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We study the signatures for internal structure of dark matter in direct detection experiments in the context
of asymmetric self-interacting dark matter. The self-interaction cross section of two dark matter particles at
low energies is assumed to come close to saturating the S-wave unitarity bound, which requires the
presence of a resonance near their scattering threshold. The universality of S-wave near-threshold
resonances then implies that the low-energy scattering properties of a two-body bound state of dark matter
particles are completely determined by its binding energy, irrespective of the underlying microphysics. The
form factor for elastic scattering of the bound state from a nucleus and the possibility of break up of the
bound state produce new signatures in the nuclear recoil energy spectrum. If these features are observed in
experiments, it will give a smoking-gun signature for the internal structure of dark matter.
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I. INTRODUCTION

The presence of dark matter in the Universe has been
inferred gravitationally for the last ∼80 years. However, in
spite of decades of search, we do not know the particle
content of the dark sector. Among the many prospective
candidates for dark matter, a massive neutral particle is
favored as the dark matter candidate for many compelling
theoretical reasons. Search for the particle properties of
dark matter proceeds via direct detection, indirect detec-
tion, production in colliders, and the search for effects in
galaxy formation.
In spite of the enormous success of the ΛCDM model in

explaining the observations of the large-scale structures in
our Universe, several small-scale anomalies [1] (missing
satellites [2], core vs cusp[3], and too big to fail [4]) have
called for a modification of the collisionless dark matter
paradigm [5–7]. Although the possibility of baryonic
feedback being a solution to these problems is not yet
completely excluded [8,9], several particle physics models
have been built to incorporate strong self-interactions
among the dark matter particles [10–19].
Asymmetric dark matter is mainly motivated by the

observation that the present day dark matter density and the
baryon density differ only by a factor of ∼5. In the early
Universe, the Sakharov conditions created an asymmetric
mixture of baryons and antibaryons. The present baryon
density is the remnant after all the antibaryons have
annihilated away. It is possible that the Sakharov conditions
also created an asymmetry between the particles and
antiparticles of dark matter in the early Universe. This
requires the dark matter particle to be distinct from its

antiparticle. Generally, the dark matter particle in asym-
metric dark matter models is light, but exceptions exist. The
present dark matter could be a remnant after all the
antiparticles have annihilated away. The generation mech-
anisms of the dark matter density and the baryon density
may be related in asymmetric dark matter models [20,21].
Much of the present baryonic matter in the Universe

consists of particles with internal structure. Protons and
neutrons are composed of quarks. Nuclei are bound states
of protons and neutrons. An atom is a bound state of a
nucleus and electrons. Dark matter is most often assumed to
consist of individual elementary particles. However it is
possible that some or all of the present dark matter consists
of particles with internal structure. Internal structure of dark
matter has been discussed in the context of enhanced
annihilation cross sections required to explain the positron
excess [22]. The search for bound states of weakly
interacting dark matter particles in colliders has also been
proposed in Ref. [23].
A new way of looking at some dark matter properties

was recently pointed out in Ref. [24]. Various nonrelativ-
istic enhancements in dark matter annihilation and elastic
scattering invoked to solve various intriguing anomalies
can be related and attributed to the presence of an S-wave
resonance very near to the scattering threshold of two dark
matter particles. If the resonance is sufficiently near the
scattering threshold, there is a region of energy in which the
cross section comes close to saturating the unitarity bound
and a single complex parameter, the S-wave scattering
length, governs all the lower-energy behavior of the dark
matter, i.e., the elastic and inelastic scattering cross sections
of two dark matter particles and the binding energy and
lifetime of the resonance. If the resonance is below the
threshold, it is a bound state of the two dark matter
particles. If the dark matter particles have no annihilation
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channel, then the scattering length is real, the bound state is
stable, and a single real parameter governs the elastic
scattering and the binding energy. More generally, the
scattering length also governs the low-energy few-body
physics with more than two particles, such as loosely bound
states consisting of three or more particles and the elastic
scattering or the breakup scattering of these bound states
[25]. These illustrate the principle of universality which we
define in the next section.
Given the recent excitement about self-interacting dark

matter, one can try to apply the new ideas mentioned in
[24,25] to other respects of dark matter physics. Interactions
between dark matter particles that come close to saturating
the S-wave unitarity bound can naturally produce weakly
bound states. For example, a two-body bound state requires
only that the scattering length be positive. The binding
energies and the low-energy scattering properties of the
weakly bound states are essentially determined by the same
parameter, the scattering length, that governs the scattering
of the individual particles. Thus these bound states form a
well-motivated and highly constrained possibility for inter-
nal structure of dark matter. It is intriguing to ask whether
these bound states can have observable effects in searches
for dark matter. In this work, we point out that two-body
bound states provide novel features in the nuclear recoil
energy spectrum in direct detection experiments and there-
fore a smoking-gun signature for internal structure in dark
matter.
We assume that the self-interactions between dark matter

particles are strong at low energies in the sense that they
come close to saturating the S-wave unitarity bounds. We
also assume that the S-wave scattering length is positive, so
that two dark matter particles form a weakly bound state.
(From here on, whenever we use the word “particle,” we
will be referring to a single dark matter particle, which we
will think of as a point particle; a bound state of dark matter
particles will not be called a “particle.”) We assume the
bound state is stable, so it can act as a non-negligible part of
the dark matter of the Universe. We assume that this bound
state survives the cosmic evolution and the infrequent
collisions with other particles. These assumptions are not
drastic: the deuteron is a weakly bound state of the proton
and the neutron, and we know from the very successful
theory of big bang nucleosynthesis, that it can survive from
the very early Universe. To be concise, we call this bound
state of two dark matter particles the “darkonium.” Indeed,
much of our formalism about the bound state can be
identified as a dark copy of the deuteron.
We study the effect of this bound state in dark matter

direct detection experiments. Dark matter direct detection
probes the elastic scattering of dark matter particles from a
nucleus at relatively low energies [26–29]. If this energy
scale is in the low-energy region where elastic self-
scattering of the particles is governed by the scattering
length, then the scattering of the bound state from the

