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We use a general relativistic approach to investigate the effects of weak cosmological magnetic fields
on linear rotational perturbations during the radiation and dust epochs of the Universe. This includes
ordinary kinematic vorticity, as well as vortexlike inhomogeneities in the density distribution of the
matter. Our study confirms that magnetism sources both types of perturbations and that its presence helps
cosmic rotation to survive longer. In agreement with previous Newtonian studies, we find that during the
dust era vorticity decays slower than in nonmagnetized cosmologies. The relativistic nature of the treatment
means that we can also investigate the epoch prior to equipartition. There, the magnetic effect is more
pronounced, since it helps both of the above rotational distortions to maintain constant magnitude
throughout the radiation era. Overall, magnetized universes not only generate vorticity but also provide a
much better environment for the survival of rotational perturbations, than their magnetic-free counterparts.
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I. INTRODUCTION

Rotation is a common phenomenon in the Universe, as
most astrophysical bodies rotate. Over the years, this has
led a number of authors to raise the question of global
rotation—whether or not, in other words, the whole cosmos
rotates as well (see Ref. [1] for a representative though
incomplete list). After all, general relativity allows for
rotating spacetimes, with Godel’s solution being perhaps
the most celebrated and inspirational example [2,3].
Although we should not expect a definite answer to the
question of cosmic rotation any time soon, there has been
speculation as to whether certain anisotropic features of the
cosmic microwave background (CMB) could be explained
by small amounts of large-scale vorticity [4]. This brings
to the fore the next question, which is finding physical
mechanisms that could generate rotation on cosmological
scales. Perturbation theory can provide some answers. It has
been known, in particular, that there is no vorticity gen-
eration at the linear perturbative level if the cosmic medium
remains ideal.1 In that case, one needs to go to the nonlinear
stage in order to induce rotational distortions [6]. Viscosity,
on the other hand, can act as a source of vorticity at the
linear level, and the same is also true for magnetic fields.
Viscous effects can also change the standard evolution of
rotational distortions in perturbed Friedmann-Robertson-
Walker (FRW) cosmologies [7–9]. This happens because
“imperfections” in the equation of state of the variousmatter

fields that fill the Universe lead to forces which can source
vorticity and affect its linear evolution as well. Neutrino
vorticities, in particular, were found to remain constant
during the radiation era on superhorizon scales [8].
Magnetic fields are also quite ubiquitous in the Universe,

and their presence has been repeatedly verified on all but
the largest (cosmological) scales [10]. As with viscosity, it
is the generic anisotropy of the B field that generates
vorticity [11]. More specifically, to linear order, it is the
tension component of the Lorentz force which triggers
rotational perturbations. It has been shown that such
distortions can survive on small scales (below the Silk
damping threshold) in the photon-baryon plasma [12]. This
could lead to potentially observable signatures in the CMB,
a possibility that has attracted considerable interest and
investigation (e.g. see Ref. [13]). Here we will focus on the
magnetic implications for preexisting vorticity rather than
the role of the field as a source of rotational perturbations.
Employing a Newtonian analysis, it has been shown that
magnetic fields can help vorticity to survive longer by
slowing down the standard decay rate of linear rotational
distortions associated with perfect-fluid FRW cosmologies
[9]. An analogous magnetic effect on linear vector (vortex-
like) density inhomogeneities has also been noted in
relativistic, dust-dominated Friedmann models [14].
Overall, it appears that magnetized cosmologies could
contain more residual rotation than their nonmagnetized
counterparts. The aim of the present work is to investigate
further this possibility by extending the previous studies
into the fully relativistic regime.

1This does not generally apply to “tilted” cosmological
models, where the observers have a peculiar velocity (a “tilt”
angle) relative to the reference frame (e.g. see Ref. [5]).
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We begin with an introduction to the kinematics of
rotating observers and a brief reference to basic aspects of
relativistic magnetohydrodynamic (MHD) theory. Our next
step is to consider a nonmagnetized FRW universe filled
with a highly conductive perfect fluid, which implies that
we will be working within the ideal MHD approximation.
Perturbing this background, we allow for the presence of a
weak magnetic field and then examine how it affects the
linear rotational behavior of our model. After a brief
discussion of nonmagnetized vorticity perturbations, pri-
marily for comparison reasons, we consider the field’s
implications for both ordinary kinematic vorticity and
vortexlike inhomogeneities in the density distribution of
the medium. As expected, we confirm that magnetic fields
generally act as sources of rotational distortions and also
affect their evolution. More specifically, we provide for the
first time (to the best of our knowledge) analytical solutions
monitoring the linear evolution of magnetized rotational
perturbations during the radiation and dust eras. These
solutions, which are fully relativistic, show that linear
vorticity perturbations and density vortices decay more
slowly in magnetized than in magnetic-free cosmologies.
During the radiation era, in particular, both of the afore-
mentioned types of rotational distortions remain constant,
instead of decaying at a rate inversely proportional to the
dimensions of the universe. After equilibrium, the field’s
presence also slows down the “standard” (nonmagnetized)
depletion rate of rotational perturbations, giving the latter a
better chance of surviving. Consequently, magnetized
universes are expected to rotate faster and longer than
their magnetic-free counterparts. Quantitatively speaking,
we find that the former models have approximately 20
orders of magnitude larger residual vorticity than the latter,
assuming the same initial conditions. This means that, in
principle at least, magnetized cosmologies can start off with
considerably smaller amounts of rotation and still sustain
appreciable levels of it today.

II. KINEMATICS OF ROTATING OBSERVERS

In accord with the 1þ 3 covariant formulation of general
relativity (see Ref. [15] for a recent review), the kinematics
of a family of observers is determined by a set of irreducible
variables that describe the relative motion of their world-
lines. The aforementioned quantities obey three pairs of
propagation and constraint equations, all of which follow
from the Ricci identities.

