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We extend previous classifications of inflationary models by means of their behavior at largeN, whereN
is the number of e-foldings. In addition to the perturbative 1=N case, whose slow-roll parameters fall off as
powers of 1=N, we introduce the constant, nonperturbative and logarithmic classes. This covers the large
majority of inflationary models. Furthermore, we calculate the running of the spectral tilt for all these
classes. Remarkably, we find that the tilt’s runnings essentially cluster around the per-mil level. We
comment on the implications for future experiments.
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I. INTRODUCTION

After measuring the cosmic microwave background
(CMB) with unprecedented precision, Planck has presented
us with a pristine image of the early Universe. This has
resulted in strong constraints on the inflationary phase. In
particular, the spectral index has been measured to be [1]

ns ¼ 0.9603� 0.0073; (1)

although subsequent analyses have argued for a slightly
higher value [2]. Similarly, the running of the spectral index
has been constrained with some precision:

αs ¼ −0.0134� 0.0090: (2)

On the other hand, the BICEP2 Collaboration [3] has
recently announced the detection of the primordial gravi-
tational wave background produced during inflation, with
an amplitude responsible for a tensor-to-scalar ratio

r ¼ 0.20þ0.07−0.05 ; (3)

with r ¼ 0 ruled out at more than 5σ. This bound is in slight
tension with the reported Planck upper bound for a six-
parameter ΛCDMmodel, r < 0.11 at a 95% C.L., although
foreground subtraction could decrease to some extent the
reported value. If confirmed, such detection would lead to
important consequences. In particular, many inflationary
scenarios are ruled out by these bounds. Indeed, Planck and
BICEP2 together seem to prefer large-field models of
inflation [4,5], with predictions different from the plateau
potentials of Starobinsky-like models [6], preferred before
BICEP2 results.

In this paper, we aim to understand the values quoted
above in terms of the number of e-foldings N between the
horizon exit of the quantum modes that have resulted in the
CMB anisotropies and the end of inflation. As will be
discussed in more detail below, this approach allows for a
classification of different inflationary models in terms of
universality classes with distinct large-N behavior. It builds
on preceding works [7,8], where the deviation from a
Harrison-Zeldovich scale-invariant spectrum with ns ¼ 1

was attributed to 1=N effects. We will extend this with
different leading terms in the 1=N expansion. Moreover, we
will also investigate the running of the spectral index as a
function of N. The running is the second-order term in the
expansion of the scale dependence of the power spectrum,
and hence, it is natural to consider it in this framework as
well. Finally, the values of this running are considered for a
wide range of models and shown to cluster in a very limited
range around a central1 value of log10 jαsj ¼ −3.2.
The outline of the paper is as follows: We introduce the

N formalism in Sec. II, where all slow-roll parameters are
expressed in terms of N. Section III contains the different
universality classes of large-N behavior. The running of the
spectral index is discussed in Sec. IV. Finally, we conclude
in Sec. V. In the Appendix, we consider also models of k
inflation as a separate class of its own.

II. THE N FORMALISM

In this section, we will express the time evolution of all
cosmological observables through their N dependence. In
particular, we will demonstrate that it suffices to specify the
equation-of-state parameter ϵðNÞ to fully determine the
inflationary phase. We will refer to this approach as the N
formalism. It can be seen as the background complement to
the δN formalism for cosmological perturbations [6,9–11].
Moreover, in the next section we will demonstrate its use in
providing a perturbative expansion for inflationary models.
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The evolution of a general scalar field is described by the
Hamiltonian and momentum constraints

3H2ðϕÞ ¼ 2H0ðϕÞ2 þ VðϕÞ; _ϕ ¼ −2H0ðϕÞ (4)

plus the evolution equations

_H ¼ −2H0ðϕÞ2; ϕ̈þ 3HðϕÞ _ϕþ V 0ðϕÞ ¼ 0; (5)

where dots denote derivatives with respect to cosmic time
and primes with respect to the field ϕ. Throughout this
paper, we set κ2 ¼ 8πG≡ 1. The only quantity needed to
specify the whole evolution is therefore the Hubble
function HðϕÞ. The Hamilton-Jacobi formalism allows
one to compute the evolution in terms of a new time
variable, the scalar field ϕ. In general, these equations are
too difficult to solve without specifying a potential.
However, we can characterize the whole evolution via
the equation-of-state parameter

