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We study flat Friedmann–Robertson–Walker models with a perfect fluid matter source and a scalar
field nonminimally coupled to matter having a double exponential potential. It is shown that the scalar
field almost always diverges to infinity. Under conditions on the parameter space, we show that the
model is able to give an acceptable cosmological history of our Universe, that is, a transient matter era
followed by an accelerating future attractor. It is found that only a very weak coupling can lead to
viable cosmology. We study in the Einstein frame the cosmological viability of the asymptotic form
of a class of fðRÞ theories predicting acceleration. The role of the coupling constant is briefly
discussed.
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I. INTRODUCTION

The standard inflationary idea requires that there be a
period of slow-roll evolution of a scalar field (the inflaton)
during which its potential energy drives the Universe in a
quasiexponential expansion. Besides a cosmological con-
stant, a nearly massless scalar field (quintessence) provides
the simplest mechanism to obtain accelerated expansion of
the Universe within general relativity. Therefore, scalar
fields play a prominent role in the construction of cosmo-
logical scenarios aiming to describe the evolution of the
early and the present Universe.
Earlier investigations in scalar-field cosmology assumed

a minimal coupling of the scalar field (see, for example,
Refs. [1] and [2] for models containing both a perfect fluid
of ordinary matter and a scalar field with an exponential
potential, the so-called “scaling” cosmologies, [3] and
references therein for scalar-tensor theories with exponen-
tial potential and [4] for a phase-space analysis of the
qualitative evolution of cosmological models with a scalar
field with positive or negative exponential potentials).
Inclusion of nonminimal coupling increases the math-
ematical difficulty of the analysis, yet it is important to
consider nonminimal coupling in scalar field cosmology
[5]. As is stressed in Ref. [6], the introduction of non-
minimal coupling is not a matter of taste; a large number
of physical theories predict the presence of a scalar field
coupled to matter, and we mention a few important
examples.
In the string effective action, the dilaton field is generally

coupled to matter in the Einstein frame [7]. In scalar-tensor
theories of gravity [5,8], the action in the Einstein frame
takes the form

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p fR− ½ð∂ϕÞ2þ2VðϕÞ�þ2χ−2Lmð~gμν;ΨÞg;
ð1Þ

with

~gμν ¼ χ−1gμν;

where χ ¼ χðϕÞ is the coupling function and matter fields
are collectively denoted byΨ. In particular, for higher-order
gravity (HOG) theories derived from Lagrangians of the
form

fð ~RÞ þ 2Lmð~gμν;ΨÞ; ð2Þ

it is well known that under the conformal transformation,
gμν ¼ f0ð ~RÞ~gμν, the field equations reduce to the Einstein
field equations with a scalar field ϕ as an additional matter
source. The conformal equivalence can be formally
obtained by conformally transforming the Lagrangian
(2), and the resulting action becomes [9],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fR − ½ð∂ϕÞ2 þ 2VðϕÞ�

þ 2e−2
ffiffiffiffiffiffi
2=3

p
ϕLmðe−

ffiffiffiffiffiffi
2=3

p
ϕgμν;ΨÞg:

Therefore, the Lagrangian of HOG theories is a particular
case of the general scalar-tensor Lagrangian with χðϕÞ ¼
e

ffiffiffiffiffiffi
2=3

p
ϕ, in Eq. (1). Nonminimal coupling occurs also in

models of chameleon gravity [10], [11],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fR − ½ð∂ϕÞ2 þ 2VðϕÞ� þ 2Lmð~gμν;ΨÞg;

with
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~gμν ¼ e2βϕgμν;

where β is a coupling constant. The same form of coupling
has been proposed in models of the so-called coupled
quintessence [12] (see also Ref. [13] for more general
couplings and Ref. [14] for a generalization involving a
scalar field coupled both to matter and a vector field).
Variation of the action (1) with respect to the metric g

yields the field equations,

Gμν ¼ Tμνðg;ϕÞ þ Tm
μνðg;ΨÞ; ð3Þ

where Tm
μν is the matter energy-momentum tensor. The

Bianchi identities imply that the total energy-momentum
tensor is conserved, and therefore there is an energy
exchange between the scalar field and ordinary matter.
In all the above examples, the conservation of their sum is
provided by the equations (compare to Ref. [12])

∇μTm
μνðg;ΨÞ ¼ QTm∇νϕ; ∇μTμνðg;ϕÞ ¼ −QTm∇νϕ;

where Q ≔ d ln χ=dϕ, depends in general on ϕ and Tm is
the trace of the matter energy-momentum tensor, i.e.,
Tm ¼ gμνTm

μνðg;ΨÞ. Variation of S with respect to ϕ yields
the equation of motion of the scalar field,

□ϕ −
dV
dϕ

¼ −QTm: ð4Þ

In this paper, we study the late-time evolution of initially
expanding flat Friedmann–Robertson–Walker (FRW) mod-
els, with a scalar field coupled to matter and having a
potential of the form