A. The irreducible variables

Consider a four-dimensional spacetime with a
Lorentzian metric gab of signature (−;þ;þ;þ) and intro-
duce a family of (fundamental) observers moving with
4-velocity ua. The latter is tangent to the observers’
timelike worldlines, namely ua ¼ dxa=dτ, where xa ¼
xaðτÞ and τ is the associated proper time, so that

uaua ¼ −1. The ua field defines the time direction, while
the symmetric tensor hab ¼ gab þ uaub projects orthogo-
nally to ua and into the observers’ instantaneous three-
dimensional rest space. Then, overdots indicate (proper)
time differentiation, and Da ¼ hab∇b defines the 3D
covariant derivative operator, with ∇a representing the
4D covariant derivative [e.g. _ua ¼ ub∇bua and Dbua ¼
hbdhac∇duc; see Eq. (1) below].2

Local variations in the observers’ motion are monitored
by the gradient of their 4-velocity field, which is decom-
posed into the irreducible kinematic variables as follows:

∇bua ¼ Dbua − Aaub

¼ 1

3
Θhab þ σab þ ωab − Aaub: (1)

In the above, Θ ¼ ∇aua ¼ Daua is the volume expansion/
contraction scalar, σab ¼ Dhbuai is the symmetric and
trace-free shear tensor, ωab ¼ D½bua� is the antisymmetric
vorticity tensor, and Aa ¼ _ua is the 4-acceleration vector.3

The last three of these variables are spacelike by
construction—namely, they satisfy the constraints Aaua ¼
0 ¼ σabub ¼ ωabub.
The volume scalar tracks the average relative motion

between the worldlines of neighboring observers. In
particular, positive values for Θ indicate volume expansion,
and negative ones indicate contraction. This scalar is also
used to introduce a representative length scale (a), defined
by _a=a ¼ Θ=3. Changes in the shape of the worldline
congruence, under constant volume, are encoded in
the shear, while the vorticity monitors their rotational
behavior. Note that the antisymmetry of the vorticity tensor
ensures that it has only three independent components,
which means we can replace it with the vorticity vector
ωa ¼ εabcω

bc=2. The latter is also spacelike (i.e. ωaua ¼ 0)
and defines the rotational axis of the relative motion.4

Finally, the 4-acceleration reflects the presence of non-
gravitational forces and vanishes when the observers move
under gravity alone, in which case their worldlines are
timelike geodesics.

2By construction, habub ¼ 0, hachcb ¼ hab, haa ¼ 3, and
Dchab ¼ 0. Note that when there is no rotation, the projector
hab also acts as the metric tensor of the spatial hypersurfaces
orthogonal to the ua field.

3Round brackets denote symmetrization, and square ones
denote antisymmetrization. Angled brackets indicate the sym-
metric and trace-free part of an orthogonally projected (spacelike)
second-rank tensor [e.g. σab ¼ Dhbuai ¼ DðbuaÞ − ðDcuc=3Þhab]
or the spatial component of a vector [e.g. _ωhai ¼ hab _ωb; see
Eq. (4) below].

4By definition, εabc ¼ ηabcdud is the totally antisymmetric
three-dimensional Levi-Civita tensor, with ηabcd being its 4D
counterpart. Also, _εabc ¼ 3u½aεbc�dAd, Ddεabc ¼ 0, and
εabcε

def ¼ 3!h½adhbehc�f by construction [15].
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B. Propagation equations and constraints

The irreduciblekinematicvariablesof theprevious section
obey a set of three propagation formulas that are supple-
mented by an equal number of constraints. All are derived
after applying theRicci identities to the observers’4-velocity
vector, namely by means of 2∇½a∇b�uc ¼ Rabcdud, with
Rabcd representing the Riemann curvature tensor. In prac-
tice, this means splitting the Ricci identities into their
timelike and spacelike components and then isolating
the trace, the symmetric trace fee, and the antisymmetric
parts of the resulting relations [15]. The propagation
equations are5

_Θ¼−
1

3
Θ2−

1

2
ðρþ3pÞ−2ðσ2−ω2ÞþDaAaþAaAa; (2)

_σhabi ¼ −
2

3
Θσab − σchaσcbi − ωhaωbi þ DhaAbi

þ AhaAbi − Eab þ
1

2
πab; (3)

and

_ωhai ¼ −
2

3
Θωa −

1

2
curlAa þ σabω

b; (4)

where ρ is the energy density of the matter, p is its isotropic
pressure,andπab is itsanisotropic(viscous)counterpart (with
πab ¼ πba, πaa ¼ 0 ¼ πabub). Also, Eab is the so-called
electric Weyl tensor, which is primarily associated with the
tidal part of the (long-range) gravitational field. Finally,
σ2 ¼ σabσ

ab=2 and ω2 ¼ ωabω
ab=2 ¼ ωaω

a define the
magnitudes of the shear and the vorticity, respectively. The
kinematic constraints, on the other hand, read

Daωa ¼ Aaωa; (5)

Hab ¼ curlσab þ Dhaωbi þ 2Ahaωbi; (6)

and

Dbσab ¼
2

3
DaΘþ curlωa þ 2εabcAbωc − qa; (7)

withHab representing the magnetic component of the Weyl
field and qa the energy flux vector of the matter (so
that qaua ¼ 0). Note that both Weyl tensors are symmetric,
trace-free, and spacelike by construction (i.e. Eab ¼ Eba,
Hab ¼ Hba, Ea

a ¼ 0 ¼ Ha
a, and Eabub ¼ 0 ¼ Habub).

Also, curlva ¼ εabcDbvc for any spacelike vector va, and
curlvab ¼ εcdhaDcvbid for any spacelike, symmetric, and
traceless tensor vab.