nucleus is also governed by the scattering length. The
scattering of this bound state with the target nucleus in a
dark matter direct detection experiment will give a different
nuclear recoil energy spectrum than the scattering of a dark
matter particle. This can be understood partly as the effect
of the extended structure of the incoming bound state, which
will imprint a form factor on the recoil energy spectrum of
the target nucleus, and partly due to the possibility of the
breakup of the bound state by the scattering. We do a
complete calculation in this framework and find a new
nuclear recoil energy spectrum. If, in the future, such a
structure is seen in the nuclear recoil energy spectrum, this
will be a smoking-gun signature for the internal structure for
dark matter.
In Sec. II, we describe some of the universal properties of

dark matter particles with a large scattering length. In
Sec. III, we present the expressions for the nuclear recoil
energy spectrum due to an incident dark matter particle and
an incident darkonium. Section IV gives some examples of
the nuclear recoil energy spectrum for various nuclei that
can be observed in dark matter direct detection experi-
ments, comparing the spectrum from an incident flux
of darkonium with that from an incident flux of dark
matter particles. We conclude in Sec. V. The details of the
derivation of the nuclear recoil energy spectrum are given
in the Appendix.

II. DARK MATTER PARTICLES WITH LARGE
SCATTERING LENGTHS

The strong self-interaction cross sections at nonrelativ-
istic velocities that are required to solve the small-scale
structure problems can motivate us to study other non-
relativistic systems in physics. Due to the crucial avail-
ability of experimental data, the knowledge gained in these
different systems might be extremely valuable in trying to
understand the unknown properties of dark matter.
The success of the ΛCDM model implies that dark

matter must have weak self-interactions at relativistic
velocities, but it could have strong self-interactions at
sufficiently small velocities. In general, the strength of
self-interactions is limited by the unitarity bounds of
quantum mechanics. We make the predictive assumption
that the self-interactions of dark matter particles come close
to saturating the S-wave unitarity bound in some velocity
range. We will refer to this velocity range as the scaling
region. In the scaling region, the scattering cross section for
two dark matter particles has a power-law dependence on
their relative velocity v. For example, the elastic cross
section is proportional to 1=v2. At lower velocities, the
cross sections are completely determined by a single
parameter: the S-wave scattering length, which we denote
by a [24,25]. This single parameter also controls other
aspects of the low-energy few-body physics of the dark
matter particles. This is what makes the assumption so
predictive.
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A scaling region requires a resonance with an S-wave
coupling to two dark matter particles that is very near their
scattering threshold. Such a resonance requires a fine-
tuning. The conditions for the fine-tuning are most easily
expressed in terms of the S-wave scattering length. If there
are dark matter annihilation channels, a is complex with a
small negative imaginary part. We denote the range of
the interaction between the dark matter particles by r0. The
condition for the existence of a scaling region is that the
scattering length must be large compared to the range:
jaj ≫ r0. The resonance could arise from interactions
between the dark matter particles whose strength is tuned
to near the critical value for there to be a bound state exactly
at the threshold. If such an interaction arises from the
exchange of a particle of massmy in the t channel, the range
is r0 ∼ 1=my. The resonance could also be due to an
elementary particle whose mass is very close to twice
the mass of the dark matter particles and which has an
S-wave coupling to the dark matter particles in the s
channel. If the elementary particle has a mass mR and the
tree-level cross section is 4πα2Rm

2
R=js −m2

Rj2, the relevant
range of interactions is r0 ¼ 1=ðαRmRÞ. Dark matter
properties that are determined only by the S-wave scatter-
ing length are known as universal properties. Universality
in this context refers to the fact that systems with large
scattering lengths have identical low-energy properties,
independent of the underlying microphysics, if the varia-
bles are scaled by the appropriate factors of jaj. The
properties depend on the sign of a. If a is complex, they
also depend on the ratio ImðaÞ=ReðaÞ.
In the universal region defined by energies in and below

the scaling region, the elastic scattering cross section and
annihilation cross section for identical bosons can be
written as [24]

σel ¼
8π

j − ik − γj2 ; (1)

and

σann ¼
8πImðγÞ

kj − ik − γj2 ; (2)

where k is the relative momentum and γ ¼ 1=a is the
inverse scattering length. The relative momentum can be
expressed as k ¼ 1

2
mv, where v is the magnitude of

the difference between the velocities of the two dark
matter particles and m is the mass of a dark matter particle.
If the two particles are distinguishable or if they are
different spin states of identical fermions, we have to
multiply the above equations by a factor of 1

2
. In the above

expressions, the −ik term describes rescattering of the dark
matter particles, which is an important effect if a resonance
is sufficiently near the threshold [30]. This term is propor-
tional to the elastic width referred to in some previous
literature [22,31,32].

In the universal region, the properties of the resonance
are also determined by the scattering length a [24]. In
particular, if Reγ > 0, the resonance is a bound state of the
two dark matter particles, with a finite lifetime. The binding
energy of the resonance is

EB ¼ ðReγÞ2 − ðImγÞ2
m

; (3)

and the lifetime of the bound state is

Γdarkonium ¼ 4ðReγÞðImγÞ
m

: (4)

The Schrödinger wave function of the bound state is

ψðrÞ ¼
ffiffiffiffiffiffiffiffi
Reγ
2π

r
e−γr=r: (5)

Thus the bound state has a spatial extent 1=ðReγÞ that is
much larger than the range of the interactions between the
dark matter particles. The large separation of the two dark
matter particles in the bound state is a remarkable phe-
nomenon. It is particularly remarkable in the case of a
resonance that arises from an elementary particle whose
mass is very close to twice that of the dark matter particle.
There are many examples in nature of particles with large

scattering lengths [25]. In nuclear physics, the classic
example is the neutron, which has a large negative
scattering length. Neutrons and protons have a relatively
large positive scattering length in the isospin-0 channel.
The associated bound state is the deuteron. In atomic
physics, the spin-triplet state of the tritium atom 3H has a
large negative scattering length. The helium atom 4He has a
large positive scattering length. The associated bound state
is the diatomic 4He molecule, which has a very tiny binding
energy of about 10−7 eV. In high energy physics, the charm
mesons D0 and D�0 have a large positive scattering length
in the even charge conjugation channel [33]. The associated
bound state is called the X(3872). These are all examples in
which nature has produced an accidental fine-tuning of
an S-wave resonance to near the appropriate threshold. It
is possible that nature has also provided an analogous
fine-tuning for dark matter.
In the field of cold atom physics, the scattering length for