ϵ ¼ − _H
H2

¼ 3

2
ð1þ wÞ (6)

and its derivatives, the so-called Hubble slow-roll
parameters:

ϵ ¼ 2

�
H0ðϕÞ
HðϕÞ

�
2

¼
_ϕ2

2H2
;

δ ¼ 2

�
H00ðϕÞ
HðϕÞ

�
¼ − ϕ̈

H _ϕ
;

ξ ¼ 4

�
H0ðϕÞH000ðϕ

H2ðϕÞ
�

¼ ϕ
…

H2 _ϕ
− δ2: (7)

In the slow-roll approximation, one is assuming
H2ðϕÞ ∝ VðϕÞ. Therefore, the Hubble slow-roll parameters
are related to the slow-roll parameters ϵV; ηV;… defined in
terms of derivatives of the potential by replacing H2ðϕÞ
with VðϕÞ in the above.
The two sets of slow-roll parameters are equivalent in the

slow-roll approximation. However, the Hubble slow-roll
parameters offer a number of advantages for our purposes.
First of all, they are more accurate, since they do not ignore
the scalar kinetic term in Eq. (4). Moreover, they can be
derived from the equation-of-state parameter:

HðNÞ ¼ H0 exp
Z

ϵðNÞdN;

δðNÞ ¼ ϵðNÞ þ 1

2

ϵ0

ϵ
ðNÞ;

ξðNÞ ¼ 3

2
ϵ0ðNÞ þ ϵ2ðNÞ þ 1

2

�
ϵ0

ϵ

�0
ðNÞ; (8)

where primes denote differentiation with respect to N, the
number of e-folds:

N ¼ ln
aend
aCMB

¼
Z

tend

tCMB

Hdt ¼
Z

ϕend

ϕCMB

dϕffiffiffiffiffi
2ϵ

p : (9)

We can thus describe the whole evolution in a new time unit
related to the scale factor, and not directly to cosmic time.
The field ϕ therefore no longer plays the role of the clock;
instead, time is measured by the logarithmic growth of the
scale factor; see e.g. also Ref. [12]. We can also write the
conformal time τ as an integral:

−τH ¼ 1þ e−
R

dNð1−ϵÞ
Z

dNϵðNÞe
R

dNð1−ϵÞ

≃ 1

1 − ϵðNÞ ; (10)

where H ¼ aH, and the last expression is valid only in the
slow-roll approximation, where ϵ ≪ 1.
Note, therefore, that the equation-of-state parameter

ϵðNÞ is all we need to specify the dynamics. In particular,
this parameter determines the spectra of metric perturba-
tions, both scalar and tensor:

PsðkÞ ¼
H2

8π2ϵ
; PtðkÞ ¼

2H2

π2
: (11)

The scale dependence of the power spectra can be
expanded as

lnPsðkÞ ¼ lnPsðk0Þ þ ðns − 1Þ ln k
k0

þ 1

2
αsln2

k
k0

;

lnPtðkÞ ¼ lnPsðk0Þ þ nt ln
k
k0

þ 1

2
αtln2

k
k0

: (12)

This translates into the following definitions for the
scale-dependence coefficients in terms of ϵðNÞ:

ns − 1 ¼ −2ϵðNÞ þ ϵ0

ϵ
ðNÞ; nt ¼ −2ϵðNÞ;

αs ¼ 2ϵ0 −
�
ϵ0

ϵ

�0
; αt ¼ 2ϵ0; (13)

which can be computed straightforwardly in the N for-
malism. Note that the only difference between the scalar
and tensor spectral indices is the term ϵ0=ϵ. In models where
ϵ is constant in N, they are identical, and this can be used to
constrain the amplitude of the tensor contribution, while in
general ϵ0=ϵ is not constant. Finally,

r ¼ 16ϵðNÞ (14)

denotes the ratio between the scalar and tensor power
spectra.
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III. UNIVERSALITY CLASSES

