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The observational signatures of multifield inflation will generally evolve as the Universe reheats. We
introduce a general analytic formalism for tracking this evolution through perturbative reheating, applicable
to two-field models with arbitrary separable potentials. The various transitions, including the onset of scalar
field oscillations and the reheating of each field, can happen in different orders and on arbitrary
hypersurfaces. The effective equations of state of the oscillating fields are also arbitrary. Nevertheless, our
results are surprisingly simple. Our formalism encapsulates and generalizes a huge range of previous
calculations including two-field inflation, spectator models, the inhomogeneous end of inflation scenario
and numerous generalized curvaton scenarios.
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I. INTRODUCTION

The presence of isocurvature modes in the early Universe
has a profound influence on the evolution of cosmic
observables. During the slow-roll inflationary phase, this
effect has been tracked analytically by Vernizzi and Wands
[1], extending earlier work [2], for two-field models with
arbitrary sum-separable potentials. Their results apply to
models where reheating occurs suddenly, such as two-field
hybrid inflation where inflation is terminated by the
destabilization of a third heavy field [3–6]. In such cases,
the isocurvature modes are assumed to decay almost
instantaneously due to the onset of a phase of thermal
equilibrium. It is possible that this process of sudden
reheating may occur on a nonuniform density hypersurface.
This is known as the inhomogeneous end of inflation
scenario [3,5,7–12] and has been recently summarized and
constrained by Planck data in Ref. [13]. Since the method
of Vernizzi and Wands [1] tracks perturbations until the end
of inflation, their work is equally applicable to any two-
field separable potential where observable statistics attain
constant conserved values before the end of inflation. This
happens when the isocurvature modes decay during infla-
tion and the system reaches an “adiabatic limit” [14,15].
More generally, isocurvature modes may be present after

inflation, and inflation may not end suddenly. This will
mean that both the inflationary and the postinflationary
phases will cause the cosmic observables to evolve. As
emphasized in Elliston et al. [15], robust predictions can
only then be generated if the primordial perturbations are

tracked through the postinflationary phases, either until
isocurvature modes do finally decay, or until the time at
which the system is observed. In particular, it is of vital
importance to consider how cosmic observables may be
sensitive to the process by which the Universe reheats. In
addition to the sudden nonperturbative reheating mecha-
nism present in hybrid inflation, perturbative reheating
can also be considered. In this case an oscillating field
dissipates its energy more gradually, often significantly
after the end of inflation. Therefore any analytic calculation
for a model exhibiting this behavior must give due
consideration to the postinflationary phases. The most
prominent example of the effect of perturbative reheating
on the generation of primordial perturbations is the
“curvaton” scenario [16–19].
A third method to reheat the Universe is preheating

driven by explosive resonant particle production. Like the
end of hybrid inflation, this form of reheating is sudden and
nonperturbative. If the field into which energy is being
transferred is light, it can have a significant effect on the
evolution of perturbations [20–23]. Since such effects must
be studied using lattice simulations, however, we shall not
consider this behavior in our analytic work, restricting our
attention instead to perturbative reheating.
The goal of this paper is to augment the work of Vernizzi

and Wands [1] to derive a simple and usable set of analytic
formulas that allow us to understand how perturbative
reheating modifies cosmic observables. Our method can be
applied to any two-field sum-separable model. We draw
upon and generalize many different calculations that have
been tailored to more specific scenarios; these scenarios
may then be recovered as particular limits of our work. In
particular, we account for the modulated reheating scenario
[24–30] where the hypersurface on which a particular field
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reheats is directly dependent on the value of an additional
light field, and for a multitude of possible generalizations to
the standard curvaton scenario. These include modulation
of the onset of curvaton oscillations [31,32], modulation of
the reheating hypersurface for the curvaton [33–37], and
modulation of the reheating hypersurface for the inflaton
[38]. See Refs. [13,27,39] for other works drawing links
between these scenarios.
Our work follows a considerable amount of recent effort

in this field. Numerical studies [15,40] have demonstrated
that altering the decay widths of one or both fields causes
the local shape bispectrum parameter fNL to evolve.
Subsequently, Meyers and Tarrant [41] demonstrated that
this evolution was caused by the same physical mechanism
operating behind the curvaton scenario; the curvature
perturbation is modified by the relative redshifting of
two components with different equations of state. They
showed this by providing general analytic formulas that
describe the evolution of perturbations during the pertur-
bative reheating phase. The effect of perturbative reheating
has also been discussed in the context of particular models
in Refs. [42,43].
The formalism that we develop in this paper is more

general than that of Meyers and Tarrant [41]. We allow for
reheating to occur on arbitrary hypersurfaces, allowing us
to consider the modulated reheating scenarios discussed
above. Since there is no agreed analytic method for fixing
the hypersurfaces of oscillation onset, we also leave these
hypersurfaces arbitrary. This ensures that our formalism,
instead of being limited by the lack of a well-defined
oscillation criterion, may be used as a testing ground for
choosing between methods of defining the oscillation
hypersurfaces. The explicit nature of our formalism also
makes it very simple to interpret and to obtain standard
limiting cases.
We split the evolution into four phases labeled A, B, C

and D, which are summarized in Fig. 1. At any particular
time, the two components involved will be described either
as scalar fields undergoing generalized slow roll, or as
fluids with a constant equation of state. Phase A contains
two slow-roll fields and is therefore a reiteration of the
results of Ref. [1]. The four-phase picture we employ is a
choice which covers the vast majority of models encoun-
tered in the literature, but it is not exhaustive. However, the

basic tools that we develop can be assembled by the user to
tackle any similar problem even if it falls outside of our
picture.
Paper structure: In Sec. II we introduce the necessary

background theory. Section III then shows how the curva-
ture perturbation ζ may be computed in terms of horizon
exit field perturbations and provides the principle result of
this paper. Section IV then provides a general discussion
regarding predictions for the scalar spectral index and the
tensor-to-scalar ratio. Section V provides the ingredients
for deriving predictions at second order, which may be
assembled to suit specific problems as we show in Sec. VI.
We conclude in Sec. VII and some supporting formulas are
given in the Appendix.

II. BACKGROUND THEORY

Observable quantities: The primordial curvature pertur-
bation on uniform density spatial hypersurfaces is denoted
by ζ (e.g. [44]). The statistical properties of ζ are con-
strained by observations and are the basis for the obser-
vational quantities we are interested in. They are commonly
measured in terms of the power spectrum and bispectrum
(and trispectrum), which are defined as

hζk1
ζk2

i≡ ð2πÞ3δ3ðk1 þ k2ÞPζðkÞ;
hζk1

ζk2
ζk3

i≡ ð2πÞ3δ3ðk1 þ k2 þ k3ÞBζðk1; k2; k3Þ;

respectively, where for the two point statistics we define
the common magnitude k ¼ jk1j ¼ jk2j. The power
spectrum is commonly written in the dimensionless
form PζðkÞ ¼ ð2π2=k3ÞPζðkÞ, which has mild scale
dependence parametrized by the scalar spectral index
nζ − 1 ¼ d lnPζ=d ln k. For the canonical models of inter-
est in this paper, only the local shape of non-Gaussianity is
relevant and this can be written in terms of the weakly
scale-dependent fNL parameter as

Bζðk1; k2; k3Þ ¼
6

5
fNL½Pζðk1ÞPζðk2Þ þ 2 perms�: (1)

The δN formalism: In order to follow the evolution of ζ
on superhorizon scales, and calculate its statistics, we
employ the separate universe approach to perturbation

FIG. 1 (color online). Summary of the four stages of our calculation. Phase A persists for NA e-folds between the hypersurfaces at
times t� and tA. Note that since γϕ does not change at tB then γBϕ ¼ γCϕ and we use the latter throughout.

JOSEPH ELLISTON, STEFANO ORANI, AND DAVID J. MULRYNE PHYSICAL REVIEW D 89, 103532 (2014)

103532-2



theory [45,46], and the δN formalism [47–49]. This equates
ζ to the variation in the number of e-folds N between a flat
hypersurface at horizon exit, which we label “�,” and a
subsequent uniform density hypersurface. For a system of
scalar fields φi we can then expand ζ in terms of field
perturbations at horizon exit as

ζ ≡ δN ¼ N;iδφ
�
i þ

1

2
N;ijδφ

�
i δφ

�
j þ � � � ; (2)

where we employ the summation convention and
N;i ¼ ∂N=∂ϕ�

i . The δN formalism allows us to write
simple expressions for the cosmological parameters Pζ,
nζ, ~r and fNL, where ~r is the ratio of the tensor and scalar
power spectra. Here, since we only consider two fields ϕ
and σ, it is helpful to define the parameter R ¼ N2

;σ=N2
;ϕ

such that R ≪ 1 means that ϕ dominates the linear-order
statistics and R ≫ 1 implies the σ field dominates. For the
case of sum-separable potentials one then finds [1]

Pζ ¼ N2
;ϕð1þ RÞPδϕ; (3a)

~r ¼ 8

M2
plN

2
;ϕð1þ RÞ ; (3b)

nζ − 1 ¼ −2ϵ� þ 2
Rη�σσ þ η�ϕϕ −M−2

pl N
−2
;ϕ

1þ R
; (3c)

