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Over the next decade, cosmological measurements of the large-scale structure of the Universe will be
sensitive to the combined effects of dynamical dark energy and massive neutrinos. The matter power
spectrum is a key repository of this information. We extend higher-order perturbative methods for
computing the power spectrum to investigate these effects over quasilinear scales. Through comparison
with N-body simulations, we establish the regime of validity of a time-renormalization group perturbative
treatment that includes dynamical dark energy and massive neutrinos. We also quantify the accuracy of
standard, renormalized and Lagrangian resummation (LPT) perturbation theories without massive
neutrinos. We find that an approximation that neglects neutrino clustering as a source for nonlinear
matter clustering predicts the baryon acoustic oscillation (BAO) peak position to 0.25% accuracy for
redshifts 1 ≤ z ≤ 3, justifying the use of LPT for BAO reconstruction in upcoming surveys. We release a
modified version of the public COPTER code which includes the additional physics discussed in the paper.
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I. INTRODUCTION

A. Dynamical dark energy and neutrinos

The original discovery of the late-time acceleration of the
Universe [1,2] has been confirmed by multiple cosmologi-
cal probes over the last fifteen years. The underlying cause
of this acceleration, as well as its connection to funda-
mental physics, however, remains to be clarified. Although
the cosmological standard model provides an excellent
description of the latest data [3–11], the cosmological
constant is beset with problems of extreme fine-tuning, at
least given our current level of theoretical understanding
(for reviews see, Refs. [12–16]). For this reason, it is
extremely important to constrain the evolution of the dark
energy equation of state, and to see if the associated
equation of state parameter, wðzÞ, deviates from the
constant value, w ¼ −1, characteristic of a cosmological
constant. While phenomenological models for wðzÞ can be
postulated for comparison to observed data, one class of
solutions known as early dark energy allows for the energy
density responsible for the acceleration to be much larger at
earlier times, with possible connections to fundamental
physics [17–24].
Investigations of dynamical dark energy are conducted

using two distinct types of observational probes: (i) con-
straints on the homogeneous expansion of the Universe,
and (ii) the growth of large-scale structure, driven primarily

by the gravitational dynamics of cold dark matter (CDM).
Via consistency relations, these results can also be used to
study the validity of general relativity in describing the
dynamics of the Universe (see, e.g., Ref. [25]), although
this is not our concern here.
Besides dark energy, a major contribution of modern

cosmology to fundamental physics lies in constraining the
sum of neutrino masses, as well as the number of neutrino
species. Massive neutrinos act as a radiation component in
the early universe, but as a warm dark matter fluid at late
times. The high velocity of neutrinos makes them difficult
to bind gravitationally, suppressing the growth of structure
in a scale-dependent manner. Aside from being interesting
in their own right, massive neutrinos can be degenerate with
the dark energy density and the equation of state [26],
which necessitates an analysis including both effects.
Therefore, it is essential for future precision measurements
to include neutrinos as a component of the analysis, along
with a time-varying dark energy equation of state or a
modified theory of gravity. A thorough investigation of this
issue within the Fisher matrix formalism is presented in
Ref. [27] for spectroscopic redshift surveys such as BOSS
(baryon oscillation spectroscopic survey [28]) or DESI
(dark energy spectroscopic instrument [29]), but also
including input from the cosmic microwave background
(CMB), in particular, Planck [10] and weak gravitational
lensing surveys such as DES (Dark Energy Survey [30])
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and LSST (Large Synoptic Survey Telescope [31]). A
similar analysis for surveys like Euclid [32] can be found in
Ref. [33]. The power of purely large-scale measurements,
such as baryon acoustic oscillations (BAO) is significantly
reduced by the uncertainty in neutrino masses, and employ-
ing broadband galaxy power at much smaller scales
becomes important in improving our ability to extract
information about dark energy as well as the neutrino
sector [27].
Due to their large thermal velocities, vthðzÞ, neutrinos do

not cluster at scales smaller than the free-streaming scale
kFSðzÞ ∼HðzÞ=vthðzÞ. For neutrinos turning nonrelativistic
in the matter dominated regime, the comoving free-stream-
ing scale has a maximum value at the time when the
neutrinos become relativistic. Thus, at length scales larger
than those set by this maximum, knr, neutrinos cluster in the
same way as dark matter, while at smaller scales their
contribution to clustering is much smaller, leading to a
suppression of the total matter power spectrum. In linear
perturbation theory this suppression increases with increas-
ing wave-number asymptoting to a value of ∼8Ων=Ωm.
Since this effect can be observed at length scales too small
for linear perturbation theory to hold, it is essential to
compute the nonlinear matter power spectrum [34].
The effect of neutrinos at sufficiently large length scales

can be studied using perturbation theory; at smaller length
scales, matter clustering treated via N-body methods can be
used to extend the predictive reach. Moreover, in view of
the above discussion, this has to be done in the presence of
a varying dark energy equation of state. Our purpose here is
to present both perturbative and N-body results for the
matter fluctuation power spectrum in the presence of
neutrinos and dynamical dark energy. (We do not consider
the case of modified gravity here.)
Our results are useful in multiple ways. First, they

provide reliable predictions for the matter power spectrum
on large scales for ongoing and upcoming BAO measure-
ments like BOSS [28], DESI [29], and CHIME (the
Canadian Hydrogen Intensity Mapping Experiment [35]),
in particular at higher redshifts. Second, in order to build
prediction tools for power spectra well into the nonlinear
regime, perturbation theory is very useful to anchor the
predictions at high accuracy on large scales. Previously,
based on a finite number of cosmological models, we have
produced emulators for the power spectrum enabling fast
parameter estimation of wCDM cosmologies [36,37].
However, ongoing and future surveys will attempt to go
beyond wCDM to constrain both neutrino masses and a
time dependent equation of state of dark energy. In
preparation for such surveys (see, e.g. Ref. [38]), we use
the Hardware/Hybrid Accelerated Cosmology Code
(HACC) N-body framework [39–41], extended to include
both a time varying dark energy equation of state and an
approximate treatment of massive neutrinos, to compute the
matter power spectrum. Third, the accurate treatment of

neutrinos in N-body simulations is nontrivial as discussed
in more detail below. We study the validity of different
higher order perturbation theory implementations for a
ΛCDM cosmology for which we have high-accuracy
simulations. We then use these results to gauge the
inaccuracies induced by an approximate treatment of
neutrinos in simulations.
Dynamical dark energy can be treated in two different