VðϕÞ ¼ V1e−αϕ þ V2e−βϕ; ð5Þ

where α, β are positive constants and V1, V2 are constants
of arbitrary sign. Without loss of generality, we assume
0 < α < β. For 0 < α ¼ β, the case reduces to a single
exponential potential. We also assume that the coupling
coefficient is a constant, of order Q≲ 1. The double
exponential potential is usually the asymptotic form of
other potentials. For example, in Kaluza–Klein theories
with d extra dimensions reformulated in the Einstein frame,
α and β are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d=ðdþ 2Þp

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðdþ 2Þ=dp

, respectively
[5]. The physical reason for the choice (5) is that in
quintessence models the dark energy is the energy of a
slowly varying scalar field ϕ with equation of state
pϕ ¼ wρϕ, w≃ −1. In most of the models of dark energy,
it is assumed that the cosmological constant is zero and the
potential energy, VðϕÞ, of the scalar field driving the
present stage of acceleration slowly decreases and even-
tually vanishes as the field approaches the value ϕ ¼ ∞,
[15]. In this case, after a transient accelerating stage, the
speed of expansion of the Universe decreases, and the

Universe reaches the Minkowski regime. Double exponen-
tial potentials of the form (5) were investigated in
Refs. [16,17]. Solutions were obtained in Ref. [18] with
the ansatz _ϕ ¼ λH; see also Ref. [19] for more general
couplings. A scalar field with a double exponential poten-
tial without coupling to matter was investigated in
Ref. [20]. For exact solutions of a scalar field noncoupled
to dust with single and double exponential potentials, see
Ref. [21]. Quintessence cosmologies of double exponential
potentials in the absence of matter were studied in Ref. [22]
with the techniques of phase-space analysis. A coupled
quintessence field with a double exponential potential and
Galileon-like correction were considered in Ref. [23].
The plan of the paper is as follows. In the next section,

we write the field equations for flat FRW models as a
constrained four-dimensional dynamical system. Assuming
an initially expanding Universe, we show that for potentials
(5) the scalar field almost always diverges to plus or minus
infinity as t → ∞, depending on the signs of V1, V2. Using
expansion-normalized variables, the system is written as a
polynomial three-dimensional system. In Sec. III, we study
the equilibrium points and analyze the structure of the
solutions. It is shown that under conditions on the parameter
space the model is able to give an acceptable cosmological
history of our Universe: a transientmatter era followed by an
accelerating future attractor. In particular, if we assume that
ordinary matter satisfies plausible energy conditions, i.e.,
γ ≳ 1, the scale factor during the matter era evolves
approximately as a ∼ t2=3, provided that the coupling con-
stant,Q, takes very small values. In Sec. IV, we examine the
asymptotic form of a popular class of fðRÞ theories
predicting acceleration; in the Einstein frame, this theory
is equivalent to a scalar field with a double exponential
potential, and we discuss its cosmological viability.
Section V is a brief discussion on the acceptable range of
the coupling constant.

II. COUPLED SCALAR FIELD MODEL

For homogeneous and isotropic flat spacetimes, the field
equations (3) and (4) (ordinary matter is described by a
perfect fluid with equation of state p ¼ ðγ − 1Þρ, where
0 < γ < 2) reduce to the Friedmann equation,

3H2 ¼ ρþ 1

2
_ϕ2 þ VðϕÞ; ð6Þ

the Raychaudhuri equation,

_H ¼ −
1

2
_ϕ2 −

γ

2
ρ; ð7Þ

the equation of motion of the scalar field,

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 4 − 3γ

2
Qρ; ð8Þ
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and the conservation equation,

_ρþ 3γρH ¼ −
4 − 3γ

2
Qρ _ϕ: ð9Þ

We adopt the metric and curvature conventions of Ref. [24].
aðtÞ is the scale factor, an overdot denotes differentiation
with respect to time t, H ¼ _a=a, and units have been
chosen so that c ¼ 1 ¼ 8πG. Here, VðϕÞ is the potential
energy of the scalar field, and V 0ðϕÞ ¼ dV=dϕ. Interaction
terms between the two matter components of the form
−αρ _ϕ as in Eq. (9) with a simple exponential potential were
first considered in Ref. [25] (see also Ref. [26]). Although
there is an energy exchange between the fluid and the scalar
field, it is easy to see that the set, ρ > 0, is invariant under
the flow of Eqs. (7)–(9); therefore, ρ is nonzero if initially
ρðt0Þ is nonzero, and this trivial physical demand is not
satisfied if one assumes arbitrary interaction terms—
cf. Ref. [27].
As is explained in the last paragraph of the Appendix,