6

5
fNL ¼ 1

ð1þ RÞ2
�
N;ϕϕ

N2
;ϕ

þ 2
N;ϕσ

N;ϕN;σ
Rþ N;σσ

N2
;σ
R2

�
; (3d)

where Pδϕ ¼ hδϕ�δϕ�i ¼ hδσ�δσ�i ¼ H2�=4π2.
Scalar field evolution:We prescribe that the fields ϕ and

σ are not directly coupled. This requires that the infla-
tionary potential has a sum-separable form Vðϕ; σÞ ¼
UϕðϕÞ þ UσðσÞ. The scalar fields then each evolve as

ϕ̈þ 3H _ϕþU0
ϕ ¼ 0; (4)

where an overdot denotes differentiation with respect to
coordinate time. Note that we use primes in two distinct
ways: when applied to a potential U they denote partial
derivatives U0

ϕ ¼ ∂Uϕ=∂ϕ, and for all other quantities they
denote derivatives with respect to the number of e-folds N
as σ0 ¼ dσ=dN. Kawasaki et al. [32] showed that the
dynamics associated with Eq. (4) approaches that of the
linear-order attractor solution

cH _ϕ ¼ −U0
ϕ; (5)

where c ¼ 3þ ϵ is a function of the background cosmol-
ogy. One therefore finds values c ¼ 3 for de Sitter, c ¼ 5
for radiation and c ¼ 9=2 for matter background equations
of state. Defining the generalized slow-roll parameters

ϵϕ ¼ M2
plU

02
ϕ

2ρ2
; ηϕϕ ¼ M2

plU
00
ϕ

ρ
; (6)

where ρ is the total density, one requires that jηϕϕj ≪ c=3
for the solution (5) to be valid.
Oscillating fields: Once a scalar field nears the minimum

of its potential then the attractor solution (5) breaks down
and the field begins oscillations. If the minimum of the Uϕ

potential can be described perturbatively by the monomial
Uϕ ¼ λϕp, where p is a constant, then the time-averaged
behavior of the oscillating ϕ field behaves as a fluid ρϕ
which redshifts according to the equation ρ0ϕ ¼ −3γϕρϕ
where γϕ is the equation of state which we presume to be
constant. For a quadratic minimum with p ¼ 2 the fluid
evolves like dust with γϕ ¼ 1, whereas for a quartic
minimum with p ¼ 4 the fluid evolves like radiation with
γϕ ¼ 4=3.
In this phase we can model the field as a fluid, which

significantly simplifies analytic calculations. This fluid
approximation is also useful for numerical work, since it
avoids the computational expense of tracking an oscillating
field over many e-folds. We include this in our numerical
implementation for scenarios involving very many oscil-
lations by allowing such an oscillating field to decay into
an effective fluid with the same equation of state. The
equations which allow this decay to proceed, while
conserving energy, are

ϕ̈þ 3H _ϕþ Γeff
ϕ
_ϕþ U0

ϕ ¼ 0; (7a)

_ρϕ þ 3γϕHρϕ − Γeff
ϕ
_ϕ2 ¼ 0; (7b)

where the Γeff
ϕ parameter controls when the oscillating field

decays. This follows because most of the energy in the
oscillating field is transferred to the effective fluid when
Γeff
ϕ ∼H, and so we must select a value of Γeff

ϕ to ensure that
this transfer happens deep into the oscillating regime.While
it is not technically correct to include this term in the
equations of motion before the oscillations begin [40], our
method has the advantage of avoiding spurious issues
associated with choosing a time to turn this term on. Any
inaccuracy incurred can be damped exponentially by
decreasing Γeff

ϕ , which allows more oscillations before the
decay. Where we include these effective fluids in our
numerical implementation, we ensure accuracy by verifying
thatΓeff

ϕ is sufficiently small that our results are insensitive to
the precise value. The σ field can oscillate as an effective
fluid in an analogous way.
Perturbative reheating: Perturbative reheating is a phase

of evolution in which an oscillating scalar field gradually
loses energy to other particles [50], and eventually, perhaps
through further decays, to the particles of the standard
model. From the cosmological perspective, perturbative

GENERAL ANALYTIC PREDICTIONS OF TWO-FIELD … PHYSICAL REVIEW D 89, 103532 (2014)

103532-3



reheating can be described via effective field equations that
couple the fields to their decay products.
The simplest case has each field coupled to a single

decay product which can be modeled as a fluid with a fixed
equation of state. For the ϕ field, this coupling is mediated
through a parameter Γϕ, and similarly for σ. Note that Γϕ is
a physical parameter that alters the predictions of the
model, unlike Γeff

ϕ which does not. Given that the decay
occurs when the oscillating field is acting like an effective
fluid ρϕ, an equivalent description is the decay from one
fluid (the effective oscillating field) to another fluid. We
assume that the decay product from one field does not
interact with the decay product of the other field.
Reheating actually takes place over some time interval in

which both the effective fluid ρϕ and its decay product must
be modeled. This is captured by simple numerical imple-
mentations, but our analytic calculation employs the
assumption of an instantaneous transition. This is a good
approximation since the majority of the density in the
oscillating field is always converted to the decay fluid when
Γϕ ∼H [51]. Thus the reheating of ϕ can be analytically
modeled by a single fluid ρϕ that undergoes an instanta-
neous change in its equation of state γϕ on the reheating
hypersurface. If Γϕ is truly a constant, the reheating surface
will be a uniform density hypersurface, but in practice Γ
might be modulated by one of the fields leading to a
modulated reheating scenario. Our analytic methods fully
account for this possibility.
Four-phase setup: We calculate δN for an evolution

consisting of four phases as summarized in Fig. 1. Without
loss of generality we presume that the ϕ field is the first to
begin oscillations at a time tA, while the σ field begins to
oscillate at a time tB. At a later time tC one of these fluids
will decay to radiation and the final field decays to radiation
at a time tD. We do not require that these decays occur in a
particular order, but we do presume that such decays are
instantaneous and that they only occur after both fields have
begun oscillating. This four-phase calculation is a choice
that allows us to describe many different models, but it is
not exhaustive. However, we stress that predictions can be
made for models that do not fit into our four-phase picture,
simply by assembling our formalism in a different order.

III. δN FOR TWO FIELDS AND FLUIDS

In this section we derive simple δN formulas that apply
to all two-component scenarios where the components are
not directly coupled. To maintain generality we allow the
important transitions (where the fields begin oscillating or
the fluids decay to radiation) to occur on arbitrary hyper-
surfaces. We begin by writing an expression for the total
value of N between t� and tD. Differentiating this then
provides us with N;ϕ and N;σ which may then be differ-
entiated to find the higher order derivatives such as N;σσ.
Therefore, our linear result for δN that traverses both the
field and fluid regimes is the principle goal of this paper.

A. Deriving an expression for δN

Between tA and tD the exact integrability of the ρϕ
equation of motion ensures that we are able to use it as a
clock. We find the number of e-folds in these phases by
integrating the ρϕ equation of motion to yield

NB ¼ 1

3γCϕ
ln
ρAϕ
ρBϕ

; NC ¼ 1

3γCϕ
ln
ρBϕ
ρCϕ

; ND ¼ 1

3γDϕ
ln
ρCϕ
ρDϕ

:

(8)

The contribution NA is found by integrating the equation of
motion (5) for the ϕ field with cA ¼ 3 due to the scalar field
domination. One finds

NA ¼ −
Z

A

�

Uϕ

M2
plU

0
ϕ

dϕ −
Z

A

�

Uσ

M2
plU

0
σ
dσ; (9)

where we have used the slow-roll assumption to equate the
total density to the summed potential energy as ρ ¼ Uϕ þ
Uσ and we have applied Eq. (5) which relates the evolution
of the two fields as dϕ=U0

ϕ ¼ dσ=U0
σ. Combining these

results we find the total number of e-folds N ¼ NA þ
NB þ NC þ ND as

N ¼ −
Z

A

�

Uϕ

M2
plU

0
ϕ

dϕ −
Z

A

�

Uσ

M2
plU

0
σ
dσ

−
1

3γCϕ
ln
ρCϕ
ρAϕ

−
1

3γDϕ
ln
ρDϕ
ρCϕ

: (10)

Varying this result provides δN. The lower boundary terms
from the two integrals in Eq. (10) yield the two contribu-
tions to ζ that define the “horizon crossing approximation”
(HCA) [15,52–54] and so we write these terms as

δNHCA ¼ Uϕ

M2
plU

0
ϕ

����
�
δϕ� þ Uσ

M2
plU

0
σ

����
�
δσ�: (11)

The complete result for δN includes terms proportional to
perturbations on hypersurfaces tA, tB, tC and tD as

δN ¼ δNHCA −
Uϕ

M2
plU

0
ϕ

����
A
δϕA −

Uσ

M2
plU

0
σ

����
A
δσA

þ 1

3γCϕ
δ ln ρAϕ þ ðγCϕ − γDϕÞ

3γCϕγ
D
ϕ

δ ln ρCϕ −
1

3γDϕ
δ ln ρDϕ : (12)

The HCA exploits the simplifying assumption, when it is
valid, that all of the perturbations on these later hyper-
surfaces are negligible and so δN ¼ δNHCA. For this to be
the case, isocurvature perturbations must be attenuated
during phase A so that the only perturbation at times t ≥ tA

is a single adiabatic mode. Since an adiabatic perturbation
intercepts a foliating hypersurface at a unique phase space
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point, any model that achieves this adiabatic condition by
or before tA will have negligible field perturbations at later
times as measured on any such hypersurface.
Equation (12) is complete and technically contains both

N;ϕ and N;σ but before these can be read off we need to
relate the perturbations at later times to their values at
horizon exit. This is the challenging part of this calculation
which occupies the rest of this section, where we relate all
perturbations to those at horizon exit in a very general way
that does not require any specific choices for the hyper-
surfaces of the transitions at the times tA, tB, tC or tD, or any
specific equations of state for the oscillating fields. These
conditions may then be fitted to the problem at hand. We
note that we therefore provide all of the tools necessary for
investigating the effect of modulated oscillations or modu-
lated reheating in one unified analytic framework.
Finally, we note that if one wishes to identify ζ ¼ δN

then one needs to take the limit where the hypersurface at
tD is one of uniform density. We do not automatically make
this assertion in our method, partially because it is just as
easy to remain general, but also because it is conceivable
that one may wish to consider a more general model which
includes subsequent phases after tD before the calculation is
complete, and these may not match onto the end of phase D
on a hypersurface of uniform density.