In this section, we will discuss the N dependence of the
equation-of-state parameter ϵ of a number of inflationary
models. In particular, we will classify such models accord-
ing to the leading behavior at large values of N. Although
nontrivial to determine observationally, typical values forN
range around 50 and 60. Furthermore, this number does not
constitute an upper bound on N but only corresponds to the
portion of the inflationary trajectory that we have obser-
vational access to at the moment via the CMB. The total
number of e-foldings could thus be much larger. Barring
the apparent hints of power loss at large angular scales, we
have no reason to assume that N ¼ 50–60 is by any means
special, and hence it seems reasonable to assume that
inflation has taken place over more than the observed
number of e-foldings.
Moreover, the recently measured value of the tensor-to-

scalar ratio by the BICEP2 Collaboration, r ∼ 0.2, suggests
that inflation took place at high-energy scales, close to
1016 GeV, and thus the number of e-folds of inflation has a
robust lower limit of N ≳ 50, which generically indicates
large N values for cosmological quantities that crossed the
Hubble scale during inflation and reenter today. It therefore
seems natural to consider a perturbative expansion of
inflationary observables in terms of 1=N. In the case of
a polynomial expansion, as was analyzed in Refs. [7,8], one
can argue that only the leading contributions are relevant.1

Subleading corrections will be very difficult to measure
observationally. Moreover, strictly within the slow-roll
approximation, these are not unambiguously defined for
the following reasons2: First of all, the approximation itself
is precisely obtained by neglecting this type of subleading
terms and equating the Hubble parameter and the scalar
potential. Moreover, N can only be defined up to order-1
errors even within the slow-roll approximation. Therefore,
any subleading coefficients of a polynomial expansion of
the slow-roll result are physically meaningless; these can
only be obtained by performing a full Hamilton-Jacobi
analysis.
The large-N limit therefore seems to be a powerful

discriminant between different models. We will introduce a
number of new classes of models, where each class has a
specific 1=N dependence. Physically different models in
the same class will thus give rise to the same large-N
behavior, and they will generically agree on their cosmo-
logical predictions.3 The reason for this universality
between different models is that the large-N limit only

probes a limited region of the inflationary potential; for
instance, for models where inflation takes place on a
plateau, the details of the valley are washed out in this
limit. Similarly, for chaotic-like inflationary models with
polynomial potentials, the large-N limit only depends on
the highest power in the inflaton field.
Our discussion extends the aforementioned classifica-

tion, where only a leading 1=Np behavior for ϵ was
considered, which we will refer to as the perturbative
class. In addition to this possibility, we also introduce the
constant, nonperturbative and logarithmic classes. For
each of these, we will give the (leading-order approxima-
tion to) the spectral tilt, the tensor-to-scalar ratio, and the
running. Moreover, for each case, examples of inflationary
models and (when possible) their exact expressions are
provided. We also assess the accuracy of the leading 1=N
approximation.

A. Constant class

The constant class is characterized by a constant,
N-independent equation-of-state parameter

ϵðNÞ ¼ ϵ0: (15)

The spectral index, tensor ratio and scalar running are
given by

ns ¼ 1 − 2ϵ0; r ¼ 16ϵ0; αs ¼ 0: (16)

An example of this class is power-law inflation, with an
exponential scalar potential:

V ¼ V0eαϕ: (17)

Although this model does not have a scenario for inflation
to end by itself, one can study its predictions during the
inflationary phase. These give rise to an exactly constant
equation of state with ϵ0 ¼ 1

2
α2. This class is ruled out,

since in fixing the constant to agree with the scalar spectral
index ns ¼ 0.96, one finds that r ¼ 0.32, which exceeds
the upper limit set by Planck. This is illustrated by the
upper line in Fig. 1.

B. Perturbative class

This class is characterized by a perturbative equation-of-
state parameter

ϵðNÞ ¼ ϵp
Np ; (18)

with ϵp constant. We will assume that p ≥ 1, as we do not
know any viable model with p < 1. This leads to the
following observables for p ¼ 1:

1In particular, this class was analyzed in terms of the Hubble
slow-roll parameters by Ref. [7], while Ref. [8] employs the slow-
roll parameters in terms of the scalar potential. In this paper we
will follow the former approach.