the physically interesting cases are V1, V2 > 0 or
V1 > 0, V2 < 0. The dynamical system (7)–(9) has for
V1 > 0, V2 < 0 only one finite equilibrium point,
ðϕ ¼ ϕm; _ϕ ¼ 0; ρ ¼ 0; H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmax=3
p Þ; see Fig. 1. It

represents de Sitter solutions, and it is easy to see that it
is unstable. It is known that for potentials having a
maximum the field near the top of the potential corresponds
to the tachyonic (unstable) mode with negative mass
squared [15,28,29]. The other asymptotic states of the
system correspond to the points at infinity, ϕ → �∞.
For potentials (5) with V1, V2 > 0, the global result that,

for expanding flat models, ϕ → ∞ as t → ∞ can be shown.
In fact, the following slightly stronger result holds, which
generalizes Proposition 4 in Ref. [30].

Proposition 1: Let V be a potential function with the
following properties: 1) V is non-negative. 2) V 0 is
continuous and V 0ðϕÞ < 0. 3) If A ⊆ R is such that V is

bounded on A, then V 0 is bounded on A. Then,
limt→þ∞ _ϕ ¼ 0 ¼ limt→þ∞ρ, and limt→þ∞ϕ ¼ þ∞.

Proof: Since VðϕÞ ≥ 0, it follows from Eq. (6) that H
is never zero, and thus it cannot change sign. Hence, H is
always non-negative if Hðt0Þ > 0. Furthermore, H is
decreasing in view of Eq. (7), and thus HðtÞ ≤ Hðt0Þ,
for all t ≥ t0. We then deduce from Eq. (6) that each of the
terms ρ, 1

2
_ϕ2, and V is bounded by 3Hðt0Þ2. Since H is

decreasing, ∃limt→þ∞H ¼ η ≥ 0; therefore, Eq. (7) implies
that

1

2

Z þ∞

t0

ð _ϕ2 þ γρÞdt ¼ Hðt0Þ − η < þ∞: ð10Þ

In general, if f is a non-negative function, the convergence
of

R∞
t0
fðtÞdt does not imply that limt→∞fðtÞ ¼ 0, unless

the derivative of f is bounded. In our case and setting
λ ¼ ð4 − 3γÞQ,

d
dt
ð _ϕ2þ γρÞ¼−6H _ϕ2−2 _ϕV 0ðϕÞ−3γ2ρHþλ

�
1−

γ

2

�
ρ _ϕ

≤−2 _ϕV 0ðϕÞþλ

�
1−

γ

2

�
ρ _ϕ:

As we already remarked, _ϕ and ρ are bounded; also, by
our assumption on V, V 0ðϕÞ is bounded. We conclude that
the derivative of the function _ϕ2 þ γρ is bounded from
above, and therefore Eq. (10) implies that limt→∞ _ϕ ðtÞ2 ¼
0 and limt→∞ρðtÞ ¼ 0.
The proof that limt→þ∞ϕ ¼ þ∞ follows after suitable

adaptation of the arguments used in Proposition 4
in Ref. [30]. ▪
If in addition limϕ→þ∞VðϕÞ ¼ 0, as is the case of the

double exponential potential (5), then we conclude that
H → 0 as t → ∞.
The case V1 > 0, V2 < 0 is more delicate, and the

asymptotic state depends on the initial conditions: (i) If
initially ϕ0 > ϕm, and 3Hðt0Þ2 < Vmax, then from Eq. (6),
VðϕÞ remains less than Vmax since H is decreasing. We
conclude that VðϕðtÞÞ < Vmax for all t ≥ t0, and thus ϕ
cannot pass to the left of ϕm. In the interval ðϕm;þ∞Þ, the
potential satisfies the assumptions of the above Proposi-
tion, and therefore ϕ → ∞ as t → ∞. (ii) If initially
ϕ0 < ϕm, and _ϕ0 is larger than the critical value _ϕcrit > 0,
which allows for ϕ to pass on the right of ϕm, then the
conclusions of case (i) hold. (iii) Finally, suppose that
initially ϕ0 < ϕm, and _ϕ0 is less than the critical value
_ϕcrit > 0, i.e., −∞ < _ϕ0 < _ϕcrit. From Eq. (7), H is mono-
tonically decreasing and not bounded below from zero;
hence, eventually H may change sign. We cannot use the
same argument as in Proposition 1 concerning the asymp-
totic behavior of _ϕðtÞ2 and ρðtÞ, since V and V 0 are not
bounded. Suppose, first, that limt→þ∞H ¼ η, where η is