B. Accounting for arbitrary hypersurfaces

Before we can evaluate δN in terms of horizon exit
perturbations we must first introduce the technology that
will allow us to parametrize the hypersurfaces of oscillation
and reheating in full generality. This is simply done by
defining four different functions fA, fB, fC and fD, one for
each transition, where each of these f functions are
dependent on the densities ρϕ and ρσ at their respective
times of evaluation and all four f functions equal constants.
These then allow us to relate the two perturbations on a
given hypersurface, such as

fA;σδρAσ þ fA;ϕδρ
A
ϕ ¼ 0; (13)

where f;ϕ ¼ ∂f=∂ρϕ. These terms only ever appear in the
ratio f;ϕ=f;σ and so there is effectively only one parameter
here. Note that if one or both of the components are fields
then we identify ρα → Uα. We also note that in the case of a
uniform density hypersurface one finds f;ϕ ¼ f;σ ¼ 1, or a
uniform-σ hypersurface has f;ϕ ¼ 0.
Such relations are useful because they allow us to rewrite

all instances of σ perturbations on the given hypersurfaces
in terms of ϕ perturbations, which greatly simplifies the
algebra when computing δN. Another algebraic simplifi-
cation is made by defining a parameter “r” associated to
each hypersurface. Physically r is the proportion by which
the time evolution of the hypersurface function f is sourced
by the evolution of the σ component, meaning that it has a
general form as

r ¼ f;σρ0σ
f;σρ0σ þ f;ϕρ0ϕ

: (14)

We note that in general r may take any positive or negative
real value, depending on the hypersurface function f. The
constraints imposed on f in the uniform density case equate
to placing bounds on r as 0 ≤ r ≤ 1. To be concrete, r is
calculated fractionally before the hypersurface in question
such that there is no ambiguity as to which formula should
be used for the evolution of the various densities appearing
in Eq. (14). We then find the reheating hypersurface at tD

has rD of the form

rD ¼ f;σγσρσ
f;σγσρσ þ f;ϕγϕρϕ

����
D
; (15)

and rC is identical after relabeling D → C. We note that rD

reduces to the Lyth r parameter in the standard quadratic
curvaton scenario when γDσ ¼ 1 and γDϕ ¼ 4=3 and the
hypersurface at tD is uniform density.
Hypersurface of oscillation onset: There is no clear

analytic prescription for determining when a field begins to
oscillate. In this paper, we shall remain agnostic about this
choice and allow oscillations to begin on arbitrary hyper-
surfaces. One way to achieve this is via the same meth-
odology used for the reheating hypersurfaces. But we now
show that it is also useful to define “oscillation factors” xϕ
and xσ . These are simply another way to encode the values
of the parameters f;ϕ and f;σ.
Considering the hypersurface at tA where the ϕ field

begins to oscillate, we approximate the dynamics t ≤ tA by
generalized slow-roll behavior following Eq. (5), whereas
for t ≥ tA we presume it to be a fluid. Both of these
approximations break down as t approaches the transition
at tA. We axiomatically maintain constant energy density
over the transition, but the imperfect matching of these two
different approximations ensures that we cannot also
maintain a constant rate of change of energy density across
the transition. We therefore define the oscillation factor xϕ
as the ratio of dUϕ=dN and dρϕ=dN immediately before
and after the onset of oscillations at tA. Defining xσ
analogously at tB, both oscillation factors may be written as

xϕ ¼ γCϕ
M2

pl

3ρρϕ
U02

ϕ

����
A
; xσ ¼

γCσ
M2

pl

cρρσ
U02

σ

����
B
: (16)

The imperfect nature of the approximations that we make
to the true scalar field dynamics therefore appears, not
exclusively, in values of x that are deviant from unity. The
caveat “not exclusively” is important: even if the density
and its first time derivative are continuous over the
boundary, there is no guarantee that the higher order
derivatives will be, which will prevent perfect matching.
For the models considered in this paper we find that these
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oscillation factors are always of order unity. This suggests
that we are not introducing significant error by modeling
the scalar field evolution as an initial phase of generalized
slow roll followed by a fluid phase. However, other models
may break this condition. Such models may simply require
a different choice of oscillation hypersurface, or it is also
possible that there may be non-slow-roll dynamics that
needs to be considered.
As an example of how to pick a particular hypersurface,

let us consider the prescription of Kawasaki et al. [32]
where tA is defined by jϕ0=ϕjA ¼ 1 and tB obeys
jσ0=σjB ¼ 1. This method seems sensible because it
will define oscillations to begin when the field has
sufficient velocity to reach the minimum within one
e-fold. One then finds

xϕ ¼ 3γCϕ
Uϕ

ϕU0
ϕ

����
A
; xσ ¼ 3γCσ

Uσ

σU0
σ

����
B
; (17a)

fA;σ ¼ 1; fA;ϕ ¼ 1þ M2
pl

ϕA2

�
1 −

U00
ϕϕ

U0
ϕ

�
A
; (17b)

fB;ϕ ¼ 1; fB;σ ¼ 1þ 3M2
pl

cBσB2

�
1 −

U00
σσ

U0
σ

�
B
: (17c)

These may easily be found for a given potential, for
example, if the oscillations begin in the vicinity of a
quadratic or quartic potential minimum then:

(i) Quadratic: x ¼ 3=2 and oscillations begin on a
uniform density hypersurface with f;ϕ ¼ f;σ ¼ 1.

(ii) Quartic: x ¼ 1 and oscillations begin on a nonuni-
form density hypersurface. At tB one finds fB;ϕ ¼ 1,
fB;σ ¼ 1 − 6M2

pl=ðcσ2ÞB, whereas at tA one finds
fA;σ ¼ 1, fA;ϕ ¼ 1 − 2M2

pl=ϕ
2
A.

The final quantities to evaluate are rA and rB. These
follow simply after we note the following relations:

ρ0ϕ
A ¼ U0

ϕ
Aϕ0A; (18a)

ρ0σA ¼ U0
σ
Aσ0A; (18b)

ρ0ϕ
B ¼ −3γCϕρBϕ; (18c)

ρ0σB ¼ −3M2
plU

0
σ
B2=ðcBρBÞ ¼ −3γCσ ρBσ =xσ: (18d)

Explicit forms for rA and rB follow as

1

rA
¼ 1þ f;ϕU0

ϕ
2

f;σU0
σ
2

����
A
;

1

rB
¼ 1þ xσ

γCϕ
γCσ

f;ϕρϕ
f;σρσ

����
B
: (19)

C. Relating perturbations to horizon exit

We now show how the perturbations on the hyper-
surfaces at tA, tB, tC and tD can be written in terms of
perturbations at horizon exit.