2We thank Andrei Linde for an interesting discussion on this
issue.

3See Ref. [13] for a similar classification from a holographic
viewpoint.
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ns ¼ 1 − 2ϵ1 þ 1

N
; r ¼ 16ϵ1

N
; αs ¼ − 2ϵ1 þ 1

N2
;

(19)

while p > 1 gives rise to a qualitatively different behavior:

ns ¼ 1 − p
N
; r ¼ 16ϵp

Np ; αs ¼ − p
N2

: (20)

An attractive feature of these universality classes is that the
1=N term provides a natural explanation for the percent
deviation from scale invariance (ns ≃ 0.96). The coeffi-
cients in this expansion, which are ϵ1 or p, respectively, are
therefore of order 1, giving a natural perturbative expan-
sion. Examples of corresponding inflationary models are as
follows:
(1) p ¼ 1: Chaotic inflation [14] with

V ¼ M4

�
ϕ

μ

�
n

has an equation-of-state parameter given by

ϵ ¼
1
4
n

N þ 1
4
n
; (21)

which is exact in the slow-roll approximation (with
inflation ending at ϵ ¼ 1). This set of models is almost

ruled out, since in fixing the constant to agree with the
scalar spectral index ns ¼ 0.96, one finds that the
models are just outside the 2σ contour allowed by
Planck; see the second-highest line in Fig. 3.

(2) 1 < p < 2: Another type of model, which we will
refer to as “inverse hilltop,” is characterized by a
potential

V ¼ V0

�
1 −

�
μ

ϕ

�
n
�
; (22)

where n is a positive power. It leads to an equation of
state [4]

ϵðNÞ ¼
1
2
n2=μ2

ðNnðnþ 2Þ=μ2Þ2ðnþ1Þ
nþ2

(23)

at lowest order in 1=N. Different positive values of n
interpolate from p ¼ 1 to p ¼ 2. Note that this model,
for n ≥ 4, gets a spectral index close to ns ¼ 0.96,
well within the 2σ contour of Planck; see the lower
line in Fig. 2.

(3) p ¼ 2: The Whitt potential corresponding to the
Starobinsky model [6,15],

V ¼ V0ð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕÞ2; (24)

is characterized by an equation-of-state parameter

ϵðNÞ ¼ 3

4N2
(25)
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FIG. 1 (color online). The plane ðns; log10 rÞ with the different
perturbative models: chaotic, inverse hilltop and hilltop (both
with μ ¼ 1), as well as the constant model. The colored bars
correspond to the range of N ∈ ½50; 60�. The solid lines are exact,
while the dashed lines are the leading-N contributions. Note that
these essentially agree inside the Planck 2013 region. Also shown
for reference is the model of Starobinsky.
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FIG. 2 (color online). The plane ðns; log10 rÞ with the different
nonperturbative models (new and natural), as well as the
logarithmic models (moduli and Kähler). The solid lines corre-
spond to the exact expressions, while the dashed lines are the
leading 1=N contributions. Note that these differ significantly
even inside the Planck 2013 region.
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at lowest order in 1=N. This model is not ruled out
but precisely agrees with the scalar spectral index
ns ¼ 0.96, and one finds that the model is well inside
the 2σ contour allowed by Planck.
An interesting generalization in the same universality
class is provided by T models of inflation with a
potential [16]

V ¼ V0 tanh2nðϕ=
ffiffiffiffiffiffi
6α

p
Þ;

with α arbitrary, which corresponds to an equation-of-
state parameter

ϵðNÞ ¼ 3αn

4nN2 þ 2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αð3αþ 4n2Þ

p
þ 3αn

: (26)

This is an exact expression within the slow-roll
approximation, with inflation ending at ϵ ¼ 1. Note
that this model gets a spectral index ns ¼ 0.96 for
n ¼ 2, almost independent of α. As we vary the
parameter α from 0.1 to 10, we move up in the plane
ðns; rÞ, as can be seen by the dot-dashed lines in Fig. 3.

