physics.

An illuminating example is the one-dimensional point
particle qðtÞ of mass m in an inverted potential
VðqÞ ¼ − 1

2
mΩ2q2. This system is especially important

because it possesses no infrared divergence, just like the
closed coordinate mode sums. One can clearly see how the
analytic continuation ω → −iΩ from the conventional
harmonic oscillator violates the quantum mechanical
requirement that states have positive norm.
The full solution of the Heisenberg operator equation of

motion is

qðtÞ ¼ q0 coshðΩtÞ þ
_q0
Ω

sinhðΩtÞ: (39)

Of course this system must show quantum mechanical
spread. That is evident from the way its propagator breaks
time translation invariance,

hψ jT½qðtÞqðt0Þ�jψi ¼ −
iℏ

2mΩ
sinh½Ωjt − t0j� þ hψ jq20jψi coshðΩtÞ coshðΩt0Þ þ hψ j q0 _q0 þ _q0q0

2Ω
jψi sinh½Ωðtþ t0Þ�

þ hψ j _q
2
0

Ω2
jψi sinhðΩtÞ sinhðΩt0Þ: (40)

Let us denote the three expectation values by the letters A,
B and C,

A ≡ hψ jq20jψi; B ≡
�
ψ

���� q0 _q0 þ _q0q0
2Ω

����ψ
�
;

C ≡
�
ψ

���� _q20Ω2

����ψ
�
: (41)

For large t and t0 we can express the real part of (40) as,

A coshðΩtÞ coshðΩt0Þ þB sinh½Ωðtþ t0Þ�

þC sinhðΩtÞ sinhðΩt0Þ→ 1

4
eΩðtþt0ÞfAþ 2BþCg: (42)

It is simple to see that the constant Aþ 2Bþ C must be
positive. First, note A > 0 and C > 0 because they are the
expectation values of positive operators. Only the constant
B might be negative. Hence we can write,

Aþ 2Bþ C ≥ A − 2
ffiffiffiffiffiffi
B2

p
þ C: (43)

Now note that A, B and C are constrained by the
uncertainty principle and by the Schwarz inequality (with
the requirement of normalizability),

A × C ≥
ℏ2

4m2Ω2
; A × C > B2: (44)

Using the second relation of (44) in (43) allows us to reach
the desired conclusion after some simple algebra,

Aþ 2BþC>A− 2
ffiffiffiffiffiffiffi
AC

p
þC¼ ð

ffiffiffiffi
A

p
−

ffiffiffiffi
C

p
Þ2 ≥ 0: (45)

Hence the propagator (40) must show secular growth which
violates time translation invariance for any valid quantum
mechanical state jψi.
The preceding paragraph is how a quantum physicist

would go about solving the propagator equation,

−m
�
d2

dt2
− Ω2

�
iΔðt; t0Þ ¼ iℏδðt − t0Þ: (46)

However, a mathematical physicist might consider (46) to
be simply a second order differential equation he can solve
at will. He might be very attracted to the solution that
follows from making the analytic continuation ω → −iΩ in
the propagator of the simple harmonic oscillator,

ℏ
2mω

e−iωjt−t0j →
iℏ

2mΩ
e−Ωjt−t0j: (47)

The right-hand side of expression (47) solves the propa-
gator equation (46); it is also time translation invariant, and
it falls off exponentially as the difference between t and t0
grows. However, comparison with expression (40) reveals
some very peculiar quantum mechanics,
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iℏ
2mΩ

e−Ωjt−t0j ⇒ A ¼ −C ¼ iℏ
2mΩ

; B ¼ 0: (48)

There is no normalizable state jψi for which positive
operators such as q20 and _q20 can have imaginary expectation
values. Expression (47) is a formal solution to the propa-
gator equation which is not a true propagator, even though
it derives from analytic continuation (ω → −iΩ) of a true
propagator. The same comments pertain to expressions (36)
and (37), for 0 ≤ ϵ ≤ 2ðD − 1Þ=D, and to expressions (2)
and (3), for M2 ≤ 0.

E. Math versus physics

We have seen that the application of analytic con-
tinuation to an infrared singular mode sum—such as
(17) or (34)—whose order of divergence depends upon
some free parameter—such as the mass-squared [23],
the dimension of spacetime [23,30], or the cosmological
deceleration parameter [31]—will only reveal divergen-
ces for the discrete, special values of the parameter
that happen to produce logarithmic divergences. These
special values always abut, at least on one side, a
continuum for which analytic continuation is equally
invalid on account of power law divergences that simply
fail to show up in the analytic continuation. In this case
the use of analytic continuation produces a formal
solution to the propagator equation which is not a
propagator in the sense of being the expectation value
of the time-ordered product of two fields in the presence
of a normalizable state [38].
This has been pointed out before [23] but the con-

clusion is not uniformly accepted [35]. Indeed, Morrison
claims to have verified the results of analytic continuation
in the signature by demonstrating that they agree with
analytic continuation in the mass-squared [32]. Of course
what he actually showed is that both analytic continu-
ations make the same error of automatically subtracting
power law infrared divergences. Some mathematical
physicists also attempt to justify their analytic continu-
ations in closed coordinates, where there are no infrared
divergences. We will treat that in detail in the next
section.
To close this section it is interesting, and in a

sense more powerful, to briefly discuss the phenomeno-
logical consequences that would follow if the mathematical
viewpoint was to be accepted. The basic problem is that
tachyonic scalars roll down their potentials, even in de
Sitter space. While this is admitted for M2 ¼
−NðN þD − 1ÞH2, it is denied for all other tachyonic
masses. The conclusion would be that we have a physical
theory with the bizarre feature that a scalar with
one of these special masses does decay, but (it is claimed
that) the decay can be stabilized by making the mass a little
more tachyonic.