FIG. 1 (color online). Potentials (5) with V1 > 0, V2 < 0 have a
local maximum at some ϕm and diverge to minus infinity as
ϕ → −∞. In this figure, V2 ¼ −V1 < 0.
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finite. But an asymptotic state of the form p ¼ ðH ¼ η;
ρ ¼ ρ�; _ϕ ¼ _ϕ�;ϕ ¼ ϕ�Þ is impossible; i.e., the point p
cannot be an equilibrium point of the dynamical system
(7)–(9) for ϕ� < ϕm. Although we cannot exclude periodic
orbits, or strange attractors as ω−limit sets for our system,
numerical experiments suggest that H diverges to −∞. If
this is the case, it can be shown that H diverges to −∞, in a
finite time. Suppose, on the contrary that, limt→þ∞H ¼ −∞.
Since γ < 2,

3H2¼
_ϕ2

2
þρþVðϕÞ<

_ϕ2þ γρ

γ
þVðϕÞ¼−

2 _H
γ

þVðϕÞ;

hence,

3 < −
2 _H
γH2

þ VðϕÞ
H2

: ð11Þ

Taking limits as t → þ∞, and since VðϕÞ is bounded from
above, limt→þ∞VðϕÞ=H2 ≤ 0. Inequality (11) implies that
limt→þ∞ð− _H=H2Þ ≥ 3γ=2, which is impossible, since
− _H=H2 ¼ d=dtð1=HÞ and 1=H → 0. In view of Eq. (6),
_ϕ2 þ γρ also diverges to infinity. Again, an asymptotic state
of the form H ¼ −∞, _ϕ2 þ γρ ¼ ∞ and ϕ ¼ finite is
impossible, and therefore ϕ diverges to −∞ in a finite time.
The above arguments, supported by numerical investigation,
establish the following result, although we were unable to
prove it rigorously.

Proposition 2: Let V be a C1 potential function with the
following properties: 1) V is negative and monotonically
increasing for ϕ < 0, with limϕ→−∞VðϕÞ ¼ −∞. 2) V has a
global maximum at some ϕm > 0. Suppose that the initial
conditions hold, Hðt0Þ>0, ϕðt0Þ<ϕm, and −∞ < _ϕðt0Þ <
_ϕcrit, where _ϕcrit > 0 is the critical value that allows for ϕ to
pass to the right of ϕm. Then, H and ϕ diverge to −∞ in a
finite time.
This result generalizes previous investigations indicating

that negative potentials may drive a flat initially expanding
Universe to recollapse; see Refs. [4,31,32]. Negative
potentials appear also in ekpyrotic models (see, for exam-
ple, Ref. [33] and references therein and Ref. [34] with
multiple fields).
The function (5) belongs to the class of multiexponential

potentials of the form

VðϕÞ ¼
XN
i¼1

Vie−kiϕ;

which arise as a special case of generalized models with
multiple fields studied in the context of assisted infla-
tion (see, for example, Ref. [35]; for an elegantmathematical
generalization, see Ref. [36]). There exists a well-
established mathematical procedure for the investigation

of scalar-field cosmologies with exponential potentials in
the context of dynamical systems theory [1,24]. It consists of
the introduction of the so-called expansion-normalized
variables by defining

x ¼
_ϕffiffiffi
6

p
H
; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1e−αϕ

3H2

s
; z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2e−βϕ

3H2

s
;

Ω ¼ ρ

3H2
ð12Þ

and a new time variable τ ¼ ln a. The Friedmann equa-
tion (6) imposes the constraint

Ω ¼ 1 − ðx2 þ y2 þ z2Þ ð13Þ
to the state vector ðx; y; z;ΩÞ. This equation can be used to
eliminate Ω from the evolution equations, and we end up
with a three-dimensional dynamical system,

x0 ¼
ffiffiffi
6

p
Q−

3

2

ffiffiffi
3

2

r
γQþ

�
3γ

2
−3

�
xþ

�
3

2

ffiffiffi
3

2

r
γ−

ffiffiffi
6

p �
Qx2

þ
�
3−

3γ

2

�
x3þ

� ffiffiffi
3

2

r
α−

ffiffiffi
6

p
Qþ3

2

ffiffiffi
3

2

r
γQ

�
y2

þ
� ffiffiffi

3

2

r
β−

ffiffiffi
6

p
Qþ3

2

ffiffiffi
3

2

r
γQ

�
z2−

3

2
γxy2−

3

2
γxz2;

y0 ¼ y

�
3γ

2
−

ffiffiffi
3

2

r
αxþ

�
3−

3γ

2

�
x2−

3γ

2
y2−

3γ

2
z2
�
;

z0 ¼ z

�
3γ

2
−

ffiffiffi
3

2

r
βxþ

�
3−

3γ

2

�
x2−

3γ

2
y2−

3γ

2
z2
�
; ð14Þ

where

x2 þ y2 þ z2 ≤ 1; ð15Þ

and a prime denotes derivative with respect to τ. Note that y
and z can take both real and pure imaginary values,
depending on the signs of Vi. With this choice, we avoid
having four different dynamical systems (see, however,
Ref. [4] inwhich real normalized variables are used). ForV1,
V2 > 0, the phase space (15) is the closed unit ball in R3.
For V1 > 0 and V2 < 0, the phase space is the one sheet
hyperboloid x2 þ y2 − ðImzÞ2 ¼ 1 and its interior. The
resulting dynamical system depends on four parameters
ðγ; α; β; QÞ. Using Eq. (7), the effective equation of state,

weff ¼ −1 −
2 _H
3H2

;

is written in terms of the new variables as

weff ¼ −1þ 2x2 þ γΩ:
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III. COSMOLOGICALLY ACCEPTABLE
SOLUTIONS

