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Charged McVittie spacetime
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The two-parameter charged McVittie solution of the Einstein equations is revisited and its apparent
horizons are discussed and located numerically (for the extremal case, analytically). According to the
parameter values, this spacetime can be interpreted as a black hole, or a spacelike naked singularity, in a

spatially homogeneous and isotropic universe.
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I. INTRODUCTION

Analytical solutions of general relativity and of alter-
native theories of gravity which represent inhomogeneous
cosmologies have been the subject of much recent interest.
In the context of general relativity, spherically symmetric
solutions of this kind are used to explore alternatives to
dark energy in explaining the current acceleration of the
cosmic expansion (see Ref. [1] for a review), to study the
effect of the cosmic dynamics on local systems [2], to study
the spatial variation of fundamental constants [3], and to
explore the thermodynamics of time-dependent horizons
[4-7]. Solutions representing time-varying black holes are
of interest in themselves and the first spacetime of this kind
is the 1933 McVittie solution of the Einstein equations
constructed to study the effect of the cosmic dynamics on a
local system [8]. It describes a central inhomogeneity in
a Friedmann-Lemaitre-Robertson-Walker (FLRW) “back-
ground.” Over the years, the McVittie solution has been the
subject of many studies [9,10] but it is not yet completely
understood, as testified by the proliferation of recent works
[11-17]. Most recently, it has been shown that the Mc Vittie
metric cannot be generated as a scalar field solution unless
noncanonical scalars, introduced in the literature as forms
of exotic dark energy, are employed—this is the case of the
cuscuton theory, a special case of Horava-Lifschitz theory,
of which the McVittie metric is a solution [18].

A charged version of the original McVittie metric was
found by Shah and Vaidya [19] and later generalized by
Mashhoon and Partovi [20]. Charged and uncharged
McVittie solutions are special cases of the Kustaanheimo-
Qvist family [21]; related solutions and relevant research are
reviewed in Chap. 4 of Ref. [10]. The charged McVittie
solution was rediscovered by Gao and Zhang [22], who also
generalized it to higher dimensions [23], and was discussed
very briefly in [24,25]. Here we want to fill a gap in the
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literature and locate the apparent horizons of this spacetime
(when present) and study their dynamics.

Conformal diagrams of the McVittie spacetime for various
backgrounds were obtained in [13,17] and we expect them to
be qualitatively similar in the charged case; however we do
not get into such level of detail here. As an application of the
charged McVittie spacetime, we mention that it was used' to
disprove the universality of certain quantization laws for
quantities constructed with the areas of black hole apparent
horizons and inspired by string theories [26].

II. THE CHARGED MCVITTIE SPACETIME
AND ITS APPARENT HORIZONS

For simplicity we restrict ourselves to a spatially flat
FLRW “background” (we use quotation marks because, due
to the nonlinearity of the Einstein equations, it is in general
impossible to split a metric into a background and a
deviation from it in a covariant way). The spherically sym-
metric, nonstationary, charged McVittie line element and the
only nonvanishing component of the Maxwell tensor are’
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'The analysis of Ref. [26] is flawed by a typographical error
present in the metric of [22] but, as we shall see, the qualitative
behavior of the apparent horizons for |Q| < m does not change
and the argument of Ref. [26] still stands.

*Our notations differ slightly from those of Ref. [22]. Beware
of a typographical error in the numerator of gq in [22], which was
corrected in Refs. [23-25].
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where r is the isotropic radius, dQ%2 = d6? + sin” Odg? is
the line element on the unit 2-sphere, the constants m > 0
and Q are a mass and an electric charge parameter,
respectively, and a(z) is the scale factor of the “background”
FLRW universe. If a = 1, the line element (1) reduces to the
Reissner-Nordstrom one in isotropic coordinates while, for
large values of r, it reduces to the spatially flat FLRW metric.
If m = Q = 0, the metric becomes an exact spatially flat
FLRW one.

The inspection of Eq. (1) provides immediately the areal
radius

o s ( 52 -5

— 02
:m+a(t)r+n1a(t)Qr

3)
and it is R(z,r) > m for |Q| < m. Assuming the range of
parameters |Q| < m, the function R(¢, r) (and consequently
also the area 47R? of 2-spheres of symmetry) decreases from

+oo in the range 0 < ar < \/m /2, has an absolute
minimum R, = m + \/m* — Q% at ar = /m* — 0*/2,

and increases again to plus infinity for ar > \/m? — Q?/2,
which shows clearly that the isotropic radius corresponds
to a double covering of the spacetime region

R > m+/m?>— Q%> m. (This fact is well known for
the Schwarzschild spacetime [27], which is contained in the
metric (1) as the special case a= 1,0 =0.)

In the case |Q| > m, the areal radius R is instead a
monotonically increasing function of r and the physically

meaningful region R > 0 corresponds to r > ‘Q‘( 7 > 0.