atoms can be controlled by the experimenter. By tuning a
magnetic field to near a Feshbach resonance where the
energy of the diatomicmolecule is at the scattering threshold
for a pair of atoms, the scattering length can be made
arbitrarily large (or small) [34]. This has allowed detailed
experimental studies of the few-body physics and many-
bodyphysics of particleswith large scattering lengths. These
experiments may be directly applicable to dark matter if it
consists of particles with a large scattering length.
In our case, we wish to consider a bound state that has a

very long lifetime. This amounts to taking the limit
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Imγ → 0. From Eq. (2), it is clear that this requires a
vanishing annihilation cross section. A vanishing annihi-
lation cross section is most easily accommodated by a dark
matter sector that is asymmetric, just like the visible sector.
In the limit of Imγ → 0, the self-interaction cross section

in Eq. (1) reduces to

σel ¼
8π

γ2 þ k2
: (6)

The binding energy in Eq. (3) reduces to

EB ¼ γ2

m
: (7)

The elastic scattering cross section and the binding energy
are determined by the single real parameter γ. This
parameter also determines other aspects of the low-energy
few-body physics of the dark matter particles. In particular,
it determines up to an overall normalization factor the
scattering of the darkonium with small momentum transfer
from a nucleus in dark matter direct detection experiments.
The finite size of the darkonium may produce a telltale
signature in the recoil energy spectrum of the target nucleus.
The breakup of the darkonium into two dark matter particles
from scattering off the nucleus could also provide a
signature. These provide themainmotivation for calculating
the recoil energy spectrum of the target nucleus for an
incident darkonium. If it is possible to infer that a component
of the dark matter is a universal bound state with the inverse
scattering length γ, then using Eq. (6), one can easily infer
the dark matter self-interaction cross section.
Our basic premise is that there is a scaling region of the

relative velocity v in which dark matter particles come close
to saturating the S-wave unitarity bound: σel ≈ 32π=m2v2.
We should therefore ask whether such large cross sections
are compatible with the known properties of dark matter.
Since the unitarity bound is proportional to 1=m2, an upper
bound on σel from astrophysics can always be accommo-
dated by making the dark matter mass sufficiently large.
One such upper bound comes from the Bullet Cluster,
for which the observed mass distribution from gravita-
tional lensing sets an upper bound on the elastic cross
section divided by the mass of the dark matter particle:
σel=m≲ 1 cm2 g−1 at the estimated collision velocity of
v ∼ 1000 km s−1. This is consistent with the unitarity
bound being saturated at that velocity if m≲ 12 GeV.
A larger mass would require this velocity to be above the
scaling region. Another possible constraint comes from the
small-scale structure problems in ΛCDM. The absence of a
cusp in the dark matter distribution of dwarf galaxies can be
explained by self-interactions of dark matter particles
whose order of magnitude is σel=m ≈ 1 cm2 g−1 at the
typical velocity of v ≈ 10 km s−1. This is consistent with
the unitarity bound being saturated at that velocity if
m ≈ 270 GeV. A smaller mass can be accommodated if

the elastic cross section in Eq. (6) is already approaching its
low-energy limit σel ¼ 8π=γ2 at that velocity. Thus cross
sections with a scaling region in which the unitarity bound
is nearly saturated are compatible with the known proper-
ties of dark matter with mass in the range relevant to current
experiments.
The scattering of the darkonium is also determined by

the inverse scattering length 1=γ. When two darkonia
collide, they can scatter elastically or inelastically. If the
scattering is inelastic, there are several possibilities for the
final state. It can consist of four individual dark matter
particles, or a darkonium plus two individual dark matter
particles, or a bound state of three dark matter particles plus
an individual dark matter particle. If some light particle
(such as a dark photon) can be radiated in the collision, the
final state can also be a bound state comprised of four dark
matter particles. The possibility of forming bound states
comprised of three or more dark matter particles can be
avoided by imposing certain symmetries, as in the case of a
spin-1

2
dark matter particle. The formation of bound states

can also be avoided through decay instabilities. For
example, in the visible world, only nuclei with specific
proton and neutron numbers are stable.
The calculation of the elastic darkonium self-scattering

cross section is a nontrivial four-body problem. Generically,
the low-energy elastic cross section is the same order of
magnitude as that for the elastic scattering of the dark matter
particles in Eq. (6), which is of order 1=γ2. For example, if the
constituents of the darkonium are the two spin states of a
spin-1

2
fermion, the darkonium scattering length is 0.6=γ [35].

If the constituents of the darkonium are a spin-0 boson, the
darkonium scattering length is 1=γ multiplied by a log-
periodic function of γ that has the same value when γ is
changed by a multiplicative factor of 22.7 [25]. For most
values of γ, the darkonium scattering length is between
−3=γ andþ3=γ, but it is much larger near the critical values
of γ for which there is a four-boson bound state at the two-
darkonium threshold [36]. At high energies, the total
darkonium self-scattering cross section is also the same
order of magnitude as that for the dark matter particles,
which is of order 1=k2. However, the elastic darkonium
self-scattering cross section is smaller, scaling as γ4=k6.
The suppression factor of ðγ=kÞ4 arises because the
momentum transfer must be transmitted to both constitu-
ents of both the darkonia.
To measure the probability of the darkonium breakup,

we calculate the mean free path, where we take σel=m ¼
1 cm2 g−1. The calculation in this paragraph is only an
order of magnitude estimate to get a sense of scales
involved. In general, whether a darkonium will survive
can only be addressed in a detailed N-body simulation.
If the background dark matter density is cosmological
(i.e., 1.26 × 10−6 GeVcm−3), then the mean free path of
the darkonium is approximately 150 Gpc. This result is
independent of the dark matter particle mass as a higher
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mass means stronger self-interaction and it also implies a
lower number of dark matter particles. If the background
dark matter density is 0.1 GeVcm−3, then the mean free
path is approximately 2 Mpc. For a higher dark matter
density, the mean free path will be lower and hence the
chance of the darkonium breaking up will be higher. From
the above arguments, it is clear that unless the darkonium
passes though a region of fairly high dark matter density,
the survival probability will be quite high.