Much worse follows when we turn to the standard
model Higgs scalar whose tachyonic mass term is re-
sponsible for spontaneous symmetry breaking. Consider
the Gedanken experiment of formulating the standard
model in the symmetric vacuum on de Sitter back-
ground. Does the Higgs field roll down its tachyonic
potential to break SUð2Þ ×Uð1Þ and give mass to the
W� and Z0 bosons, along with the quarks and charged
leptons? Note that we can make the de Sitter Hubble
constant enormously smaller than the magnitude of the
tachyonic Higgs mass. For example, in the current
universe it would be 44 orders of magnitude smaller.
In this context the claim implies that the Higgs would
not roll down its potential unless the tachyonic mass
happens to agree with one of the discrete values M2 ¼
−NðN þD − 1ÞH2. So spontaneous symmetry breaking
would be controlled by the gravitational parameter H
whose scale is 44 orders of magnitude below the
electroweak scale. Furthermore, minuscule fractional
changes in the Higgs mass would lead to completely
different physics.

III. ZERO MODES ARE NOT THE PROBLEM

Mathematical physicists distrust open coordinates
because they do not cover the full de Sitter manifold.
They suspect that the naive use of open coordinates has
misled cosmologists into making subtle errors, and that
a clearer picture emerges in closed coordinates. In
particular, the closed coordinate mode functions are
discrete so there can be nothing like the accumulation
of very small Fourier k modes which leads to the
infrared divergence of the open coordinate mode sums
for the MMC scalar and graviton propagators. Moreover,
the belief is that the infrared divergence of the
MMC scalar propagator is reflected, in closed coor-
dinates, by the fact that there is a discrete zero mode.
Because the graviton has no such zero mode, they argue
that there can be no problem with the graviton
propagator.
This view of the genesis of de Sitter breaking in the

MMC scalar has long been recognized as false. Let us quote
from the classic 1985 discussion by Bruce Allen [36]:

It is often believed that “what goes wrong” when
m2 ¼ 0 has something to do with the fact that the
wave equation has a constant solution, which is often
called a “zero mode.” This is simply not true.

In fact the problem with the massless, minimally
coupled scalar is not its single zero mode but rather
the way all modes behave at late times. This emerges
clearly from Eq. (4.5) of the paper by Allen and Folacci
[6], in which the zero mode is excluded from the scalar
mode sum in D ¼ 4 closed coordinates. In our notation
this relation reads,
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Gð1Þ
NZMðx; x0Þ ≡ 2Re

�X∞
k¼1

Xk
l¼0

Xl
m¼−l

ukðτÞYklmðχ; θ;ϕÞ × u�kðτ0ÞY�
klmðχ0; θ0;ϕ0Þ

�
; (49)

¼ H2

4π2

�
4

y
− ln

�
yðx; x0Þ

coshðHτÞ coshðHτ0Þ
�
− sech2ðHτÞ − sech2ðHτ0Þ

�
: (50)

The de Sitter breaking logarithm in the coincidence limit
does not arise from the zero mode but rather from the late
time limiting form which all modes approach,

ukðτÞ →
H

2πk
3
2

: (51)

This form sets in for Hτ ≳ lnðkÞ, before which there is
destructive interference from oscillations, so one is effec-
tively summing 1=k up to k ∼ eHτ,

XeHτ

k¼1

Xk
l¼0

Xl
m¼−l

jukðτÞYklmðχ; θ;ϕÞj2

≈
Z

eHτ

1

dkk2 ×
H2

4π2k3
¼ H2

4π2
Hτ: (52)

Because ukðτÞ and u�kðτ0Þ both approach the same form
(51), each mode contributes positively. One can only avoid
the de Sitter breaking growth by including negative norm
states.
It will be seen that the de Sitter breaking, secular growth

of expressions (50) and (52) derives from the fact that more
and more modes approach the saturated condition (51) as
time progresses. Hence de Sitter breaking originates in the
large (but still finite) k end of the mode sum, where there is
not even any distinction between open and closed coor-
dinates. In particular, the presence or absence of a zero
mode is irrelevant.
Cosmologists ascribe two properties to modes which

obey (51):
(i) Freezing in; and
(ii) Scale invariance.

These two properties are why the primordial scalar power
spectrum can be observed during the current epoch, so no
amount of clever mathematics can make them disappear.
Graviton mode functions possess the same key features of
freezing in and scale invariance. Hence the closed coor-
dinate mode sum for the coincidence limit of the graviton
propagator must possess the same de Sitter breaking
infrared logarithm. This is not some sort of gauge artifact,
it is precisely why the tensor power spectrum from
primordial inflation can be observed during the current
epoch. In Sec. IV we will see that the presence of this de
Sitter breaking infrared logarithm is not being recognized
by mathematical physicists partly because they substitute
formal solutions for the original, de Sitter breaking mode

sums and partly because they employ analytic continuation
techniques to evaluate those mode sums they do consider.
Before concluding we should comment on the closed

coordinate mode sum (18) for tachyons. This is free of
infrared divergences, which has prompted some math-
ematical physicists to claim that it fails to show de Sitter
breaking [35]. That is incorrect. The de Sitter breaking of
the closed coordinate mode sum derives from more and
more modes approaching the saturated condition (20) as
time progresses. Because each mode contributes positively,
there is no way to avoid this without violating the canonical
normalization condition (12) that all states have positive
norm. Analytically continuing fromM2 positive to negative
represents such a violation, just as we saw with the equally
illegitimate analytic continuation ω → −iΩ for the inverted
harmonic potential (48). In fact, the use of negative norm
states to produce a de Sitter invariant solution to the
tachyon propagator equation is admitted by Faisal and
Higuchi [35]:

We note in passing that the modes Φðll2mÞ with positive
norm form a unitary representation of the de Sitter
group if L0 is an integer whereas for a positive non-
integer value of L0 no unitary representation exists
because of the negative norm modes.

The authors do not seem to have realized that this admission
precludes their solution from being a true propagator.