By inspection, system (14) is symmetric under reflec-
tion, with respect to the planes x-z and x-y. The planes
y ¼ 0 and z ¼ 0 are invariant sets for the system (14). The
full list and analysis of the critical points of our system are
presented in the Appendix. In this section, we discuss only
these equilibria, which allow for a viable cosmological
history of the Universe. In Table I are shown the equilibria
for V1 > 0 and

α <
ffiffiffi
2

p
; γ ≤ 1;

ð4 − 3γÞQ ∈ ðmax f0; 2ðα2 − 3γÞ=αg;
ffiffiffi
6

p
ð2 − γÞÞ:

The two critical points A� correspond to kinetic domi-
nated solutions, which are unstable and are only expected
to be relevant at early times. Point B represents a type of
scaling solution; i.e., the kinetic energy density of the scalar
field remains proportional to that of the perfect fluid. Points
C� are accelerated only for V1 > 0. They correspond to
scalar-field-dominated solutions, which exist for suffi-
ciently flat potentials, α <

ffiffiffi
6

p
. These are the same con-

clusions as in Ref. [37] for an exponential potential and
Q ¼ ffiffiffiffiffiffiffiffi

2=3
p

and also in Refs. [1], [4], and [20] and in the
case of a scalar-field noncoupled to matter, although the
ranges of the parameters ðα; γÞ are different. Points D�
exist only in models with V1 > 0, V2 < 0. They correspond
to the unstable state ðϕ¼ϕm; _ϕ¼0;ρ¼0;H¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmax=3
p Þ

and represent de Sitter solutions.
A successful cosmological model should comprise an

accelerating solution as a future attractor. It is evident that
points C� could satisfy the condition for acceleration,
weff < −1=3, provided that α <

ffiffiffi
2

p
(compare with the

conclusions in Ref. [1]). From now on, we assume this
range for the parameter α. Moreover, the equilibria C� are
stable for all physically interesting values of γ. For a
cosmological theory to be acceptable, it has to possess
a matter-dominated epoch followed by a late-time accel-
erated attractor. The saddle character of point B implies that
it represents a transient phase, and therefore it is a good

candidate for a matter point, provided that Ω is close to 1.
This happens only for very small values of the coupling
parameterQ and for γ close to 1. Another way to see this is
the following. During the matter era, the scale factor has to
expand approximately as a ∼ t2=3. The scale factor near B
evolves as a ∼ t

2
3ðweffþ1Þ; therefore, weff , has to be close to

zero. As seen in Table I, aðtÞ at B evolves as t2=3 when Q
takes the values

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð2 − γÞð1 − γÞp
ð4 − 3γÞ ; γ ≤ 1: ð16Þ

Therefore, the realistic value γ ¼ 1, corresponding to dust,
is incompatible to a scalar field coupled to matter; i.e., the
coupling parameterQ must be zero (see also Ref. [38]). On
the other hand, Eqs. (8) and (9) imply that for γ ¼ 4=3 the
value of Q is undetermined. Below, we summarize our
results for the particular values γ ¼ 1, 4=3, 2=3:
(A) Dust (γ ¼ 1): The critical points of our system are

those of Table I for α <
ffiffiffi
2

p
, β > α, andQ ¼ 0. Note

that the future attractors C� have nonphantom
acceleration for every value of α in the interval
ð0; ffiffiffi

2
p Þ. A cosmologically acceptable trajectory

should pass near B and finally land on one of the
points C�, depending on the initial conditions. Note
that A�, B, and C� lie on the invariant plane z ¼ 0,
and C� exist only in potentials with V1 > 0. We
consider the projection of the system (14) on
that plane. The phase portrait is shown in Fig. 2
and is the same in both cases in which the phase
space is a sphere (V2 > 0), or a one-sheet hyper-
boloid (V2 < 0).

(B) Radiation (γ ¼ 4=3): The case of γ ¼ 4=3 corre-
sponds to radiation, and therefore there is no matter
point with a scale factor a ∼ t2=3. Instead, point B,
which coincides with the origin (0, 0, 0), now
represents the well-known radiation-dominated sol-
ution, a ∼ t1=2, as a transient phase. C� are future
attractors for α <

ffiffiffi
2

p
.

(C) The value γ ¼ 2=3 corresponds to ordinary matter
marginally satisfying the strong energy condition.
Equation (16) implies Q ¼ ffiffiffiffiffiffiffiffi

2=3
p

. An acceptable

TABLE I. Equilibrium Points.