III. NUCLEAR RECOIL ENERGY SPECTRUM

In this section, we present the nuclear recoil energy
spectrum that is measured in a dark matter direct detection
experiment. We will first give the nuclear recoil energy
spectrum of a dark matter particle scattering off a nucleus,
followed by the nuclear recoil energy spectrum of a bound
state of two dark matter particles (darkonium) scattering off
a nucleus. For the darkonium scattering off a nucleus, there
are two possible final states: (a) the darkonium can remain
bound after the scattering, and (b) the darkonium can be
broken apart due to the scattering with the nucleus. The
details of the derivation of the nuclear recoil energy
distribution are given in the Appendix.
We assume for simplicity that the two constituents of a

darkonium have equal mass m. They can be identical
bosons or different spin states of a spin-1

2
particle or

distinguishable particles. The mass of the darkonium can
be approximated by 2m. We denote the mass of the target
nucleus by mA. The magnitude of the momentum trans-
ferred to the nucleus is denoted by q. The nuclear recoil
energy is Enr ¼ q2=2mA. We also assume for simplicity
that the two constituents of the darkonium scatter from the
nucleus with the same amplitude GAðqÞ.

A. Dark matter particle scattering off the nucleus

In this section, we give the recoil energy spectrum of the
scattered nucleus due to scattering with a dark matter
particle. The Feynman diagram is shown in Fig. 1. The
differential scattering rate of one dark matter particle, with
velocity v, off a target nucleus is

�
dðσvÞ
dEnr

�
Aþ1

¼ mA

v
jGAðqÞj2

1

2π
Θðv − q=2μÞ; (8)

whereGAðqÞ is the vertex factor for the effective interaction
between the dark matter particle and the nucleus. There is a
minimum velocity of the dark matter particle necessary to
produce a recoil of momentum q: v > q=2μ, where μ is the
reduced mass of the dark matter particle and the nucleus.
Comparing the expression in Eq. (8) with the standard

expression in the literature for the case of a spin-independent
cross section σSI between the dark matter particle and the
nucleon, we find that

jGAðqÞj2 ¼
πσSIA2F2

NðqÞ
μ2n

; (9)

where A is the mass number of the target nucleus, μn is the
reduced mass of the dark matter particle and the nucleon,
and FNðqÞ is the nuclear form factor.

B. Bound state elastic scattering off the nucleus

In this section, we give the recoil energy spectrum of a
scattered nucleus due to a darkonium elastically scattering
off the target nucleus. The Feynman diagram for this
process is shown in Fig. 2. One of the constituents of
the darkonium scatters from the nucleus and subsequently
recombines with the other constituent to form a darko-
nium again.
The Feynman diagram in Fig. 2 is calculated in the

Appendix. The differential rate of one darkonium with a
velocity v to scatter elastically off a target nucleus is

�
dðσvÞ
dEnr

�
Aþ2

¼ mA

v
jGAðqÞj2

2

π
jFðqÞj2 × Θðv − q=2μ2Þ:

(10)

The form factor of the darkonium is given by

FðqÞ ¼ 4γ

q
tan−1

�
q
4γ

�
; (11)

where γ ¼ 1=a is the inverse scattering length. In the limit
of small q, the form factor goes to 1. In the limit of large
q=4γ, the form factor goes to 2πγ=q. There is a minimum
velocity of the darkonium necessary to produce a nuclear
recoil of momentum q: v ≥ q=2μ2, where μ2 is the reduced
mass of the darkonium and the nucleus.

FIG. 1. Feynman diagram for a dark matter particle scattering
off a target nuclei. The incoming and outgoing dark matter
particles have momenta P and P0 and are shown by single dashed
lines. The incoming and outgoing nuclei have momenta K and K0
and are shown by solid lines. Energies and momenta are denoted
by normal font and bold letters respectively. The vertex for the
effective interaction of a single dark matter particle with the
nucleus is represented by the grey blob.
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The expression in Eq. (10) differs from the expression
for a dark matter particle scattering off a nucleus in Eq. (8)
by the presence of the form factor, by a different argument
of the theta function, which gives a minimum velocity
required for the nuclear recoil momentum q, and by a factor
of 4. This factor of 4 (¼ 22) can be understood as arising
from the coherence effect of the darkonium which is
composed of two dark matter particles.

C. Bound state breakup from scattering off the nucleus

Here we give the nuclear recoil energy spectrum due to a
darkonium breakup from scattering off a nucleus. The
Feynman diagrams for this process are shown in Fig. 3. In
both of the diagrams in Fig. 3, one of the constituents of the
darkonium scatters from the nucleus. In the second dia-
gram, the two constituents subsequently rescatter. Because

the interaction associated with a large scattering length is
nonperturbative, this diagram must be included for con-
sistency. The diagrams are calculated in the Appendix. The
differential scattering rate for one darkonium to break up
after scattering with the target nucleus is

�
dðσvÞ
dEnr

�
Aþ1þ1

¼ 128γ
mA

v
jGAðqÞj2

Z
d3r
ð2πÞ3

���� 1

4γ2 þ ð2r − qÞ2

þ 1

4γ2 þ ð2rþ qÞ2 −
i

2qðγ þ irÞ ln
4r2 þ ð2γ − iqÞ2
4γ2 þ ð2r − qÞ2

����
2

× Θ
�
v −

�
q
2μ2

þ γ2

mq

��
: (12)

The integral over the angles of r can be calculated
analytically to give a function of r and q that can be
expressed in terms of logarithms. The range of the
subsequent integral over r is 0 < r < R, where R depends
on v, q, and γ:

R2 ¼ mq

�
v −

�
q
2μ2

þ γ2

mq

��
: (13)

The condition for validity of the recoil energy distribu-
tion in Eq. (12) is q=2 ≪ 1=r0 and R ≪ 1=r0, where r0 is
the range of dark matter interactions. The theta function in
Eq. (12) implies that the breakup of the darkonium is
possible only if its velocity v in the laboratory frame
exceeds q=ð2μ2Þ þ γ2=ðmqÞ.

FIG. 2. Feynman diagram for a darkonium scattering off a
target nucleus. The incoming and outgoing darkoina have
momenta P and P0 and are shown by the double-dashed lines.
All other notations are the same as in Fig. 1.