Faisal and Higuchi are also wrong in employing the term
“infrared divergence” to describe what happens for
M2 ¼ −NðN þD − 1ÞH2, which is the case of their
quantity L0 being a non-negative integer. The problem
actually arises from their analytically continued mode
functions becoming degenerate. These mode functions
consist of powers of the scale factor times associated
Legendre polynomials Pμ

νðzÞ evaluated at z ¼ i sinhðHτÞ
[50,51]. Because the associated Legendre polynomial is
evaluated at an imaginary argument, the mode function and
its complex conjugate are linearly independent for most
values of M2, leading to a nonzero (although negative)
Wronskian. When M2 ¼ −NðN þD − 1ÞH2 the mode
function becomes proportional to its complex conjugate
so that the Wronskian between them vanishes the sameway
it does for JνðzÞ and J−νðzÞ when ν becomes an integer.
That could have been avoided by employing the second
linearly independent solution, Qμ

νðzÞ, along with Pμ
νðzÞ,
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whose peculiar time dependence would make de Sitter
breaking even more obvious.

IV. SPIN 2 SECTOR OF THE GRAVITON
PROPAGATOR

One of the nice features of Morrison’s paper is that he
has identified precisely where the two approaches diverge
in constructing the graviton propagator when a de Sitter
invariant gauge condition is imposed as a strong operator
equation,7

gρσ
�
hμρ;σ −

β

2
hρσ;μ

�
¼ 0: (53)

In that case the propagator consists of a spin zero part
which derives from the constrained part of the gravitational
field and a transverse-traceless (spin two) sector which
derives from the 1

2
DðD − 3Þ dynamical gravitons and

the remaining ðD − 1Þ constrained fields. The spin zero
structure function involves the scalar propagator for
M2 ¼ −2ðD − 1ÞH2=ð2 − βÞ, which is infrared singular
and de Sitter breaking for all β < 2 [26]. The comments of
Sec. II have already addressed the curious contention that
there is no de Sitter breaking except for the discrete values
of β ¼ 2 − 2ðD − 1Þ=NðN þD − 1Þ [32,35]. In this sec-
tion we discuss what Morrison’s work says about the
difference between the two approaches regarding the spin
two sector.

A. The price of de Sitter invariance

This subsection begins by summarizing notation. Then
we review the derivation employed [24] for the de Sitter
breaking solution to the spin two sector of the propagator.
The subsection closes by identifying the two points at
which Morrison’s de Sitter invariant construction deviates
from ours.
In any coordinate system we define the graviton field hμν

by subtracting the de Sitter background gμν from the full
metric,

gfullμν ≡ gμν þ κhμν; κ2 ≡ 16πG: (54)

By convention its indices are raised and lowered with the de
Sitter background metric. Covariant derivatives with
respect to the de Sitter background are represented by
Dα and □ ≡ gαβDαDβ.
The spin two part of the graviton propagator takes the

form [24],

i½μνΔ2
ρσ�ðx; x0Þ ¼

1

4H4
Pαβ
μνðxÞ × Pρσ

κλðx0Þ
× ½Rακðx; x0ÞRβλðx; x0ÞS2ðx; x0Þ�; (55)

where S2ðx; x0Þ is the spin two structure function,
Rακðx; x0Þ is a mixed second derivative of the de Sitter
length function yðx; x0Þ (3), normalized to give gακ in the
coincidence limit,

Rακðx; x0Þ ≡ −
1

2H2

∂2yðx; x0Þ
∂xα∂x0κ ⇒ Rακðx; xÞ ¼ gακðxÞ;

(56)

and Pμν
αβðxÞ is the transverse-traceless projector,

Pμν
αβ ≡

1

2

�
D − 3

D − 2

�	
−δαðμδ

β
νÞ½□ −DH2�½□ − 2H2�

þ 2Dðμ½□þH2�δðανÞDβÞ −
�
D − 2

D − 1

�
DðμDνÞDðαDβÞ

þ gμνgαβ
h

□2

D − 1
−H2

□þ 2H4
i

−
DðμDνÞ
D − 1

½□þ 2ðD − 1ÞH2�gαβ

−
gμν

D − 1
½□þ 2ðD − 1ÞH2�DðαDβÞ



: (57)

Our form (55) is preferable to the representation employed
in the mathematical physics literature [10] because its
tensor structure makes no assumption of de Sitter invari-
ance and because the essential spacetime dependence is
represented using only a single scalar structure function
S2ðx; x0Þ, rather than having a distinct scalar coefficient
function for each of the five de Sitter invariant tensor
factors.8 It is also worth pointing out that this representation
could be generalized to any background if we note that the
transverse-traceless projector is Pμν

αγ ≡ Pμν
αβγδDβDδ [24],

where the second order differential operator Pμν
αβγδ can be

read off from the linearized Weyl tensor [33],

Cαβγδ ¼ Pμν
αβγδ × hμν þOðh2Þ: (58)

The operator Pμν
αβ has four important properties. The

first two are transversality and tracelessness on each of its
index groups [24],

gμν × Pμν
αβ ¼ 0 ¼ Pμν

αβ × gαβ;

Dμ × Pμν
αβ ¼ 0 ¼ Pμν

αβ ×Dα:
(59)

The third property is commuting with the d’Alembertian
[24],

7For β ¼ 2 condition (53) cannot be imposed because it
implies the vanishing of the linearized Ricci scalar, which is
gauge invariant at linearized order.

8If one imposes only the cosmological symmetries of homo-
geneity and isotropy, the number of tensor factors rises to 14 [25].
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□ × Pμν
αβ ¼ Pμν

αβ ×□: (60)

And the final property concerns its square [24],

Pμν
γδ×Pγδ

αβ ¼−
1

2

�
D− 3

D− 2

�
½□− 2H2�½□−DH2�Pμν

αβ:

(61)

The product of the transverse projector and two factors of
R also obeys an important commutation relation [24],

□Pμν
αβðxÞRακðx; x0ÞRβλðx; x0Þ

¼ Pμν
αβðxÞRακðx; x0ÞRβλðx; x0Þ½□þ 2H2�: (62)

The spin two part of the propagator equation reads [24],

1

2

h
□ − 2H2

i
i
h
μνΔ

2
ρσ

i
ðx; x0Þ ¼ i

h
μνP

2
ρσ

i
ðx; x0Þ: (63)

