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We present a lower bound for the multifield bounce action with a quartic potential with bounded
coefficients in the absence of gravity. We find that for a large number of fields the lower bound decreases
with the number of fields as N−3. This work clarifies previous statements made in numerical studies which
found that the bounce action scales as N−2.66 and discusses some subtleties of studying field space
trajectories.

DOI: 10.1103/PhysRevD.89.103535 PACS numbers: 98.80.-k, 11.10.-z, 11.15.Kc

I. INTRODUCTION

The string landscape of metastable vacua offers a
framework to address the cosmological constant problem,
as well as the initial conditions for inflation, without
contradicting current experimental data (see, for instance,
Refs. [1–4]). Precision observational cosmology is con-
sistent with a scenario of the early Universe, whereby a
single scalar degree of freedom undergoes slow roll
inflation [5]. However, we only have access to primordial
fluctuations that left the horizon during the last 60 or so
e-foldings of inflation. Therefore it is possible that before
the last 60 e-foldings there was a more general theory that
involved a larger number of degrees of freedom which
became subdominant by the time modes observed today
left the horizon.
The Universe may have undergone a vacuum state

transition [6–9] early in its evolution. The spectrum of
excitations after tunneling is a Bogoliubov transformation
of the initial spectrum. This allows one to study both the
power spectrum [10–22] and the bispectrum [23–27]
expected from such an event with some generality. For a
recent example of tunneling-inspired power spectrum
analysis that is not dependent on the Bogoliubov trans-
formation of the initial excitation spectrum, see [28].
Some aspects of these landscapes of vacua remain poorly

understood. One of the open questions is this: Dowe expect
these vacua to be long lived? Greene et al.’s recent work
[29] suggests that tunneling rates grow rapidly with the
number of moduli N, resulting in an exponentially small
probability of a given local minimum to be metastable.
More specifically, Ref. [29] finds that the bounce action
scales with the number of scalar fields, N, as N−2.66 for the
case of quartic potentials in the absence of gravity.
Analytically understanding the validity of this result for
very large N is a primary goal of this paper.

An exact computation of the bounce solution, even when
restricted to a generic quartic potential without gravity, is
not known. Some special cases of piecewise-defined
potentials, in the absence of gravity, have previously been
solved analytically [30–32]. However, most studies have
estimated the bounce action through a combination of
analytical and numerical methods (see, for example,
Refs. [29,33–40]). The next logical step is to estimate a
lower bound and/or an upper bound on the bounce action.
In this work we will find a lower bound with the scaling
dependence of N−3 for the bounce action in the case of
largeN. Wewill leave the upper bound for future work. The
scenarios of [29] as a special case will be shown to be
consistent with our lower bound in Sec. V, though our
lower bound applies to more general scenarios as well.
In Sec. II we briefly review the formalism for tunneling

in field theory. For a more in-depth treatment, see [41]. In
Secs. III and IV we present the lower bound for the
multifield bounce action. In Sec. V we compare our result
to that of [29], in which a similar problem was studied
numerically. We conclude in Sec. VI.

II. TUNNELING IN FIELD THEORY

Given a potential landscape in which there exists a
barrier creating a false vacuum, it is a well-posed question
to ask which action is associated with tunneling out of the
false vacuum [7]. The Euclidean bounce action for N real
scalar fields that we will consider is given by

SB ¼ S½ϕ̄1ðxÞ;…; ϕ̄NðxÞ� ¼ IB;K þ IB;V

¼ Σ
N

a¼1

�Z
d4x

1

2
ð∇ϕ̄aÞ2

�
þ
Z

d4xUðϕ̄1;…; ϕ̄NÞ:

ð1Þ

The use of ϕ̄ and the B subscript denotes the bounce
solution.
Each field satisfies an equation of motion that may be

obtained by extremizing the action with respect to that
field. If each field solution is invariant under an O(4)
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symmetry, the equation of motion for each field is simply
given by