ways. One can either begin with a model, specified by an
action, and aim to constrain its parameters. For example, a
scalar field quintessence model [42,43] can be written
down with a power law potential whose parameters can
then be determined by the data. Such models can be
subdivided, for example, into “freezing” and “thawing”
classes, in which the scalar field moves respectively toward
or away from a stationary point in its potential [44].
Canonical scalar fields have pressure-to-energy-density
ratios (“equations of state”) ranging between −1
and 1, and their sound speeds are equal to the speed of
light; however, k-essence models relax both of these
restrictions [45].
The second, more phenomenological, approach to dark

energy is to parametrize its equation of state and sound
speed as functions of time or scale factor. Although an
action is necessary for predicting the effects of dark energy
across a range of energy and distance scales, a dark energy
which does not cluster gravitationally and does not couple
to any other particle can really only be constrained on
cosmological scales, so such a parametrization is sufficient.
Here we adopt the commonly used form [46,47],

wðaÞ ¼ w0 þ wað1 − aÞ; (1)

and we assume a sound speed c2s ¼ 1. This representation
of wðaÞ smoothly parametrizes a large range of models
including freezing and thawing scalar fields, phantom
energy with w < −1, and early dark energy. One of its
limitations is that constraints on early dark energy imply
w0 þ wa ≲ 0, limiting the rate at which wðaÞ can change at
recent times [48]. However, since the data are not powerful
enough to constrain a large number of dark energy
parameters, this parametrization is a reasonable compro-
mise, and is used in analyzing the results from many
surveys.

B. Perturbation theory and N-body simulations

Over the past several years, higher-order cosmological
perturbation theory has been crafted into a useful tool for
understanding the growth of large-scale structure. Applying
the continuity and Euler equations to an effective matter
fluid with an irrotational velocity field, perturbation theory
lets us predict the power spectrum of large-scale structure at
early times and at moderately nonlinear scales. Although
the scale-dependent growth rate in massive neutrino models
is incompatible with most perturbative methods, so-called
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time renormalization group (Time-RG) perturbation theory
accommodates massive neutrinos by directly integrating
the evolution equations for the power spectrum [49,50]. In
this work we extend the publicly available COPTER per-
turbation theory code [51,52] to include massive neutrinos
and dynamical dark energy. In our perturbative treatment,
as well as in our computation of the scale-dependent
growth, we treat neutrinos as a linear source for growth
of cold dark matter and baryonic density perturbations.
The regime of validity of perturbation theory cannot be

calculated rigorously, and at sufficiently small scales the
fluid approximation breaks down [53–56]. Currently the
most reliable test of perturbation theory is a direct com-
parison with N-body simulations, which approximate dark
matter as a collection of point particles, obtaining dynami-
cal Monte Carlo solutions to the Vlasov-Poisson system of
equations. Such a comparison is given in Ref. [51] using a
large range of perturbation theory methods for ΛCDM
cosmologies, and quantifying the accuracy of each pertur-
bative method. Here we use N-body simulations to test
Time-RG and a few other perturbation theories, for models
with dynamical dark energy and massive neutrinos, up to
redshifts z ¼ 3.
While N-body simulations are the accepted way to

compute the nonlinear matter power spectrum of cold dark
matter, including neutrinos in the simulation as particles is
difficult because of their large thermal velocities, and
artificial clustering induced by having multiple species of
particles with very different particle masses. Consequently,
different groups have computed nonlinear corrections to the
matter power spectrum due to massive neutrinos by adopting
different approaches. Perturbation theory was extended to
the quasinonlinear regime by using standard second order
perturbation theory in Ref. [57]. In Ref. [58], the authors
account for neutrinos in the initial conditions for the CDM
particles in the simulations, and add the linearly evolved
neutrino fluctuations to the particle fluctuations to obtain the
total power spectrum, ignoring the nonlinear interaction of
the neutrinos with the dark matter. An alternative approach to
studying the effect of neutrinos at small scales by using the
halo model is pursued in Ref. [59].
Gravitational interactions between neutrinos and dark

matter particles were self-consistently incorporated in
Ref. [60] by including neutrino particles in N-body
simulations with a thermal velocity sampled from the
appropriate Fermi-Dirac distribution in addition to a flow
velocity to set up initial conditions, typically starting the
(neutrino) simulation at very late times so that the neutrino
thermal velocity is relatively small [60–62]. The aim of this
was to avoid difficulties of the sort encountered in Ref. [63]
and in other earlier simulation efforts.
To extend the treatment further, in Refs. [61,64], the

authors propagate a linearly evolved neutrino perturbation
on a grid, and CDM particles in an N-body simulation that
evolves under the influence of self-gravity as well as the

potential sourced by the neutrino fluid on the grid. Further
improvements to this method were introduced in Ref. [65]
where this approach was combined with a particle repre-
sentation to study sub-Mpc effects of neutrino clustering,
and in Ref. [66] who also evolve the neutrino density in the
nonlinear potentials sourced by the CDM particles. These
nonlinear corrections show that the nonlinear matter power
spectrum is suppressed to a maximum of ∼10Ων=Ωm, (as
compared to ∼8Ων=Ωm found in linear theory mentioned
earlier) and the suppression decreases for wave numbers
larger than a certain value kturn which depends on the
neutrino mass.
Our goal is to calculate the power spectrum in the

presence of (i) massive neutrinos and (ii) time-varying dark
energy equations of state, only up to k ≈ 0.3h Mpc−1,
allowing us to simplify the treatment of neutrinos consid-
erably. We include these two new physical ingredients in
both simulations and higher-order perturbation theory, find-
ing that the two methods agree at the 2% level up to k ∼
0.1h Mpc−1 at z ¼ 0, and better at higher redshifts. Through
perturbative arguments we show that our simple approxi-
mation for neutrinos in the N-body simulations, following
Refs. [57,58], is valid at the 1% level over the entire region of
applicability of perturbation theory, justifying its use in our
code. Finally, we apply our perturbative calculations to
determine the effect on the power spectrum of varying
neutrino masses and the two dark energy equation of state
parameters, finding, for example, that neutrino inhomoge-
neities have little effect on the BAO scale.
The remainder of this paper is organized as follows.

Section II summarizes perturbation theory results, includ-
ing Time-RG when massive neutrinos are included. Our
N-body simulations are described in Sec. III. Tests of
perturbation theory with dynamical dark energy and
massive neutrinos are conducted in Sec. IV and presented
along with discussions of observable effects. The final
results are summarized in Sec. V.