Expression (4) is the key equation for our purposes,
since it monitors the rotational behavior of neighboring
worldlines. This formula ensures that there is no vorticity
generation unless nongravitational forces are included
in the system (i.e. ωa ¼ 0 → _ωa ¼ 0, unless Aa ≠ 0).
Alternatively, one could say that irrotational timelike geo-
desics remain so. The same formula can also be used to
track changes in the rotational axis of the motion, namely
effects like precession and nutation. As we have mentioned
at the beginning, forces that generate rotation can come
from a variety of sources, including viscosity, nonbaro-
tropicity, and magnetic fields. These agents can affect the
evolution of a rotating fluid as well. Here, we will focus on
magnetic fields and consider their implications for the
generation, the evolution, and the survival of rotational
distortions in the context of cosmology.

C. Aspects of rotating spaces

Most of the available studies assume nonrotating
worldline congruences, which in technical terms ensures
that the associated 4-velocity field is hypersurface orthogo-
nal. This in turn means that there are integrable three-
dimensional surfaces forming the common rest spaces
of all the fundamental observers at a given instant of time.
Rotation changes all these. The observers’ worldlines are
no longer hypersurface orthogonal, and their instantaneous
rest spaces do not mesh together to form a single three-
dimensional surface. As a result, even the spatial gradients
of scalars do not commute. Instead, we have

D½aDb�ϕ ¼ −ωab
_ϕ (8)

for any given scalar ϕ and

2D½aDb�vc ¼ −2ωabhcd _vd þRdcbavd (9)

for a spacelike vector va. These are the so-called 3-Ricci
identities, withRabcd being the three-dimensional Riemann
tensor. The latter monitors the intrinsic geometry of the
observers’ rest spaces and is related to its spacetime
counterpart (Rabcd) by means of

Rabcd ¼ haehbfhcqhdsRefqs

− DcuaDdub þ DduaDcub: (10)

Starting from the 3-Riemann tensor, one can define the
3-Ricci tensor and the associated 3-Ricci scalar as Rab ¼
hcdRacbd and R ¼ habRab, respectively (see Sec. 1.3.5 of
Ref. [15] and also Appendix A.3 there for more details). We
should also note that the orthogonally projected Ricci
identities, especially Eq. (8), play a key role in the evolution
of rotating spacetimes (e.g. see Sec. IV B below).

5We use geometrized units, with κ ¼ 8πG ¼ 1 ¼ c, through-
out this manuscript.
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III. CONSERVATION LAWS

To proceed, we need to specify our medium and derive
the corresponding conservation laws. We will assume a
single, highly conductive perfect fluid. The high electrical
conductivity implies that we will be working within
the ideal MHD approximation. Technically speaking, this
means that the electric fields vanish in the observers’ rest
frame and the currents keep the magnetic component of the
Maxwell field “frozen” into the matter.

A. Magnetic energy conservation

The vanishing of the electric fields is guaranteed by
Ohm’s law. The latter takes the covariant form J a ¼ ςEa,
with J a representing the spatial current density (with
J aua ¼ 0) and ς the electrical conductivity of the medium
[16]. At the ideal MHD limit, where ς → ∞, Ohm’s law
ensures that there are no electric fields in the observers’
frame. As a result, Maxwell’s equations reduce to a set of
one propagation and three constraint equations, respec-
tively given by

_Bhai ¼ −
2

3
ΘBa þ ðσab þ εabcω

cÞBb; (11)

J a ¼ curlBa þ εabcAbBc; (12)

2ωaBa ¼ ρe; DaBa ¼ 0; (13)

where ρe is the electric charge density. The former of
the above ensures that the magnetic force lines connect the
same matter particles at all times, which implies that the
field is frozen into the highly conductive medium. Also,
contracting Eq. (11) along the Ba vector and taking into
account that B2 ¼ BaBa, we arrive at

ðB2Þ· ¼ −
4

3
ΘB2 − 2σabΠab; (14)

which is the conservation law of the magnetic energy
density. Note that ρB ¼ B2=2 is the magnetic energy
density, pB ¼ B2=6 represents the isotropic pressure of
the field, and Πab ¼ −BhaBbi is the magnetic anisotropic
stress tensor (with Πab ¼ Πba and Πa

a ¼ 0 ¼ Πabub) [14].

B. Matter energy and momentum conservation

Our perfect fluid assumption means that both the energy
flux vector and the anisotropic stress tensor of the matter
vanish identically (i.e. qa ¼ 0 ¼ πab). Under these con-
ditions, the energy and momentum conservation laws of
our highly conductive magnetized medium are

_ρ ¼ −Θðρþ pÞ (15)

and

��
ρþ pþ 2

3
B2

�
hab þ Πab

�
Ab ¼ −Dap

− εabcBbcurlBc; (16)

respectively.6 The former of the above expressions is the
relativistic continuity equation, and the latter can be seen as
the magnetized version of the Navier-Stokes formula. Note
that there are no magnetic terms on the right-hand side of
the continuity equation. This, together with the absence of
explicit matter terms in Eq. (14), ensures that (at the ideal
MHD limit) the magnetic and the matter energy densities
are separately conserved. In contrast, both sources con-
tribute to the Navier-Stokes equation, which governs the
conservation of the momentum density.
Expression (16) is the second key equation for our

purposes. Here, the main magnetic input comes from the
Lorentz force, which conveniently splits into a pressure and
a tension stress as

εabcBbcurlBc ¼ 1

2
DaB2 − BbDbBa: (17)

The first term on the right-hand side is due to the (positive)
magnetic pressure, and the second comes from the field’s
tension, namely from the negative pressure the B field
exerts along its own direction. Recall that the former
tends to push the magnetic force lines apart, while the
latter reflects their elasticity and tendency to remain
“straight.” As we will see in the following sections,
the magnetic effects on vorticity come mainly from the
field’s tension.

IV. ROTATING ALMOST-FRW UNIVERSES

Before we start looking into the magnetic effects on
rotating almost-FRW universes, we should briefly discuss
the rotational behavior of nonmagnetized cosmological
models. In either case, our starting point is a magnetic-
free Friedmannian background that contains a single
barotropic perfect fluid. In the magnetized case, the cosmic
medium will also be highly conductive.