ϕ̄a
00ðrÞ þ 3

r
ϕ̄a

0ðrÞ − ð∂U=∂ϕ̄aÞ ¼ 0: ð2Þ

The boundary conditions on the solutions are given by
ϕ̄að∞Þ ¼ ϕa;FV and ϕ̄a

0ð0Þ ¼ 0. We have used Euclidean
spherical coordinates such that r2 ¼ ~x2 þ x24. The O(4)
symmetry of the bounce solution has been proven for the
case of a single field [42] but not, to our knowledge, for
multiple fields.1

Physically, tunneling occurs as the fields transition from
the false vacuum value to a lower potential energy value.
However, the evolution equation (2) suggests the problem
may be thought of as a classical particle moving in an
inverted multidimensional potential with friction present
[7]. This is the so-called “shooting” problem, whereby one
tries to determine the set of initial field values ϕ̄að0Þ such
that the fields evolve to the location of the false vacuum
ϕ̄FV;a in field space and stop.
Derrick’s theorem may be used to obtain a simplified

expression for the bounce action [41,42]. The argument
is as follows: consider rescalings of spatial Euclidean
coordinates ϕðxÞ → ϕðλxÞ, resulting in the action

S ¼ λ−2IB;K þ λ−4IB;V: ð3Þ

The stationary points with respect to scaling parameter λ are
given by λ2IB;K þ 2IB;V ¼ 0. Since a λ of unity corresponds
to the bounce action of interest (1), this implies that for the
bounce action we have the constraint IB;K þ 2IB;V ¼ 0.
Therefore the bounce action may be written in a simplified
form as

SB ¼ 1

2
IB;K: ð4Þ

Solving (2) to obtain the ∇ϕ̄a appearing in (4) is usually
not a tractable problem. There are some exceptions that
have been found whereby exact solutions may be obtained
beyond the so-called “thin-wall limit” [30–32]; however,
these are special cases of piecewise-defined potentials.
Therefore we will instead bound the value of the bounce
action from below in the next section.

III. GENERAL POTENTIALS

Without loss of generality, we will take the false vacuum
to have zero potential [Uðϕ̄a;FVÞ ¼ 0] for the remainder of
this paper. We are interested in the zero potential hyper-
surface in field space nearest to the false vacuum which
does not contain the false vacuum itself. We will denote the

hypersurface as Σ. In the context of the shooting pro-
blem, the fields evolve in field space from some
initial starting values ϕ̄að0Þ, crossing the Σ hypersurface
at some Euclidean radius rΣ such that ϕ̄aðrΣÞ ¼ ϕ̄a;Σ. The
fields will continue to evolve until eventually all fields
simultaneously attain their false vacuum field values ϕ̄a;FV
and stop.
Using the O(4) symmetry of the bounce solution and

ensuring that the integrand in Eq. (4) is positive definite, we
obtain a lower bound of the action if we restrict our lower
integration limit to the Euclidean radius of rΣ,

SB ≥
π2

2
r̄3Σ

Z
∞

r̄Σ

drð ΣN
a¼1

ϕ̄a
0ðrÞ2Þ: ð5Þ

We have used r̄Σ to denote the Euclidean radius at which
the bounce trajectory intersects field space hypersurface Σ.
The range of r going from rΣ to infinity corresponds to the
portion of the tunneling trajectory between the Σ and the
false vacuum. Taking r̄3Σ out of the integral is a lower bound
since this is the lowest value r may take for our chosen
limits of integration.
It is useful to change the variable of integration from