The quantity on the right-hand side of (63) is i times the
transverse-traceless projection operator. It takes the same

form (55) as the spin two part of the graviton propagator but
with a different structure function P2ðx; x0Þ,

i

�
μνP

2
ρσ

�
ðx; x0Þ ¼ 1

4H4
Pμν

αβðxÞ × Pρσ
κλðx0Þ½Rακðx; x0Þ

×Rβλðx; x0ÞP2ðx; x0Þ�: (64)

It can also be expressed as,

i½μνP2
ρσ�ðx; x0Þ ¼ gμðρgσÞν ×

iδDðx − x0Þffiffiffiffiffiffi−gp

þ ðTraces and GradientsÞ; (65)

where the traces and gradients enforce transversality and
traceless.
Acting transverse-traceless projectors on the xμ and x0μ

dependence of expression (65) and exploiting relations
(59–62) gives an equation for the structure function
P2ðx; x0Þ,

Pμν
αβðxÞ × Pρσ

κλðx0ÞfRακRβλ□½□ − ðD − 2ÞH2�□0½□0 − ðD − 2ÞH2�P2g

¼ Pμν
αβðxÞ × Pρσ

κλðx0Þ
	
RακRβλ × 16

�
D − 2

D − 3

�
2

H4
iδDðx − x0Þffiffiffiffiffiffi−gp



: (66)

If it is valid to drop the projectors from both sides of (66)
we would have a scalar equation for P2ðx; x0Þ [24],

□½□ − ðD − 2ÞH2�□0½□0 − ðD − 2ÞH2�P2ðx; x0Þ

¼ 16

�
D − 2

D − 3

�
2

H4
iδDðx − x0Þffiffiffiffiffiffi−gp : (67)

Equation (67) implies that ½□ − ðD − 2ÞH2�□0½□0−
ðD − 2ÞH2�P2ðx; x0Þ is proportional to the de Sitter break-
ing propagator of the MMC scalar, so P2ðx; x0Þ would
necessarily break de Sitter invariance as well.
It is straightforward to derive explicit solutions to

equations such as (67). The trick is to consider the scalar
propagator Δiðx; x0Þ for an arbitrary mass-squared M2

i ,

½□ −M2
i �iΔiðx; x0Þ ¼

iδDðx − x0Þffiffiffiffiffiffi−gp : (68)

Then if acting ½□ −M2
1� on iΔ12ðx; x0Þ produces the

propagator iΔ2ðx; x0Þ, the solution is straightforward [23],

½□ −M2
1�iΔ12ðx; x0Þ ¼ iΔ2ðx; x0Þ ⇒ iΔ12 ¼

iΔ1 − iΔ2

M2
1 −M2

2

:

(69)

The same trick works when the source is an integrated
propagator,

½□ −M2
1�iΔ123ðx; x0Þ ¼ iΔ23ðx; x0Þ ⇒ iΔ123

¼ iΔ12 − iΔ13

M2
2 −M2

3

: (70)

When two of the masses coincide one gets a derivative with
respect to mass-squared. Note, however, that these rela-
tions require one to consider the scalar propagator
iΔiðx; x0Þ as an analytic function of its mass-squared
M2

i . As we have explained in Sec. II, that assumption of
analyticity inM2

i is only valid if one allows the propagators
to break de Sitter invariance whenM2

i goes from positive to
negative, so de Sitter breaking must be evident even forM2

i
slightly positive.
One can show that the de Sitter breaking of P2ðx; x0Þ

which is implied by Eq. (67) does not drop out of the spin
two projection operator (64) [25]. At this point it is obvious
from Eq. (63) that the spin two sector of the graviton
propagator must break de Sitter invariance as well. Indeed,
the same manipulations that led to (67) give,

1

2
□S2ðx; x0Þ ¼ P2ðx; x0Þ: (71)
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and acting□½□ − ðD − 2ÞH2�□0½□0 − ðD − 2ÞH2� on both
sides gives,

□
2½□ − ðD − 2ÞH2�□0½□0 − ðD − 2ÞH2�S2ðx; x0Þ

¼ 32

�
D − 2

D − 3

�
2

H4
iδDðx − x0Þffiffiffiffiffiffi−gp : (72)

The de Sitter breaking implied for i½μνΔ2
ρσ�ðx; x0Þ by

(67–72) has been explicitly worked out [25] and shown
to agree with both the noncovariant gauge propagator [12]
and with the result in transverse-traceless-spatial gauge [9].
This completes our review of how the de Sitter breaking

solution was constructed [24]. Morrison has demonstrated
that the de Sitter invariant solutions [10,35] follow by
deviating from this procedure at two points [32]:
(1) One must add a special constant to the right-hand

side of Eq. (72)—or equivalently, to the right-hand
side of Eq. (67); and

(2) One must solve integrated propagator equations of
the form (69) and (70) by assuming that the de Sitter
invariant scalar propagator is a meromorphic func-
tion of its mass-squared, with simple poles
at M2 ¼ −NðN þD − 1ÞH2.

We have already explained in Sec. II that the second deviation
produces formal solutions to the desired equations which
are not true propagators. That single observation would

suffice to invalidate the mathematical physics solutions,
but it happens that the first deviation is also problematic.

B. Why no constant can be added

The motivation for the first deviation is the fact, noted in
earlier work [25], that the transverse-traceless projectors
annihilate constant shifts in the structure functions,

Pμν
αβðxÞ × Pρσ

κλðx0Þ½Rακðx; x0ÞRβλðx; x0Þ� ¼ 0: (73)

Hence, it is claimed, one cannot pass from Eq. (66) to (67)
[32]. If we were only interested in solving differential
equation (63) this conclusion would be correct. However,
what we really seek is a propagator, and Sec. II has already
demonstrated that propagator equations have many solu-
tions that are not true propagators [38]. When constructing
a propagator one can indeed pass from Eq. (66) to (67).
The simplest way to see what is wrong with adding

a constant to Eq. (67) is by taking the flat space limit.
In that limit the two structure functions become translation
invariant,

lim
H→0

S2ðx;x0Þ
4H4

≡ Sfltðx− x0Þ; lim
H→0

P2ðx;x0Þ
4H4

≡Pfltðx− x0Þ:
(74)