FIG. 3. Feynman diagrams for a darkonium breakup from scattering with a target nucleus. The momenta of the outgoing dark matter
particles are p1 and p2. There is one more diagram which is identical to the diagram on the left but with p1 and p2 interchanged. All
other notations are the same as in Figs. 1 and 2.

RANJAN LAHA AND ERIC BRAATEN PHYSICAL REVIEW D 89, 103510 (2014)

103510-6



IV. RECOIL ENERGY SPECTRA OFF
VARIOUS NUCLEI

In this section, we will calculate some example nuclear
recoil energy spectra for various target nuclei used in
current dark matter direct detection experiments. To cover
the typical ranges of dark matter particle masses searched
for in these experiments, we use two dark matter particle
masses:

(i) “traditional” dark matter particles with a represen-
tative mass being m ¼ 100 GeV,

(ii) light dark matter particles, with a representative
mass being m ¼ 10 GeV.

Wewill show the nuclear recoil spectra for three different
nuclei:

(i) xenon, for which the atomic mass number A ranges
from 124 to 136,

(ii) germanium, for which A ranges from 70 to 76,
(iii) silicon, for which A ranges from 28 to 30.

These span the range of nuclei that have good sensitivity for
heavy dark matter and light dark matter candidates.
We take the simplest case of an isospin-conserving,

momentum-independent, spin-independent cross section
between the dark matter particle and the nucleon to arrive
at the expression for GAðqÞ in Eq. (9). We take the nuclear
form factor FNðqÞ to be the Helm form factor [37].
The normalizations of our cross sections are determined

by the spin-independent dark matter particle-nucleon cross
section σSI. For the case of m ¼ 100 GeV, we choose
σSI ¼ 10−46 cm2, which is just beyond the present limit as
presented by the XENON100 Collaboration [38] and the
LUX Collaboration [39]. For the case of m ¼ 10 GeV, we
choose σSI ¼ 10−41 cm2, which is excluded by the recent
XENON100 data set [38] and the LUX data set [39].
However, the present status of this region is controversial,
as there are a number of anomalies which cannot be
explained by known backgrounds but can be explained
as due to dark matter scattering [40–43]. These anomalies
can be reconciled either by exotic physics or by improve-
ments in experimental measurements. These values of σSI
are chosen only for illustration. Other values of σSI would
change the normalization of the recoil energy spectrum,
keeping the shape unchanged.
Given the differential scattering rate of a single dark

matter particle or darkonium scattering with the target
nucleus, ðdðσvÞ=dEnrÞsingle, we can calculate the differ-
ential scattering rate (in units of events per unit time per
unit target mass and per unit recoil energy) for an incident
flux of dark matter as

�
dR
dEnr

�
flux

¼ NTnχ

Z
d3vfðvþ vEÞ

�
dðσvÞ
dEnr

�
single

; (14)

where v is the dark matter velocity in the Galactic frame, vE
is the average velocity of the Earth, NT is the number of
target nucleus, and nχ is the number density of the

constituents of dark matter. We use the truncated
Maxwell-Boltzmann distribution [37] for the dark matter
velocity distribution:

fðvþ vEÞ ¼ Ne−ðvþvEÞ2=2v20Θðvmax − vÞ; (15)

with vE ¼ 242 km s−1, maximum velocity vmax ¼
600 km s−1, and velocity dispersion v0 ¼ 230 km s−1.
The normalization constant N is adjusted so thatR
d3vfðvþ vEÞ ¼ 1. Although recent simulations show

that the velocity distribution of dark matter particles can
be different from what we have assumed [44], we use the
truncated Maxwell-Boltzmann distribution as a proof of
concept because of its simplicity.
The nuclear recoil energy spectrum that will be observed

in a dark matter direct detection experiment is determined
by how the full local dark matter density is distributed
between dark matter particles and the darkonium. We will
contrast the nuclear recoil spectra for the two extreme
situations:

(i) all dark matter is composed of individual particles
with mass m,

(ii) all dark matter consists of darkonium bound states
with approximate mass 2m.

The local mass density of dark matter is ρχ ¼
0.3 GeVcm−3. If the dark matter is fully made up of dark
matter particles, the local number density of dark matter
particles is nχ ¼ ρχ=m. If the dark matter is fully made up of
darkonium, the local number density is nχ ¼ ρχ=2m.
The universal two-body bound states that we are con-

sidering for the internal structure of dark matter are
motivated by the large elastic cross sections proposed to
solve small-scale structure problems in ΛCDM. We there-
fore determine the inverse scattering length γ by taking the
elastic self-interaction cross section per unit mass for dark
matter particles to be σel=m ¼ 1 cm2 g−1 at v ¼ 10 km s−1.
This corresponds to a binding energy γ2=m of 54 keV for
m ¼ 10 GeV and 0.52 keV form ¼ 100 GeV. Much larger
elastic cross sections, which correspond to much smaller
binding energies, are not allowed from cluster observations
[45]. However, much smaller elastic cross sections which
will have no effect on astrophysical scales are allowed, and
those will correspond to much larger binding energy of the
darkonium, so that the recoil rate of the darkonium breakup
is further suppressed in that case. Direct detection of self-
interacting dark matter in a different particle physics model
context is also presented in [46].
The various recoil spectra for the differential event rate

are shown in Fig. 4. Due to the very different masses of the
dark matter candidates considered, and due to the variety of
target nuclei considered, the scales in the y axes of Fig. 4
vary. In each plot we show the recoil energy spectra of the
target nucleus for dark matter particle scattering, darko-
nium elastic scattering, darkonium break up scattering, and
total darkonium scattering. Form ¼ 100 GeV, at low recoil
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FIG. 4 (color online). The recoil energy spectra for dark matter particle (of massm) scattering (red dashed), darkonium elastic scattering
(green solid), darkonium breakup scattering (blue solid), and total darkonium scattering (black solid) with a target nucleus. The element of
the target nucleus and the mass of the dark matter particle are given in the top right-hand corner of each plot. For m ¼ 10 GeV, the total
darkonium scattering is the same as the elastic darkonium scattering.We have determined γ by taking the elastic scattering cross section per
unit mass to be σel=m ¼ 1 cm2 g−1 at v ¼ 10 km s−1. Different values of σSI are used for the two masses. For comparison, the recoil
energy spectrum is also shown for a dark matter particle with mass 2m and σSI that is 4 times larger (dashed magenta line).
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energies, the differential darkonium elastic scattering rate is
approximately double the differential particle scattering
rate. This can be intuitively understood as the effect of the
heavier incoming mass of the darkonium. At low recoil
energies, the form factor of the darkonium is almost 1 and
hence the differential recoil rate of the darkonium elastic
scattering is 2 times the differential recoil rate of a dark
matter particle scattering. A factor of 4 enhancement due to
the coherent scattering of the darkonium is reduced by a
factor of 2 due to the lower number of darkonia compared
to the elementary dark matter particles for a given local
dark matter density. At higher recoil energies, the differ-
ential elastic scattering rate falls faster for a darkonium than
for a dark matter particle at higher energies due to the
additional form factor suppression of the darkonium.
We next compare the nuclear recoil energy spectrum