II. HIGHER-ORDER PERTURBATION THEORY

A. Standard perturbation theory

Consider a universe containing nonrelativistic, noninter-
acting matter with density, ρmð~x; tÞ, as well as nonclustering
dark energy with density ρdeðtÞ and equation of state param-
eter w. Under the assumptions of an irrotational velocity
field (∇ × ~v ¼ 0) and no shell crossings, the matter can
be described in terms of a density contrast, δð~x; tÞ ¼
ðρm − ρ̄mÞ=ρ̄m, and a velocity divergence, θð~x; tÞ ¼ ∇ · ~v.
In Fourier space, the continuity and Euler equations imply

∂δð~k; aÞ
∂ log a ¼ −

θð~k; aÞ
aH

−
Z

d3pd3q
aHð2πÞ3 δDð

~k − ~p − ~qÞ

×
~k · ~p
p2

θð~p; aÞδð~q; aÞ (2)
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∂θð~k; aÞ
∂ loga ¼ −θð~k; aÞ − 3

2
ΩmaHδð~k; aÞ −

Z
d3pd3q
aHð2πÞ3

× δDð~k − ~p − ~qÞ k
2ð~p · ~qÞ
2p2q2

θð~p; aÞθð~q; aÞ; (3)

where a is the scale factor, defined to be unity today,H is the
Hubble parameter, and δD is the Dirac delta function. The
second term on the right-hand side of Eq. (3) describes
gravitational clustering according to the Poisson equation.
The final term on the right in each of the above makes
the evolution nonlinear. If these two terms are neglected,
Eqs. (2)–(3) can be integrated easily. The resulting linear
theory describes the Universe on the largest scales. The
~k-independent linear growth factorDðaÞ is the growing-mode
solution δlinð~k; aÞ to these linearized equations, also
normalized to unity today.
The nonlinear evolution equations Eqs. (2)–(3) can be

expressed in a more compact notation. Define the pertur-
bation variables, φa, the evolution function matrix, Ωab,
and the vertex functions, γabc, as

φ0ð~k; aÞ ¼ δð~k; aÞain=a (4)

φ1ð~k; aÞ ¼ −θð~k; aÞain=ða2HÞ (5)

Ω00 ¼ −Ω01 ¼ 1 (6)

Ω10ðaÞ ¼ −
3ΩmH2

0

2a3H2
¼ −

3

2
ΩmðaÞ (7)

Ω11ðaÞ ¼ 3þ d logH
d log a

(8)

γ010ð~k; ~p; ~qÞ ¼ γ001ð~k; ~q; ~pÞ
¼ δDð~kþ ~pþ ~qÞð~pþ ~qÞ · ~p=ð2p2Þ (9)

γ111ð~k; ~p; ~qÞ ¼ δDð~kþ ~pþ ~qÞð~pþ ~qÞ2 ~p · ~q=ð2p2q2Þ;
(10)

where all other γabc are zero, and ain ≪ 1 is the initial
value of the scale factor, which we assume to be small
enough that the evolution is linear. Then the evolution
equations (2)–(3) can be written in the form,

∂φað~k; aÞ
∂ log a ¼ −ΩabðaÞφbð~k; aÞ þ

a
ain

Z
d3pd3q
ð2πÞ3

× γabcð~k;−~p;−~qÞφbð~p; aÞφcð~q; aÞ; (11)

where repeated indices indicate summation.
A thorough description of standard perturbation theory

(SPT) is provided in Ref. [51], which we summarize here.

Let us begin by assuming an Einstein–de Sitter (EdS)
universe, in which Ωm ¼ 1 and there are no species other
than cold matter. Equations (6)–(8) imply

Ω ¼
�

1 −1
− 3

2
3
2

�
: (12)

Choose ain ≪ 1 such that perturbations δlinðk; ainÞ are
linear. Since DðaÞ ¼ a, δlinðk; aÞ ¼ δlinðk; ainÞa=ain. SPT
expands the solution to the nonlinear evolution equations

in powers of the linear density contrast, δð~k; aÞ ¼P
n¼1a

nδnð~kÞ, where δnð~kÞ is a mode-coupling integral

over the product of n δlins, δnð~kÞ ¼
R
d3p0…d3pn−1δD×

ð~k−P
~piÞFnð~p0;…; ~pn−1Þ × δlinð~p0; ainÞ…δlinð~pn−1; ainÞ,

and the Fn are determined by Eqs. (2)–(3) as in Ref. [51].
The matter power spectrum Pðk; aÞ is then

ð2πÞ3δDð~kþ ~k0ÞPðk; aÞ
¼ hδð~kÞδð~k0Þi

¼ a2

a2in
hδ1ð~kÞδ1ð~k0Þi þ 2

a4

a4in
hδ1ð~kÞδ3ð~k0Þi

þ a4

a4in
hδ2ð~kÞδ2ð~k0Þi þ…

¼ ð2πÞ3δDð~kþ ~k0Þ½Plin þ Pð1;3Þ þ Pð2;2Þ þ…�; (13)

where Plin is the linear power spectrum, and the next-order
(“one-loop”) nonlinear corrections are given by [67]

Pð1;3Þ ¼ k3PlinðkÞ
1008π2

Z
∞

0

drPlinðkrÞ
�
12

r2
− 158þ 100r2

− 42r4 þ 3ðr2 − 1Þ3ð7r2 þ 2Þ
r2

ln
��� 1þ r
1 − r

���
�

(14)

Pð2;2Þ ¼ k3

392π2

Z
∞

0

drPlinðkrÞ
Z

1

−1
dxPlin

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p �

×
ð3rþ 7x− 10rx2Þ2
ð1þ r2 − 2rxÞ2 : (15)

Here the dependence Plinðk; aÞ ¼ Plinðk; ainÞa2=a2in upon a
has been suppressed. The above approach can easily be
extended to higher-order terms (the two-loop terms) as well
as to the velocity power spectrum and the density-velocity
cross power spectrum.

B. Scale-independent growth

Now let us consider a universe which has a homo-
geneous component with arbitrary equation of state in
addition to CDM and baryonic matter, resulting in a scale-
independent growth factor DðaÞ. This homogeneous
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component may include a nonclustering dark energy as
well as a radiation component whose energy density is
small enough that its clustering may be neglected. If we
make the replacement φ1 → φ1=f with f¼dlogD=dloga,
and we change the time variable in Eq. (11) from log a to
log½DðaÞ=DðainÞ�, then the evolution matrix becomes

Ω ¼
�

1 −1
3ΩmðaÞ
2f2

3ΩmðaÞ
2f2

�
: (16)

If the equation of state parameter does not differ too much
from −1, then to reasonable precision, fðaÞ ≈ΩmðaÞ0.55
[68]. It follows that ΩmðaÞ=fðaÞ2 ≈ Ω−1=10

m , which can
itself be approximated as unity at the ≈10% level for
ΩmðaÞ ≥ 0.3, and the evolution matrix can be approxi-
mated by its EdS counterpart (12). As a result, the Pð1;3Þ and
Pð2;2Þ corrections are given by Eqs. (14), (15), the only
difference being the dependence of Plinðk; aÞ ¼
Plinðk; ainÞDðaÞ2=DðainÞ2 upon a.

