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The steady-state propagation of a phase-transition front is classified, according to hydrodynamics, as a
deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes
are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their
disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase
transition. One particular cause is the presence of instabilities. In this work we study the linear stability of
weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation
solution, we consider small perturbations of the interface and the fluid configuration. When the balance
between the driving and friction forces is taken into account, it turns out that there are actually two different
kinds of weak detonations, which behave very differently as functions of the parameters. We show that the
branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our
approach breaks down.
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I. INTRODUCTION

In a cosmological first-order phase transition, bubbles of
the stable phase nucleate and expand in the supercooled
metastable phase. The motion and collisions of bubble
walls are associated with the formation of cosmological
remnants, such as gravitational waves [1], magnetic fields
[2], topological defects [3], a baryon asymmetry [4], or
baryon inhomogeneities [5–7]. The propagation of bubble
walls is driven essentially by the pressure difference
between the two phases but is significantly affected by
hydrodynamics [8] (for recent studies, see Refs. [9–13]).
Indeed, besides stirring the fluid, these phase-transition
fronts reheat the plasma, due to the release of latent heat.
The backreaction of such disturbances hinders the wall
motion. In addition, the microscopic interaction of particles
of the plasma with the wall causes, at the macroscopic level,
a friction force [14–17]. In general, after a time which is
much shorter than the total duration of the phase transition,
the wall reaches a steady state with constant velocity
(however, the wall may also run away [15]).
As a consequence of nonlinear hydrodynamics, different

kinds of stationary solutions exist. Thus, the phase-
transition front may propagate, in principle, either as a
weak, Jouguet, or strong deflagration, as well as a weak,
Jouguet, or strong detonation. The latter, however, is not
possible, since its fluid profile cannot fulfill the boundary
conditions. These various propagation modes coexist in
some ranges of parameters, and it is not easy to determine,
in general, which of them will be actually reached in the

phase transition. It will certainly depend on the initial and
boundary conditions during the early transitory stage.
In the literature, the wall velocity is often given con-

venient values or left as a free parameter. For instance,
slow-moving weak deflagrations are often assumed for
baryogenesis, while fast-moving detonations are assumed
for gravity-wave generation. In the latter case, a Jouguet
detonation is often assumed. This solution corresponds to
the lower bound for the detonation velocity. The choice of
this particular solution avoids calculating the wall velocity,
which would involve considering the balance of the driving
and friction forces. This assumption is motivated by the
case of chemical burning, where weak detonations are
forbidden [18]. However, a phase transition is qualitatively
different from chemical burning, and weak detonations are
possible in addition to Jouguet detonations [19].
Even when a complete calculation of the wall velocity is

performed, there still remains the problem of the existence of
multiple solutions (for a recent discussion, see Ref. [13]).
Besides the coexistence of the aforementioned kinds of
solutions, a calculation of the wall velocity may give dou-
ble-valued solutions of a given kind. In particular, for theweak
detonation case, there are in general two branches. One of
these branches consists of higher-velocity solutions, which are
hydrodynamically weaker (they cause smaller disturbances of
the fluid). These solutions approach the speed of light for low
enough friction or high enough supercooling. The other
branch of weak detonations consists of stronger solutions
with lower velocities and ends at the Jouguet point. These
detonations behave unphysically as a function of the param-
eters. Therefore, weak detonations might be divided into
“weaker”weak detonations and “stronger”weak detonations.
An important issue is, thus, to determine the actual

propagation mode for a given set of parameters. A stability
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analysis provides a useful tool to determine the final state of
the wall motion, since not all of the possible hydrodynamic
solutions turn out to be stable. For instance, it is known that
strong deflagrations are generally unstable and that weak
deflagrations are unstable in certain ranges of parameters
[20,21]. The case of detonations is less clear.
In the cosmological context, the stability of weak

detonations was first discussed by Huet et al. [20]. The
standard approach is to consider small perturbations of the
fluid variables on each side of the wall, together with small
deformations of the latter, which is assumed to be infinitely
thin [22,23]. The fluid perturbations on the two phases are
linked by junction conditions at the interface. In the case of
detonations, the fluid enters the wall supersonically (in the
reference frame of the latter). As a consequence, fluid
perturbations cannot evolve in front of the wall. This fact
led Huet et al. to conclude that perturbations cannot grow at
all, and weak detonations are always stable. However,
numerical calculations of the time evolution of the
wall-fluid system seem to indicate that configurations
belonging to the stronger branch of weak detonations
are unstable [24].
In fact, as noted by Abney [25], the conclusion of