Perturbations at tA: This relation is equivalent to that
derived by Vernizzi and Wands [1]. Starting with the
equations of motion one can relate the two fields as

Z
A

�

1

U0
ϕ

dϕ ¼
Z

A

�

1

U0
σ
dσ: (20)

Varying these integrals yields only four boundary terms and
we can eliminate one of δσA or δϕA in favor of the other by
using Eq. (13) to find

1

U0
ϕ
ArA

δϕA ¼ −1
U0

σ
Að1 − rAÞ δσ

A ¼ δϕ�

U0
ϕ
� −

δσ�

U0
σ
� ; (21)

where the choice of hypersurface at tA is arbitrary and is
encapsulated within the parameter rA.
Perturbations at tB: This is the most challenging part of

our calculation. We seek a relation between the perturba-
tions δρBϕ to δρAϕ starting from the relation

M2
pl

cBγCϕ

Z
B

A

1

ρ
d ln ρϕ ¼

Z
B

A

1

U0
σ
dσ: (22)

The challenge arises due to the presence of the ρ factor in
Eq. (22). There are three cases to consider depending on the
relative energy density of the two components throughout
phase B.
ρϕ dominates: In this case we may approximate ρ ≈ ρϕ

and the functional variation of Eq. (22) then yields only
four boundary terms. We can express these in terms of δρAϕ
and δρBϕ by employing the fA and fB versions of Eq. (13) to
eliminate the terms involving δσA and δσB. Finally we can
write δρAϕ in terms of horizon exit perturbations using
Eq. (21). The result is given in Eq. (23), where we have
defined QA and QS such that they both equal unity in
simple models such as the standard curvaton scenario.
Uσ dominates: If the Uσ potential dominates the energy

density throughout phase B then we may easily adapt the
above analytic method to compute δ ln ρBϕ by multiplying
Eq. (22) by ρ ≈Uσ before integrating. The result then
follows by the same procedure as above, arriving at almost
identical results. The difference is encapsulated by the
modulating parameter QS.
Codominant case (the inflating curvaton): The most

complex scenario that we may encounter is when neither
component dominates throughout phase B. However, even
in this case one may make analytic progress by noting that
Uσ decays much more slowly than ρϕ. This means that one
can split phase B into two subphases, the first dominated by
ρϕ and the second dominated by Uσ. These two subphases
are then independently solvable using the above methods,
the results of which can then be combined. The second
subphase drives a second bout of inflation, and has been
previously dubbed the “inflating curvaton” model [33,55].
We shall therefore refrain from deriving explicit formulas
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for this case and instead provide results for the other two
scenarios as

δ ln ρBϕ
xσrB

¼ γCϕ
γCσ

U0
σ
B2

UB
σ

QSQA

�
δϕ�
U0

ϕ
� −

δσ�
U0

σ
�

�
; (23)

QA ¼ 1þ
�

3

cBxϕ
− 1

�
rA; (24)

QS ¼
�
1; ρϕ dominates;
UA

σ

UB
σ
; Uσ dominates:

(25)

Note that, even in the case where Uσ dominates, QS will
still approximately equal unity for any model where phase
B is not long enough for Uσ to drop appreciably.
Perturbations at tC: Perturbations at the beginning and

the end of phase C may be related by noting that the
background equations of motion provide the identityZ

C

B

1

γCϕ
d ln ρϕ ¼

Z
C

B

1

γCσ
d ln ρσ: (26)

Functional variation of this relation yields only four
boundary terms. Using Eq. (13) to eliminate δρσ in terms
of δρϕ, and then using Eq. (23) to write δ ln ρBϕ in terms of
horizon exit perturbations we find

1

rC
δ ln ρCϕ ¼ γCϕ

γCσ

U0
σ
B2

UB
σ

QSQBQA

�
δϕ�
U0

ϕ
� −

δσ�
U0

σ
�

�
; (27)

QB ¼ 1þ ðxσ − 1ÞrB: (28)

Similar to QA, the modulating parameter QB is also unity
for simple models such as the standard curvaton.
Perturbations at tD: For phase D the background

equations of motion relate the fluids asZ
D

C

1

γDϕ
d ln ρϕ ¼

Z
D

C

1

γDσ
d ln ρσ: (29)

Functional variation yields four boundary terms which we
again manipulate using Eq. (13) to eliminate δρσ in terms of
δρϕ. In this case, the functional form of rC is different to
that of rB and so the result takes a correspondingly different
form as

δ ln ρDϕ
rD

¼ γDϕ
γDσ

ð1þ C1rCÞ
U0

σ
B2

UB
σ

QSQBQA

�
δϕ�
U0

ϕ
� −

δσ�
U0

σ
�

�
;

(30)

C1 ¼
γDσ γ

C
ϕ − γDϕγ

C
σ

γCσ γ
D
ϕ

; (31)

where we have collected some of the γ parameters into a
constant C1 where C1 ¼ 0 if neither fluid changes equation

of state at tC. The constant C1 is therefore zero in simple
models such as the standard curvaton model.

D. Putting the pieces together

We have now developed all the technology necessary to
find δN in terms of horizon exit perturbations δϕ� and δσ�.
The terms in the original formula (12) for δN that are
evaluated at tA can be combined and simplified using
Eq. (21) to yield

−
Uϕ

M2
plU

0
ϕ

����
A
δϕA −

Uσ

M2
plU

0
σ

����
A
δσA þ 1

3γCϕ
δ ln ρAϕ

¼ 1

M2
pl

�
1 − xϕ
xϕ

ρArA þ UA
σ

��
δϕ�
U0

ϕ
� −

δσ�
U0

σ
�

�
; (32)

where we have used the relation

1

3γCϕ
δ ln ρAϕ ¼ ρArA

M2
plxϕ

�
δϕ�
U0

ϕ
� −

δσ�
U0

σ
�

�
: (33)

Also substituting for δ ln ρCϕ and δ ln ρDϕ using Eqs. (27) and
(30) we obtain our most important result as

δN ¼
�
UA

σ

M2
pl

þ 1 − xϕ
M2

plxϕ
ρArA −QAQBQCQS rD

3γDσ

U0
σ
B2

UB
σ

�

×

�
δϕ�
U0

ϕ
� −

δσ�
U0

σ
�

�
þ δNHCA: (34)

In this formula we have defined a final modulating
parameter QC

QC ¼ 1þ C1rC − C2
rC

rD
; (35)

C2 ¼
γDσ ðγCϕ − γDϕÞ

γCσ γ
D
ϕ

: (36)

One finds C2 ¼ 0 if ρϕ does not change equation of state at
tC. This is the case in many simple models such as the
standard curvaton model and so one obtains QC ¼ 1 in
this case.
Equation (34) is the principle result of this paper,

providing us with the linear δN derivatives N;ϕ and N;σ .
This final result demonstrates why we have defined the
four modulating parametersQA,QB,QC andQS which are
all unity in the standard curvaton scenario but may be
modified in more general circumstances. The QA and QB

account for the effects originating from the transitions at tA

and tB respectively. QC reflects the changes in the fluid
equations of state at tC. All three of theseQ parameters also
encapsulate any modulation of these hypersurfaces that
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may be present. Finally, the QS parameter accounts for
deviations from the “spectator” scenario, where ρϕ domi-
nates phase B, as we are about to discuss.
Hypersurface effects: We see that δN may be sourced by

the transitions occurring at any of the hypersurfaces tA, tB,
tC or tD. This effect can be significant if one or many of
these transitions occur on a hypersurface that is signifi-
cantly deviant from one of uniform density whereby the
associated r parameters may acquire large magnitudes.
Leaving the reheating hypersurfaces general naturally
allows us to account for effects such as modulated reheat-
ing. The motivation for leaving the oscillation hyper-
surfaces general is that at present there is no definitive
conclusion about which hypersurface one should use for
the onset of oscillations. One may perhaps expect that only
quite perverse hypersurface choices would have any
observational effect, but this is not the case. For example,
one may rewrite the standard curvaton result in the form
N;σ ∝ δ ln ρBσ and so choosing tB to be a uniform-σ hyper-
surface would yield N;σ ≃ 0. This is clearly incomparable
to the standard curvaton result of N;σ ≫ N;ϕ emphasizing
that the choice of hypersurface can be crucial.1 As a
further example, in Sec. VI D we shall explicitly show
that the condition provided by Kawasaki et al. [32] is
incomplete.

E. Limits of the general result

The general result (34) can be applied and simplified to
recover a huge range of different scenarios including two-
field inflation, the standard curvaton, the modulated cur-
vaton, the spectator scenario, modulated reheating and the
inhomogeneous end of inflation scenario. We now show
explicitly how four such limits are obtained.
Inhomogeneous end of inflation: The standard assump-

tion of this scenario is that reheating occurs instantaneously
at the end of inflation [3,5,7–11]. Thus only phase A is
relevant and so the term in Eq. (34) proportional to rD is not
present. In addition, the term δ ln ρAϕ=3γ

C
ϕ in the expressions

that lead to Eq. (34) is also absent since this is generated by
integrating the dynamics occurring in phase B. Removing
these we find

δN ¼ 1

M2
pl

½UA
σ ð1 − rAÞ − UA

ϕr
A�
�
δϕ�
U0

ϕ
� −

δσ�
U0

σ
�

�
þ δNHCA:

(37)