Euclidean radius r to arclength p̄ from the false vacuum

along the bounce trajectory dp̄2 ¼ Σ
N

a¼1
dϕ̄2

a. This will allow

us to re-express the integral in terms of an integration in
field space, as opposed to an integration in Euclidean space.
This is desirable since the potential as a function of fields is
known, while the potential as a function of Euclidean radius
is usually not known. In terms of the arclength, the measure

becomes dr ¼ −dp̄=jp̄0j, with p̄02 ¼ Σ
N

a¼1
ϕ̄a

0ðrÞ2, resulting
in the lower bound

SB ≥
π2

2
r̄3Σ

Z
p̄Σ

0

dp̄jp̄0j: ð6Þ

Further, it may be noted that since the system may be
thought of as a classical particle moving through an
inverted landscape with friction, the kinetic energy of
the particle for r ≥ rΣ must always be larger than the
potential energy of the particle in order not to “undershoot”

the false vacuum: ðp̄0Þ2 ¼ Σ
N

a¼1
ðϕ̄a

0Þ2 ≥ 2U. The equality

becomes asymptotically satisfied as we approach the thin-
wall limit, where the effect of friction becomes negligible.
The resulting integral is sometimes referred to as the
generalized “surface tension,” though we will refer to this
as the barrier integral

SB ≥
π2

2
r̄3Σ

Z
p̄Σ

0

dp̄
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Uðp̄Þ

p
: ð7Þ

In the thin-wall limit, we can take rΣ to be the bubble radius
and this expression then gives a good estimate of the
bounce action (i.e., the lower bound is saturated).

1Note that for the case of multiple nucleations, one may obtain
anisotropic bubbles [43,44].
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IV. LOWER BOUND: QUARTIC POTENTIALS

A. Quartic potentials

We will restrict our study to a general quartic potential

Uðϕ1; � � � ;ϕNÞ

¼ λðv2 Σ
N

a¼1
Aaaϕaϕa þ v Σ

N

a;b;c¼1
Aabcϕaϕbϕc

þ Σ
N

a;b;c;d¼1
AabcdϕaϕbϕcϕdÞ: ð8Þ

We have chosen our field basis such that the quadratic term
is diagonal and positive. The coefficients are to be chosen
from a distribution such that2 Aaa ∈ ½q2;min; 1�,
Aabc ∈ ½−1; 1�, and Aabcd ∈ ½−q4; q4�. The distributions
do not need to be uniform distributions. The value of
q2;min may be small, but should be nonzero and positive.
A vanishing quadratic coefficient along some field direc-
tion could eliminate the potential barrier in that direction,
thus allowing the fields to exit the false vacuum without
tunneling, a scenario we would like to avoid. We allow the
quartic coefficients to be negative since in principle there
could be some higher order contribution to the potential to
stabilize it at high field values, with the quartic potential
representing the leading terms in a Taylor expansion of the
potential pertaining to the false vacuum.
The potential form (8) was also studied by [29].

However, in their case a restriction was made to study
only straight line trajectories. We will show in the next
section that a particular straight line trajectory gives a lower
bound on all possible barrier integrals that may exist with a
quartic potential.

B. Lower bound: Barrier integral

Intuitively, the barrier integral in expression (7) is smallest
when the area under the barrier is smallest. Therefore for
every point on the trajectory we would like to take the
quadratic potential coefficient to be the smallest positive
value it can be, and the cubic and quartic potential coef-
ficients to be the largest negative values they can be. This is
intuitive since the point at which the trajectory crosses the
hypersurface Σwill occur when the sum of positive terms in
the potential equals the sum of negative terms. Hence, the
larger the negative contribution and the smaller the positive
contribution to the potential, the nearer to the false vacuum
the point that the trajectory crosses the hypersurfaceΣ in field
space and the smaller the potential barrier height for r ≥ rΣ.
We may express each field in terms of the field space

radius f̄ðrÞ2 ¼ Σ
N

a¼1
ϕ̄aðrÞ2 and direction coefficients C̄aðrÞ.