Ref. [20] is incorrect, as fluid perturbations may vanish in
front of the wall and not behind it (and fulfill the junction
conditions). Such perturbations, which were not considered
in Ref. [20], may be unstable. Unfortunately, Abney (and
later Rezzola [26]) considered only Jouguet and strong
detonations. As already mentioned, the latter are not
possible in a phase transition. Moreover, even in the case
of Jouguet detonations, the treatment of Refs. [25,26] is not
valid. In the first place, an equation for the interface
(depending on the driving and friction forces) was not
considered in these works, even though its importance had
been already pointed out be Huet et al. [20]. Most
important, the treatment considers perturbations around a
solution of constant fluid velocity v and temperature T,
whereas the fluid profile for a Jouguet detonation is that of
a rarefaction wave behind the wall, with v and T varying in
space and time.
In this paper we shall consider the hydrodynamic

stability of detonation fronts in a cosmological phase
transition. We shall consider only weak detonations.
Unfortunately, for the case of Jouguet detonations, the
fact that the fluid profiles are not constant behind the wall
makes the treatment too involved. For the same reason, our
approach will break down for weak detonations which are
very close to the Jouguet point. Except in this limit, we will
show that the lower-velocity branch of weak detonations is
unstable under linear perturbations at all wavelengths. Our
approach is essentially the samewe used in Ref. [21] for the
case of weak deflagrations, and we shall refer to that work
for some details. Because of the vanishing of perturbations
in the metastable phase, the treatment of detonations turns
out to be much simpler than that of deflagrations. This will

allow us to obtain analytical and model-independent
results.
The plan of the paper is the following. Before performing

the stability analysis, we devote the next section to a
detailed discussion on the structure of weak detonations.
We also consider the coexistence with runaway solutions.
In Sec. III we solve the equations for the linear perturba-
tions of the wall-fluid system, and in Sec. IV we discuss in
detail the velocity intervals corresponding to unstable
solutions and to the validity of our approach. We
also discuss some implications of our results for a cosmo-
logical phase transition. Our conclusions are summarized
in Sec. V.

II. DETONATION FRONTS IN
A PHASE TRANSITION

For a given theory, a phase transition may occur if the
free energy depends on a scalar field ϕ which acts as an
order parameter [27]. Thus, if the free-energy density
F ðϕ; TÞ has a minimum ϕþ at high temperature and a
different minimum ϕ− at low temperature, we have two
different phases. Each phase will be described by a free-
energy density F�ðTÞ ¼ F ðϕ�; TÞ. Indeed, all the ther-
modynamical quantities in each phase can be derived from
the functions F�ðTÞ. Such a relation between thermody-
namical quantities is known as an equation of state (EOS).
For instance, the pressure is given by p ¼ −F ðTÞ, the
entropy density by s ¼ dp=dT, the enthalpy density by
w ¼ Ts, and the energy density by e ¼ Ts − p.
If the phase transition is first order, there is a range of

temperatures at which the two minima ϕ� coexist, sepa-
rated by a barrier. The critical temperature Tc is that at
which ϕþ and ϕ− have the same free energy; i.e., Tc is
defined by FþðTcÞ ¼ F−ðTcÞ. Some quantities (e.g., the
energy and the entropy) are discontinuous at T ¼ Tc. The
latent heat is defined as the energy density discontinuity at
T ¼ Tc and is given by L ¼ Tc½F 0−ðTcÞ − F 0þðTcÞ�.
In the early Universe, the system is initially in the high-

temperature phase. As the temperature descends below Tc,
theþ phase becomes metastable, but the system remains in
this supercooled phase due to the free-energy barrier
between minima (see, e.g., Refs. [28–30]). Finally, at
some temperature TN < Tc, bubbles of the stable low-
temperature phase begin to nucleate and grow, until they fill
all space (for reviews on phase-transition dynamics, see,
e.g., Ref. [31]). The expectation value of the field takes the
value ϕ− inside the bubble and the value ϕþ outside it.
Thus, the bubble can be seen as a classical-field configu-
ration. The walls of these bubbles interact with the particles
of the plasma. At the same time, the bubble walls are phase-
transition fronts, at which latent heat is released.
Macroscopically, we can describe the field-fluid system

by considering the conservation of the stress tensor,
together with a finite-temperature equation for the field.
These equations can be written in the form
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∂μ