A. The background cosmology

The symmetry (isotropy and homogeneity) of the FRW
spacetimes ensures that the only nonzero variables are
scalars that depend solely on time. Hence, the only physical
quantities allowed in a Friedmann model are the energy
density and the isotropic pressure of the matter, with p ¼
pðρÞ for barotropic media; the Hubble parameter, defined
as H ¼ Θ=3 ¼ _a=a; and the background 3-Ricci scalar
R ¼ 6K=a2, where K ¼ 0;�1 is the 3-curvature index. In

6On the left-hand side of Eq. (16), we see how the energy
density, the isotropic pressure, and the anisotropic stresses of the
magnetic field contribute to the total effective inertial “mass”.
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the absence of a cosmological constant, this background
evolves in line with the zeroth-order continuity equation,

_ρ ¼ −3Hð1þ wÞρ; (18)

supplemented by Friedmann’s formulas

H2 ¼ 1

3
ρ −

K
a2

and _H ¼ −H2 −
1

6
ð1þ 3wÞρ: (19)

Here, w ¼ p=ρ is the barotropic index that determines the
nature of the matter. A related thermodynamic variable is
the adiabatic sound speed, the square of which is defined as
c2s ¼ _p=_ρ. Note that c2s coincides with the barotropic index
when the latter is time invariant (i.e. c2s ¼ w when _w ¼ 0
and vice versa; see Sec. 3.2.1 in Ref. [15]).
Once the geometry of the three-dimensional hypersur-

faces and the nature of the matter component have been
specified, the above system closes and can be solved
analytically. In the case of Euclidean spatial geometry
and radiation, for example, we may set K ¼ 0 and
w ¼ 1=3. Then, Eqs. (18) and (19) lead to the familiar
solution a ∝ t1=2, H ¼ 1=2t, and ρ ¼ 3=4t2. When dealing
with pressureless dust, on the other hand, we find that
a ∝ t2=3, H ¼ 2=3t, and ρ ¼ 4=3t2.

B. Linear vorticity perturbations

The equations given in Secs. II and III earlier are fully
nonlinear and apply to any spacetime, provided that matter
is described by a single fluid. Let us momentarily ignore the
magnetic presence and linearize these formulas around an
FRW background. When doing so, quantities with a non-
zero background value will be assigned zero perturbative
order, while those that vanish there will be treated as first-
order (gauge-invariant) variables. Also note that the tem-
poral and spatial derivatives of perturbed variables retain
their original perturbative order. Finally, when linearizing,
terms of perturbative order higher than the first are dropped
from our equations, all of which reduces Eq. (4) to

_ωa ¼ −2Hωa −
1

2
curlAa: (20)

Similarly, the nonmagnetized version of the Navier-Stokes
equation [see expression (16) in Sec. III B earlier] linearizes
to Euler’s formula

ρð1þ wÞAa ¼ −Dap: (21)

Combining the above and keeping in mind that the 3D
gradients of scalars do not commute in rotating spaces [see
Eq. (8) in Sec. II C] provides the linear evolution equation
of the vorticity vector within an almost-FRW universe:

_ωa ¼ −2
�
1 −

3

2
c2s

�
Hωa: (22)

The above, which holds for all three types of background
spatial curvature, shows that pressure gradients cannot
generate vorticity at the linear level. If the fluid is already
rotating, the aforementioned gradients also leave the rota-
tional axis unaffected, but they generally affect the rate of
rotation and thus the residual amount of vorticity. When
there is no pressure, in particular, vorticity simply decays
with the universal expansion as ω ∝ a−2 on all scales. Once
pressure has been introduced, however, this decay rate
slows down. In the case of radiation, for example, the
solution of Eq. (22) gives ω ∝ a−1. Further increase in the
pressure of the rotating medium can even reverse the decay.
More specifically, for barotropic matter “stiffer” than
c2s ¼ 2=3, vorticity increases with the expansion. This
“reversal” is a purely general relativistic effect. It reflects
the absence of a spatial hypersurface of simultaneity
common to all rotating observers and results from the
noncommutativity of the 3D gradients of scalars seen
in Eq. (8).
Applying the above to the postinflationary evolution of

an almost-FRW universe, we have ωeq ¼ ω0ða0=aeqÞ ¼
ω0ðTeq=T0Þ at equilibrium and ω� ¼ ωeqðaeq=a�Þ2 ¼
ωeqðT�=TeqÞ2 at present.7 Note that T0, Teq, and T� are
the temperatures at the beginning of the radiation era, at
the time of matter-radiation equality, and today, respec-
tively. Also, recall that T ∝ a−1 throughout the lifetime
of the universe. Finally, setting T� ≃ 10−13 GeV,
Teq ≃ 104T� ≃ 10−9 GeV, and T0 ≃ 1010 GeV, which is
close to the typical reheating temperature, we arrive at

ω� ¼
�

T2�
T0Teq

�
ω0 ≃ 10−27ω0 (23)

for the residual value of a given vorticity mode at present.
Therefore, the current amount of cosmic rotation (in a
nonmagnetized universe) is about 27 orders of magnitude
below its value at the onset of the radiation era.
From the observational point of view, a more practical

variable is the dimensionless ratio ω=H, giving the amount
of universal rotation relative to the average expansion
of the background universe. During the radiation epoch,
ω ∝ a−1 and H ∝ a−2, which means that ω=H ∝ a before
equipartition. After equilibrium, ω ∝ a−2 and H ∝ a−3=2,
ensuring that ω=H ∝ a−1=2 throughout the dust era. These
evolution laws immediately translate into ðω=HÞeq ¼
ðω=HÞ0ðaeq=a0Þ and ðω=HÞ� ¼ ðω=HÞeqða�=aeqÞ−1=2,
which combine to give

�
ω

H

�
�
¼

�
ω

H

�
0

�
T0T

1=2
�

T3=2
eq

�
≃ 1017

�
ω

H

�
0

(24)

7The zero suffix denotes a given initial time, which here will
always coincide with the beginning of the radiation epoch. The �
suffix, on the other hand, corresponds to the present.
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for the same temperature values used in Eq. (23) earlier.
The above provides the relative rotation of the universe at
present in terms of its value at the beginning of the radiation
era. Current observations constrain the ratio ω=H to very
small values. Following Ref. [4], in particular, we may set
ðω=HÞ� ∼ 10−10 (higher upper limits for this ratio have also
been quoted in the literature; e.g. see Ref. [17]). Then,
expression (24) implies that ðω=HÞ0 ∼ 10−27 initially. In
the following sections, we will see how a magnetic
presence (even a weak one) can change these results.