Label ðx; y; zÞ Ω Stability aðtÞ

A� ð�1; 0; 0Þ 0 Unstable t1=3

B ðð4−3γÞQffiffi
6

p ð2−γÞ ; 0; 0Þ 1 −
ð4 − 3γÞ2Q2

6ð2 − γÞ2 Saddle t4ð2−γÞ=ð6γð2−γÞþð4−3γÞ2Q2Þ

C� ð αffiffi
6

p ;�
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

6

q
; 0Þ 0 Stable t2=α

2

D� ð0;�
ffiffiffiffiffiffi
β

β−α

q
;�

ffiffiffiffiffiffi
α

α−β

q
Þ 0 Saddle et
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trajectory exists for α <
ffiffiffi
2

p
. For these values of α

and Q, points A� are always unstable. Point B≡
ð1=2; 0; 0Þ corresponds to the transient matter era,
with Ω ¼ 3=4. The accelerated points C� are future
attractors.

Throughout this paper, we do not consider the case αβ <
0 for the potentials (5). The reason is that for αβ < 0 and
V1, V2 > 0 the function VðϕÞ in Eq. (5) has a strictly
positive minimum, say Vmin, and the de Sitter solution with
H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmin=3
p

is the future attractor for the system,
Ref. [37]. This follows directly either from the original
equations (7)–(9) or from the system (14) written in the new
variables. Moreover, it is easy to see that a matter era
represented by a saddle equilibrium B precedes the final
accelerated epoch.

IV. ASYMPTOTIC FORM OF SOME f ðRÞ
THEORIES PREDICTING ACCELERATION

A large class of dynamical dark energy models is based
on the large-distance modification of gravity (see Ref. [39]
for recent reviews). For example, in the context of fðRÞ
gravity theories, the models fðRÞ ¼ R − μ2ðnþ1Þ=Rn, where
μ > 0, n > 1, were proposed to explain the late-time
cosmic acceleration [40,41]. The obvious idea is the
introduction of modifications to the Einstein–Hilbert
Lagrangian, which become important at low curvatures.
For these models, the potential functions in the Einstein
frame have the form

VnðϕÞ ¼
μ2ðnþ 1Þn1=ðnþ1Þðe

ffiffiffiffiffiffi
2=3

p
ϕ − 1Þn=ðnþ1Þ

2ne2
ffiffiffiffiffiffi
2=3

p
ϕ

: ð17Þ

These functions are defined only for ϕ ≥ 0, and their
behavior is similar to that indicated in Fig. 1; i.e., they
have a local maximum at some ϕm depending on n, and for
large ϕ, they approach zero exponentially. As n → ∞, the
potentials (17) approach the function

VðϕÞ ¼ μ2

2
ðe−

ffiffiffiffiffiffi
2=3

p
ϕ − e−2

ffiffiffiffiffiffi
2=3

p
ϕÞ; ð18Þ

corresponding to the asymptotic form of these theories,
[41]. Thus, Eq. (18) is a particular case of Eq. (5) with
β ¼ 2α ¼ 2

ffiffiffiffiffiffiffiffi
2=3

p
, V1 ¼ −V2 ¼ μ2=2 > 0; cf. Fig. 1. Note

that for large ϕ V in Eq. (18) behaves similarly to Vn in
Eq. (17). In contrast to the family (17), V in Eq. (18) has the
nice property that it is defined for all ϕ ∈ R. As mentioned
in the introduction, the coupling coefficient takes the value
Q ¼ ffiffiffiffiffiffiffiffi

2=3
p

, regardless of the form of fðRÞ [42].
The constraint (15) implies that the phase space is

the set x2 þ y2 − ðImzÞ2 ≤ 1. There are up to seven
critical points for that system, depending on the value
of γ.

Label ðx; y; zÞ Ω Existence Stability aðtÞ
A� ð�1; 0; 0Þ 0 Always Unstable t1=3

B ð 4−3γ
3ð2−γÞ ; 0; 0Þ 4ð5−3γÞ

9ð2−γÞ2 γ ≤ 5=3 Saddle t3ð2−γÞ=ð8−3γÞ

C� ð1
3
;� 2

ffiffi
2

p
3
; 0Þ 0 Always Stable t3

D� ð0;� ffiffiffi
2

p
;�iÞ 0 Always Saddle et

Points C� are future attractors and have nonphantom
acceleration with weff ¼ −7=9. However, in the case of
dust, γ ¼ 1, the scale factor at matter point B evolves as
a ∼ t3=5, rather than the usual a ∼ t2=3. The scale factor
evolves “correctly” only for γ ¼ 2=3. The absence of the
standard matter epoch is associated with the fact that matter
is strongly coupled to gravity. This result is in agreement
with the general conclusions in Refs. [42], [43], and [44]
that these fðRÞ dark-energy models are not cosmologically
viable.