�
−T

∂F
∂T uμuν þ gμνF

�
þ ∂μ∂μϕ∂νϕ ¼ 0; (1)

∂μ∂μϕþ ∂F
∂ϕ þ ~ηuμ∂μϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð~λuμ∂μϕÞ2
q ¼ 0; (2)

with uμ ¼ ðγ; γvÞ the 4-velocity of the fluid and gμν the
Minkowsky metric tensor. Notice that the terms in paren-
theses in Eq. (1) correspond to the familiar stress tensor of
the relativistic fluid, wuμuν − pgμν. The last term in this
equation gives the transfer of energy between the plasma
and the field. The field is governed by Eq. (2), where we
have included, as is customary, a phenomenological damp-
ing term proportional to uμ∂μϕ. This term will give the
friction force between the wall and the plasma. The
particular form used in Eq. (2) was proposed in
Ref. [17] in order to account for the saturation of the
friction force at ultrarelativistic velocities [15]. The coef-
ficients ~η and ~λ can be obtained from microphysics
calculations (in the general case, ~η and ~λ may depend on
the field ϕ). The coefficient ~η will dominate for non-
relativistic fluid velocities, whereas the coefficient ~λ will
dominate the ultrarelativistic behavior. Similar damping
terms (with a single parameter) have been considered in
Refs. [10,16].
For the distance scales associated to the wall motion and

hydrodynamic profiles, the bubble wall can be regarded as
an infinitely thin interface. Because of the friction with the
plasma, this interface will in general reach a terminal
velocity. However, due to the saturation of the friction
force at ultrarelativistic velocities, a state of continuous
acceleration [15] also exists. Besides, as we have already
mentioned, stationary solutions may be unstable. We shall
now consider the stationary motion of a planar interface,
focusing on the detonation case, and in the next section, we
shall study perturbations of this configuration.

A. Hydrodynamic solutions

Let us consider a planar wall moving toward the positive
z axis. Because of the planar symmetry, the fluid velocity is
perpendicular to the wall (see Fig. 1). The fluid velocity and
the temperature are different on each side of the wall. The
relation between these values can be obtained by integrat-
ing Eq. (1) across the interface. In the reference frame of the
wall, we obtain

w−v−γ2− ¼ wþvþγ2þ; (3)

w−v2−γ2− þ p− ¼ wþv2þγ2þ þ pþ; (4)

where v is the z component of the fluid velocity and the þ
and − signs refer to variables just in front of and just behind
the wall, respectively. Notice that in this frame we have
v� < 0. If the equation of state is known, Eqs. (3) and (4)
can be used to obtain the velocity and temperature of the
outgoing flow as functions of the incoming flow variables.
Nevertheless, some general features of these hydrodynamic
relations do not depend on the EOS.
In the first place, it is easy to see that we have two

branches of hydrodynamic solutions. Indeed, from Eqs. (3)
and (4), we may write

vþ − v−
vþ

¼ p− − pþ
wþγ2þv2þ

: (5)

Therefore, we see that, for given values of vþ and Tþ, we
will have in general two solutions for the outgoing flow.
One of them is with1 jv−j < jvþj and pþ < p−, called
detonation, and the other is with jv−j > jvþj and pþ > p−,
called deflagration (the sketch of Fig. 1 corresponds to a
detonation configuration).
In the second place, notice that variations of thermo-

dynamical quantities are generally related by the speed of
sound, which is given by c2s ≡ dp=de. We have, in
particular,

dp ¼ dw=ð1þ c−2s Þ: (6)

Therefore, differentiating Eqs. (3) and (4), we may gather
all the information on the EOS in this single parameter. Let
us regard the temperature Tþ in front of the wall as a
boundary condition (this is the case if the incoming flow is
supersonic) and consider the dependence of v− and T− on
vþ. We have

�
v2−γ2−þ

c2s−
1þc2s−

�
dw−þ2wþvþγ2þγ2−dv−¼ 2wþvþγ4þdvþ;

(7)

v−γ2−dw−þwþγ2þγ2−
vþ
v−

ð1þv2−Þdv− ¼wþγ4þð1þv2þÞdvþ;
(8)

where we have used the relations dðv2γ2Þ ¼ 2vγ4dv,
dðvγ2Þ ¼ γ4ð1þ v2Þdv. Combining Eqs. (7) and (8), we
obtain

wall

v+v-

FIG. 1. Sketch of a detonation in the wall frame. 1Notice that ðvþ − v−Þ=vþ ¼ ðjvþj − jv−jÞ=jvþj.
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∂v−
∂vþ