If inflation ends on a uniform density hypersurface at tA

then 0 ≤ rA ≤ 1. One then recovers the HCA result
(δN ≈ δNHCA) if either field is the dominant energy density
at tA or if ρA ≪ ρ�. The existence of such limits and how
they relate to the onset of adiabaticity is discussed

extensively in Refs. [15,56] and arises due to the dynamical
constraints imposed by the assumption of a sum-separable
potential. The inhomogeneous end of inflation scenario
allows jrAj ≫ 1 which can modify this result, even
producing the dominant contribution to δN at linear order
if the end of inflation hypersurface intercepts the infla-
tionary bundle at a sufficiently large angle [13].
Late-rolling spectator: If a field remains subdominant in

energy density throughout inflation then it has little effect
on the background dynamics and is often referred to as a
spectator field. The predictions for spectator scenarios
depend significantly on the time at which the spectator
field rolls.
Certain forms of Uσ lead the spectator σ to roll well

before the end of inflation. Presuming that the σ field
stabilizes in some positive mass minimum of its potential
then perturbations δσ will be attenuated. If such quenching
of isocurvature completes before the end of inflation then
an adiabatic state is attained by tA and the observational
predictions will be determined by the HCA with
δN ¼ δNHCA. In this case the postinflationary dynamics
is irrelevant and the formalism of this paper is not required.
An explicit model of this type was the axion-quadratic
model considered first in Elliston et al. [15] where
adiabaticity is reached before the end of inflation if the
axion mass is set to be at least 5 times larger than that of the
quadratic inflaton.
On the other hand, the formalism in this paper is required

to consider other choices of Uσ where the σ field rolls at or
after the end of inflation. We now derive the predictions for
a late-rolling spectator model where σ rolls significantly
after the end of inflation and after the inflaton has reheated
to radiation. We therefore take γCϕ ¼ γDϕ ¼ 4=3. This
scenario encapsulates the curvaton model, but is signifi-
cantly more general because we include the inflaton
perturbations [57] and there is no implicit requirement
that the σ field perturbations dominate at linear order (i.e.
we do not assume R ≫ 1). We also do not require a specific
form of the potential Uσ or a particular equation of state for
the effective fluid ρσ .
In this case, since σ only rolls well after horizon exit, it is

an excellent approximation to consider ϕ as the adiabatic
field at horizon exit and as such it will only receive a
constant contribution from the initial boundary at t�. On the
other hand, N;σ will be zero initially. To explicitly recover
this zero initial condition from the full result (34) we first
note that the above assumptions mean that U0

σ
� ≪ U0

ϕ
� and

so the non-HCA terms in Eq. (34) will predominantly
source N;σ over N;ϕ. Next, since UA

σ ≃ U�
σ , the first term in

the square brackets of Eq. (34) provides the necessary
cancellation with the N;σ contribution from δNHCA.
The spectator scenario also implies that rA is negligibly

small for any hypersurface at tA, so long as it obeys
ϵAσ =ϵAϕ ≪ fA;ϕ=f

A
;σ. This allows us to neglect the second term

in the square brackets of Eq. (34) as well as setting
1Note that if we take tB to be a uniform-ϕ hypersurface then we

do not find N;σ ≃ 0 because rB → 0 in this same limit.
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QA ¼ 1.2 Finally, we know thatQS ¼ 1 in this case, and so
the results become

N;ϕ ≃ Uϕ

M2
plU

0
ϕ

����
�
; (38a)

N;σ ≃ rD

3γDσ
QCQB U0

σ
B2

UB
σU0

σ
� : (38b)

This limit of our calculation is a generalization of the work
of Kawasaki et al. [32] who derived a prescription for
determining the hypersurface at tB including possible
deviations from uniform density. By ignoring the inflaton
perturbations throughout they were implicitly assuming
QA ¼ QC ¼ 1. Our result allows for arbitrary hypersurface
choices, not only at tB, but also at tC and tD (and also at tA

by a simple extension). In addition, we include the inflaton
perturbations and account for arbitrary equations of state
and arbitrary decay order.
Standard quadratic curvaton: This is a specific case of

the late-rolling spectator limit which occurs where both Uϕ

and Uσ are of quadratic form and the ϕ field reheats to
radiation before tB. One therefore has γCϕ ¼ γDϕ ¼ 4=3 and
γCσ ¼ γDσ ¼ 1, and since there is no change in the fluid
equations of state at tC then QC ¼ 1. The oscillations
at tA and tB are assumed to occur on uniform density
hypersurfaces and since rA ≪ 1 and rB ≪ 1 we have
QB ¼ QA ¼ 1. It was to achieve this simplification in
the standard curvaton case that motivated our chosen
definition for the Q parameters. We thus recover the
standard result

N;σ ¼
2rD

3σ�
: (39)

Modulated reheating by a fluid: The conventional
modulated reheating setup modulates the hypersurface
by allowing it to depend on the value of a slowly rolling
field σ. This result is not immediately derivable from our
four-phase calculation since this requires phase B to be split
into two subphases. As with the inflating curvaton, we
emphasize that this calculation can easily be done by
assembling the ingredients that we have provided in the
requisite manner, and we only refrain from providing these
details because this particular model has been recently
studied elsewhere [13]. Instead, our calculation allows us to
consider a new scenario where the reheating hypersurface
for the ϕ field is modulated by its dependence on a fluid
density ρσ.
The simplest such scenario drives inflation with a single

field ϕ which subsequently oscillates as an effective fluid
ρϕ. This fluid then reheats on a hypersurface, the geometry
of which is dependent on the value of the σ component,

allowing any σ perturbations to alter δN. In this simplest
case, the σ field has a negligible contribution to the energy
density throughout and so this is a spectator case. To derive
expressions for this model from our framework we will
have the ϕ field reheating at tC, reserving tD to be a
subsequent uniform density hypersurface such that we may
identify ζ ¼ δN. Presuming a radiation fluid with γDϕ ¼ 4=3
after reheating, we require γCϕ ≠ 4=3 to obtain a modifica-
tion to ζ. Furthermore, the assumptions that the σ field
carries no energy density and has negligible linear velocity
during inflation means that rA ¼ rB ¼ rD ¼ 0 and so
QS ¼ QA ¼ QB ¼ 1. However, the parameter rC may
have a large magnitude if the modulated reheating has
significant linear-order effects. We therefore find N;ϕ as in
Eq. (38a) and

N;σ ¼
ðγDϕ − γCϕÞ

γDϕ

rC

3γCσ

U0
σ
B2

UB
σU0

σ
� : (40)

The factor of ðγDϕ − γCϕÞ emphasizes the need for the
equation of state to change at tC in order for ζ to be
modified. Thus one could get a significant effect at linear
order if jrCj ≫ 1.

IV. THE SPECTRAL INDEX AND THE
TENSOR FRACTION

We now discuss the predictions for nζ and ~r which
parametrize the linear statistics of inflationary perturba-
tions. Our discussion here is quite general, without requir-
ing a separable potential.
For this present argument it is helpful to consider a

rotated field basis such that ϕ is the adiabatic field at
horizon exit. In this case N;ϕ takes a constant value N2

;ϕ ≃
ð2ϵ�M2

plÞ−1 and N;σ is zero at horizon exit but grows
subsequently. This means that R ¼ 0 initially, but can grow
to large values at later times. We can then write nζ and ~r as

~r ¼ 16ϵ�

1þ R
; (41a)

nζ − 1 ¼ −2ϵ� þ 2
Rη�σσ þ 2

ffiffiffiffi
R

p
η�ϕσ þ η�ϕϕ − 2ϵ�

1þ R
; (41b)

where we have included the ηϕσ term since we are not
assuming sum separability here.
The effect of the subsequent multifield dynamics on ~r is

manifestly clear: it decreases. This follows because R ¼ 0
initially and R is positive definite. The physical explanation
of this behavior is that the multifield dynamics sources
additional contributions to ζ, but there is no accompanying
growth in the amplitude of gravitational waves.
The evolution of nζ is almost as simple. There are two

limiting values that it reaches in the limits R ≪ 1 and
R ≫ 1, which are

2Extreme hypersurface geometry at tA that does not satisfy
ϵAσ =ϵAϕ ≪ fA;ϕ=f

A
;σ can be accounted for simply by retaining the

second term in the square brackets of Eq. (34) and the QA factor.
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nζ − 1 ¼
�
2η�ϕϕ − 6ϵ�; for R ≪ 1;

2η�σσ − 2ϵ�; for R ≫ 1:
(42)

For a separable potential with ηϕσ ¼ 0 then nζ must always
lie between these two extremes. For models where ηϕσ
dominates over the other slow-roll parameters then it is
possible for nζ to lie outside of the bounds given in
Eq. (42), but only for intermediate values R ∼ 1. This
behavior may occur when the field trajectory is undergoing
a rapid turn in phase space.
Spectator models make a pleasant example of how nζ

evolves since the field ϕ is essentially the adiabatic field at
horizon exit. For simple models where the σ perturbations
grow monotonically to dominate ζ, there is usually a
smooth transition between the two limits given in
Eq. (42) as R increases. When nζ is plotted against N,
we therefore see a step shape as illustrated for the standard
curvaton model in Fig. 2. In general, there is no guarantee
that the R ≫ 1 regime will be reached, reducing the
available range of values that nζ may take. Furthermore,
for complex models we should expect nonmonotonic
evolution of nζ as R fluctuates.