V. CONCLUSION

In this paper, we have focused on a general treatment of a
scalar field with a double exponential potential nonmini-
mally coupled to a perfect fluid. A full analysis of the
equilibrium points of the resulted dynamical system is quite
complicated, yet it reveals that the model predicts a late
accelerated phase of the Universe for a wide range of the
parameters, α, β, γ, and Q. Moreover, there exists transient
solutions representing a matter era, preceding the accel-
erating attractor. However, in most cases, the scale factor
near these transient phases evolves as aðtÞ ∼ tqðQÞ, where
the exponent q is in general different from the usual 2=3.
The “wrong” matter epoch is associated with the fact that
for values of Q of order unity matter is strongly coupled to

FIG. 2. Phase portrait of the projected three-dimensional
system on the invariant set z ¼ 0.
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gravity. A coupling constant of order unity means that
matter feels an additional scalar force as strong as gravity
itself; cf. Ref. [42]. Assuming that ordinary matter satisfies
plausible energy conditions, i.e., γ ≳ 1, the coupling con-
stant,Q, has to be very small; more precisely, qðQÞ → 2=3,
only for Q → 0. Therefore, only a very weak coupling of
the scalar field to ordinary matter can lead to acceptable
cosmological histories of the Universe. This surprising
result indicates that cosmological evolution imposes strict
constraints on the choice of the correct Lagrangian of a
gravity theory. In this study, we restricted ourselves to
constant couplings; had we let Q be a function of ϕ, the
dimension of the dynamical system would have increased
by 1. In that case, it would be very interesting to see if the
dynamics leads to a very tiny value of Q at late times. Such
a result could lead to a generalization of the attractor
mechanism of scalar-tensor theories toward general rela-
tivity, found by Damour and Nordtvedt in the case of a
massless scalar field [45].
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APPENDIX

We present here the full analysis of the stability of the
system (14). The critical points are listed in Table II.
We assume that 0 < α < β. The case 0 < β < α is a

mere renaming of some of the equilibrium points.
According to the definition (12), the modulus of z lies
between 0 and the absolute value of y. Therefore, points
D0�, F�, and G� are not acceptable. The eigenvalues of the
remaining equilibria are presented in the Table III.
As mentioned in the main text, a cosmologically accept-

able trajectory passes near a matter point and lands at an
accelerated point. A critical point is a good candidate for a

matter point if it (i) satisfies the matter condition, Ω > 0;
(ii) satisfies the “right” scale factor condition, a ∼ t2=3 (or,
equivalently, weff close to zero); and (iii) is a saddle point,
i.e., represents a transient phase. On the other hand, an
acceptable late attractor has to be (iv) accelerated,
weff < −1=3, and (v) stable. Points B and E� could be
used as matter points, and B, C�, and E� could be used as
accelerated attractors. We are going to determine under
which conditions on the parameters α, β, γ, and Q there
exist at the same time at least one matter point with weff
close to 1, followed by at least one accelerated future
attractor.

(i) C�: Following the terminology of Ref. [4], these are
kinetic-potential scaling solutions and exist in po-
tentials with V1 > 0 for α <

ffiffiffi
6

p
and in potentials

with V1 < 0 for α >
ffiffiffi
6

p
. They are stable and

accelerated whenever

ð4 − 3γÞQ >
2ðα2 − 3γÞ

α
and α <

ffiffiffi
2

p
: ðA1Þ

Hence, they are good candidates as accelerated late
attractors only in potentials with V1 > 0.

(ii) E�: Points E� are fluid-kinetic-potential scaling
solutions (see also Ref. [4] for the uncoupled case).
They enter the phase space when

ð4 − 3γÞQ ≤
2ðα2 − 3γÞ

α
: ðA2Þ

Points E� may be used for the matter epoch if they
satisfy conditions (i), (ii), and (iii), i.e., if

Q ¼ 2α
1 − γ

4 − 3γ
; γ ≤ 1; α >

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffi
2 − γ

1 − γ

s
:

ðA3Þ

TABLE II. Critical points.