����
Tþ

¼ γ2þ
γ2−

þ γ2þðv2− þ c2s−Þð1 − vþv−Þ
v2− − c2s−

vþ − v−
vþ

; (9)

1

w−

∂w−

∂vþ
����
Tþ

¼ −
2v−γ2−γ2þð1þ c2s−Þð1 − vþv−Þ

v2− − c2s−

vþ − v−
vþ

:

(10)

Notice that these equations do not depend on the sign of v�
and are valid for a wall propagating toward the negative z
axis as well.
It is evident that the speed of sound in the− phase plays a

relevant role in Eqs. (9) and (10). For instance, the inverse
of the derivative in Eq. (9) vanishes at this point, which
means that the curve of vþ as a function of v− has an
extremum. Thus, the case jv−j ¼ cs− separates two differ-
ent behaviors, namely, vþ growing with v− or vþ decreas-
ing with v−. The former are called weak solutions, and the
latter are called strong solutions. The point jv−j ¼ cs− is
called the Jouguet point. The extremum of vþ vs v− at the
Jouguet point will be either a maximum or a minimum,
depending on the sign of ðvþ − v−Þ=vþ. Thus, for deto-
nations we have a minimum, whereas for deflagrations we
have a maximum (see Fig. 2).
Physically, we know that there must be solutions with

low values of v− and vþ, corresponding to a slow wall. In
the limit of a vanishingly small wall velocity, we must have
v− ¼ vþ ¼ 0, while if the wall velocity is small but
nonvanishing, both v− and vþ will be nonvanishing (and
will have the same sign). Hence, these solutions correspond
to the weak part of a curve (i.e., ∂vþ=∂v− > 0). If we
increase further the velocity, we will reach the Jouguet
point jv−j ¼ cs−, where, according to the above, jvþj has
an extremum. In this case, the extremum must be a
maximum, and jvþj will decrease for jv−j > cs− (strong
solutions). Thus, we are in a deflagration curve.

On the other hand, there must also be solutions with
v− ≈ vþ ≈ 1, corresponding to a very fast-moving wall. As
the wall velocity decreases from the limit vw ¼ 1, both jvþj
and jv−j will decrease. Therefore, we are again in the weak
part of a curve. This curve must have a minimum at the
Jouguet point jv−j ¼ cs− and, thus, corresponds to deto-
nation solutions.
Thus, we see that, for detonations, the incoming flow is

supersonic, whereas for deflagrations the incoming flow is
subsonic. Notice also that weak solutions correspond to
smaller values of vþ − v− than strong solutions and, thus,
to weaker disturbances of the fluid. For weak deflagrations,
the wall velocity is subsonic with respect to the fluid on
both sides of it, whereas for weak detonations the wall
velocity is supersonic with respect to the fluid on
both sides.
We may obtain the form of the detonation and defla-

gration curves if we integrate Eqs. (9) and (10), although
some information will be lost with respect to Eqs. (3) and
(4) (namely, there will be undetermined integration con-
stants). In general, cs− is a function of w−, and the two
derivatives in Eqs. (9) and (10) cannot be integrated
independently. Nevertheless, if we neglect the variation
of the speed of sound, Eq. (9) can be integrated alone. In
Fig. 2 we show the result2 for the case cs− ¼ 1=

ffiffiffi
3

p
(corresponding to an ultrarelativistic gas). We have arbi-
trarily chosen two conditions to determine the integration
constant, corresponding to detonations and deflagrations
(for a specific EOS, the two values of vþ for a given v− will
be determined as functions of Tþ). The result is similar for
any constant value of cs−. In the general case, the curves are
also similar, but cs− may be different in each curve, as it
depends on the temperature.