The spin two part of the graviton propagator (55) also takes
the simple form,

i½μνΔflt
ρσ�ðx; x0Þ ≡ lim

H→0
i½μνΔ2

ρσ�ðx; x0Þ; (75)

¼ 1

4

�
D − 3

D − 2

�
2
�
ΠμðρΠσÞν −

ΠμνΠρσ

D − 1

�
∂4Sfltðx − x0Þ; (76)

where indices are raised and lowered with the Minkowski
metric ημν, parenthesized indices are symmetrized, ∂2 ≡
ημν∂μ∂ν is the flat space d’Alembertian and Πμν is the
transverse projector,

Πμν ≡ ημν∂2 − ∂μ∂ν: (77)

The 8th order differential operator acting upon Sfltðx − x0Þ
in expression (76) appears so frequently in this discussion
that we will denote it by the symbol Tμνρσ,

Tμνρσ ≡
1

4

�
D − 3

D − 2

�
2
�
ΠμðρΠσÞν −

ΠμνΠρσ

D − 1

�
∂4: (78)

Of course the factor of ðD − 3Þ2 derives from the two Weyl
tensors (58) involved in the construction of Tμνρσ.
The flat space limits of the graviton propagator equation

(63) and the defining relation (66) for the transverse-
traceless projection operator are

Tμνρσ ×
∂2

2
Sflt ¼ Tμνρσ × Pflt; (79)

Tμνρσ × ∂8Pflt ¼ Tμνρσ × 4

�
D − 2

D − 3

�
2

iδDðx − x0Þ: (80)

The point the mathematical physicists dispute is the validity
of removing the factors of Tμνρσ from Eqs. (79) and (80) to
conclude,

∂10Sfltðx − x0Þ ¼ 8

�
D − 2

D − 3

�
2

iδDðx − x0Þ: (81)

If Eq. (81) is accepted, the spin two structure function
obeys,

∂4Sfltðx − x0Þ

¼ 8

�
D − 2

D − 3

�
2 ΓðD

2
− 1Þ

4π
D
2

ðΔx6−D − μD−4Δx2Þ
8ðD − 6ÞðD − 4Þ ; (82)
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where Δx2 ≡ ημνðx − x0Þμðx − x0Þν. Substituting this form for the structure function into (76) gives the recognized spin two
part of the graviton propagator in flat space [58],

i½μνΔflt
ρσ�ðx; x0Þ ¼

1

4

�
D − 2

D − 1

�	
3ηðμνηρσÞ − ðDþ 2Þ ½ημνΔρΔxσ þ ΔxμΔxνηρσ�

Δx2
þ 4D

ΔxðμηνÞðρΔxσÞ
Δx2

þDðD − 2ÞΔxμΔxνΔxρΔxσ
Δx4



ΓðD

2
− 1Þ

4π
D
2ΔxD−2

: (83)

Let us see what happens if we exploit what the
mathematical physicists assert to be the freedom to add
a constant to Eq. (81),

∂10Sfltðx − x0Þ ¼ 8

�
D − 2

D − 3

�
2

iδDðx − x0Þ þMD: (84)

At this point some mathematical physicists object that the
only dimensionful constant on de Sitter is H, so any
constant we add to the propagator equation must be
proportional to HD, which vanishes in the flat space limit.
This is sophistry. Morrison’s argument is based on the
vanishing of expression (73) so it applies to an arbitrary

constant. If the ambiguity is real then we must be able to
add any constant to the propagator equation, including one
which fails to vanish in the flat space limit.
The result of changing the flat space propagator equation

to (84) is to change the structure function by a term we
might call ΔSðx − x0Þ which obeys,

∂4ΔSðx − x0Þ ¼ MDΔx6

48DðDþ 2ÞðDþ 4Þ : (85)

The resulting change in the spin two part of the
propagator is

TμνρσΔS ¼ ðDþ 1ÞðD − 3Þ2MD

8ðDþ 4ÞðDþ 2ÞDðD − 1ÞðD − 2Þ2 fðD
2 þ 2D − 4ÞημðρησÞνΔx2

− ðDþ 2ÞημνηρσΔx2 − 4DΔxðμηνÞðρΔxσÞ þ 4½ΔxμΔxνηρσ þ ημνΔxρΔxσ�g: (86)

It is difficult to understand what sort of state could give rise
to the long range correlations evident in expression (86).
The addition of ill-behaved terms such as (86) is typical

when one solves the propagator equation (79) without
demanding that the solution be a propagator. The structure
functionmustbeamodesuminorder togivea truepropagator,
which precludes the addition of constants, or any other
function annihilated by the projectors. This is obvious in
the spatial Fourier basis appropriate to flat space, and to de
Sitter in open coordinates. The case for an extra constant
seems better for de Sitter in closed coordinates, because
the constant can be represented as Y000ðχ; θ;ϕÞ×
Y�
000ðχ0; θ0;ϕ0Þ. However, it will be noted that the temporal

dependence does not quite work out. There are two linearly
independent zeromodes, only one of which is constant, and a
proper mode sum must involve both of them.
For those mathematical physicists who still insist on

M ∼H we should note that it is not necessary to take the
flat space limit to see that adding the constant is problem-
atic. The fact that graviton modes in transverse-traceless-
spatial gauge agree with those of the MMC scalar [7], and
the analysis of Ford and Parker for the latter [48], imply that
transverse-traceless-spatial gravitons suffer from infrared
problems for all FRW geometries whose first slow roll
parameter ϵ ≡ − _H=H2 is constant and in the range

0 ≤ ϵ ≤ 2ðD − 1Þ=D. As we have already pointed out,
the spin two sector of the graviton propagator for all these
cases can be represented as (55), with only a slight
generalization of the transverse-traceless projector Pμν

ρσ.
(Indeed, the “generalization” consists of undoing the
specialization of the original operator to de Sitter [33].)
In particular, the propagator equation for all these cases
would allow the addition of terms annihilated by Pμν