from the darkonium breakup. For m ¼ 100 GeV, the
nuclear recoil energy spectrum vanishes at low nuclear
recoils, peaks at a nuclear recoil energy that depends on the
target nucleus and the binding energy of the darkonium,
and subsequently falls much more slowly than that for the
darkonium elastic scattering case. The vanishing of the
nuclear recoil energy spectrum at zero recoil energies for
the case of darkonium breakup is expected, as a nonzero
nuclear recoil is required to break up the darkonium.
Overall, the total nuclear recoil energy spectrum for an
incident darkonium particle, which is the sum of the
contribution of both the darkonium elastic scattering and
darkonium breakup, is different from that of an incident
dark matter particle both in shape and normalization.
The total recoil energy spectrum from darkonium scatter-

ing looks similar to that of a dark matter particle of mass 2m
with a σSI which is 4 times larger than for the other lines in
the figure (i.e., σSI ¼ 10−42 cm2). If the dark matter mass is
not known, then this degeneracy will be difficult to differ-
entiate with low statistics. If the dark matter mass is known
via other measurements, then the end point in the nuclear
recoil energy spectrum will determine whether the incident
dark matter is a darkonium or a dark matter particle.
However, with high statistics, the differences in the nuclear
recoil energy spectrum between that of an incident darko-
nium and an incident dark matter particle with an enhanced
coupling to nucleons can be distinguished.
For the m ¼ 10 GeV case, due to the lower mass of the

incident darkonium, the darkonium breakup is either
extremely suppressed or kinematically forbidden. It is
therefore not visible in Fig. 4. Similar to the previous
case, at low recoil energies the differential elastic nuclear
recoil rate is approximately twice for an incident darko-
nium compared to that of an incident dark matter particle.
At larger recoil energies, the nuclear recoil energy spectrum
for an incident darkonium decreases more slowly than that
for an incident elementary dark matter particle. The effect
of the form factor is relatively small. At the highest nuclear
recoil energies shown, the form factor decreases the rate

only by ∼20%. Even for light dark matter, the recoil energy
spectrum looks similar to that of a dark matter particle
of mass 2m with a σSI which is 4 times larger than for the
other lines in the figure (i.e., σSI ¼ 10−37 cm2). This
degeneracy can be broken either with information from
other experiments or with high statistics.
For both masses, the total recoil energy spectrum from

darkonium scattering from a nucleus is completely different
from that for a single dark matter particle. It is closer to the
recoil energy spectrum for a dark matter particle with twice
the mass and 4 times the cross section with a nucleon, but
the shape is different. The difference in shape is due to the
form factor of the darkonium and to the new scattering
channel in which the darkonium breaks apart. We do not
know of any another physical phenomenon which can give
rise to such a different nuclear recoil energy spectrum.

V. CONCLUSION

We have discussed the prospects of direct detection of
dark matter with internal structure in the context of self-
interacting asymmetric dark matter. Our basic assumption
is motivated by the possibility that large self-interaction
cross sections for dark matter at nonrelativistic velocities
can solve small-scale structure problems. The assumption
is that there is an energy region in which the cross section
for a pair of dark matter particles comes close to saturating
the S-wave unitarity bound. In this case, dark matter at
lower energies has universal behavior that is completely
determined by the S-wave scattering length. The assumption
requires that a pair of dark matter particles has an S-wave
resonance near the scattering threshold. If the resonance is
just below the scattering threshold, it is a bound state of the
two dark matter particles (we call it the darkonium). If the
dark matter is asymmetric, the darkonium can be stable and
make up some or all of the present dark matter. Due to the
large scattering length, both the self-interaction cross section
and the binding energy of the darkonium are determined by a
single real parameter.
Our assumption is predictive, because it implies that the

darkonium has universal low-energy properties that are
completely determined by the scattering length. In particu-
lar, the scattering length determines the shape of the cross
sections for scattering of the darkonium from a nucleus at
sufficiently low recoil energy. This implies new signatures
that can be seen in a dark matter direct detection experi-
ment, particularly for ∼100 GeV dark matter. If a darko-
nium is incident on a target nuclei, two different final states
are possible: (a) elastic scattering and (b) inelastic scatter-
ing where the darkonium breaks up from scattering with
target nuclei. Due to the extended spatial structure of the
darkonium and the possibility of breakup, the nuclear recoil
energy spectrum in a dark matter direct detection experi-
ment will be different from that due to an incident dark
matter particle. Some examples of the nuclear recoil energy
spectrum due to an incident darkonium are shown in Fig. 4.
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As can be seen from the figure, the total nuclear recoil
energy spectrum due to an incident darkonium is com-
pletely different from that due to an incident dark matter
particle. It is similar to the recoil energy spectrum for a dark
matter particle with twice the mass and 4 times the cross
section with a nucleon, but there is a difference in the shape.
If a nuclear recoil spectrum of this kind is unambiguously
seen in dark matter direct detection experiments, then it will
be a smoking-gun signature for internal structure in dark
matter.
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APPENDIX

In this appendix, we present the detailed derivation of the
recoil energy spectrum of a nucleus in a dark matter direct
detection experiment. We begin by presenting the Feynman
rules that are used for the derivation. We derive the nuclear
recoil energy spectrum first for a dark matter particle
scattering off a nucleus and then for a bound state of two
dark matter particles (darkonium) scattering off a nucleus.
For a darkonium scattering off a nucleus, there are two
possible final states: (a) the darkonium is still bound after the
scattering, and (b) the darkonium is broken apart due to the
scattering.