Since there are N fields, we will normalize by N−1=2 so that
the coefficients have a typical value of unity:

ϕ̄aðrÞ ¼ C̄aðrÞ
f̄ðrÞffiffiffiffi
N

p ; Σ
N

a¼1
C̄aðrÞ2 ¼ N: ð9Þ

Allowing the direction coefficients to depend on Euclidean
radial coordinate r corresponds to allowing for curved
trajectories in field space.
The parameters which minimize barrier integral (14) give

λv2 Σ
N

a¼1
Aaaϕ̄aϕ̄a ≥ λv2q2;minf2

ðsmallest positive valueÞ;

λv Σ
N

a;b;c¼1
Aabcϕ̄aϕ̄bϕc ≥ −λvN3=2f3

ðlargest negative valueÞ;

λ Σ
N

a;b;c;d¼1
Aabcdϕ̄aϕ̄bϕ̄cϕ̄d ≥ −λq4N2f4

ðlargest negative valueÞ: ð10Þ

The lower bounds come from substituting (9) and noting
that the variance of the coefficients is positive definite:

σ2 ¼ 1

N
Σ
N

a¼1
C2
a − 1

N2
ð ΣN
a¼1

CaÞ
2

≥ 0: ð11Þ

In particular, we use

Σ
N

a;b¼1
CaCb ¼ ð ΣN

a¼1
CaÞ

2

≤ ð ΣN
a¼1

C2
aÞ

2

¼ N2; etc: ð12Þ

The smallest possible barrier integral necessarily comes
from a straight line trajectory since the Ca values for which
the inequality (12) is saturated are given by �1 and
therefore are independent of Euclidean radius r.
Together, these parameter lower bounds result in a least

barrier potential

ULB ¼ λðv2q2;minf2 − vN3=2f3 − q4N2f4Þ: ð13Þ

The arclength along the field trajectory is simply the radius
in field space for straight line trajectories p̄ ¼ f̄. Therefore
the lower bound may be written as

SB ≥
π2

2
r̄3Σ

Z
f̄Σ

0

df̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ULBðf̄Þ

q
: ð14Þ

The barrier integral may be evaluated analytically.
Letting δ ¼ ð4q2;minq4=NÞ, we find

SB ≥
π2

2
r̄3Σ

ffiffiffi
2

p

3

ffiffiffi
λ

p
v3q3=22;min

q4N2

8>><
>>:

4q2;minq4
5N ; δ ≪ 1

1; δ ≫ 1

0.03N
q2;minq4

; 1

: ð15Þ
2It is possible through suitable redefinition of λ and v to set

Aaa;max ¼ Aabc;max ¼ 1.
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We have used fΣ ¼ ð v
2
ffiffiffi
N

p
q4
Þð−1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p Þ for the poten-

tial given by (13).

C. Lower bound: Euclidean radius

We do not have an analytical method for computing the
Euclidean radius rΣ. This is a nontrivial exercise since rΣ
will in general depend on both the barrier and the trajectory
beyond the Σ hypersurface. Wewill assume that there exists
a straight line trajectory with a Euclidean radius rΣ that
gives a lower bound for, or is comparable to, the rΣ value
for any other trajectory. Since it was previously shown that
a straight line trajectory gives a lower bound on the barrier
integral (10), this is not an unreasonable assumption. Our
numerical studies of these types of trajectories show
that rΣ ≳ ð0.1= ffiffiffi

λ
p

vÞ.

D. Lower bound: Results

Combining the barrier integral lower bound with the
Euclidean radius lower bound we find

SB ≥
ffiffiffi
2

p
π2

6λ
10−3

q3=22;min

q4N2

8>><
>>:

4q2;minq4
5N ; δ ≪ 1

1; δ ≫ 1

0.03N
q2;minq4

; δ ∼ 1

: ð16Þ

This is the main result of our paper. Note that for the case of
large N, δ ≪ 1 since δ ¼ ð4q2;minq4=NÞ. Therefore we find
that in the large N limit the bounce action falls as N−3. For
the case of δ ∼ 1, one may substitute q4 ¼ N=4q2;min to
find that the scaling dependence of the lower bound
is q5=22;min=N

3.
We emphasize that our numerically obtained lower

bound for the Euclidean radius rΣ assumes that the lower
bound arises from a straight line trajectory. This was shown
to necessarily be the case for the barrier integral, but it is an
assumption for the Euclidean radius. If it is shown by future
work that this is not the case, our lower bound will need to
be appropriately revised starting from (15).