V. MAGNETIZED ROTATING
ALMOST-FRW UNIVERSES

Magnetic fields seem to be everywhere in the Universe,
since their presence has been repeatedly verified in gal-
axies, in galaxy clusters, and also in high-redshift young
protogalactic clouds. Moreover, recently, there have been
claims of the first ever magnetic detection in intergalactic
voids. All these have made the idea of primordial magnet-
ism particularly appealing.

A. Linearizing around a Friedmann background

Let us consider an almost-FRW universe permeated by a
weak large-scale magnetic field. The weakness of the latter
means that it will be treated as a perturbation upon the
aforementioned Friedmannian background. We will there-
fore always impose the constraint B2=ρ ≪ 1 to guarantee
that the magnetic contribution to the total energy-
momentum tensor is well below that of the dominant
matter component. This means that B2 will be treated as
a first-order perturbation, which in turn implies that the
magnetic vector (Ba) and its gradients ( _Ba and DbBa) are
half-order distortions.8 Then, the key nonlinear expressions
[see Eqs. (4) and (16) in Secs. II B and III B, respectively)
read

_ωa ¼ −2Hωa −
1

2
curlAa (25)

and

ρð1þ wÞAa ¼ −Dap − εabcBbcurlBc: (26)

Also, to the lowest perturbative order, the magnetic field
evolves according to the set [see relations (11–13) in
Sec. III A]

_Ba ¼ −2HBa and DaBa ¼ 0: (27)

The set given in Eqs. (25)–(27) governs the rotational
behavior of a weakly magnetized almost-FRW universe,
filled with a highly conductive perfect fluid. To account for
the magnetic effects, we need to combine Eqs. (25) and (26)
and employ a rather lengthy calculation, the details of
which are in the Appendix at the end of this paper. The
result is the linear vorticity propagation formula

_ωa ¼ −2H
�
1 −

3

2
c2s

�
ωa

−
1

2ρð1þ wÞ ðB
bDbcurlBa − curlBbDðbBaÞÞ: (28)

According to the above, B fields can act as sources of
rotational distortions at the linear perturbative level. In fact,
it is the elasticity of the magnetic force lines that triggers
these perturbations, since both of the source terms on the
right-hand side of Eq. (28) come from the tension compo-
nent of the Lorentz force (see Appendix). Note that the
aforementioned magnetic terms are of perturbative order 1,
which reconfirms the consistency of our linearization.

B. Incorporating the magnetic effect

The relative importance of the two magnetic terms on
the right-hand side of Eq. (28) depends on the degree of
the inhomogeneity of the perturbed spacetime. By con-
struction, the second term tends to dominate in highly
inhomogeneous environments, and for this reason its
contribution was neglected in previous studies. Here, we
will go one step further and account for all the linear
magnetic effects. Despite this additional “complication,”
one can still solve Eq. (28) analytically by taking its time
derivative and then eliminating the magnetic term from the
right-hand side. To achieve this, we also need the auxiliary
linear expressions

ðBbDbcurlBaÞ· ¼ −6HBbDbcurlBa (29)

and

ðcurlBbDðbBaÞÞ· ¼ −6HcurlBbDðbBaÞ: (30)

Note that both of the above result from the linear commu-
tation law ðDbvaÞ· ¼ Db _va −HDbva, which holds for any
first-order spacelike vector va and on all FRW backgrounds
(e.g. see Eq. (A.32) in Appendix A.3 of Ref. [15]).
Taking the time derivative of Eq. (28) and using the

background relations of Eqs. (18) and (19) and the linear
commutation laws of Eqs. (29) and (30), we arrive at

8Given that B2 ¼ BaBa is a perturbation of order 1, the Ba field
is of order 1=2. Also, since DaB2 ¼ 2BbDaBb is a first-order
distortion, the spatial gradient DaBb has order 1=2. Therefore, all
the magnetic terms in our linear equations are of perturbative
order 1, which guarantees the consistency of our linearization.
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ω̈a ¼ −2
�
1 −

3

2
c2s

�
H _ωa

þ 2

�
1 −

3

2
c2s

��
1þ 1

2
ð1þ 3wÞΩ

�
H2ωa

þ 3ð1 − wÞH
2ð1þ wÞρ ðBbDbcurlBa − curlBbDðbBaÞÞ; (31)

with Ω ¼ ρ=3H2 representing the density parameter of the
universe. Finally, by going back to Eq. (28), we can express
the magnetic term at the end of the above with respect to
vorticity. Then, equation (31) recasts into

ω̈a ¼ −5
�
1 −

6

5
w

�
H _ωa − 4

�
1 −

3

2
w

�

×

�
1 −

3

2
w − 1

4
ð1þ 3wÞΩ

�
H2ωa; (32)

which no longer contains explicit magnetic terms. Note that
in the process we have set _w ¼ 0, which in turn implies that
c2s ¼ w (see also Sec. IVA earlier). For all practical
purposes, this assumption does not affect the generality
of expression (32). Recall that the equation of state of the
matter is expected to remain invariant during prolonged
periods in the lifetime of our Universe (throughout the
radiation and dust eras, for example).
The above formula monitors the linear evolution of

rotational perturbations on a weakly magnetized, highly
conductive almost-FRW background. This is a new fully
relativistic differential equation that incorporates all the
linear magnetic effects, including those that were bypassed
previously. Expression (32) is surprisingly simple, and as a
result of this, it can be solved analytically, at least when the
background spatial geometry is Euclidean.