(4) p > 2: In contrast to the previous models, hilltop
inflation takes place near the origin [17]. Its scalar
potential is

V ¼ V0

�
1 −

�
ϕ

μ

�
n
�
; (27)

with n > 2. It leads to an equation of state

ϵðNÞ ¼
1
2
n2=μ2

ðNnðn − 2Þ=μ2Þ2n−2n−2
: (28)

Different values of n therefore fill out the range p > 2.
For n ≥ 4, this model is well within the Planck 2σ
contour.

We have illustrated the accuracy of the 1=N expansion in
Fig. 2, where we plot the various perturbative models
(chaotic, hilltop and inverse hilltop inflation) as a function
of their parameter (the leading power of the potential) in
the plane (ns, log10r). It is clear that, for models within
the Planck 2013 2σ region, the leading 1=N contribution
correctly describes the model.

C. Nonperturbative class

This class is characterized by an equation-of-state
parameter that asymptotes to

ϵðNÞ ¼ ϵ0e−2cN; (29)

which is nonperturbative around 1=N → 0. The resulting
spectral index, tensor ratio and scalar running at lowest
order are given by

ns ¼ 1 − 2c; αs ¼ −4cϵ0e−2cN; r ¼ 16ϵ0e−2cN:
(30)

In contrast to the previous class, the nonperturbative class
has a constant shift of the spectral index. The corresponding
parameter thus has to be percent level to account for the
observed deviation from the spectral index. This spells
somewhat of a problem inperturbation theory, as the
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FIG. 3 (color online). The planes ðns; log10 rÞ and [ns,
log10ð−αsÞ] with all the models discussed in the text. The ranges
of values correspond to the interval N ∈ ½50; 60�. The solid blue
(black) lines indicate the Planck (BICEP2) constraints at 1σ and
2σ. The dashed line corresponds to a nonminimally coupled
chaotic λϕ4 model, ξ ¼ 0 → 10. The dot-dashed line corresponds
to T models in a range of values of α ¼ 0.1 → 10.
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effective parameter in which we are expanding ϵ is not 1=N
but 1=ðcNÞ. While the former is naturally small, the latter is
not necessarily. We therefore expect subleading terms to
have some relevance in this region of parameter space.
Indeed, this will be confirmed by an analysis of the
following two examples.
For the new inflation model [18] with

V ¼ V0

�
1 − ϕ2

μ2

�
2

; (31)

where c ¼ 4=μ2 and ϵ0 ¼ 2cð1 − ffiffiffi
c

p Þ2, the above expres-
sion for ϵ is exact and not a large-N approximation. This
model is almost ruled out, since in fixing the constant c to
agree with the scalar spectral index ns ¼ 0.96, one finds
that the models are just inside the 2σ contour allowed by
Planck; see Fig. 2.
Another example of this class is natural inflation [19],

with

V ¼ V0

�
1þ cos

ϕ

μ

�
: (32)

The equation-of-state parameter can be computed exactly as

ϵ ¼ c
e2cN − 1

; (33)

with c ¼ 1=ð2μ2Þ. This model is on the verge of being ruled
out, since in fixing the constant to agree with the scalar
spectral index ns ¼ 0.96, one finds that the model is just
inside the 2σ contour allowed by Planck; see Fig. 2. It is
different from that of new inflation, since αs ¼ −cr=4 is not
satisfied in this case ∀ N, since ðϵ 0=ϵÞ0 ≠ 0.
We show in Fig. 2 the validity of the 1=N expansion

for the various nonperturbative models (new and natural
inflation) as a function of their parameter (the vacuum
expectation value of the field) in the plane (ns, log10r). It is
clear that, for models within the Planck 2013 2σ region, the
leading 1=N contribution gives a relatively poor description
of the model dependence. In these models, the full non-
perturbative expression is needed, and we cannot rely on
the leading 1=N contribution.