B. Fluid profiles

Away from the wall, the field is a constant, and Eq. (1)
gives the conservation of energy and momentum for the
fluid, i.e., ∂μðwuμuν − pgμνÞ ¼ 0. Using Eq. (6), we may
obtain again equations which depend only on the parameter
cs [22]. Besides, the absence of a distance scale in these
equations justifies assuming the similarity condition,
namely, that the solution will depend only on the variable
ξ ¼ z=t. In the planar case, one obtains very simple
equations for vðξÞ and wðξÞ (see, e.g., Ref. [11]). The
solutions are3

vðξÞ ¼ constant; (11)

and the rarefaction wave

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

v

v

FIG. 2 (color online). The fluid velocities in the rest frame of
the wall for fixed Tþ, obtained from Eq. (9) for cs− ¼ 1=

ffiffiffi
3

p
, with

conditions vþðcs−Þ ¼ 0.3 (lower curve) and vþðcs−Þ ¼ 0.7
(upper curve). Blue lines indicate weak solutions, and red lines
indicate strong solutions. The dashed line indicates the value
of vþ ¼ v−.

2We actually integrated the inverse of Eq. (9), i.e., ∂vþ=∂v−.
3In fact, there is also a solution v ¼ ðξþ csÞð1þ ξcsÞ, but

this solution will not fulfill the matching and boundary
conditions [11].
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vrarðξÞ ¼
ξ − cs
1 − ξcs

: (12)

Notice that there is no integration constant in Eq. (12). The
corresponding solutions for the thermodynamical variables
are given by

wðξÞ ¼ constant (13)

and by

cs
1þ c2s

dw
w

¼ γ2dv: (14)

The latter is trivially integrated in the case of constant cs.
The boundary conditions are, in the reference frame of

the bubble center, that the fluid velocity vanishes far behind
the wall (i.e., at the center of the bubble) and far in front of
the wall (where the fluid is still unperturbed). Therefore, in
the wall frame, the fluid velocity far in front of and far
behind the wall must be given by v ¼ −vw. The boundary
condition for the temperature is that its value far in front of
the wall is given by the nucleation temperature TN .
It is not difficult to construct the fluid velocity and

temperature profiles from the similarity solutions, using the
boundary conditions and the matching conditions at the
wall. Let us consider the detonation case. As we have seen,
the incoming flow is supersonic and, hence, has not
received any information from the wall. As a consequence,
the boundary condition gives vþ ¼ −vw. As we have seen,
for a detonation we have jv−j < jvþj (hence, v− > vþ),
which means that the fluid in the − phase is dragged by the
wall. Behind the wall, the velocity must descend contin-
uously4 from its value at the wall, v−, to the value at the
bubble center, −vw. To achieve this, we must use the
rarefaction solution (12) as well as constant solutions

v ¼ vþ and v ¼ v−, as shown in the left panel of
Fig. 3.5 In the wall frame, the wall is at ξw ¼ 0. The
rarefaction solution matches the value v− at

ξ0 ¼ ðcs− þ v−Þ=ð1þ cs−v−Þ (15)

and the value vþ at

ξc ¼ ð−vw þ cs−Þ=ð1 − vwcs−Þ: (16)

In the frame of the bubble center, the fluid velocity vanishes
at this latter point, which moves with velocity cs−. The
temperature profile is qualitatively similar to the velocity
profile. In front of the wall, we have a constant temperature
Tþ ¼ TN . Behind the wall the fluid is reheated to a
temperature T−, which then descends along the rarefaction
wave to a final value Tf ≃ TN .
Notice that this profile is only possible for weak or

Jouguet detonations (i.e., for v− ≤ −cs−). In fact, at the
Jouguet point, we have ξ0 ¼ ξw ¼ 0, and the region of
constant velocity v− disappears (right panel of Fig. 3). A
strong detonation would require ξ0 > ξw, and the fluid
profile cannot be constructed. Therefore, strong detona-
tions are not possible.
Strong deflagration profiles can be constructed but are

unstable (see Ref. [21] for details). For a weak deflagration,
both vþ and v− are subsonic, and the rarefaction solution
vrarðξÞ cannot be accommodated in the velocity profile.
Therefore, the fluid velocity takes the constant value v ¼
v− everywhere behind the wall. According to the boundary
condition at the bubble center, we thus have v− ¼ −vw. For
a deflagration we have jvþj < jv−j, which means that the
fluid is pushed forward in front of the wall. Hence, we have
a constant solution v ¼ vþ > v− up to a certain point ξsh,
where the velocity must descend abruptly to take the
boundary value v ¼ −vw ¼ v−. Such a discontinuity

1.0 0.5 0.0 0.5 1.0
1.0

0.8

0.6

0.4

0.2

0.0

v

v v
v

1.0 0.5 0.0 0.5 1.0
1.0

0.8

0.6

0.4

0.2

0.0

v

v v

v

FIG. 3 (color online). The fluid velocity profile for cs− ¼ 1=
ffiffiffi
3

p
, in the reference frame of the bubble wall. Left panel: a weak

detonation (vþ ¼ −0.9, v− ¼ −0.8). Right panel: a Jouguet detonation (vþ ¼ −0.8, v− ¼ −cs−).