C. Evolution in the radiation era

Let us consider the radiation epoch first. Setting w ¼ 1=3
on the right-hand side of Eq. (32) and introducing the

harmonic splitting ωa ¼
P

nωðnÞQ
ðnÞ
a , with DaωðnÞ ¼ 0 ¼

_QðnÞ
a andD2QðnÞ

a ¼ −ðn=aÞ2QðnÞ
a , expression (32) reduces to

ω̈ðnÞ ¼ −3H _ωðnÞ − ð1 −ΩÞH2ωðnÞ: (33)

The latter holds on all scales, provided the ideal MHD
approximation applies there.9 Current observations indicate
that j1 − Ωj ≲ 10−3 at present, supporting a nearly flat
universe. Consequently, on an FRW background with
Euclidean spatial geometry, where Ω ¼ 1, a ∝ t1=2, and
H ¼ 1=2t, the above differential equation takes the form

ω̈ðnÞ ¼ −
3

2t
_ωðnÞ (34)

and accepts the power-law solution

ωðnÞ ¼ C1 þ C2t−1=2 ¼ C1 þ C3a−1 (35)

on all scales (recall that a ∝ t1=2 before equipartition). The
magnetic presence has therefore added a new constant mode
to the vorticity evolution law, leaving the original decaying
mode unaffected (compare to the magnetic-free solutions
given in Sec. IV B earlier). Finally, after evaluating the
integration constants in Eq. (35), we arrive at

ω ¼ ω0 þ
_ω0

H0

�
1 −

a0
a

�
; (36)

where the zero suffix indicates the onset of the radiation era
and we have dropped the mode index (n). Hence, in the
magnetic presence, linear vorticity perturbations no longer
decay as ω ∝ a−1, but rather tend to constant. In particular,
following Eq. (36), we find that

ωeq ≃ ω0 þ
_ω0

H0

(37)

at the time of matter-radiation equality. Before closing,
we should point out that viscosity can have an analogous
effect on rotational distortions.Neutrinovortices also remain
constant during the radiation era on superhorizon scales [8].
Here, the responsible agent is the magnetic field, and the
affected region extends to all scales where the ideal MHD
limit applies.

D. Evolution in the dust era

Moving to the subsequent epoch of dust domination
while maintaining the spatial flatness of the FRW back-
ground spacetime, we have w ¼ 0, Ω ¼ 1, a ∝ t2=3, and
H ¼ 2=3t. Proceeding as before, we find that in this new
environment the differential equation (32) reduces to

ω̈ðnÞ ¼ −
10

3t
_ωðnÞ −

4

3t2
ωðnÞ: (38)

Recalling that a ∝ t2=3 after equipartition, the solution of
the above gives

ωðnÞ ¼ C1t−1 þ C2t−4=3 ¼ C3a−3=2 þ C4a−2; (39)

on all scales where the ideal MHD limit applies. Again,
the B field has added a mode to the linear solution without
affecting the “standard” one (see Sec. IV B for com-
parison). Similarly to the radiation case, the new (mag-
netically induced) mode decays slower than its original

9On a spatially flat background, the eigenvalue (n) of the
vorticity mode coincides with its comoving wave number, while
λn ¼ a=n (with n > 0) is the associated physical wavelength.
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(magnetic-free) counterpart. Finally, after evaluating the
integration constants, the above recasts into

ω≃ 2

�
2ωeq þ

_ωeq

Heq

��
aeq
a

�
3=2

(40)

at late times (i.e. for a ≫ aeq). Comparing the above to the
magnetic-free case, we notice that the B field slows down
the decay rate of vorticity perturbations from ω ∝ a−2 to
ω ∝ a−3=2. This result is in full agreement with that
obtained through the Newtonian analysis of Ref. [9],
ensuring that the magnetic presence helps vorticity to
survive during the dust epoch as well. Overall, our analysis
suggests that magnetized cosmologies should contain more
residual rotation than their magnetic-free counterparts.
Next, we will attempt to quantify this statement.

E. The residual cosmic vorticity

Keeping only the dominant mode in the right-hand side
of solution (39) immediately gives ω� ≃ ωeqðaeq=a�Þ3=2 ≃
10−6ωeq for the residual vorticity today, having set 1þ
zeq ≃ 104 for simplicity (recent observations suggest that
1þ zeq ≃ 3.5 × 103). Recall that the � suffix corresponds
to the present, and ωeq ¼ ω0 þ _ω0=H0 is the vorticity at
equilibrium [see Eq. (37) above]. A more robust calculation
makes little difference, giving

ω� ≃ 4 × 10−6
�
ω0 þ

_ω0

H0

�
(41)

for the current value of the vorticity. To simplify the
calculation, let us assume that _ω0=H0 ¼ 2 _ω0t0 ∼ ω0.
Then, according to the above result, vorticity drops by
approximately 6 orders of magnitude since the beginning of
the radiation era. This should be compared to the value of
ω� ≃ 10−27ω0, obtained in magnetic-free universes (see
Sec. IV B earlier). Consequently, the residual vorticity in
weakly magnetized almost-FRW cosmologies should be
approximately 21 orders of magnitude larger than in the
corresponding magnetic-free models.
The same conclusions and numerical results can be

obtained by looking at the dimensionless ω=H ratio. In
accord with the analysis given in Secs. V C and VD
previously, we have ω=H ∝ a2 throughout the radiation
epoch and ω=H ¼ constant during the subsequent dust era.
Putting these evolution laws together while setting T0 ≃
1010 GeV and Teq ≃ 10−9 GeV as before gives

�
ω

H

�
�
¼

�
ω

H

�
0

�
T0

Teq

�
2 ≃ 1038

�
ω

H

�
0

(42)

at present. Assuming that the left-hand side of the above
and that of its nonmagnetized analogue [see Eq. (24) in
Sec. IV B] are equal, we find that the ratio ðω=HÞ0 is
approximately 21 orders of magnitude lower in the

magnetized case.10 Consequently, magnetized cosmologies
can start off with much lower amounts of vorticity than
their magnetic-free counterparts and still sustain the same
residual rotation today. Whether this is enough to produce
astrophysically interesting levels of vorticity at present
depends on the initial value of the latter (i.e. on ω0, or
equivalently on ω0=H0), which is treated here as a free
(though always very small) parameter.