V. SECOND ORDER INGREDIENTS

The second order derivatives such as N;σσ follow directly
from varying the linear result (34). Writing out the full
result is too complex to be intuitively useful, but this is also
not desirable because the majority of inflationary scenarios
that we would like to consider will not be as general as the
most general case studied here. It is therefore more useful
for us to provide the ingredients that allow the second order
results to be derived, and these may be assembled by the
user for the given problem at hand.
When varying Eq. (34), the fundamental ingredients that

we need to know are the partial derivatives of the fields or
fluids at times tA, tB, tC and tD with respect to horizon exit
field values. These derivatives may respectively and

immediately be read from Eqs. (21), (23), (27) and (30).
One further useful result is the derivative ∂σB=∂σ� which
follows from Eq. (23) as

∂σB
∂σ� ¼ U0

σ
B

U0
σ
� ð1 − rBÞQSQA: (43)

Variations of xϕ and xσ: Because we do not require any
specific definition of the hypersurfaces where oscillations
begin, there is no guarantee that the parameters xϕ and xσ are
constant. We therefore provide expressions for their variation
below. In some simple situations, however, the x parameters
may be very nearly constant, and so such variations are not
required. One such example is given by a monomial
potential with the oscillation onset condition of Kawasaki
et al. [32] such that jσ0=σj ¼ 1 on the hypersurface where the
σ field begins to oscillate. But for a general potential or a
general hypersurface we find, after eliminating f;ϕ and f;σ in
favor of r, that the x parameters vary as

δxϕ
xϕ

¼
��

U0
ϕ
2

Uϕ
− 2U00

ϕ þ
U0

ϕ
2

ρ

�
r −

U0
σ
2

ρ
ð1 − rÞ

�
A

×

�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
; (44a)

δxσ
xσ

¼
�
xσΩϕ

γCϕ
γCσ

rþ
�
2U00

σUσ

U0
σ
2

− 1 −Ωσ

�
ð1 − rÞ

�
B

×QSQAU0
σ
B2

UB
σ

�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
; (44b)

from which one may simply read off the partial derivatives
such as ∂xϕ=∂σ�.
Variations of the r parameters: The variations of r

naturally depend upon second derivatives of the hypersur-
face functions f. It proves useful to collect such terms via
the dimensionless parameter

F ¼ ρσ

�
f;σσ
f;σ

þ f;ϕϕf;σ
f2;ϕ

− 2
f;ϕσ
f;ϕ

�
; (45)

where F ¼ 0 for a hypersurface of uniform density. We
then find the variations of the r parameters as

δrA ¼ −
��

F
U0

σ
2

Uσ
þ 2U00

σ

�
ð1 − rÞ þ 2U00

ϕr

�
A

× rAð1 − rAÞ
�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
; (46a)

δrB ¼−
��

F −Ωσþ2
U00

σUσ

U0
σ
2

�
ð1− rÞþxσ

γCϕ
γCσ

ð1þΩϕÞr
�
B

× rBð1− rBÞQAQSU
0
σ
B2

UB
σ

�
δϕ�

U0
ϕ
�−

δσ�

U0
σ
�

�
; (46b)

FIG. 2 (color online). Numerical evolution (solid blue line) of
nζ for the standard curvaton model (V ¼ 1

2
m2

ϕϕ
2 þ 1

2
m2

σσ
2)

plotted against the e-folds N. Parameters used are σ� ¼
0.01Mpl, ϕ� ¼ 16Mpl and mϕ ¼ 5mσ such that NA ≈ 60. Our
analytic method gives the dashed black line. A small value of σ�
is required in order that the curvaton perturbations come to
dominate ζ.
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δrC ¼ −
�
ð1þ F Þð1 − rÞ þ γCϕ

γCσ
r

�
C

× rCð1 − rCÞQAQBQS U
0
σ
B2

UB
σ

�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
; (46c)

δrD ¼ −
�
ð1þ F Þð1 − rÞ þ γDϕ

γDσ
r

�
D
ð1þ C1rCÞ

× rDð1 − rDÞQAQBQS U
0
σ
B2

UB
σ

�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
: (46d)

These general results account for second order effects
arising from the modulated transition at any of the hyper-
surfaces at tA, tB, tC or tD.
Uniform density case: In this scenario the above results

simplify considerably since f;ϕ ¼ f;σ ¼ 1 and F ¼ 0. One
finds

δxϕ
xϕ

¼
�
U0

ϕ
2

Uϕ
− 2U00

ϕ

�
A
rA
�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
; (47a)

δxσ
xσ

¼
�
U0

σ
2

Uσ
− 2U00

σ

�
B
ðrB − 1ÞQSQA

�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
;

(47b)

and we clearly see that these are zero for quadratic
potentials Uϕ and Uσ. The r parameters also simplify in
the uniform density case as

δrA ¼ ½2U00
σð1 − rÞ þ 2U00

ϕr�ArAðrA − 1Þ
�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
;

(48a)

δrB ¼ QAQS

�
2U00

σ
2 þ

�
xσ

γCϕU
0
σ
2

γCσUσ
− 2U00

σ

�
r

�
B

× rBðrB − 1Þ
�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
; (48b)

δrC ¼ QAQBQS

�
1þ γCϕ − γCσ

γCσ
rC
�

× rCðrC − 1ÞU
0
σ
B2

UB
σ

�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
; (48c)

δrD ¼ QAQBQSð1þ C1rCÞ
�
1þ γDϕ − γDσ

γDσ
rD
�

× rDðrD − 1ÞU
0
σ
B2

UB
σ

�
δϕ�

U0
ϕ
� −

δσ�

U0
σ
�

�
: (48d)

Interpretation: At linear order, the necessary detail about
the geometry of a given hypersurface is encapsulated in the

parameter r. At second order we need also to considerF. In
the uniform density case, r is bounded as 0 ≤ r ≤ 1 where
r ¼ 0 corresponds to a dominant ϕ component and r ¼ 1
occurs when the σ component dominates. In either of these
limits we observe that δr ¼ 0. For uniform density hyper-
surfaces we therefore only expect modulation effects
from δr in the intermediate regime. At tB, tC and tD this
corresponds to the scenario where both fields have a non-
negligible contribution to the total energy density, whereas
at tA this corresponds to the case where both fields are
moving with comparable velocities (for most simple
potentials this would correspond to the scenario where
both fields begin oscillations at about the same time). These
conditions make intuitive sense, because if one field totally
dominates then the phase space dynamics is essentially
linear motion; it is only in the presence of turning that
isocurvature modes are able to modify ζ.
For the nonuniform density case, however, this condition

is relaxed. One still requires r to deviate from zero or unity
for any significant effect to occur, but in this case r may
take any real value depending on the geometry of the
hypersurface in question. This makes it considerably easier
for large values of δr to be achieved.

VI. BISPECTRA IN SPECIFIC CASES

We now consider the bispectrum parameter fNL in a few
interesting limiting cases. First, to recover and extend
previous results, we shall consider late-rolling spectator
models for a general potentialUσ but without modulation at
tB. A specific limit this result recovers the standard
curvaton scenario, without neglecting the inflaton pertur-
bations. As an illustration of how different forms forUσ can
alter this result, we shall discuss a simple hilltop potential.
Next, we shall test the analytic criterion of Kawasaki et al.
[32] for defining the hypersurface on which oscillations
begin. We will do this with the axion-quadratic model
[15,40] as an example of a spectator model where oscil-
lations begin on a modulated hypersurface. In doing so we
will show that our analytic formalism is able to explain the
numerical results of Ref. [40]. Finally, we shall use the
technology introduced in this paper to consider a novel
scenario of modulated reheating where the modulation is
determined by a fluid rather than a field.
In all cases, a bispectrum analysis requires that we

compute the linear perturbation ratio R, as well as the ratios
of δN coefficients N;σσ=N2

;σ, N;ϕϕ=N2
;ϕ and N;ϕσ=N;ϕN;σ .

A. Late-rolling spectator models

This scenario was introduced in Sec. III E where it was
shown how to calculate its linear-order statistics. Our aim in
this section is to show how the parameter fNL may be a
sensitive probe of the particular form of the potential Uσ,
thereby eliminating some regions of potential space.
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We make the same assumptions as before. The inflaton
reheats before the σ field rolls, giving γCϕ ¼ γDϕ ¼ 4=3. We
choose ρσ to reheat at tD and so γCσ ¼ γDσ and QC ¼ 1. In
addition, to simplify the present discussion, we shall restrict
to scenarios where QB ¼ 1. For the spectator cases this
does not place significant constraints on the hypersurface at
tB because one only requires fB;σ=fB;ϕ ≪ xσρBϕ=ρ

B
σ where the

right-hand side of this inequality is very large in the
spectator scenario. We can then find N;ϕϕ and N;σσ by
taking the derivatives of N;ϕ and N;σ as given in Eqs. (38a)
and (38b) to find

ffiffiffiffi
R

p
¼ M2

plr
D

3γDσ

U0
σ
B2

UB
σU0

σ
�
U0

ϕ
�

U�
ϕ

; (49a)

N;ϕϕ

N2
;ϕ

¼ M2
pl

�
U0

ϕ
2

U2
ϕ

−
U00

ϕ

Uϕ

�
�
; (49b)

N;σσ

N2
;σ

¼ ð3γDσ − 4ÞrD þ 4 − 6γDσ

þ 3γDσ
rD

UB
σ

U0
σ
B2 ð2U00

σ
B −U00

σ
�Þ; (49c)

and we have not included theN;ϕσ term since we find this to
provide a subdominant contribution to fNL. We note that
the final term in Eq. (49c) has the form ð2ηBσσ − η�σσÞ which
is of the same form as the slow-roll contributions to fNL as
identified in Eq. (3.8) of Ref. [56] under the identification
of σ as the isocurvature field.
For times t ≤ tB the inflaton perturbations dominate and

fNL ∼Oðϵ�Þ. Later on, as rD grows, then it is possible that
R will grow to exceed unity. Presuming this to be the case,
then the N;σσ term will now contribute to fNL. For small rD

(but not so small that R ≪ 1) the final term in Eq. (49c) is
dominant. Since tD is a uniform density hypersurface, rD

saturates at a value of unity in the limit where the σ field
dominates the energy density. Presuming R ≫ 1 at the
same time, which is not always the case, one finds fNL
takes a limiting value

fNL →
5γDσ
2

�
UB

σ

U0
σ
B2 ð2U00

σ
B −U00

σ
�Þ − 1

�
: (50)

Therefore, whether we are in the limit rD ≪ 1 or rD → 1,
we see that fNL is enhanced for any model where
UσU00

σ ≫ U0
σ
2. Such models, which includes the hilltop

case we are shortly to consider, are therefore ruled out by
Planck bounds of fNL ¼ 2.7� 5.8 at 68% C.L. [58].