The relation between areal radius R and isotropic radius
r can be inverted, which will be useful in the following to
study the horizons of the charged McVittie spacetime. This
inversion gives the quadratic equation
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with the positive root satisfying the relation
2ar=R—-m+ VR>+ Q*-2mR = f(R). (5

The Ricci scalar is found to be
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The nonzero components of the Einstein tensor are
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H = a/a is the Hubble parameter of the FLRW “back-
ground” and an overdot denotes differentiation with respect
to the comoving time 7. The vanishing of G implies that
there is no accretion (which, to respect the symmetry, could
only be radial) of the (uncharged) cosmic fluid onto the
central object.

For m = Q = 0 Eq. (6) reduces to the well-known Ricci
scalar of the spatially flat FLRW universe R¢, =6(H +2H?).
For a = 1 it reduces to zero, which is the Ricci scalar of the
Reissner-Nordstrom spacetime (the only matter source is then
the Maxwell field with traceless energy-momentum tensor).

If |Q| < m there is a singularity where 1 — 'Z Tt = =0, or
2_ 2
ar=Ym -0 (10)

2

corresponding to the areal radius

R=m+m*-Q? (11)

which is precisely the location of the outer event horizon of
the Reissner-Nordstrom spacetime (the @ = 1 limit).
For the extremal case |Q| = m the metric becomes

2 dlz 2
ds? = m)2+a T+ “ir +dQ}, (12)

>The expression of the Einstein tensor in Refs. [24] and [25]
differs from ours in that, there, a scale factor term is missing in the
combination [m? — Q% + 4mra + 4r*a®]* in the denominators.
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and the singularity occurs at r = 0, which corresponds to
the areal radius R = m, again coinciding with the location
of the outer event horizon of the a = 1 Reissner-Nordstrom
limit, in this case the single event horizon of the extremal
Reissner-Nordstrom black hole.

This new spherical singularity is not present if |Q| > m.
In this case, however, the scalar invariant of the Maxwell
tensor

Q2
F,F* = — 5 (13)
a’rt [(1 + )% — 45?Tr2i|
diverges at
ar = |Q|T_m (14)

corresponding to R = 0 due to the divergence of the radial
electric field, which is the only nonzero component FO' of
the Maxwell tensor. Of course, the big bang singularity is
always present at a = 0. The singularity (11) divides the
spacetime into two disconnected manifolds, as in the
McVittie case [9,10,28].

The spacetime singularity (11) (for |Q| < m) is space-
like. In fact, this singularity corresponds to y = 0, where
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In the limit in which 2ar — \/m? — Q? from above, this
expression tends to —oo, therefore the norm of the normal
to the surfaces y = const. in this limit is negative, hence
this surface and its limit are spacelike (see also [20]).

The black hole nature of the charged McVittie spacetime
is assessed by examining its horizons. Since the metric is
dynamical, the relevant concept of horizon is not the null
and teleological event horizon, which requires the knowl-
edge of the entire spacetime manifold to future null infinity.
Apparent and trapping horizons, instead, are more appro-
priate and useful concepts to describe dynamical situations
[7,29-31], and we will study the apparent horizons, which
are located by the equation VRV R = 0 (e.g., [7,32,33]),
where R is the areal radius. After straightforward manip-
ulations, this equation becomes
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Excluding the singularity (11), the roots of (17) are the
roots of the equation
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It is useful to express the location of the apparent horizons
in terms of the physical (areal) radius, obtaining

4f?R*H? — (f> —m®> + 0*)> =0, (19)

where f(R) is given by Eq. (5). Equation (19) can be
manipulated without further approximation to the quartic
polynomial in R

H?R* —R?>+2mR - Q> =0. (20)

Note that this polynomial is general and applies independ-
ently of the relation of Q to m. For large values of R this
equation reduces to R ~ 1/H, the value of the radius of the
apparent horizon of the spatially flat FLRW “background,”
which makes us expect a cosmological horizon to be
present. In any regime in which H — 0 (for example in
power law backgrounds with a(f) = ao” and hence
H = p/t - 0ast — o), Eq. (19) reduces to its asymptotic
form

R —2mR + Q*=0 (21)

so that, in this limit

R=m=+vm?>-Q? (22)
implying that in any region of a background for which
H — 0 (for example late times in a power law background)
a black hole apparent horizon asymptotes to the singularity
(11). Note that the smaller root always lies inside the
spherical singularity and that these two roots exactly
coincide with the locations of the two event horizons of
Reissner-Nordstrom. Hence we see that the limit H — 0
reproduces the horizon structure of the static Reissner-
Nordstrom spacetime.4