C. Massive neutrinos and Time-RG

Massive neutrinos cluster like cold matter on large scales
but free-stream out of bound structures on small scales.
Moreover, since their velocities redshift away as the
universe expands, the free-streaming length scale changes
with time. Thus the growth factor depends on the wave
number k as well as a, and the method used in Sec. II B to
determine the 1-loop terms from their EdS counterparts
breaks down. (Rapidly evolving dark energy models [69] as
well as scale-dependent fifth forces from modified gravity
are also inconsistent with the method of Sec. II B.) Scale-
dependent growth introduces a k dependence into Ω10, the
source term of the Poisson equation, since CDM and
neutrinos cluster differently on different scales.
Time-renormalization group perturbation theory general-

izes Eq. (11) to ~k-dependent Ω and integrates directly to
find the power spectrum [49]. Since Eqs. (2), (3) relate the
time-derivative of the first-order perturbations δ and θ to
second-order terms, there is an infinite tower of evolution
equations for the power spectra,

∂hφaφbi
∂ log a ¼ −Ωachφcφbi −Ωbchφaφci

þ a
ain

γacdhφcφdφbi þ
a
ain

γbcdhφaφcφdi (17)

∂hφaφbφci
∂ log a ¼ −Ωadhφdφbφci −Ωbdhφaφdφci

−Ωcdhφaφbφdi þ
aγade
ain

hφdφeφbφci

þ aγbde
ain

hφaφdφeφci þ
aγcde
ain

hφaφbφdφei;
(18)

and so on, each equation relating the evolution of the n-
point correlation functions to the ðnþ 1Þ-point correlation
functions. In this formalism, linear theory corresponds to

setting to zero the bispectrum δDð~kþ ~pþ~qÞBabcð~k; ~p;~q;aÞ,
truncating this tower after Eq. (17). Time-RG uses the next
level of approximation, allowing nonzero Babc but setting
to zero the trispectrum, the connected part of the four-point

correlation function. Direct integration of the ~k-dependent
evolution equations (17), (18) means that the assumptions
of scale-independent growth and a time-independent evo-
lution matrix are no longer necessary.
Consider a universe with two matter fluids, a cold fluid

representing CDM and baryons as well as a warm fluid
representing neutrinos. From now on let φ0 and φ1 in
Eqs. (4), (5) refer to density and velocity divergence
perturbations in the cold fluid alone, denoted by the
subscript cb. Since neutrinos do not cluster on small
scales, they are well-described by the linearized evolution
equations. Their density contrast δν;linðk; aÞ can be found
using a linear Boltzmann code such as CAMB [70], based
on CMBFAST [71–73]. Then Ω10, the source term for the
CDM and baryon velocity divergence, is given by

Ω10ðk; aÞ ¼ −
3

2
ΩmðaÞ

�
fcb þ fν

δν;linðk; aÞ
δcb;linðk; aÞ

�
; (19)

where fcb ¼ Ωcb=Ωm and fν ¼ Ων=Ωm are evaluated
today. Note that Ω10 uses the linear cb density contrast
rather than the nonlinear one; Ref. [50] shows that this
approximation introduces an error of only ≈0.1%.
Time-RG perturbation theory directly integrates the

evolution equations (17), (18) with the evolution matrix
given by Eqs. (6), (8), (19) and vertices given by Eqs. (9),
(10). Initial conditions are given by hφaφbi ¼ Plinfaþb and
hφaφbφci ¼ 0 evaluated at ain sufficiently small that the
perturbations are linear. Calculations presented here use a
modified version of the COPTER code [51,52] in which
(i) the homogeneous evolution includes massive neutrinos
and dynamical dark energy, and (ii) the linear perturbations
are interpolated from CAMB outputs.

III. N-BODY SIMULATIONS

A. Simulations with HACC

In order to test the validity of the perturbation theory
approach we run a set of N-body simulations with the
HACC framework [39–41]. HACC is a flexible N-body
code designed to exploit the diverse landscape of current
and future supercomputing architectures. HACC’s design is
centered around the idea of breaking up the problem into
long-range and short-range force evaluations, keeping a
highly optimized FFT-based long-range solver the same on
all architectures, while optimizing the short-range solver
for a specific target architecture. For hardware-accelerated
systems, such as those with graphics processing units
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(GPUs), particle-particle particle mesh (P3M) solvers can
be easily optimized, while TreePM methods are better
suited for nonaccelerated systems. HACC has been shown
to scale to the largest machines currently available. The
results shown in this paper have been obtained on the Blue
Gene systems Intrepid (BG/P) andMira (BG/Q) at Argonne
National Laboratory and on Titan, a GPU-accelerated
system at Oak Ridge National Laboratory.
We ran a suite of N-body simulations covering different

cosmological models as summarized in Table I. Our
investigations in Sec. IV start with a ΛCDM model
(M000) to set a well-tested baseline for studying the range
of validity of the different perturbation theories. For this
model we analyze one high-resolution simulation, evolving

32003 particles in a ð2100 MpcÞ3 volume with a force
resolution of 6.6 kpc. The starting redshift of the simulation
is zin ¼ 200 and the Zel’dovich approximation [74] is used
to set up the initial conditions. In order to obtain good
statistics on large scales, we also carry out a set of sixteen
particle-mesh (PM) simulations, evolving 5123 particles on
a 10243 uniform grid. We use the high-resolution simu-
lation to check that the PM simulations yield accurate
results up to the scales we are testing the different
perturbation theory approaches. As detailed in Table I
we have high-resolution simulations for three of the
models, the ΛCDM model with and without massive
neutrinos and one model with a time varying dark energy
equation of state (all three simulations evolving 32003

TABLE I. Parameters for the models investigated in this paper, where we use ων ¼ Σmν=94 eV.

# L [h−1 Mpc] ωcdm ωb ων ns σ8 h w0 wa Σmν ½eV� PM High-res

M000n0 1491.0 0.1109 0.02258 0.0 0.9630 0.8000 0.7100 −1.0 0.0 0.0 16 1
M000n1 1491.0 0.1009 0.02258 0.010 0.9630 0.8000 0.7100 −1.0 0.0 0.94 16 1
M000n2 1491.0 0.1099 0.02258 0.001 0.9630 0.8000 0.7100 −1.0 0.0 0.094 16 0
M001n0 1295.1 0.1246 0.02261 0.0 0.9611 0.8778 0.6167 −0.7 0.6722 0.0 16 1
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FIG. 1 (color online). Comparison between the average of 16 PM realizations (green band) and a high resolution simulation
(blue points). The agreement is very good up to k ≈ 0.3 h Mpc−1 over the redshift range of interest. The left panel shows model M000n0
(ΛCDM) and the right panel, M000n1 (ΛCDM with massive neutrinos) of Table I, both divided by the no-wiggle power spectrum
of Eq. (29).