ρσ, and
the consequent additions to the graviton propagator would
be as unphysical as the one (86) we found for flat space.
Only for the de Sitter case of ϵ ¼ 0 does the siren call of
additional symmetry beguile the mathematically inclined to
dispute the passage from (66) to (67).
Consideration of the photon propagator on de Sitter

background makes the argument even stronger. The spin
one sector of the photon can be given a representation
comparable to (55), forwhich itwas indeed theparadigm[24],

i½μΔ1
ρ�ðx; x0Þ ¼ −

1

2H2
Pμ

νðxÞ
× Pρ

σðx0Þ½Rνσðx; x0ÞSTðx; x0Þ�: (87)

The transverse projector Pμ
ν in (87) is constructed from the

field strength tensor the same way as Pμν
αβ was constructed

from the Weyl tensor [33],
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Fαβ ¼ Pμ
αβ × Aμ ⇒ Pμ

ν ≡ Pμ
ναDα: (88)

The transverse projectors annihilate constants in the spin one
sector the same way that the transverse-traceless projectors
do (73) in the spin two sector,

Pμ
νðxÞ × Pρ

σðx0Þ½Rνσðx; x0Þ� ¼ 0: (89)

So there is equal justification for adding a constant to the
equation for the spin one structure function [24],

½□ − ðD − 2ÞH2�2½□0 − ðD − 2ÞH2�STðx; x0Þ

¼ −2H2
iδDðx − x0Þffiffiffiffiffiffi−gp : (90)

The only problem is: Eq. (90) already gives a de Sitter
invariant propagator [59] which mathematical physicists
accept [60]. Adding any nonzero constant to (90) would
produce a different, and incorrect result. The freedom
Morrison claims to have discovered is simply not present.

C. Inequivalence of the two propagators

The coincidence limit provides a very simple way of
seeing that no de Sitter invariant solution to the propagator
equation (1) can be physically equivalent to our de
Sitter breaking propagator. The coincidence limit of our
result is [25],

lim
x0→x

i½μνΔ2
ρσ�ðx; x0Þ ¼ ðConstÞ

�
2gμðρgσÞν −

2

D
gμνgρσ

�

þ
�
HD−2

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ 2Htþ Const

�

×
�
2g⊥μðρg⊥σÞν −

2

D − 1
g⊥μνg⊥ρσ

�
; (91)

where g⊥μν is the purely spatial part of the metric. By
contrast, the coincidence limit of a de Sitter invariant
solution to the propagator equation could only have the
de Sitter invariant first line of (91); it could never contain
the explicitly time dependent factor of Ht, or the de Sitter
breaking tensor structure of the second line. These de Sitter
breaking features agree with the traceless part of the
noncovariant graviton propagator [12], and with the result
in transverse-traceless-spatial gauge [9]. The physical

origin of the secular growth evident in (91) is the same
as for the coincidence limit of the MMC scalar [5]: as time
progresses, more and more modes experience first horizon
crossing and become constant. This is not a gauge artifact
but rather the mechanism by which quantum fluctuations
from primordial inflation become fossilized so that they can
be observed at late times.
A mathematical physicist might be tempted to dismiss

the coincidence limit of a propagator as too singular to
provide a good comparison but it makes perfect sense in
dimensional regularization. Figures 1 and 2 also show that
the coincident graviton propagator contributes to every
single one of the graviton loops for which fully dimen-
sionally regulated results have so far been obtained on de
Sitter background [15–20]. And the de Sitter breaking
evident in the coincidence limit (91) is of course present as
well for x0μ ≠ xμ. Taking the coincidence limit is just the
most obvious way of demonstrating that de Sitter breaking
is a real effect.
Morrison argues that our de Sitter breaking propagator is

nonetheless “physically equivalent” to his de Sitter invari-
ant solution to the propagator equation. The argument
consists of showing that smearing with the transverse-
traceless test functions of Fewster and Hunt [34] makes the
de Sitter breaking difference drop out [32],

Z
dDxfμν1 ðxÞ

Z
dDx0fρσ2 ðx0Þ × i½μνΔ2br

ρσ �ðx; x0Þ ¼ 0: (92)

Morrison interprets (92) to mean that the de Sitter breaking
contributions to our propagator are pure gauge. That cannot
be so because the identical time dependence occurs in the
completely fixed transverse-traceless-spatial gauge [9]. The
actual explanation is that transverse-traceless smearing test
functions do not completely scrutinize free graviton fields
because no sequence of them can be made to approach a
delta function. In this feature they show a critical difference
from the scalar test functions [62] on which they were
surely based.
To see the problem we may as well consider D ¼ 4 flat

space. Mathematical physicists working in constructive
quantum field theory consider a scalar field φðxÞ to be an
operator-valued distribution which is too singular to be
studied in its original form, as a function of spacetime [62].
They instead “smear” φðxÞ against smooth test functions
fðxÞ,

FIG. 1. Coincident graviton propagator contributions to various matter field 1PI 2-point functions. The leftmost diagram is from the
one loop fermion self-energy [16,19]; the center figure is from the one loop scalar self-mass-squared [17]; and the rightmost diagram is
from the one loop vacuum polarization [20].
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φðxÞ → φ½f� ≡
Z

d4xfðxÞφðxÞ: (93)

The point is to be able to prove nonperturbative theorems.
Of course there is no formalism of quantum gravity which
makes sense beyond the realm of regulated perturbation
theory, and there is absolutely no need for smearing when
using regulated perturbation theory as we are. However,
nothing is lost by using the smearing formalism for scalars
because one can form delta sequences of test functions
which approach a delta function,

fnðx; x0Þ ⇒ δ4ðx − x0Þ: (94)

Were we to represent the test function in Fourier space the
analogous statement would be

fnðt; ~xÞ ¼
Z

d3k
ð2πÞ3 e

i~k·~x ~fnðt; ~kÞ

⇒ ~fnðt; ~kÞ → δðt − t0Þe−i~k·~x0 : (95)

Let us now consider how smearing works for linearized
gravitons. A general transverse-traceless test function
might be defined as,

fμνðt; ~xÞ ¼
Z

d3k
ð2πÞ3 e

i~k·~x
X
λ¼�

ϵμνð~k; 2λÞ ~fðt; ~k; λÞ: (96)