*Albeit with the addition of the spherical singularity not
present in Reissner-Nordstrom. This spherical singularity is
present even when |Q| =m and independently of the time
dependence a(t), as long as it is not exactly constant. The
authors are currently investigating further this curious feature of
the charged and uncharged McVittie spacetime.
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A. Dust-dominated background

Let us restrict now, for the sake of example, to a dust-
dominated background with a(t) = apr?/* and H(r) = 2.
Consider the case |Q| < m. Then Eq. (20) can be solved
explicitly at different times ¢ giving the location of the
apparent horizons. These are plotted versus comoving time
in Fig. 1 for a choice of parameters. The phenomenology of
these apparent horizons is similar to that found for the
uncharged McVittie solution [12,13,16,28]. In this case, for
t > 0, one the four roots of the polynomial equation (20) is
real and always negative, one is real and always positive
while the remaining two are real only at sufficiently late
times, being complex at earlier times.

Initially (near the big bang ¢ = 0), there are no apparent
horizons in the connected outer region beyond the spherical
singularity; at a critical time a cosmological and a black
hole apparent horizon appear. The black hole apparent
horizon shrinks asymptoting to the singularity, while the
cosmological apparent horizon expands forever. This phe-
nomenology is interpreted in [16] for Q = 0 by noting that
at early times the size of the black hole horizon exceeds that
of the cosmological horizon and such a large black hole
cannot be accommodated in a small universe. (This
situation is similar to that of the Schwarzschild-de Sitter
black hole, which is a special case of the McVittie metric
[16].) Later on, the cosmological horizon becomes larger

FIG. 1 (color online). The physical radii R of the apparent
horizons of the charged McVittie spacetime versus time ¢ for
m = 1and Q = 1/2 and dust-dominated power law background
a(t) = 1*3. The blue dash-dotted line is the location of the
corrected “Hubble radius” R = 1/H — m which is an asymptote
for the largest apparent horizon at late times while the black
dashed line is the location of the spherical singularity (11).

PHYSICAL REVIEW D 89, 103514 (2014)

than the black hole apparent horizon, which now fits below
the cosmological horizon [16].

Note that the innermost apparent horizon, which asymp-
totes to the location of the inner unstable Cauchy horizon of
Reissner-Nordstrom geometry, is located in the inner dis-
connected region, separated from the exterior geometry by
the singularity (11), converging to R = 0 at the big bang.

B. Universe undergoing finite expansion—production
and decay of horizons

As a toy model to further investigate the interesting
apparent horizon structures, let us consider a universe
undergoing a finite expansion from an initially quasistatic
regime to a final quasistatic regime with scale factor

- - a; t
a(r) =4 er 4L A 5 % tanh (5) (23)

Shown in Fig. 2 is the scale factor (23) for the choice
a; =1, ag =2, and ¢y = 1 representing a universe which
expands by a factor of 2 from 1 = —oc0 to t = +o00. We
consider only the case |Q| <m for the rest of this
subsection and also fix the values m =1 and Q = 1/2
for illustration.

The horizon phenomenology in this case depends on the
time scale of expansion #, with horizon mergers (decay)
and horizon births (production) possible. In Fig. 3 we plot
the roots of the polynomial (20) over time for a “fast”
expansion (t, = 1) where the cosmological horizon shrinks
from R = 400 to eventually merge with the expanding
black hole horizon leaving a naked singularity for a period

2.0 7

1.8 1

1.6

FIG. 2 (color online). The finite expansion scale factor (23) for
ai:l,af:2andt0:l.

103514-4



CHARGED MCVITTIE SPACETIME

PHYSICAL REVIEW D 89, 103514 (2014)

8 1

7

FIG. 3 (color online). The locations of the apparent horizons
over time for the “fast” finite expansion background with scale
factor (23) with #, = 1 given by the red solid curves. The black
dashed line is the location of the spherical singularity.

followed by the birth again of two horizons which separate,
the cosmological one out to R = +oo0 and the black hole
horizon asymptoting to the spherical singularity at
R=m+/m*>- Q.

Note that the horizon structure is not symmetric about
t = 0 since it is the asymmetric function H(¢) = a/a which
enters the quartic polynomial (20) defining the horizon
locations. In Fig. 4 we plot the location of the apparent
horizons over time for a “‘slow” expansion (7, = 0.57) where
the cosmological horizon does not shrink enough to sub-
sume the black hole horizon. In this slow case, the spherical
singularity is always hidden behind an apparent horizon for
asymptotic observers far from the inhomogeneity.