AMOL UPADHYE et al. PHYSICAL REVIEW D 89, 103515 (2014)

103515-6



particles in a ð2100 MpcÞ3 volume). For all models we
generate sixteen PM runs with the same specifications as
given above. Figure 1 shows the comparison of the high-
resolution simulations with and without neutrinos with the
average power spectrum from the PM simulations. The
agreement is very good out to k ∼ 0.3h Mpc−1, the maxi-
mum value for which we compare our results with higher
order perturbation theory results presented in the next
section.
In order to carry out simulations beyond wCDMmodels,

we implement some new features into HACC, namely a
time varying equation of state parametrized by ðw0; waÞ via
Eq. (1), as well as the addition of massive neutrinos. As
described in more detail below, we treat neutrinos in an
approximate way—the perturbative results can be used to
estimate how well the approximations work, at least on
large and quasinonlinear scales. In the following, we
provide a brief description of our neutrino and dynamical
dark energy implementations within HACC.

B. Neutrino treatment and dynamical dark energy

The impact of dynamical dark energy and neutrinos on
the simulated matter power spectrum are taken into account
by (i) modifying the initializer and (ii) including both
effects in the background evolution. We do not model the
interactions of massive neutrino fluctuations with the
dissipationless matter fluctuations during the simulations,
i.e., we run HACC as a gravity-only code with a single
species representing the sum of CDM and baryons. The
total matter power spectrum is constructed from the non-
linear CDMþ baryon power spectrum and the (linear)
massive neutrino power spectrum from CAMB at the
redshift of interest,

Pðk; aÞ ¼
h
fcb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcbðk; aÞ

p
þ fν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pνðk; aÞ

p i
2
: (20)

This approach is reasonable since neutrinos do not cluster
strongly on small scales, and has been adopted in previous
numerical work, see, e.g., Ref. [58], as well as in pertur-
bation theory [57].
In order to set up initial conditions for the HACC

simulations we first determine the shape and normalization
of the total power spectrum at a ¼ 1 (z ¼ 0) using linear
theory,

Ptotalðk; a ¼ 1Þ ¼ AknsT2
totalðk; a ¼ 1Þ; (21)

with ns being the primordial spectral index,

T totalðk; a ¼ 1Þ ¼ fcbTcbðk; a ¼ 1Þ þ fνTνðk; a ¼ 1Þ;
(22)

Tcbðk; a ¼ 1Þ ¼ fbTbðk; a ¼ 1Þ þ fCDMTCDMðk; a ¼ 1Þ;
(23)

and using an associated σ8 normalization at z ¼ 0 which
implicitly defines the value of the amplitude coefficient, A.
A scale-independent CDM-like growth function, DðaÞ, is
then used to move the Pcb piece of the power spectrum back
to the initial redshift, zi, and to set the initial particle
positions and velocities for our single species code repre-
senting both CDM and baryons. This growth function takes
into account all species in the homogeneous background
which makes comparison to high redshift linear theory
outputs from CAMB more direct; radiationlike terms are
kept because they change the amplitude by several percent
at z ∼ 100. It does not, however, take into account the scale
dependence that neutrinos and baryons would contribute,
therefore our terminology “CDM-like.”
Our homogeneous background definitions assume that

massive neutrinos, if present, are massive enough to be
matterlike at z ¼ 0. The following equations are written for
both massless and massive neutrinos, though only one or
the other may be present, not both,

Ωr ¼
2.471 × 10−5

h2

�
TCMB

2.725°K

�
4

; (24)

fmassless
ν;r ¼ 7

8

�
4

11

�
4=3

Nmassless
eff ; (25)

fmassive
ν;r ¼ 7

8

�
4

11

�
4=3

Nmassive
eff ; (26)

ΩνðaÞ ¼ maxðΩνa−3; fmassive
ν;r Ωra−4Þ; (27)

H2ðaÞ=H2
0 ¼ Ωcba−3 þ ð1þ fmassless

ν;r ÞΩra−4 þ ΩνðaÞ
þ ½1 −Ωm − ð1þ fmassless

ν;r ÞΩr�
× a−3ð1þw0þwaÞ exp½−3wað1 − aÞ�: (28)

The scale independent CDM-like growth function is the
linear equivalent of the (nonlinear) gravity-only operator in
HACC that uses the equivalent definitions of the homog-
enous background as in Eq. (28).
The approximations used to incorporate the effects

of baryons and massive neutrinos are similar in that each
has a scale-dependent growth and would impart scale
dependence in the CDM growth. The shapes and ampli-
tudes are also defined in terms of the linear power spectra,
and the goal is to produce accurate power spectra at low
redshifts with nonlinear clustering effects in the CDM and
baryons. The approximations for baryons and massive
neutrinos differ in that the mass of baryons is deposited
on the dissipationless gravitationally interacting particles
advanced by HACC, but the massive neutrinos are only
accounted for with linear theory, as described above.
We would like to stress that using the total power

spectrum from CAMB directly at the initial redshift to
initialize the particle positions and velocities would lead to
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inconsistent results in a gravity-only N-body code: CAMB
accounts for baryon-photon coupling and the scale depend-
ence in the growth function which are absent in the
N-body code.
In order to account for the presence of dynamical dark

energy we modify CAMB as follows. For including
dynamical dark energy, we need to (i) modify the equations
describing the evolution of the background which results in
a change of the perturbations of dark matter, radiation and
neutrinos and (ii) modify the equations describing the
density and velocity perturbations in the dark energy.
The modification to the background cosmology is trivially
achieved by modifying the equation describing the evolu-
tion of conformal time as a function of the scale factor,
using the evolution of dark energy density [see Eq. (28)].
Modifying the equations describing the perturbations of
dark energy requires an expression for the speed of sound.
Consistent with a simple scalar field model, we assume that
this is the speed of light. As a result, perturbations of dark
energy develop only on the Hubble scale. A second issue is
that the equations describing the evolution of the velocity
perturbations include terms of the form c2s=ð1þ wðaÞÞ,
where cs is the speed of sound in the rest frame of dark
energy. For those values of ðw0; waÞ for which the equation
of state passes through −1, this results in a singularity.
Assuming that at the crossing, this term is small enough
that the microscopic properties of dark energy do not
modify the power spectra, we replace the term in a small
range around the crossing by linearly interpolating between
the values at the end of the range, where this term is finite.