B. Double quadratic

We include this model only to demonstrate that we
recover this standard result. Setting Uϕ ¼ 1

2
m2

ϕϕ
2 and

Uσ ¼ 1
2
m2

σσ
2 and also γCσ ¼ γDσ ¼ 1 in Eqs. (49a)–(49c)

yields

ffiffiffiffi
R

p
¼ 2rD

3
ffiffiffiffiffiffiffi
NA

p Mpl

σ�
; (51a)

N;ϕϕ

N2
;ϕ

¼ 1

2NA ; (51b)

N;σσ

N2
;σ

¼ −rD − 2þ 3

2rD
; (51c)

whereNA ≈ ϕ�2=4M2
pl is the number of e-folds of inflation.

In the limit where the inflation perturbations are neglected,
these results recover the curvaton result of Lyth and
Rodríguez [49]. Again, 0 ≤ rD ≤ 1 since tD is a uniform
density hypersurface. Before the curvaton has any effect on
the linear perturbations then R ≪ 1 and fNL assumes a
negligible single-field value of fNL ≃ 5=ð12NAÞ ∼ 10−2.
The σ perturbations can come to dominate the linear-order
statistics ðR ≫ 1Þ at later times, but from the form of
Eq. (51a) we can immediately see that this is only possible
for models with σ� ≪ Mpl. Presuming that R does indeed
grow to take a value significantly exceeding unity, one finds
that fNL increases to a positive peak at R ≈ 3 where fNL ≈
0.035Mpl=σ� before settling down to an asymptotic value in
the limit of large R where fNL ¼ −5=4. Planck constraints
on fNL therefore eliminate initial field values in close
proximity to the minimum of this potential. We plot the
dependence of fNL against R in Fig. 3, where we highlight
the fact that fNL is small for small R because the inflaton
perturbations dominate in this regime.

C. Hilltop curvaton

Moving beyond quadratic forms for Uσ or Uϕ will
clearly modify the observational predictions. An interesting
scenario is “hilltop” potentials where σ� lies in a plateau
region of the potential Uσ , such as models where σ is an
axion and Uσ assumes a sinusoidal form. For simplicity we

FIG. 3 (color online). Numerical evolution (solid blue line) of
fNL for the standard double quadratic curvaton model plotted
against R. Parameters used are σ� ¼ 0.01Mpl, ϕ� ¼ 16Mpl and
mϕ ¼ 5mσ such that NA ≈ 60. Our analytic method gives the
dashed black line. Consistent with the analytic predictions, fNL
begins with a small value, before increasing to a positive peak
near to R ≈ 3 with fNL ≈ 2.3 at the peak itself. For larger values
of R the value of fNL reduces towards the limit fNL → −5=4.
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keep Uϕ as a standard quadratic potential. In order to keep
the discussion somewhat generic we define the hilltop form
of Uσ by using the lowest order Taylor expansion which
yields a quadratic term in the simplest of cases. An effective
hilltop potential can therefore be written as Uσ ¼ const −
1
2
m2

σðσ − σ0Þ2 where we take the constant to equal 1
2
m2

σσ
2
0.

Clearly this potential has strange behavior as σ → 0, but
this is not an issue because the field will begin to oscillate
as a fluid much closer to the hilltop.
To determine the predictions, we need to know σB. We

calculate this from the background equations of motion by
presuming the oscillation condition of Kawasaki et al. [32].
We also presume a large mass ratio m2

ϕ ≫ m2
σ in order

to realize the late-rolling condition. The calculation of
σB is placed in the Appendix. The result Eq. (A5) gives
ðσ0 − σBÞ≃ e1=4ðσ0 − σ�Þ for γϕ ¼ 4=3, informing us that
the field does not roll far before it begins to oscillate.
N;ϕϕ=N2

;ϕ follows identically to the standard curvaton
model, but R and N;σσ=N2

;σ are modified. In the hilltop limit
where ðσ0 − σ�Þ ≪ σ0 we find

ffiffiffiffi
R

p ≃ 2rDe1=2

3γDσ
ffiffiffiffiffiffiffi
NA

p Mpl

σ0

σ0 − σ�

σ0
; (52a)

N;σσ

N2
;σ

≃ ð3γDσ − 4ÞrD þ 4 − 6γDσ −
3γDσ
2rD

σ20
ðσ0 − σBÞ2 ; (52b)

and away from the hilltop limit one finds results qualita-
tively similar to those of the standard double quadratic. In
the hilltop limit we see that R will always be small unless
Uσ is a small-field potential with σ0 ≪ Mpl, and the initial
condition on σ� must not be too close to the eternal inflation
point at the apex of the hilltop. Provided that these
conditions are met, then we see that this choice of potential
Uσ has a greater capacity to generate large fNL, with larger
values arising the closer σ� is to the hilltop maximum.

D. Quadratic axion

We now consider the quadratic axion model of Elliston
et al. [15]. We will now demonstrate that our analytic
formalism is capable of describing the numerical behavior
found in Leung et al. [40] for this model. A second aim here
is to investigate the validity of the criterion for the onset of
oscillations that is provided by Kawasaki et al. [32]. We
have singled out this particular prescription because it
appears sensible and has also been shown to give accurate
results previously. The criterion suggests that oscillations
begin on a hypersurface defined by jσ0=σj ¼ μ, where the
authors of Ref. [32] claim that the constant μ is of
order unity, but that observables are independent of its
precise value.
Their work considered only the spectator case. Taking

this limit of our results, and presuming that any modulation
at times tA and tB is sufficiently small, then any explicit

dependence on the x parameters drops out. In this limit we
therefore agree that the value of μ should have no bearing
on the observational predictions. However, as one moves
away from the spectator limit then we anticipate different
behavior. We therefore consider a model that is not a
spectator model, and investigate the consequences of
varying μ.
For the axion-quadratic model the ϕ field follows the

quadratic potential Uϕ ¼ 1
2
m2

ϕϕ
2 and Uσ takes the form

Uσ ¼ Λ4

�
1 − cos

�
2πσ

f

��
; (53)

where 0 ≤ σ ≤ f=2. We take parameters of f ¼ 1,
Λ4¼m2

ϕf
2=ð4π2Þ, ϕ� ¼ 16Mpl and σ� ¼ ðf

2
− 0.001ÞMpl.

We then vary the values of the Γ parameters. These are all
illustrated in Fig. 4 where we see that the analytic method is
providing a good fit to the numerical behavior. This
demonstrates that the numerical results of Leung et al.
[40] are simply explained by considering the relative

FIG. 4 (color online). Plots of fNL for the axion-quadratic
model with parameters as given under Eq. (53). The solid blue
line is the numerical result and the dashed black line is the
analytic result. For the top pane we use μ ¼ 0.6, and the other two
panes use μ ¼ 0.8. The values of the Γ parameters, in units ofmϕ,
are Γϕ ¼ 0.01 and Γσ ¼ 0.1 (top pane), Γϕ ¼ 0.01 and Γσ ¼ 0.01
(middle pane) and Γϕ ¼ 0.1 and Γσ ¼ 0.01 (bottom pane).

GENERAL ANALYTIC PREDICTIONS OF TWO-FIELD … PHYSICAL REVIEW D 89, 103532 (2014)

103532-13



redshifting of the two fluids involved, consistent with the
conclusions of Meyers and Tarrant [41].
In Fig. 5 we show a plot of fNL calculated analytically

for three different values of μ. The fact that the analytic
results are so sensitive to the parameter μ motivates a need
for better analytic methods to describe when a scalar field
begins to oscillate. Our analytic formalism can be used as a
testing ground for such analytic methods because it applies
equally to all methods for defining the hypersurface of
oscillation onset.