V. COMPARISONWITH PREVIOUS LITERATURE

In [29] the potential form (8) was considered, with the
majority of the paper using distribution parameters q4 ¼ 1
and q2;min ¼ 0. The distributions were chosen to be uniform
distributions. Several numerical simulations were con-
ducted, with a varying number of fields, allowing the
authors to find an approximate form for the bounce solution
given by

SB∼
103

λ
CtensionN−αtension ; Ctension∼0.22; αtension∼2.66:

ð17Þ
Their scaling in powers of N is consistent with our lower
bound (16) in the large N limit which is suppressed by N−3.

Taking their q2;min to literally equal zero would correspond
to our lower bound being numerically zero. However, for
the potentials which actually provided tunneling solutions,
it is unlikely that any of the quadratic coefficients were
actually zero since that may allow the fields to evolve
through the classically allowed region instead of tunneling
through the barrier. At the very least, there is a working
numerical precision preventing this value from vanishing.
In [29] it was stated that the typical bounce radius is of

order R ∼ k=
ffiffiffi
λ

p
v, where k is a numerical factor taking

values ∼5–6. However, it is unclear to us which hypersur-
face in field space R actually corresponds to since outside
of the thin-wall limit “bounce radius” is an ambiguous
term. Their study was also restricted to straight line
trajectories; therefore, our lower bound estimate of rΣ ≳
ð0.1= ffiffiffi

λ
p

vÞ agrees with their findings, assuming their
definition of R is such that R ≥ rΣ.
The numerical coefficient of the action acquired by [29]

is larger than our lower bound primarily due to the
dependence on the Euclidean radius. Their action is
enhanced with respect to our lower bound by a factor of
ðR=rΣÞ3 ∼ 105 since our study uses a lower bound on rΣ,
whereas they use what is described as a “typical value" for
bounce radius R. The origin of our lower bound N
dependence ultimately arises from taking the potential
coefficients fAii; Aijk; Aijklg to be a common value for
each order of the potential polynomial (13). In the
parameter space of potential coefficient values, this choice
of coefficients corresponds to a limiting case; therefore, it is
very improbable that the numerical code of [29] would
sample many potentials that are close to this limiting case.
Therefore, one would expect a different N dependence in
the numerically obtained expression. In particular, there
may be partial cancellations between different potential
terms since not all coefficients will necessarily have the
same sign. It is also possible that some terms may be
assigned numerically insignificant coefficients, therefore
reducing the number of contributing terms to the potential.
How much weaker the N dependence of the numerically
obtained result is than it is in (16) depends on the specifics
of the chosen coefficient probability distributions, the
number of potentials sampled, and the number of fields
considered.

VI. CONCLUSIONS

We have found a lower bound of the multifield bounce
action for a general quartic potential which is dependent on
the coefficient distribution interval width parameters q2;min,
q4, and δ ¼ ð4q2;minq4=NÞ:

SB ≥
ffiffiffi
2

p
π2

6λ
10−3

q3=22;min

q4N2

8>><
>>:

4q2;minq4
5N ; δ ≪ 1

1; δ ≫ 1

0.03N
q2;minq4

; δ ∼ 1

:
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In particular, for a large number of fields, the lower bound
goes to N−3 for the case of N-independent distribution
parameters q2;min and q4. This lower bound agrees with the
numerical study [29]. In contrast with their study, we did
not need to specify that the potential coefficients be
selected from a uniform distribution. We were additionally
able to leave q4 completely general in order to clearly see
the role it plays in bounding the action.
We were unable to analytically calculate the Euclidean

radius rΣ corresponding to the radius at which the bounce
trajectory intersects the field space hypersurface of zero
potential. This forced us to restrict our study of rΣ to
straight line trajectories. The restriction is reasonable since

the barrier integral lower bound corresponds to a straight
line trajectory. Finding a physical argument allowing one to
obtain rΣ without relying on numerical simulations is an
interesting direction for future work, as is the prospect of
finding an upper bound to the bounce action.
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