VI. LINEAR MAGNETIZED DENSITY VORTICES

In addition to kinematic vorticity, magnetic fields can
also source and affect density vortices. The latter are vector-
type inhomogeneities, which describe rotational distortions
in the matter distribution and are geometrically related to
ordinary vorticity perturbations.

A. Isolating the density vortices

Density inhomogeneities come in three different
forms: scalar, vector, and tensor. The former describe
overdensities/underdensities in the matter distribution
and are commonly referred to as density perturbations.
Inhomogeneities of vector nature are related to density
vortices, while (trace-free) tensor perturbations monitor
changes in the shape of the inhomogeneity under constant
volume. In what follows, we will consider the second type
of these density inhomogeneities and investigate their
evolution in the presence of a cosmological magnetic field.
Spatial variations in the density distribution of the matter

between two neighboring (fundamental) observers are
described by the dimensionless gradient Δa ¼ ða=ρÞDaρ
[15]. This variable contains collective information about all
of the aforementioned three types of density inhomogene-
ities. One can decode this information by taking the
comoving gradient Δab ¼ aDbΔa and then introducing
the irreducible decomposition

Δab ¼
1

3
Δhab þWab þ Σab: (43)

The scalar Δ ¼ Δa
a describes overdensities/underdensities

in the matter distribution when it takes positive/negative
values, respectively. The antisymmetric tensorWab ¼ Δ½ab�
tracks density vortices, and the symmetric and trace-free
tensor Σab ¼ Δhabi is associated with shape distortions.
Clearly, both Wab and Σab are spacelike by construction
(i.e. Wabub ¼ 0 ¼ Σabub). Also, in analogy with the
vorticity tensor, the antisymmetry of the three-dimensional
tensor Wab implies that it can be replaced by the spacelike
vector Wa ¼ εabcWbc=2. Next, we will consider the linear

10Setting ðω=HÞ� ∼ 10−10, as in Sec. IV B for the nonmagne-
tized case, we find that ðω=HÞ0 ∼ 10−48 (recall that T0 ≃
1010 GeV and Teq ≃ 10−9 GeV). In the absence of the B field,
the corresponding value was ðω=HÞ0 ∼ 10−27.
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evolution of Wa within a weakly magnetized almost-FRW
universe.

B. Linear magnetized density vortices

The relation between Wa and the vorticity vector ωa is
more than a simple analogy, reflecting the way these two
variables have been defined. In fact, the geometrical
framework of general relativity guarantees that these
vectors are directly connected to each other. This con-
nection comes through the 3-Ricci identities, and in
particular via Eq. (8), which when applied to the density
of the matter gives

D½bDa�ρ ¼ _ρωab: (44)

Starting from the above, using the background continuity
equation [see expression (18) in Sec. IVA) and recalling
that Wab ¼ Δ½ab� ¼ a2D½bDa�ρ to linear order, we arrive at

Wa ¼ −3ð1þ wÞa2Hωa: (45)

This is a purely general relativistic (geometrical) result,
connecting vortices in the density distribution of the matter
to vorticity proper. Hence, once the background scale factor
and Hubble parameter have been decided, the linear
evolution of Wa is essentially dictated by that of ωa.
During the radiation era, we have w ¼ 1=3 and a ∝ t1=2,

which means that 3ð1þ wÞa2H ¼ 4a20H0 ¼ constant.
Therefore, before equipartition, density vortices evolve
exactly as kinematic vorticity perturbations, namely

WðnÞ ¼ C5 þ C6t−1=2 (46)

for all n > 0. In other words, rotational distortions in the
density distribution of the matter remain constant through-
out the radiation epoch. After equilibrium, w ¼ 0 and
a ∝ a2=3, ensuring that a2H ¼ 3a20H0ðt=t0Þ1=3. The latter
combines with solution (39) to give

WðnÞ ¼ C7t−2=3 þ C8t−1; (47)

ensuring that throughout the dust era, the dominant W
mode decays as W ∝ t−2=3 on all scales. The same result
has also been obtained through an alternative approach (see
Sec. 10.3 in Ref. [14] and references therein). Note that
density vortices in nonmagnetized cosmologies decay as
W ∝ t−1=2 during radiation and W ∝ t−1 for dust (e.g. see
Sec. 3.2.5 in Ref. [15]). Therefore, as with vorticity proper,
the magnetic presence slows down the decay rate of
rotational (i.e. vector-type) density inhomogeneities on
all scales where the ideal MHD approximation holds.