4Entropy considerations show that we cannot have a disconti-
nuity with v increasing in the direction of the front propagation
(for details, see, e.g., Ref. [11]).

5In the figure we have chosen arbitrarily the values of vþ and
v−. For a given EOS, these values will be given by the matching
conditions.
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without a change of phase is called a shock front. At the
shock discontinuity, Eqs. (3) and (4) still apply, but now the
enthalpy and pressure are related by the same EOS on both
sides of the interface. These equations give the temperature
Tþ as a function of the boundary value TN , as well as the
velocity of the shock front. The fluid is reheated in front of
the wall, i.e., Tþ > T−; TN .
Notice that the velocity of a weak deflagration is in the

range 0 < vw < cs−. On the other hand, the velocity of a
weak detonation is in the range vJ < vw < 1, where vJ is
the Jouguet detonation velocity, corresponding to the value
of jvþj at jv−j ¼ cs− for the detonation curve. The latter is
supersonic (see Fig. 2). The velocity gap between cs− and
vJ is filled by a family of supersonic Jouguet deflagrations.
These solutions fulfill the Jouguet condition v− ¼ −cs−, as
well as the deflagration condition jvþj < jv−j; i.e., the fluid
comes in subsonically and goes out at the speed of sound.
Nevertheless, the fluid on both sides moves forward with
the wall, and the wall velocity with respect to the bubble
center is not cs− but higher. The velocity profile behind the
wall is as in the case of the Jouguet detonation (right panel
of Fig. 3). On the other hand, in front of the wall, we have
vþ > v−, and the profile shows a shock front discontinuity
(for details, see, e.g., Ref. [11]).
It is important to stress that, for a given value of TN , the

Jouguet deflagrations are a whole set of solutions with
velocities ranging from vw ¼ cs− to vw ¼ vJ (both values
depend on T−, which, in turn, depends on TN). In contrast,
the Jouguet detonation is a single solution, corresponding
to the lowest possible value of the detonation velocity,
vw ¼ vJ.
From the above, it is apparent that hydrodynamics alone

does not determine the value of the wall velocity. An
additional equation is needed, corresponding to the balance
between the driving and friction forces.

C. Equation for the interface

To obtain a macroscopic equation for the bubble wall, we
need to consider the microphysics inside this thin interface,
which is described by Eq. (2). Consider a reference frame at
the center of the wall (thus, the field profile only varies in a
small region around z ¼ zw ¼ 0). In the steady state, this
frame moves at constant velocity, and only z derivatives
appear in Eq. (2). We multiply by ϕ0 ≡ dϕ=dz, and then
we integrate across the wall (notice that ϕ0 vanishes
outside the wall). Using the relation ð∂F=∂ϕÞdϕ ¼
dF − ð∂F=∂TÞdT, we obtain [17,21]

σ ̈zw ¼ Fdr þ Ffr; (17)

where σ is the surface tension,

σ ≡
Z

ϕ02dz; (18)

Fdr is the force (per unit area) driving the propagation of the
phase-transition front,

Fdr ¼ p−ðT−Þ − pþðTþÞ þ
Z

Tþ

T−

∂F
∂T dT; (19)

and Ffr is the friction force,

Ffr ¼
Z

γv~ηðϕ0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγvÞ2 ~λ2ðϕ0Þ2

q dz; (20)

which depends explicitly on the velocity of the wall with
respect to the fluid, −v (notice that Ffr is negative since we
have v < 0).
To obtain macroscopic expressions which do not depend

on the wall shape, we will approximate the integrals in
Eqs. (19) and (20). For the integral (20), we notice that the
function ϕ0ðzÞ2 peaks inside the wall. Therefore, its
presence in the numerator will select values of the integrand
around z ≈ 0. Hence, inside the square root in the denom-
inator, we will just approximate ϕ02 by its value at the center
of the wall, ϕ02

0 , whereas in the numerator, we will
approximate it by a delta function ϕ02

0 lwδðzÞ, where lw is
the wall width. Furthermore, we may approximate the value
of ϕ02