IV. RESULTS AND DISCUSSION

A. The regime of validity of perturbation theory

In general, the convergence properties of perturbation
theories for the evolution of matter fluctuations cannot be
rigorously calculated. Furthermore, at sufficiently non-
linear scales, the fluid approximation to the Vlasov-
Poisson equation itself breaks down [53–56]. In the
absence of a reliable internal test, the best determination
of the accuracy of higher-order perturbative methods is
direct comparison against N-body simulations. Since the

scales of interest here are large enough that baryonic effects
on the growth are small, and sufficient force and mass
resolution can be easily attained, predictions for the power
spectrum can be controlled to accuracies of better than a
percent by using N-body methods (see, e.g. Ref. [75]).
We begin by testing our perturbative calculation for a

cosmology with constant dark energy equation of state and
massless neutrinos. For this purpose, we use the cosmic
emulator of Ref. [36], which uses Gaussian process
modeling to interpolate the results of 37 high-resolution
N-body simulations chosen to span the cosmological model
parameter space. (Previous comparisons of the emulator
and perturbation theory can be found in Refs. [55,76].)
Figure 2 compares linear perturbation theory, one-loop
SPT, and Time-RG to the power spectrum emulator, which
is accurate to 1% for z < 1 and k < 1 h Mpc−1. (Full two-
loop SPT is sufficiently time-consuming that a similar
calculation would be difficult.) As expected, one-loop SPT
performs significantly better than linear perturbation
theory, especially at high z. Time-RG, which includes
some two-loop terms, is even more accurate.
In order to improve the accuracy of the power spectrum

computation and to test perturbation theory for models
with wa ≠ 0, we run high-resolution N-body simulations,
shown in Table I. Model M000n0 is a standard ΛCDM
model, while M001n0 is an early dark energy model in
which wðzÞ evolves rapidly, allowing the dark energy to
be a substantial fraction of the total energy density at the
time of recombination. Figure 3 compares linear theory,
Time-RG, standard perturbation theory (SPT), renormal-
ized perturbation theory (RPT), and Lagrangian resumma-
tion perturbation theory (LPT) to the HACC N-body power
spectrum for ΛCDM and early dark energy. RPT is a
resummed alternative to the SPT discussed earlier. LPT is
formulated in terms of particle displacements, making it
particularly useful for observations in redshift space.
In order to present the results more clearly, we have

divided the power spectra by a smoothed “no-wiggle”
power spectrum Pnwðk; zÞ:

1

Pnwðk; 0Þμ
¼ 1

½ð kk0Þns−ϵP0�μ
þ 1

½ð kk1Þns−3P1�μ
; (29)
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FIG. 2 (color online). Comparison of linear perturbation theory (left), one-loop SPT (middle) and Time-RG (right) to the cosmic
emulator of Ref. [36] for dark energy with constant w ¼ −1.2 and massless neutrinos. The color of each bin corresponds to the
maximum difference between perturbation theory and the emulator power spectrum.
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Pnwðk; zÞ ¼ DðzÞ2Pnwðk; 0Þ: (30)

Here k0 ¼ 10−4h Mpc−1, k1 ¼ 0.3h Mpc−1, μ ¼ 0.4, and
we have chosen P0 and P1 such that Pnwðk0Þ=Plinðk0Þ≈

Pnwðk1Þ=Plinðk0Þ ≈ 1. We choose ϵ ¼ 0 except for early
dark energy models (we used ϵ ¼ 0.2 for models M001n0
and M001n1; ϵ ¼ 0.04 for M002n1), in which dark energy
is a significant fraction ∼10% of the total energy density
even at z ∼ 1000, and the universe is never completely
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FIG. 3 (color online). Power spectrum ratios for linear theory and four different higher-order perturbation theories compared with the
HACC N-body power spectrum at 5 redshifts for models with massless neutrinos. For SPTand RPT, thin and thick lines denote one-loop
and two-loop calculations, respectively. Left: ΛCDM, model M000n0. Right: Early dark energy, model M001n0. The wave numbers at
which the perturbation theory results deviate from the simulations by 1% and 2% are shown in Table II.

TABLE II. Wave number k [h Mpc−1] below which each perturbation theory is accurate to 1% (or 2%) in models with massless
neutrinos.

SPT RPT
Model z Acc. Linear one-loop two-loop one-loop two-loop Time-RG LPT

M000n0 0 1% 0.076 0.084 0.093 0.14 0.084 0.15 0.093
2% 0.1 0.11 0.1 0.15 0.11 0.19 0.1

1 1% 0.13 0.12 0.24 0.2 0.13 0.28 0.14
2% 0.14 0.15 0.3 0.21 0.17 0.97 0.15

M001n0 0 1% 0.078 0.11 0.058 0.15 0.11 0.17 0.087
2% 0.078 0.11 0.068 0.15 0.13 0.18 0.097

1 1% 0.12 0.14 0.16 0.19 0.16 0.26 0.14
2% 0.16 0.17 0.29 0.2 0.19 0.32 0.15
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matter-dominated. DðzÞ is the scale-independent growth
factor found by setting δν ¼ 0 in Eq. (19).
Figure 3 (left) extends the result of Ref. [51] to higher

redshifts, while Fig. 3 (right) is a new result. Table II
summarizes the results, showing the k at which each
perturbation theory begins to differ from simulations by
1% or 2%. Since the simulated power spectra are noisy at
low k, in practice we added the 1% or 2% errors to the 3σ
statistical uncertainty of the N-body power spectra.
From Fig. 4 we see that higher-order perturbation

theories correctly predict the power spectrum falling below
linear theory in the range 0.05h Mpc−1 ≲ k≲ 0.1h Mpc−1

as power moves from large scales to small scales. RPT
and one-loop SPT predict the smallest dip, and Time-RG
and two-loop SPT predict the largest, while the N-body
simulations prefer an intermediate value. In the range
0.1h Mpc−1 ≲ k≲ 0.15h Mpc−1, Time-RG and one-loop
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FIG. 4 (color online). Power spectra at z ¼ 0 for the M000n0
model from Fig. 3, showing nonlinear suppression of power at
intermediate scales.
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FIG. 5 (color online). Power spectra Pcb for models M000n1 (left) and M000n2 (right), with a cosmological constant and massive
neutrinos. Pnw is the no-wiggle power spectrum of Eq. (29) associated with the linear power spectrum at z ¼ 0 in each case. Shaded
yellow regions show power spectra within 2% of the corresponding Time-RG curves. Power spectra are also shown with the neutrino
density contrast δν set to zero (green dashed curves), the approximation used in the HACC simulations. See the text for further
discussion.
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RPT most closely approximate the simulations, while SPT
and LPT begin to diverge from the other power spectra. At
the 2% level, all of the higher-order perturbative methods
are accurate up to k ≈ 0.1h Mpc−1 at z ¼ 0.
In the models above, the N-body simulations (and

therefore the emulator results based on them) include all
gravity effects consistently. When neutrinos are added, this
is no longer the case; as discussed earlier, the gravitational
potential of clustering of massive neutrinos is not included
in the simulations, as this effect is expected to be small.
However, a finite neutrino mass leads to a suppression of
the power spectrum, and therefore pushes the onset of
nonlinear effects to higher wave numbers. Thus, for
cosmological models obtained by changing a fraction of
the dark matter energy density to the energy density of
massive neutrinos (at the same low-k amplitude), pertur-
bation theory must continue to be valid in at least the
regime obtained above. Since Time-RG consistently
includes the massive neutrinos, we can use it to test the
extensions of HACC for massive neutrinos.