The graviton polarization tensors ϵμνð~k; 2λÞ can be
expressed by taking products of photon polarization
vectors,

ϵμνð~k; 2λÞ ¼ ϵμð~k; λÞ × ϵνð~k; λÞ: (97)

We define the latter to be purely spatial and transverse.
Transversality can be explicitly enforced by expressing the

Fourier wave vector in spherical coordinates ~k ¼ kr̂ with
the spherical unit vectors defined as usual,

r̂ ≡ sinðθÞ cosðϕÞx̂þ sinðθÞ sinðϕÞŷþ cosðθÞẑ; (98)

θ̂ ≡ cosðθÞ cosðϕÞx̂þ cosðθÞ sinðϕÞŷ − sinðθÞẑ; (99)

ϕ̂ ≡ − sinðϕÞx̂þ cosðϕÞŷ: (100)

Because λ ¼ �1 we can define a general transverse
polarization vector as,

ϵið~k; λÞ ≡ 1ffiffiffi
2

p ðθ̂i þ iλϕ̂iÞ ⇒ ημνϵ
μð~k; λÞϵνð~k; λ0Þ ¼ δλλ0 :

(101)

The rest of the derivation is straightforward. If any
sequence of ~fðt; ~k; λÞ did lead to a delta function compari-
son with (95) suggests that it would be

~fnðt; ~k; 2λÞ → δðt − t0Þe−i~k·~x0 ðδλþ þ δλ−Þ: (102)

To see that the Fourier transform of (102) cannot produce a
4-dimensional delta function, simply choose the ẑ axis of ~k
parallel to Δ~x ≡ ~x − ~x0, which leaves only the polarization
tensors depending upon the azimuthal angle ϕ. For either
polarization one finds,

Z
2π

0

dϕϵiϵj ¼ π

2
sin2ðθÞ

�
3
ΔxiΔxj

Δx2
− δij

�
: (103)

Performing the θ and r integrations gives,

fijn ðt; ~xÞ → δðt − t0Þ
8πΔx3

�
3
ΔxiΔxj

Δx2
− δij

�
: (104)

Expression (104) is transverse, traceless and purely spatial,
but it does not let us recover the original graviton field. In
fact, expression (104) vanishes at ~x0 ¼ ~x if one employs it
inside an integral for which the angular average gives
3ΔxiΔxj=Δx2 → δij. In particular, one can never approach
the coincidence limit by smearing two transverse-traceless
test functions as in Morrison’s identity (92). So it is not
correct to say that our de Sitter breaking propagator is
physically equivalent to his de Sitter invariant solution of
the propagator equation; rather he has not permitted himself
to scrutinize the difference between them with sufficient
resolution. And we might note that it was already obvious
from the agreement of the linearized Weyl-Weyl correlators
[18] that a high resolution probe is needed to detect the
difference.

D. Tensor power spectrum gives the coincidence limit

A probe with the required sensitivity is at hand in the
form of the primordial tensor power spectrum. The tensor
power spectrum derives from the late time limit of the
spatial Fourier transform, in open coordinates, of the

FIG. 2. Coincident graviton propagator contributions to various
one loop 1PI functions and expectation values in pure gravity.
The leftmost diagram is from the one loop graviton 1-point
function [15]; the center figure is from the one loop expectation
value of the square of the Weyl tensor [18,27]; and the rightmost
diagram is from an old computation of the graviton self-energy
with a momentum cutoff [61] which is being redone with
dimensional regularization.
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2-point correlator of the graviton field in transverse-trace-
less-spatial gauge [4]. In our notation (54) everything but
the late time limit would be

Δ2
hðk; tÞ ≡

k3

2π2

Z
d3xe−i~k·~x

�
Ω
����

ffiffiffi
2

p
κ

a2ðtÞ hijðt; ~xÞ

×

ffiffiffi
2

p
κ

a2ðtÞ hijðt;
~0Þ
����Ω

�
; (105)

¼ k3

2π2
× 32πG × 2 × juðt; kÞj2: (106)

The actual tensor power spectrum is defined by evolving
the tensor mode function uðt; kÞ past the 1st horizon
crossing time (which is tk ¼ H−1 lnðk=HÞ for de Sitter)
at which they “freeze in” to uðt; kÞ ∼H=

ffiffiffiffiffiffiffi
2k3

p
. The result

for de Sitter is

lim
t≫tk

Δ2
hðkÞ →

16

π
GH2: (107)

The absence of any dependence on the wave number k is
known as “scale invariance.” It is these two features of
freezing in and scale invariance which enable us to observe
the primordial power spectra.
Although the “tensor power spectrum” is defined as the

late time limit of expressions (105) and (106), it is better to
retain the time dependent formulas for our current dis-
cussion. The point of this subsection is that there is a simple
relation between the power spectrum and the trace of the
coincident spin two propagator we have been debating,

16πGgμρðxÞgνσðxÞ × i½μνΔ2
ρσ�ðx; xÞ

¼ 5

2
×
Z

d3k
ð2πÞ3 32πG × 2 × juðt; kÞj2; (108)

¼ 5

2
×
Z

d3k
ð2πÞ3

2π2

k3
Δ2

hðk; tÞ; (109)

¼ 5

2
×
Z

dk
k
Δ2

hðk; tÞ: (110)

The factor of 5
2
derives from the contribution of three

constrained fields to the gauge-fixed but unconstrained
propagator i½μνΔ2

ρσ�ðx; x0Þ, whereas the tensor power spec-
trum has only the two dynamical gravitons.
Because the tensor power spectrum is a gauge invariant

observable, relation (110) provides an enormously power-
ful insight into the de Sitter breaking time dependence of
the coincidence limit (91) of the spin two sector of the
graviton propagator. First, we note that the naive mode sum
is infrared divergent. The physical origin of this infrared
divergence is the same as the analogous scalar infrared
divergence which was discussed at the end of Sec. II C.