D. Logarithmic class

This class is characterized by an equation-of-state
parameter with logarithmic terms:

ϵðNÞ ¼ ϵp
lnqN
Np : (34)

We will mainly be interested in the case with p ¼ 2. Then
the leading expressions for the cosmological observables
are

ns ¼ 1 − 2

N
; αs ¼ − 2

N2
; r ¼ 16ϵp

lnqN
N2

: (35)

Remarkably, the logarithmic dependence drops out of the
scalar power spectrum in the large-N limit. The only
remnant can be found in the ratio of the tensor-to-
scalar power.
The Kähler moduli inflation [20] class, in particular, is

characterized by a potential

V ¼ V0ð1 − αϕ4=3e−βϕ4=3Þ; (36)

which corresponds to an equation-of-state parameter

ϵðNÞ ¼ c

2N2
ffiffiffiffiffiffiffiffiffi
lnN

p ; (37)

with c ¼ 9=16β3=2. A toy version of this model has the
scalar potential [4]

V ¼ V0ð1 − αϕe−ϕÞ: (38)

Its inflationary trajectory can be characterized by the
equation-of-state parameter

ϵðNÞ ¼ ln2N
2N2

: (39)

Note that both models predict a spectral index ns ¼ 0.96
and a negligible tensor-to-scalar ratio, much smaller even
than that of the Starobinsky model, well within the 2σ
contour of Planck; see Fig. 2.

IV. RUNNING OF THE SPECTRAL TILT

In this section, we will take a somewhat more phenom-
enological approach to study the possible values of the
running αs of the spectral index, independent of the N
formalism and universality classes. In the preceding sec-
tions, we studied the parameter dependence of the ðns; rÞ
values for different models. We will now fix these param-
eters to their best values to agree with the Planck and
BICEP2 data on ðns; rÞ, and subsequently calculate the
resulting running αs within that model.
As we have given all relevant expressions in the previous

section, we will only quote the results here. First, in Fig. 3(a),
the spectral index and the tensor-to-scalar ratio are plotted for
all models that we have discussed. In case these models have
free parameters, we have fixed these in order to comply with
the Planck data. Moreover, we have variedN from 50 to 60 to
give an indication of the N dependence of these models.
Second, in Fig. 3(b), we show the spectral index and its
running for the same parameter values.
While the ratio of tensor to scalar amplitudes in all

models discussed above, which fall into various universal-
ity classes, can vary significantly over several orders of
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magnitude [see Fig. 3(a)], it is surprising that the actual
running of the scalar spectral index ns does not, as shown in
Fig. 3(b). All models seem to cluster around

αs ≃−0.001:
PRISM [21,22] is possibly capable of detecting the running
of such models, but unfortunately Planck has not enough
resolution.
One could try to understand this clustering from the fact

that we are only considering models that fall within the
Planck bounds for ranges of e-folds from 50 to 60, i.e.
ΔN ∼ 10, while the variation of the spectral index in all
these models is never larger than their deviation from
Harrison-Zel’dovich, i.e. Δns ∼ 0.01. Therefore, it is not
surprising that all of these models seem to fall in the same
ballpark, irrespective of which universality class they
belong to. This is a purely phenomenological observation.
For instance, if we had considered supergravity hybrid
inflation, which has a large variation of the spectral index
over CMB scales, from ns > 1 on horizon scales down to
ns < 0.8 on small scales, then we would have predicted a
dns=d ln k ∼ 0.1, orders of magnitude larger. However,
those models seem to be ruled out by Planck already,
due to their scalar spectral index alone, and therefore it is
the remaining models which have such a small running.
In the not so far future, with larger a range of scale

coverage—e.g., with the measurement of the spectral index
of linear fluctuations in neutral hydrogen clouds emitting in
the 21 cm line at and after reionization—by probes like the
Square Kilometer Array [23], we may be able to bring
down the precision on αs to the level of a few parts in
10,000, which could allow us to differentiate among these
models. Otherwise, we will not have a significant lever arm
to tell them apart.