Interestingly, the curious limiting case in which the
cosmological and black hole horizons meet at a point,
appearing to intersect, can be solved for exactly, occurring
when the Hubble parameter attains a critical value H; at
its maximum leaving a single apparent horizon at R in
the exterior region, where

3 1
Rcril = Em + E \V 9m2 - 8Q2, (24)

g _ 1@
crit — SRcrit’

= 25
Rcrit 3 ( )

Such a scenario is shown in Fig. 5 for the finite expansion,
where we see the “crossing” of the horizons at a single time.
It should be noted however that these values of R and

FIG. 4 (color online). The locations of the apparent horizons
over time for the “slow” finite expansion background with scale
factor (23) and ¢ty = 0.57, given by the red solid curves. The black
dashed line is the location of the spherical singularity.

FIG. 5 (color online). The location of the apparent horizons in
the limiting case in which the time scale of the finite expansion is
critical, resulting in the momentary merger of the two outer
horizons, appearing to cross. The black dashed line is the location
of the spherical singularity.
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H_; are entirely general so that a background satisfying
H = H_; over a finite stretch (or indeed always) will have a
single merged horizon over that stretch sitting at R = R

C. The extremal case |Q| =m

In the extremal case with |Q| = m the quartic relation
(20) is exactly solvable, with solutions

1 V1 —4mH -1
Rextremal = ﬁ t—

. — 7vl+4mH_ (26)
2H 2H 2H
The extremal case |Q| = m is interesting in the sense that
an explicit analytical expression like (26) for the apparent
horizon radii is rare to find in investigations of time-
evolving black holes [7]. We see that the roots are left
invariant under the transformation H — —H so that we
assume, without loss of generality, H > 0 in what follows.
One of these roots is always negative and hence is
discarded:

1 Vv1+4mH

R -
2H 2H

@27

negative —

The smallest positive root given by

61

R 31
2_
1_
K
0 T T T T T 1
0 1 2 3 4 5 6

FIG. 6 (color online). The location of the apparent horizons
over time for the dust-dominated extremal case |Q| = m and
a(t) « t*3. The blue dash-dotted curve is the location of the
corrected Hubble radius R = 1/H — m, while the dashed black
line is the location of the single Reissner-Nordstrom event
horizon R =m to which the two inner apparent horizons
asymptote at late times. R = m is also the location of the
spherical singularity (11).
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1 vV1+4+4mH
Rinner =-—-+ o (28)
2H 2H

is always present (always real) while the other two

R, = 1 + v1-—4mH (29)
2H 2H

can merge (become complex) or appear simultaneously
(become real) depending on the evolution of H.
Interestingly, for the dust-dominated background H — 0
as t — +oo and we see that R;,,., and R_ in fact converge
to the same radius R = m. This common limit radius is
precisely where the single event horizon of extremal
Reissner-Nordstrom sits, nicely showing that we recover
the phenomenology of the static charged spacetime in the
appropriate limit. This horizon behavior is shown in Fig. 6.

D. The supercritical case |Q| > m

In the case |Q| > m we expect a naked singularity, based
on the limit of constant a which reproduces the Reissner-
Nordstrom spacetime. The cosmological horizon is still
present, as expected from the previous considerations. In
fact, numerical plots for this situation in the dust-dominated
case a(t) = 1*/3, provide a single (cosmological) apparent
horizon, as shown in Fig. 7. We see that only one root of

FIG. 7 (color online). The areal radius of the apparent horizon
of the charged McVittie spacetime versus time for |Q| > m and a
dust-dominated background a(¢) = 7*/? in solid red. The dashed
blue line is the corrected Hubble radius R = 1/H — m to which
the single apparent horizon asymptotes from above at late times
motivating its characterization as a cosmological apparent hori-
zon. There is a naked singularity at R = 0.
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Eq. (20) is real and positive and corresponds asymptotically
to the corrected Hubble radius.

II1. DISCUSSION

In the parameter range |Q| < m explored we find only a
cosmological apparent horizon and one black hole apparent
horizon, while in the Reissner-Nordstréom black hole (to
which the metric reduces if @ = 1) it is well known that also
an inner black hole (apparent) horizon is present. This fact
begs the question of why, in the charged McVittie space-
time which generalizes the Reissner-Nordstrom metric, we
do not see an inner black hole horizon in addition to the
cosmological horizon. The inner black hole horizon of the
Reissner-Nordstrom black hole is unstable with respect to
linear perturbations [34] and the effect of the cosmological
“background” on the central inhomogeneity is akin to a
nonlinear (or exact) “large perturbation,” therefore, the

PHYSICAL REVIEW D 89, 103514 (2014)

absence of an inner black hole horizon is not too surprising
in this regard.5 We expect such a horizon to be absent in
any exact solution of the Einstein equations describing a
Reissner-Nordstrom-like black hole interacting with a
nontrivial environment.
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SHowever, this “perturbation” is not “small,” in the sense that it
corresponds to an infinite amount of mass-energy added to the
Reissner-Nordstrom spacetime, even in the case of arbitrarily
small density p of the FLRW “background.” Moreover, the
density p diverges at the spherical singularity.
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