With either of the two standard fixes [55,57] the naive
mode sum is effectively cut off at some fixed lower limit
corresponding to the comoving wave number of the longest
wave length which is initially in Bunch-Davies vacuum.
The time dependence of the result (110) arises because the
time dependent power spectrum Δ2

hðk; tÞ assumes its
asymptotic form (107) at the time of first horizon crossing,
which is tk ∼H−1 lnðk=HÞ for de Sitter. So the integral
becomes,

5

2
×
Z

HeHt

H

dk
k
×
16

π
GH2 ¼ 40

π
GH2 ×Ht: (111)

Substituting relation (91) to the left-hand side of (108)
gives complete agreement with (111). Note again the
complete impossibility of accommodating a de Sitter
invariant solution to the propagator equation.
A closely related point has been made before in the

context of the totally gauge fixed and constrained propa-
gator in transverse-traceless-spatial gauge. An on-shell
field redefinition which carries this de Sitter breaking
propagator to a de Sitter invariant one has been given in
[8]. Of course it is not possible to change the propagator,
while preserving the gauge-fixed and constrained field
equations, without altering the canonical commutation
relations [9], so their construction is really an excursion
into noncanonical quantization. One consequence of the
altered quantization scheme is that the usual definition of
the tensor power spectrum produces a result which breaks
scale invariance [9]. Mathematical physicists retort that one
must employ a new, “gauge invariant” definition of the
tensor power spectrum which recovers the usual, scale
invariant result [8]. They have so far neglected to specify
this definition but one might observe first, that any quantity
becomes invariant when defined in a unique gauge such as
transverse-traceless-spatial gauge [63], and second, that
any revised definition of the power spectrum which
amounts to using the old, de Sitter breaking propagator
in the old way is indistinguishable from simply conceding
that free gravitons break de Sitter invariance.
We close by anticipating an objection which might be

raised against appealing to the observability of the tensor
power spectrum in the context of de Sitter results. The
argument goes that perfect de Sitter inflation never ends,
therefore modes which have experienced first horizon
crossing will never reenter the horizon, which is necessary
for them to produce a detectable spatial variation. Hence
the power spectrum of de Sitter is unobservable and it
cannot be invoked to prove de Sitter breaking. We ask those
who attempt to escape the inevitability of de Sitter breaking
through recourse to this argument to consider a multiscalar
inflation model in which the usual decline of HðtÞ ceases
for a period of time which is controlled by a “clock”
provided by one of the other scalars. During the _HðtÞ ¼ 0
phase the geometry is locally de Sitter and modes which
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experience first horizon crossing should have the scale
invariant amplitude. However, inflation eventually ends so
these modes can experience second horizon crossing and
become observable to a late time observer. Would such a
late time observer measure their power spectrum to be scale
invariant? If the answer is conceded to be “yes” then it must
be admitted that the coincidence limit of the graviton
propagator shows de Sitter breaking.

V. DISCUSSION

The recent paper by Morrison [32] demonstrates the
remarkable convergence of opinion on the graviton propa-
gator which has taken place over the past few years. In
particular, the allowed gauges are universally agreed, as is
almost all of the spacetime dependence and tensor structure
in any allowed gauge. The remaining points of disagree-
ment have been narrowed to just seven issues, which we
summarize from our perspective:
(1) It is no more valid to define tachyonic mode sums by

analytic continuation in the scalar mass-squared than
to analytically continue in the dimension, in the
signature or in the deceleration parameter. Demon-
strating that these analytic continuations all give the
same result only shows that they all make the same
error of incorporating negative norm states.

(2) The massive scalar propagator breaks de Sitter
invariance for all M2 ≤ 0 and, by continuity, de
Sitter breaking shows up even for M2 > 0 in the
solution which is truly an analytic function of M2.
(See also [64,65].) Denying this leads to the non-
sensical conclusion that a tachyonic scalar with
M2 ¼ −NðN þD − 1ÞH2 decays, but making M2

slightly more tachyonic stabilizes it.
(3) The de Sitter breaking of the massless, minimally

coupled scalar propagator is not due to its isolated
zero mode but rather to the fact that all its mode
functions approach scale invariant constants. Grav-
iton mode functions approach the same scale invari-
ant constants. These are physical effects, not gauge
artifacts, and they show up in closed coordinates as
well as on the cosmological patch. This behavior is
why the scalar and tensor power spectra from
primordial inflation can be observed during the
current epoch.

(4) There is no ambiguity in the equation for the spin
two structure function if one requires that the
propagator and the projection operator be positive
norm mode sums. Violating this precept in flat space
would compromise unitarity.

(5) Because no sequence of the transverse-traceless
smearing functions proposed by Fewster and Hunt
[34] recovers the pointwise graviton field, equality
of two smeared propagators does not imply their
physical equivalence.

(6) The coincidence limit of the graviton propagator—
which shows up in every fully dimensionally
regulated graviton loop that has so far been com-
puted [15–20]—reveals that our de Sitter breaking
propagator is not physically equivalent to any de
Sitter invariant solution to the propagator
equation.

(7) The time independence and scale invariance of the
tensor power spectrum require that the graviton
propagator breaks de Sitter invariance.

Rather than regarding the continuing debate over these
points as a distasteful controversy to be deplored and
avoided, we view it as the embodiment of the scientific
method. We hope this paper will continue the process, and
we foresee complete concurrence in the near future.
Morrison has carefully laid out the procedures necessary

to extract a de Sitter invariant solution from the graviton
propagator equation. These are:

(i) One must add a constant to the equation which
defines the structure function of the spin two
projection operator; and

(ii) One must consider the scalar propagator to be
both de Sitter invariant and a meromorphic function
of the scalar mass-squared, with simple poles at
M2 ¼ −NðN þD − 1ÞH2.

Morrison has also derived the precise difference between
our de Sitter breaking structure functions and the de Sitter
invariant structure functions that result from following his
procedures. These differences are rather small for the spin
two sector—which had to be the case in view of the fact that
the Weyl-Weyl correlators agree [18,27]—but they have the
significant effect of making the coincident propagator time
dependent. And we emphasize that the coincident propa-
gator enters every single one of the dimensionally regulated
graviton loops which have so far been computed [15–20]. It
is obvious the two solutions to the propagator equation
mediate different physics, and it is important to resolve
which one is the true propagator.
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