1. Feynman rules

Particles with a large scattering length can be described
by a renormalizable local quantum field theory. The
Feynman rules for the quantum field theory are simple
[25]. The particles have standard nonrelativistic propaga-
tors. A pair of particles can interact through a point
interaction vertex with a bare coupling constant g0. They
can rescatter through additional interaction vertices. The
resulting bubble diagrams are ultraviolet divergent and
require an ultraviolet cutoff Λ. The interaction is nonpertur-
bative, so the bubble diagrams must be summed up to all
orders. The scattering amplitude for a pair of particles is the
sumof arbitrarilymany bubble diagrams. Renormalization is
implemented by tuning the bare coupling constant as a
function of Λ so that the inverse scattering length has the
desired value γ. Amplitudes in this quantum field theory can
be calculated more easily by using a more succinct set of
Feynman rules in which arbitrarily many bubble diagrams
have been summed up to all orders. Renormalization allows
these Feynman rules to be expressed in terms of the physical
parameter γ.

The Feynman rules for identical bosons, which are
illustrated in Fig. 5 [25], involve the following factors:

(i) The nonrelativistic propagator for a virtual dark
matter particle of energy E and momentum p is
given by iDðE;pÞ, where

DðE;pÞ ¼ 1

E − p2=2mþ iϵ
: (A1)

It is represented by a single dashed line.
(ii) The product of the residue factor for an incoming

darkonium line and the vertex factor for its transition
to a pair of particles is given by −ig2, where

g2 ¼
ffiffiffiffiffiffiffiffiffiffi
16πγ

m2

r
: (A2)

It is represented by a dot at which a double-dashed
line splits into two dashed lines as shown in Fig. 5.
Since bubble diagrams have already been summed
up to all orders, the first interaction of the pair of
particles cannot be with each other.

(iii) The exact 2 → 2 transition amplitude for a pair of
particles with total energy E and total momentum p
is given by iD2ðE;pÞ, where

D2ðE;pÞ ¼
8π=m

−γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−mðE − p2=4mþ iϵÞ

p : (A3)

It is represented by a double-dashed line joined by
two dots as shown in Fig. 5. The first previous
interaction of the incoming pair of particles cannot
be with each other. The first subsequent interaction
of the outgoing pair of particles cannot be with
each other.

FIG. 5. Feynman rules for the particle propagator, the product
of the residue, and vertex factors for an incoming darkonium, and
the 2 → 2 transition amplitude for a pair of particles.
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(iv) The vertex factor for the scattering of a dark matter
particle from the nucleus with momentum transfer q,
as in the diagram in Fig. 1, is given by −iGAðqÞ.

If γ > 0, the amplitudeD2ðE;pÞ in Eq. (A3) has a pole in
the energy at p2=4m − γ2=m. This corresponds to a
darkonium with momentum p and binding energy γ2=m,
in accord with Eq. (7). Up to a complex phase, the product
g2 of the residue factor and the vertex factor in Eq. (A2) is
the square root of the residue of that pole. The matrix
element for scattering of a pair of particles with momenta
þk and −k, which implies total energy k2=m, is

D2ðk2=m; 0Þ ¼ 8π

−γ − ik
: (A4)

The cross section is jD2ðk2=m; 0Þj2 multiplied by the flux
factor m=2k for the incoming particles and by the phase
space factor mk=4π for the outgoing identical particles.
This reproduces the elastic cross section in Eq. (6).
The Feynman rules given above are for the case in which

the particles with the large scattering length are identical
bosons. If the particles are distinguishable, they can have
distinct masses m1 and m2. Their propagators are obtained
by replacing m in Eq. (A1) by m1 or m2. The exact 2 → 2
transition amplitude is obtained from Eq. (A3) by replacing
8π by 4π and by replacing the massm by 2μ12, where μ12 is
the reduced mass of the two particles. The product of the
residue factor and the vertex factor is obtained from
Eq. (A2) by making the same two replacements resulting
in ðπγ=μ212Þ1=2. The two particles can scatter from a nucleus
with different amplitudes GA;1ðqÞ and GA;2ðqÞ.
The Feynman diagrams for scattering of a dark matter

particle and of a darkonium from a nucleus are shown in
Fig. 1 and in Figs. 2 and 3 respectively. We denote the
incoming momentum of the dark matter particle or the
darkonium by P and the momentum of the target nucleus
by K. The total momentum of the outgoing dark matter,
which can be a single particle or a darkonium, is denoted by
P0. For darkonium breakup, the momenta of the two
outgoing dark matter particles are denoted by p1 and p2

respectively. The momentum of the scattered nucleus is
denoted by K0. In the laboratory frame, the target nucleus is
almost at rest, so K ¼ 0 to a very good approximation. The
momentum transferred to the nucleus by the scattering is
q ¼ K0 −K. The momentum transfer q is independent of
the Galilean frame and its magnitude is denoted by q. The
recoil energy of the scattered nucleus in the laboratory
frame is Enr ¼ q2=2mA.

2. Scattering of the dark matter particle

In this section, we will detail the recoil energy spectrum
of the scattered nucleus due to scattering with a dark matter
particle. The nonrelativistic phase space in a general
Galilean frame is denoted by

ðdΦÞAþ1 ¼
d3P0

ð2πÞ3
d3K0

ð2πÞ3 ð2πÞ
3δ3ðP þK − P0 − K0Þ

× 2πδ

�
P2 − P02

2m
þ K2 −K02

2mA

�
: (A5)

In the laboratory frame, K ¼ 0 and the momentum transfer
reduces to q ¼ K0. The phase space can be simplified to

ðdΦÞAþ1;lab ¼
q2dqdðcos θÞ

2π

m
Pq

δ

�
cos θ −

mq
2μP

�
; (A6)

where θ is the angle between q and P and μ is the reduced
mass of the dark matter particle and the nucleus. The delta
function determines the minimum velocity v ¼ P=m of the
dark matter particle to produce a recoil of momentum
q: v ≥ q=2μ.
The Feynman diagram for the scattering of a dark matter

particle from the nucleus is shown in Fig. 1. The matrix
element for the process is −GAðqÞ. The differential scatter-
ing rate vdσ is jGAðqÞj2 multiplied by the differential phase
space in Eq. (A6). After integrating over the scattering
angle, we obtain Eq. (8).