VII. DISCUSSION

Current observations are consistent with small amounts
of universal rotation, which means that if the Universe

rotates, it does so very slowly. This is also in agreement
with the inflationary scenario, where the exponential
expansion is expected to essentially eliminate any traces
of primordial vorticity. Nevertheless, most (if not all)
astrophysical structures rotate, which raises the question
of whether their rotation is of cosmological origin, or a
relatively recent addition due to local physical processes. It
is not possible to generate vorticity, at the linear perturba-
tive level, if the cosmic medium is an ideal fluid. Viscous
matter fields, on the other hand, can trigger linear rotational
distortions. Magnetic fields are sources of (effective)
viscosity and have long been known to generate rotational
perturbations. The responsible agent is the Lorentz force
and more specifically its tension component. Viscosity and
magnetism can also affect the linear evolution of cosmic
vorticity by reducing its standard depletion rate. Newtonian
studies of the magnetic effects on rotation revealed that the
B field slows down considerably the linear decay of
vorticity perturbations after equilibrium.
The present study revisits and extends the Newtonian

results using a fully relativistic approach. Assuming a
weakly magnetized almost-FRW universe, we have looked
into the magnetic effects on the evolution of linear rota-
tional perturbations. These distortions, which include
ordinary kinematic vorticity as well as vortexlike density
inhomogeneities, could have been triggered by the B field
itself, or by another independent agent (or by both). Here,
we have not looked into mechanisms of vorticity gener-
ation, but into the effects of the B field on linear rotational
perturbations. We have derived, for the first time (to the best
of our knowledge), the general relativistic equations that
describe the linear evolution of rotational distortions in
the presence of a large-scale magnetic field. Overcoming
technical problems faced by previous analogous studies, we
were able to include all the magnetic effects and still solve
the resulting differential equations analytically. With some
adjustment, depending on the problem at hand, our equa-
tions and results could be of use in a range of cosmological
applications—for example, to revisit the magnetic effects
on vector modes in the CMB spectrum.
Qualitatively speaking, our main result is that even a

weak magnetic presence can help rotational distortions to
survive longer than in nonmagnetized models. During the
radiation era, in particular, we found that the B field keeps
linear vorticity perturbations constant. After equilibrium,
the magnetic presence slows down the standard (non-
magnetized) decay rate of these distortions. Within the
geometrical framework of general relativity, kinematic
vorticity and rotational density inhomogeneities are directly
related. Exploiting this (linear) relation, we found that the
magnetic effects on vortexlike density perturbations are
exactly analogous with those on vorticity proper. Overall,
magnetized cosmologies appear to rotate faster and longer
than magnetic-free models. Alternatively, one could say
that a magnetized universe can start off with considerably
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smaller amounts of initial vorticity relative to its non-
magnetized counterpart and still sustain the same rotation
levels today. Our analysis has quantified this initial differ-
ence to approximately 20 orders of magnitude.
We have arrived at the aforementioned theoretical con-

clusions and numerical results by employing a linear
perturbative study and by adopting the ideal MHD approxi-
mation. The latter holds in highly conductive media and
requires the presence of electric currents, which eliminate
the electric fields and freeze their magnetic counterparts
into the matter. These currents are generated after inflation,
as the conductivity of the Universe starts growing, by local
physical processes, and for this reason their coherence scale
can never exceed that of the horizon. In other words,
causality confines the electric currents and therefore their
domain of influence within the particle horizon, which after
inflation coincides with the Hubble radius. Beyond the
Hubble scale, there can be no coherent electric currents,
which means that the ideal MHD limit does not apply
there. On very small scales, on the other hand, the
nonlinear effects start becoming important, and the linear
approximation is expected to break down. All these mean
that our analysis, and the conclusions derived from it, have
an optimum range of scales, which roughly varies between
the size of a protogalaxy and that of the observable
Universe.
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APPENDIX: THE VORTICITY
PROPAGATION FORMULA

Splitting the Lorentz force into its pressure and tension
parts, taking the curl of the Navier-Stokes equation [see
Eqs. (17) and (26), respectively], and keeping up to linear-
order terms leads to the intermediate relation

ρð1þwÞcurlAa¼−εabcD½bDc�p−
1

2
εabcD½bDc�B2

þεab
cDbBdDdBcþεab

cBdDbDdBc: (A1)

Note that, of the three magnetic terms, the first comes from
the field’s (positive) pressure, and the last two are due to its
tension. Next, we will individually evaluate all the terms on
the right-hand side of the above equation. Using the
commutation law for the spatial gradients of scalars [see
Eq. (8) in Sec. II C], the first term linearizes to

εabcD½bDc�p ¼ 6Hc2sρð1þ wÞωa; (A2)

while the second is zero to first order. The vanishing of the
magnetic pressure term in Eq. (A1) means that the field’s
tension is the sole player at the linear perturbative level.
Note that, when deriving the above, we have also used the
background energy conservation law and the definition
c2s ¼ _p=_ρ of the adiabatic sound speed [see Eqs. (18) and
(22) in Secs. IVA and IV B, respectively]. Splitting the
gradients DbBa into their symmetric and skew parts, the
third term on the right-hand side of Eq. (A1) successively
gives

εab
cDbBdDdBc ¼ εab

cDðbBdÞDðdBcÞ þ εab
cDðbBdÞD½dBc�

þ εab
cD½bBd�DðdBcÞ þ εab

cD½bBd�D½dBc�

¼ −curlBbDðbBaÞ; (A3)

since εab
cDðbBdÞDðdBcÞ ¼ 0 ¼ εab

cD½bBd�D½dBc� and
εab

cDðbBdÞD½dBc� ¼εab
cD½bBd�DðdBcÞ ¼−curlBbDðbBaÞ=2.

Finally, using the 3-Ricci identities [see relation (9) in
Sec. II C], we can rewrite the last term on the right-hand
side of Eq. (A1) as

εab
cBdDbDdBc ¼ BbDbcurlBa − εa

bcRdbfcBdBf

¼ BbDbcurlBa; (A4)

given that εabcRdbfcBdBf ¼ 0 at the linear level (irrespec-
tive of the background spatial curvature). Our last step is to
combine the auxiliary formulas (A2)–(A4) and recast
Eq. (A1) into

curlAa ¼ −6Hc2sωa þ
1

ρð1þ wÞ
× ðBbDbcurlBa − curlBbDðbBaÞÞ: (A5)

Substituting this result into expression (25), one immedi-
ately arrives at the linear propagation equation (28), which
monitors the evolution of the vorticity vector.
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