E. Modulated reheating of a fluid, by a fluid

Let us now consider a new scenario where the decay of
the ϕ field is modulated by a fluid ρσ. This setup was
described in the text leading to Eq. (40), which combined
with Eq. (38a) gives the linear δN coefficients. In order to
differentiate these we note that since tC is not a uniform
density hypersurface then δrC follows from Eq. (46c). To
differentiate quantities depending on σB we also employ
Eq. (43) where in the present scenario QS ¼ QA ¼ 1 and
rB is negligible. For a general potential Uσ we then find

ffiffiffiffi
R

p
¼ M2

plr
C

3γCσ

ðγDϕ − γCϕÞ
γDϕ

U0
σ
B2

UB
σU0

σ
�
U0

ϕ
�

U�
ϕ

; (54a)

N;ϕϕ

N2
;ϕ

¼ M2
pl

�
U0

ϕ
2

U2
ϕ

−
U00

ϕ

Uϕ

�
�
¼ 2ϵ�ϕ − η�ϕϕ; (54b)

N;σσ

N2
;σ

¼ 3γCσ γ
D
ϕ

γDϕ − γCϕ

�
FC ð1 − rCÞ2

rC
þ rC − 2þ γCϕ

γCσ
ð1 − rCÞ

þ UB
σ

U0
σ
B2rC

ð2U00
σ
B −U00

σ
�Þ
�
; (54c)

where we have not written the N;ϕσ component since we
find that this is negligible. The rewriting of Eq. (54b) is
afforded by the assumption that Uϕ is the only contribution
to the energy density of the Universe. We therefore see that

the only way to obtain fNL larger than Oðϵ�Þ is from the
N;σσ term.
We note that the limit ρσ → 0 does not invalidate the use

of rC, because the function fC can be defined to compen-
sate for this apparently singular behavior. Such details are
automatically accounted for by simply writing all instances
of fC;ϕ or fC;σ in terms of rC and noting that rC is directly
related to the angle that the hypersurface makes in phase
space which is a perfectly regular quantity. A final point
about Eq. (54c) is that it does not lead to a divergence in
fNL for γDϕ ¼ γCϕ because such divergent behavior is
regularized by the prefactor of R2 in Eq. (3d) for fNL.
From these general formulas we can make some more

detailed inferences. A plot of fNL against time will be a step
function with a slow-roll suppressed value before tC where
it will jump in value. The final value depends on the value
of rC. If we choose rC ¼ 0 then there is no modulation and
so there is no step. As we increase the magnitude of rC we
obtain the following behavior:

(i) jrCj ≪ 1

N;σσ

N2
;σ

¼ 3γCσ γ
D
ϕ

γDϕ − γCϕ

�
FC þ UB

σ

U0
σ
B2 ð2U00

σ
B −U00

σ
�Þ
�
1

rC
;

(55)

(ii) rC ¼ 1

N;σσ

N2
;σ
¼ 3γCσ γ

D
ϕ

γDϕ − γCϕ

�
−1þ UB

σ

U0
σ
B2 ð2U00

σ
B−U00

σ
�Þ
�
; (56)

(iii) jrCj ≫ 1

N;σσ

N2
;σ

¼ 3γCσ γ
D
ϕ

γDϕ − γCϕ

�
FC þ 1 −

γCϕ
γCσ

�
rC; (57)

where there is nothing special about rC ¼ 1 but we include
this to illustrate the behavior for intermediate values of rC.
We see that jfNLj≳ 1 is possible for small values of rC

but this is only possible if R is sufficiently large. To obtain
R ≥ 1 for quadratic potentials this requires σ� ≤
rCMpl=ð6

ffiffiffiffiffiffiffi
NA

p
Þ which represents an increasing degree of

fine-tuning in σ� as rC → 0. Alternatively, for large values
of rC it is easy to obtain R ≥ 1 without significant fine-
tuning on σ� and, as expected, the sign of fNL is dependent
on the geometry of the reheating hypersurface. Finally, for
intermediate values of rC we find small but non-negligible
results such as the case with rC ¼ 1 and Uσ as a quadratic
potential in which case we obtain fNL ¼ −5.

VII. CONCLUSIONS

This paper provides an analytic formalism for showing
how perturbative reheating modifies the predictions of

FIG. 5 (color online). Plot of the analytic evolution of fNL for
the axion-quadratic model with parameters as given under
Eq. (53). The decay rates are Γϕ ¼ 0.01 and Γσ ¼ 0.01. The
red, black and blue lines correspond to respectively μ ¼ 0.5, μ ¼
1 and μ ¼ 2, showing that the analytic estimates depend quite
sensitively on the exact value of μ. This demonstrates a need for a
better analytic condition for the onset of oscillations.
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two-field slow-roll inflation. This is therefore an extension
of the inflationary work carried out by Vernizzi and Wands
[1]. Our calculations are made possible by replacing the
oscillating fields with effective fluids.
The hypersurfaces where the two fields begin to oscillate

are arbitrary, as are the hypersurfaces where the two fields
reheat. This allows us to include all of the effects of
modulation throughout. In addition, we do not require that
the fields reheat in any particular order. Despite this
generality, the linear-order contribution to ζ in Eq. (34)
is reasonably simple. This linear-order result is the prin-
ciple result of this paper, since all higher order results
follow by differentiation. We provide the ingredients
needed to compute the second order results, which may
be assembled to suit a given problem. Our explicit results
are specific to the four phases illustrated in Fig. 1 which
reduces to a large range of existing scenarios in different
limits. The calculations that define our formalism are more
general, however, and can easily be adapted to models that
do not fit this four-phase picture, such as the inflating
curvaton.
There is a clear physical motivation to consider modu-

lation of the reheating hypersurfaces, since this allows us to
fully account for the physical effects of modulated reheat-
ing or an inhomogeneous end of inflation. The main
motivation to allow the fields to begin oscillations on an
arbitrary hypersurface is simply that we do not currently
have a robust prescription for what this hypersurface should
be. Earlier work by Kawasaki et al. [32] demonstrated that
this can be different from a surface of uniform density and
they provided a simple prescription that works well for
spectator models—where one field dominates the energy
density. We then test this prescription outside of the
spectator regime and find that it produces spurious effects
on the predictions for observables. Further work is there-
fore required to discern the analytic conditions that define
the onset of oscillations. Since our formalism is agnostic
about such analytic conditions, it provides a suitable test
bed for studying different suggestions.
We use our formalism to discuss predictions for a model

where reheating is modulated by a fluid rather than a field.
The conclusions show that a large value of fNL is easily
produced if the hypersurface has the correct geometry. This
is consistent with the results of Elliston et al. [13] where it
was shown that the geometry of the reheating hypersurface
is significantly constrained in the light of Planck bispec-
trum data. We therefore expect that this scenario may be
similarly constrained.
Our work has important consequences for earlier

numerical work. In particular, Leung et al. [40] discussed
the evolution of fNL as one varies the Γ parameters of
perturbative reheating. Like Meyers and Tarrant [41], our
work demonstrates that these numerical findings can be
neatly explained by considering the relative redshifting of
the two fluids involved.
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APPENDIX: BACKGROUND DYNAMICS OF
SPECTATOR MODELS

The spectator assumption ensures that the dominant ϕ
field evolves independently of the σ-component dynamics.
Choosing tA by the condition of Kawasaki et al. [32] as
given in Eq. (17a), we find ϕA ≈

ffiffiffi
2

p
Mpl. Integrating the

background equation of motion for the ϕ field then yields
ϕ�≈2Mpl

ffiffiffiffiffiffiffi
NA

p
. We therefore find ρAϕ¼1

2
m2

ϕϕ
A2¼M2

plm
2
ϕ.

This allows us to find ρB ≈ ρBϕ ¼ M2
plm

2
ϕe

−3γCϕN
B

. We can
also apply Eq. (17a) to find the onset of σ oscillations which
provides the additional constraint ρBϕ ¼ 3M2

plU
0
σ
B=ðcBσBÞ.

We note that we find it necessary to modify Eq. (17a) in the
vicinity of a hilltop at σ0 such that σ-field oscillations begin
when jðσ − σ0Þ0=ðσ − σ0Þj equals unity rather than jσ0=σj.
Combining these relations for ρBϕ we therefore find an
important constraint on the parameters as

e3γ
C
ϕN

B ¼ cBσBm2
ϕ

3U0
σ
B ;

cB

3
m2

ϕ ≥
U0

σ
B

σB
; (A1)

where the inequality follows since NB ≥ 1. A large
hierarchy must exist between the two sides of this inequal-
ity if NB is to take any value greater than one e-fold.
Let us now consider the dynamics of the σ field during

phases A and B. The background equations of motion are
respectively given in Eqs. (20) and (22). These can be
combined, integrated and simplified using Eq. (A1) to yield

Z
B

�

dσ
U0

σ
≈ −

1

2m2
ϕ

�
lnð4NAÞ þ 2e3γ

C
ϕN

B

cBγCϕ

�
: (A2)

In deriving this result we have neglected the two boundary
terms on the right-hand side that are evaluated at tA. Such
terms only exist as an artifact of the imperfect matching
between the two phases and we find that they are
sufficiently small that they may be neglected. The two
terms on the right-hand side of Eq. (A2) are sourced
respectively by the dynamics during phases A and B. Since
we require NA ≈ 60 to be consistent with observation, we
find that the first term dominates for NB ≲ 1 for reasonable
equations of state and the second term dominates other-
wise. For the hilltop model considered in Sec. VI C we
specialize to the case where there is a significant mass
hierarchy such that this second term dominates. We can
then use Eq. (A1) to write
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Z
B

�

dσ
U0

σ
≈ −

σB

3γCϕU
0
σ
B : (A3)

For a quadratic potential Uσ ¼ 1
2
m2

σσ
2 one then finds

ln

�
σB

σ�

�
¼ −

1

3γCϕ
; (A4)

or for an inverted quadratic potential Uσ ¼ const −
1
2
m2

σðσ − σ0Þ2 one finds

ln

�
σ0 − σB

σ0 − σ�

�
¼ 1

3γCϕ
: (A5)
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