3. Elastic scattering of the darkonium

In this section, we detail the recoil energy spectrum of a
nucleus due to elastic scattering of a bound state of dark
matter (darkonium) off the target nucleus. The nonrelativ-
istic phase space is similar to Eq. (A5), except that the mass
m of the dark matter is replaced by 2m. In the laboratory
frame, the phase space can be simplified to give

ðdΦÞAþ2 ¼
q2dqdðcos θÞ

2π

2m
Pq

δ

�
cos θ −

mq
μ2P

�
; (A7)

where μ2 is the reduced mass of the darkonium and the
nucleus. The delta function determines the minimum
velocity v ¼ P=2m of the darkonium necessary to produce
a nuclear recoil of momentum q: v ≥ q=ð2μ2Þ.
The Feynman diagram for the process is shown in Fig. 2.

The matrix element is given by

M ¼ −iGAðqÞg22
Z

d3k
ð2πÞ3

Z
dω
2π

Dðω; kÞ

×Dð−EB þ P2=4m − ω;P − kÞ
×Dð−EB þ P02=4m − ω;P0 − kÞ; (A8)

where k andω are the undetermined momentum and energy
in the loop. The integral over ω can be evaluated by closing
the contour in the lower half-plane around the pole of
Dðω;kÞ. The integral over k can be evaluated after
combining the remaining two propagators using a
Feynman parameter. Upon integrating over the Feynman
parameter, the matrix element reduces to
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M ¼ −GAðqÞg22
m2

2πq
tan−1

q
4γ

: (A9)

The differential rate vdσ for elastic scattering of a
darkonium of momentum P ≈ 2mv is obtained by
squaring the matrix element and multiplying by the differ-
ential phase space in Eq. (A7). After integrating over the
scattering angle, we obtain the differential scattering rate
in Eq. (10).
We now consider the case in which the constituents of the

darkonium have the same mass m but different amplitudes
for scattering from the nucleus. In this case, there are two
diagrams like the one in Fig. 2 with different vertex factors
GA;1ðqÞ and GA;2ðqÞ. Because the particles are distinguish-
able, the factor g2 for an external darkonium line is smaller
than that in Eq. (A2) by a factor of 2. The net effect on the
final expression for the differential scattering rate in Eq. (10)
is that GAðqÞ is replaced by ½GA;1ðqÞ þ GA;2ðqÞ�=4. It
reduces to Eq. (10) if we set GA;1ðqÞ ¼ GA;2ðqÞ ¼ 2GAðqÞ.

4. Breakup scattering of the darkonium

Here we detail the recoil energy spectrum of a bound
state of two dark matter particles (darkonium) breaking
apart after scattering from the nucleus. We denote the
momenta of the two outgoing dark matter particles by p1

and p2. The nonrelativistic phase space in a general
Galilean frame is given by

ðdΦÞAþ1þ1 ¼
d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3K0

ð2πÞ3 ð2πÞ
3δ3

× ðP þ K − p1 − p2 − K0Þ

× 2πδ

�
P2 − 2ðp2

1 þ p2
2Þ

4m
− EB þK2 −K02

2mA

�
:

(A10)

We employ the change of variables p1;2 ¼ 1
2
P0 � r and use

the delta function to integrate over P0. In the laboratory
frame, the phase space can be reduced to

ðdΦÞAþ1þ1;lab ¼
d3q
ð2πÞ3

d3r
ð2πÞ3 2πδ

�
P · q− 2r2

2m
−EB −

q2

2μ2

�
:

(A11)

The Feynman diagrams for the breakup of darkonium
from the scattering of the nucleus are shown in Fig. 3. The
matrix element is the sum of three terms. The matrix
elements for the first diagram in Fig. 3 and for the diagram
obtained by interchanging p1 and p2 are

M1 ¼
4mg2GAðqÞ

4γ2 þ ð2r − qÞ2 ; (A12)

M2 ¼
4mg2GAðqÞ

4γ2 þ ð2rþ qÞ2 : (A13)

The matrix element for the second Feynman diagram in
Fig. 3 can be written as

M3 ¼ iGAðqÞg2
8π=m
−γ − ir

Z
d3k
ð2πÞ3

Z
dω
2π

Dðω; kÞ

×Dð−EB þ P2=4m − ω;P − kÞ
×Dððp2

1 þ p2
2Þ=2m − ω;p1 þ p2 − kÞ: (A14)

The integral over ω can be evaluated by closing the contour
in the lower half-plane, so that it encloses the pole ofω. The
integral over k can be evaluated after combining the
remaining two propagators with a Feynman parameter.
The matrix element in Eq. (A14) reduces to

M3 ¼ −
2img2GAðqÞ
qðγ þ irÞ ln

4r2 þ ð2γ − iqÞ2
4γ2 þ ðq − 2rÞ2 : (A15)

The complete matrix element is M1 þM2 þM3. The
differential rate vdσ for the breakup scattering of a
darkonium of momentum P ≈ 2mv is obtained by squaring
the matrix element and multiplying by the differential phase
space in Eq. (A11). Now jMj2 depends only on the angle
between r and q, and the argument of the delta function
depends only on the angle between q and P. After
averaging jMj2 over the angles of r, we can use the delta
function to evaluate the angular integral for q. The compact
expression for the differential rate in Eq. (12) is obtained by
subsequently reexpressing the angle average of jMj2 in
terms of an integral over the angles of r.
We now consider the case in which the constituents of

the darkonium have the same mass m but different
amplitudes for scattering from the nucleus. Because the
particles are distinguishable, the factor g2 for an external
darkonium line is smaller than that in Eq. (A2) by a factor
of 2. The 2 → 2 transition amplitude is also smaller than
that in Eq. (A3) by a factor of 2. The effect on the matrix
element is to replace GAðqÞ in Eqs. (A12), (A13), and
(A14) by GA;1ðqÞ, GA;2ðqÞ, and ½GA;1ðqÞ þGA;2ðqÞ�=2,
respectively. The final expression for the differential
scattering rate reduces to Eq. (12) if we set GA;1ðqÞ ¼
GA;2ðqÞ ¼ 2GAðqÞ.
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