Label ðx; y; zÞ Ω weff

A� ð�1; 0; 0Þ 0 1

B ðð4−3γÞQffiffi
6

p ð2−γÞ ; 0; 0Þ 1 −
ð4 − 3γÞ2Q2

6ð2 − γÞ2 −1þ γ þ ð4 − 3γÞ2Q2

6ð2 − γÞ
C� ð αffiffi

6
p ;�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

6

q
; 0Þ 0 −1þ α2

3

D� ð0;�
ffiffiffiffiffiffi
β

β−α

q
;�

ffiffiffiffiffiffi
α

α−β

q
Þ 0 −1

D0� ð0;�
ffiffiffiffiffiffi
β

β−α

q
;∓ ffiffiffiffiffiffi

α
α−β

q
Þ 0 −1

E� ðuα;�vα; 0Þ ωα −1þ
ffiffi
2
3

q
αuα

F� ð βffiffi
6

p ; 0;�
ffiffiffiffiffiffiffiffiffiffiffi
1 − β2

6

q
Þ 0 −1þ β2

3

G� ðuβ; 0;�vβÞ ωβ −1þ
ffiffi
2
3

q
βuβ

where uα ¼
ffiffi
6

p
γ

2α−ð4−3γÞQ, vα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4−3γÞ2Q2−2αð4−3γÞQþ6γð2−γÞ

ð2α−ð4−3γÞQÞ2
q

,ωα ¼ 2ð2α2−6γ−αð4−3γÞQÞ
ð2α−ð4−3γÞQÞ2 , and similarly for uβ, vβ, ωβ.
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In that case, points E� exist only for potentials with
V1 < 0. Hence, when E� are used as matter points,
points C� cannot be used as the accelerated attractors.
The only candidate left for the accelerated epoch is B,
but as we will see, B cannot be accelerated forQ given
in Eq. (A3). For points E� to be used for the
accelerated epoch, they have to satisfy conditions
(iv) and (v). This happens for

ð4−3γÞQ< ð2−3γÞα and

ð4−3γÞ2Q2−2αð4−3γÞQþ6γð2−γÞ>0: ðA4Þ

Whenever E� are accelerated attractors, the only
remaining candidate for the matter epoch is point
B, but as we shall see right below, B does not satisfy
the matter point conditions for the range of the
parameters given in Eq. (A4).

(iii) B: This is a fluid-kinetic scaled solution. Point B
enters the phase space when

Q ≤
ffiffiffi
6

p 2 − γ

j4 − 3γj ðA5Þ

for γ ≠ 4=3 and lies always in the phase space for
γ ¼ 4=3, irrespective of the nature of the potential. For
γ < 4=3, condition (A5) is always satisfied for suffi-
ciently small values of Q, e.g., Q≲ 1. Matter point
conditions (i), (ii), and (iii) are satisfied whenever

Q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð2−γÞð1−γÞp

4−3γ
; γ≤1; α<

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffi
2−γ

1−γ

s
:

ðA6Þ

On the other hand, point B may be an accelerated
attractor if (iv) and (v) hold, provided that Eq. (A5) is
satisfied. The condition for acceleration (iv) gives

Q <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2 − γÞð2 − 3γÞp

4 − 3γ
; ðA7Þ

with γ < 2=3. Assuming Eq. (A7), the stability con-
dition, (v), gives

ð4 − 3γÞ2Q2 − 2αð4 − 3γÞQþ 6γð2 − γÞ < 0:

Nevertheless, Q given in Eq. (A3) does not satisfy
Eq. (A7). Hence, matter points E� cannot be com-
bined with accelerated attractor B.

We conclude that there is only one case in which we have
at the same time at least one matter point and at least one
accelerated attractor. This happens whenever B represents
the matter solution and C� stand for attractors. In that case,
the potential has V1 > 0, and the parameters take the values

α <
ffiffiffi
2

p
; γ ≤ 1; Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð2 − γÞð1 − γÞp

4 − 3γ
; ðA8Þ

leading to Table I in the main text.

TABLE III. Eigenvalues.

Label Eigenvalues

Aþ 3 −
ffiffi
3
2

q
α, 3 −

ffiffi
3
2

q
β, 6 − 3γ −

ffiffi
3
2

q
ð4 − 3γÞQ,

A− 3þ
ffiffi
3
2

q
α, 3þ

ffiffi
3
2

q
β, 6 − 3γ þ

ffiffi
3
2

q
ð4 − 3γÞQ,

B ð4 − 3γÞ2Q2 − 2αð4 − 3γÞQþ 6γð2 − γÞ
4ð2 − γÞ ,

ð4 − 3γÞ2Q2 − 2βð4 − 3γÞQþ 6γð2 − γÞ
4ð2 − γÞ ,

ð4 − 3γÞ2Q2 − 6ð2 − γÞ2
4ð2 − γÞ

C�
α2 − 6

2
,
αðα − βÞ

2
,
2α2 − 6γ − αð4 − 3γÞQ

2
D�

1

2
ð−3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12αβ

p
Þ, −3γ

E� 3ðα − βÞγ
2α − ð4 − 3γÞQ,

σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 4δ

p

2ð2α − ð4 − 3γÞQÞ2

where σ¼3ð2α−ð4−3γÞQÞðð4−3γÞQ−αð2−γÞÞ, and δ¼3
2
ð2α−ð4−3γÞQÞ2ð2α2−6γ−αð4−3γÞQÞ ðð4 − 3γÞ2Q2−

2αð4 − 3γÞQþ 6γð2 − γÞÞ.
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