B. Massive neutrinos: Perturbation theory and
HACC simulations

We now consider cosmological models with massive
neutrinos. Since Time-RG is the only perturbative method
we consider that includes neutrino masses, all perturbative
calculations described below are restricted to Time-RG.
Figure 5 shows the power spectra of models M000n1 and
M000n2, both of which have cosmological constants and
massive neutrinos. The yellow shaded band around the
Time-RG curve identifies power spectra within 2% of
Time-RG. When ων is small as in Fig. 5 (right), Time-
RG agrees with the HACC results to 2% for k ≈
0.2h Mpc−1 at z ¼ 0 and for even higher k at z ≥ 0.5.
Since Fig. 5 (right) corresponds to Σmν ¼ 0.094 eV, about
half of the current upper bound, we expect Time-RG to be a
good approximation in the most interesting region of
parameter space.
The results of Fig. 5 (left) for model M000n1, in which

ων ¼ 0.01 implies a significant neutrino fraction fν ¼
7.5% and mass Σmν ¼ 0.94 eV, show a discrepancy
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FIG. 6 (color online). Power spectra Pcb for the early dark energy models with massive neutrinos, M001n1 (left) and M002n1 (right),
following the conventions of Fig. 5.
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between Time-RG and the approximate treatment imple-
mented in HACC even for k < 0.1h Mpc−1 for the higher-z
cases considered. Because the approximation does not
include neutrinos as a source for CDMþ baryon growth,
it is expected to misestimate the power at large fν. Note,
however, that the neutrino mass implied by this model is
about four times as high as the bound from [10].
At z ¼ 0, the N-body and perturbative results are

normalized correctly by construction, agreeing well at
the lowest k values. However, at higher z, the Time-RG
curve (red line) should be above the N-body curve (blue
points) because the additional neutrino sourcing implies a
larger growth function, and hence smaller power spectrum
at higher z after normalizing to σ8 at z ¼ 0. In order to
display this effect and to estimate its magnitude, we also
carried out the Time-RG calculation with δν;lin set to zero in
Eq. (19), as shown in the long-dashed green curve in Fig. 5
(left). This δν ¼ 0 curve is in very good agreement with the
approximate HACC power spectrum in the low-k regime at
all redshifts, showing explicitly that the discrepancy
between the Time-RG and HACC results is due to the
approximate treatment of neutrinos discussed in Sec. III.
(Compensation for this error at the linear level is possible,
but we do not pursue it here.) Moreover, a comparison
between the Time-RG and δν ¼ 0 curves provides an
estimate of the accuracy of this approximation, which is
better than 1% for z ¼ 0 up to k ¼ 0.16h Mpc−1 and better
than 1.5% up to k ¼ 0.27h Mpc−1 (although at this point,
Time-RG is clearly wrong). This applies to ων ¼ 0.01, so
the error will be several times smaller for lower ων.
Finally, Fig. 6 shows power spectra for two different

early dark energy models with massive neutrinos. For
both models, Time-RG works quite well, agreeing to
mostly better than 2% with the N-body results up to k ¼
0.17h Mpc−1 at z ¼ 0.
One possible application of our perturbative results is to

combine them with N-body simulations in order to obtain
an accurate power spectrum calculation over the greatest
possible range of scales. Higher-order perturbation theories
such as Time-RG are accurate up to k ¼ 0.05–0.1h Mpc−1,
as we have confirmed over a large range of dark energy
equations of state and neutrino masses. These large scales
are precisely where simulations can have some difficulties
due to their finite box sizes. Thus by combining Time-RG
calculations with those of HACC, it is possible to predict
the power spectrum from horizon scales to k≳ 1h Mpc−1.

C. Impact on observables: Exploring physics beyond
wCDM using perturbation theory

1. Dynamical dark energy

Growth of structure depends on the dark energy equation
of state. In the linear regime the dominant effect will be a
scale-independent change to the growth factor DðaÞ. Since
we normalize power spectra using σ8 at z ¼ 0, this effect

will be most noticeable at higher redshifts. Meanwhile,
nonlinearities may introduce a scale-dependent change at
larger k.
Figure 7 shows the effects on the power spectrum of

varying the equation of state parameters w0 and wa, starting
from the ΛCDM fiducial model M000n0 from Table I.
Power spectra are calculated using the Time-RG perturba-
tion theory; we have divided the power spectra by a
smoothed “no-wiggle” power spectrum PnwðkÞ specified
in Eq. (29).
Our expectation based on linear theory, that changing the

equation of state mainly affects PðkÞ through the growth
factor, is essentially correct for w0. The different curves in
Fig. 7 (top panel) differ mostly by a normalization factor,
corresponding to the square of the growth factor at z ¼ 1.
On the other hand, changing wa appears, from Fig. 7
(bottom panel), to have a greater effect at more nonlinear
scales. This is encouraging, as it indicates that the nonlinear
power spectrum can provide more powerful constraints on
wa than expected from linear theory.
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2. Massive neutrinos

Figure 8 (top panel) begins with model M000n0 and
increments ων in steps of 0.002, with ων ¼ 0.01 corre-
sponding to model M000n1. As for the simulations, the
total matter power spectrum PðkÞ is found by adding the
nonlinear CDM and baryon power spectrum to the linear
neutrino power spectrum [see Eq. (20)]. Increasing the
neutrino mass modifies the power spectrum in a scale-
dependent way. We note that all of the models in Fig. 8 (top
panel) are normalized to the same σ8 at z ¼ 0. Since
neutrinos suppress small-scale power, normalization
increases the large-scale power of massive neutrino models
to compensate. The bottom panel of Fig. 8 shows the results
if one fixes the normalization by adopting the same low-k
amplitude in all cases, at some chosen value of k. In this
case, the suppression of power due to massive neutrinos is
immediately evident. Figure 9 presents the effects of
varying ων, as well as w0 and wa, using a ratio relative
to the minimal ΛCDM model M000n0.