V. DISCUSSION

In this paper, we have introduced the N formalism,
which can be thought of as the background complement to
the δN formalism, and where all inflationary observables
are expressed in terms of the number of e-foldings. This is
particularly useful given the generic requirement that N
should exceed 50 and suggests a large-N expansion.
We have demonstrated that the majority of models allow

for such an expansion in 1=N; the leading terms for ns are
either constant, perturbative, nonperturbative or logarith-
mic. A quick overview of the properties of these classes
can be found in Table I. Moreover, we have shown that
subleading terms are generically irrelevant (in addition to
ambiguously defined): the leading approximation at large
N agrees excellently with the exact expression. The only
exceptions to this behavior are the nonperturbative exam-
ples of the natural and quadratic hilltop models. In these
models, the effective expansion is in terms of cN, which

does not allow for a leading approximation when c is
sufficiently small.
We should also mention that there are inflationary

models that do not allow for a large-N expansion. The
chief example is supergravity hybrid inflation [24], with a
potential

VðϕÞ ¼ μ4
�
1þ κ2

8π2
ln

ϕ

ϕc
þ ϕ4

8

�
: (40)

The resulting equation-of-state parameter reads

ϵ ¼ κ3

16π3 sin κN
π ð1þ cos κNπ Þ

: (41)

Due to the trigonometric functions, this parameter does not
have a definite large-N behavior and hence defies the
proposed classification.
Building on the N dependence of these universality

classes, we have investigated the values of the running for
the different inflationary models. Using the Planck con-
straints for the spectral index as input, it turns out that
essentially all models give a similar prediction for the
running of ns as a function of scale, centered around
log10 jαsj ¼ −3.2 and with a range of only half a decade.
This remarkable feature seems to have gone unnoticed so
far. As we have pointed out, one can gain a first under-
standing of the limited range of αs from the preference of
Planck for inflationary models with correct spectral indices
for both N ¼ 50 as well as N ¼ 60.
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TABLE I. A sketch of the various classes and their correspond-
ing asymptotic potentials and equations of state at large N. More
details can be found in Sec. III.

Class VðϕÞ ϵðNÞ
Constant eϕ constant
Perturbative p ¼ 1 ϕn with n > 0 1=N
Perturbative 1 < p < 2 1 − ϕn with n < 0 1=Np

Perturbative p ¼ 2 1 − e−ϕ 1=N2

Perturbative p > 2 1 − ϕn with n > 0 1=Np

Nonperturbative 1 − ϕ2 e−N
Logarithmic 1 − ϕe−ϕ lnðNÞ=N
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Note added.—Recently, the BICEP2 Collaboration pre-
sented their groundbreaking results, and we had to adapt to
the situation, changing slightly our perspective, without
modifying our conclusions. In particular, a high-scale
model of inflation makes the large-N expansion more
plausible, since a large reheating temperature imposes a
robust lower limit on the number of e-folds. On the other
hand, it shifts the attention from Starobinsky-like models
to chaotic-type models of inflation. But most importantly,
it imposes very stringent constraints on a large array of
models that fall under the various universality classes, as
can be appreciated in the new Fig. 3.

APPENDIX: k INFLATION CLASS

This class is characterized by both an equation-of-state
parameter ϵ and a speed of sound c2s ¼ ϵρ=ð3Xρ;XÞ differ-
ent from 1 with X ¼ 1=2ð∂ϕÞ2. The amplitude of the scalar
power spectrum changes, since it arises from a curvature
fluctuation, v ¼ zζ, satisfying a new mode equation

v00k þ
�
c2sk2 − z00

z

�
vk ¼ 0; (A1)

which gives

PsðkÞ ¼
H2

8π2csϵ
; (A2)

while the tensor spectrum does not change. Therefore, the
spectral indices, tensor ratio and scalar running are given by

ns − 1 ¼ −2ϵþ ðcsϵÞ0
csϵ

; (A3)

nt ¼ −2ϵ; (A4)

d ln ns
d ln k

¼ 2ϵ0 −
�ðcsϵÞ0

csϵ

�0
; (A5)

r ¼ 16csϵ ¼ −8csng: (A6)

What is new in this model is a possibly large non-
Gaussianity, ζ ¼ ζL − 3=5fNLζ

2
L, which contributes

mostly to the equilateral three-point correlation function
of fluctuations in the CMB. The present Planck data
constrain feqNL to satisfy

feqNL ¼ 35

108

�
1

c2s
− 1

�
h33 ⇒ csi0.1: (A7)

We can combine these results with any of the previous
models and find that, at most, we can reduce the tensor
contribution by 1 order of magnitude, but we should not
expect a very big change in the value of the spectral indices.
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