Massive neutrinos shift the positions of the baryon peaks in
the power spectrum, with possible implications for BAO
measurements. For example, the k positions of the trough at
k ≈ 0.04h Mpc−1 and the peak at k ≈ 0.07h Mpc−1 are
shifted relative to the massless neutrino model in Fig. 10.
Comparing theων ¼ 0 (red, solid) andων ¼ 0.01 Time-RG
(green, long-dashed) curves in that figure, we see that
neutrino masses shift the k values of these extrema by ∼fν.
Figure 10 also shows the spatial correlation function ξðrÞ of
the matter, computed using the FFTLOG package [77].
Transformation from PðkÞ to ξðrÞ requires the extrapolation
of P to large k, which we do using a power law of slope
d logP=d log k ¼ ns − 3 for linear PðkÞ and −1 for non-
linear PðkÞ. Varying this slope by �30% changes the BAO
peak position by only 0.1%, so the BAO feature is robust
with respect to this extrapolation.
The neutrino contribution to the power spectrum can be

divided into two effects. The first is the effect of the
neutrino energy density on the homogeneous expansion
HðzÞ of the universe, including the resulting effect on the
CDM and baryon growth factor. The second is the direct
contribution of the neutrino inhomogeneities δν ≠ 0 to the
total matter power spectrum and to the scale-dependent
growth of δcb. In order to separate these effects, Fig. 10 also
shows the ων ¼ 0.01 power spectrum with the neutrino
inhomogeneities set to zero, δν;lin ¼ 0 in Eq. (19).
Evidently the shifts in the baryon wiggles in the CDM
power spectrum are almost entirely due to the first
effect, the neutrino contribution to HðzÞ; the peak and
trough positions in the Time-RG and δν ¼ 0 curves differ
by ∼0.1%.
In terms of BAO analysis, this is a potentially helpful

result. It implies that BAO reconstruction, which uses two-
loop Lagrangian perturbation theory to map the observed
density field back to the underlying linear field, can be
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trivially extended to include massive neutrinos. In order to
do this, one need only include the energy density and
pressure of the neutrinos when computing HðzÞ and the
(scale-independent) CDMþ baryon growth factor. If one
approximates the BAO peak by ignoring neutrino inho-
mogeneities in Time-RG, then the peak position is off by
less than 0.25%. This level of approximation is more than
adequate for BOSS, but may become important under
optimistic assumptions about DESI [27].

V. CONCLUSION

Over the next several years, surveys measuring the BAO
peak and the growth of large-scale structure will provide
substantially improved constraints on dynamical dark
energy and massive neutrinos, especially when combined
with lensing observations [27], as well as with CMB
measurements. In particular, they will significantly narrow
the allowed range of dark energy equations of state and will

measure, rather than merely bound, the sum of neutrino
masses. Analyses of these upcoming data will require a
thorough understanding of the subtle effects on the matter
power spectrum arising from the dark energy and neutrino
sectors.
Higher-order perturbation theory and N-body simula-

tions provide complementary predictions of the matter
power spectrum, overlapping at quasilinear scales. In this
work we have extended both tools to cosmologies with
time-varying dark energy equations of state and massive
neutrinos. By modifying the publicly available COPTER

code [52], we extended several higher-order perturbation
theories to cosmologies with arbitrary homogeneous evo-
lution HðzÞ. Figure 3 and Table II compare linear theory
and six different higher-order perturbation theories to N-
body simulations for a ΛCDM model as well as an early
dark energy. For ΛCDM (model M000n0) the higher-order
calculations all agree with simulations to 2% up to k ¼
0.1h Mpc−1 at z ¼ 0 and up to k ¼ 0.15h Mpc−1 at z ¼ 1;
some of the perturbation theories perform substantially
better than that. For early dark energy (model M001n0) the
situation is similar except that two-loop SPT behaves badly
at z ¼ 0.
In addition to arbitrary homogeneous evolution, we

included massive neutrinos, treated linearly, in the Time-
RG perturbation theory. Our results in Figs. 7–8 show
the effects of incrementing w0, wa, and ων on the matter
power spectrum. We find the interesting result that, on
BAO scales, the neutrino contribution to the CDM and
baryon power spectrum is dominated by the neutrinos’
modification to the homogeneous expansion rate HðzÞ, as
shown in Fig. 10. Neglecting neutrino inhomogeneities in
the standard Lagrangian resummation perturbation theory
reconstruction will therefore only introduce an error
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TABLE III. Wave number k [h Mpc−1] up to which linear and
Time-RG perturbation theories are accurate up to 1% (or 2%) in
models with massive neutrinos.

Model z Acc. Linear Time-RG

M000n1 0 1% 0.086 0.14
2% 0.091 0.14

1 1% 0.095 0.2
2% 0.1 0.26

M000n2 0 1% 0.099 0.16
2% 0.11 0.2

1 1% 0.11 0.44
2% 0.14 0.58

M001n1 0 1% 0.065 0.17
2% 0.09 0.17

1 1% 0.16 0.25
2% 0.16 0.26

M002n1 0 1% 0.11 0.17
2% 0.11 0.17

1 1% 0.11 0.64
2% 0.12 0.78
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of ≤ 0.25% in the position of the BAO peak, assuming a
neutrino-to-matter ratio fν ≤ 0.075.
We added neutrinos to the HACC N-body code in a

minimal fashion by neglecting the neutrino density contrast
as a source for matter clustering. The matter power
spectrum is found by combining the nonlinear CDM plus
baryon power spectrum result along with that from neu-
trinos treated in linear theory. This approximation can be
tested directly within Time-RG perturbation theory by
neglecting the neutrino density contrast in Eq. (19). For
fν ¼ 0.075, at z ¼ 0, we find that the approximation is
valid to better than 1% up to k ¼ 0.16h Mpc−1, essentially
the entire range of validity of perturbation theory. Since
fν ¼ 0.075 is a few times larger than allowed by current
constraints, we are justified in applying this approximation
for N-body calculations. Figures 5 and 6 compare the
resulting N-body power spectra to Time-RG with massive
neutrinos in ΛCDM and early dark energy models, respec-
tively. Table III summarizes the results; at z ¼ 0, Time-RG
and simulations agree to 2% up to at least k ¼
0.14h Mpc−1 for all models considered. The combination

of our Time-RG and N-body calculations is a powerful
result, predicting the power spectrum in massive neutrino
models, for a wide range of dark energy models, over
several orders of magnitude in k.
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