0 by ðΔϕ=lwÞ2, where Δϕ is the field variation
ϕþ − ϕ−. The details of the approximations are not
relevant, since all these parameters will be absorbed in
the free parameters ~η and ~λ. Indeed, we define
η ¼ ~ηðΔϕÞ2=lw, λ ¼ ~λΔϕ=lw. With these approximations,
the integrand now depends only on v, which we assume has
a smooth variation between v− and vþ. We thus have an
integral of the form

R
fðzÞδðzÞdz ¼ fð0Þ. Since we do not

know the exact value of fð0Þ, we shall approximate it by
the average of its values on each side of the wall, hfi≡
ðfþ þ f−Þ=2 . We thus obtain [17]

Ffr ¼
�

ηγvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2ðγvÞ2

p �
: (21)

For a given model, the values of η and λ can be obtained by
comparing the nonrelativistic and ultrarelativistic limits of
Eq. (21) with the corresponding results from microphysics
calculations [17]. Indeed, notice that, for small vw, we have
Ffr ¼ −ηvw, while for vw → 1 we have Ffr ¼ −ðη=λÞvw.
For the integral in Eq. (19), we may just use a linear

approximation for the integrand inside the wall. It is useful
to use, first, the identity ð∂F=∂TÞdT ¼ ð∂F=∂T2ÞdT2 to
obtain an expression in terms of T2. This is convenient
since F is often quadratic. Thus, we obtain

Fdr ¼ p−ðT−Þ − pþðTþÞ þ
�
dp
dT2

�
ðT2þ − T2

−Þ: (22)
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The second term in Eqs. (19) and (22) is due to hydro-
dynamic effects. This term is very important, since the
driving force cannot be exclusively determined by the
pressures outside the wall. For instance, for a deflagration,
as we have seen, we have p−ðT−Þ − pþðTþÞ < 0.
Since the friction force increases with the velocity, the

wall may reach a terminal velocity, given by the equation
Ffr ¼ −Fdr. Such a stationary state will be reached in a time
which is very short in comparison to the duration of a phase
transition. Indeed, according to Eq. (17), the time scale
associated to the acceleration of the wall is given by the
quantity

d ¼ σ

Fdr
: (23)

Since σ and Fdr are determined by the scale of the phase
transition, this quantity is roughly given by d ∼ 1=T, while
the duration of the phase transition is roughly given by the
cosmological time scale t ∼MP=T2, whereMP is the Plank
mass. Notice that the ratio in Eq. (23) gives also a length
scale associated to the balance between the driving force
and the surface tension, in the case of a deformed wall
(see the next section).
If a stationary state is reached, the terminal velocity is

given by the equation

ηhγλvi ¼ −Fdr; (24)

where we have rewritten the friction force (21) in terms of
the quantity

γλ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1 − λ2Þv2
p : (25)

This equation can be solved using Eqs. (3) and (4) and the
appropriate boundary conditions.

D. Runaway walls

In the particular case λ ¼ 0, we have γλ ¼ γ, and the
friction force grows as γv. In such a case, the wall will
always reach a terminal velocity vw < 1. On the other hand,
for nonvanishing λ, the friction saturates at the value Ffr ¼
−η=λ in the ultrarelativistic limit. If the driving force (which
depends on the amount of supercooling and on hydro-
dynamics) is larger than this value, a terminal velocity will
not be reached; i.e., the wall will run away. The condition
for nonexistence of stationary solutions is thus

Fdr > η=λ; (26)

with Fdr given by Eq. (22). Notice that the condition (26)
can be reached only in the ultrarelativistic limit. Therefore,
as a function of the parameters, Eq. (26) is a condition for
the nonexistence of detonations. Indeed, for a given set of
parameters, the detonation solution may fulfill Eq. (26)

(which means that its velocity would exceeded the speed of
light), but it may happen that we still have a deflagration
solution, for which the driving force is much smaller (due
to different hydrodynamics). Hence, deflagrations may
coexist with runaway solutions, even when detonations
do not.
Detonations may also coexist with runaway solutions.

Indeed, a runaway solution may exist even if Eq. (26) is not
fulfilled. This is possible because, for extremely high
values of γv, the hydrodynamics is different, and Fdr is
not given by Eq. (22) anymore [15,17]. In this case, the
particles distribution functions are essentially unaffected as
they pass through the wall. The total force in this limit is
given by the difference Ftot ¼ FþðTþÞ − ~F−ðTþÞ, where
~F−ðTþÞ is the mean field effective potential, obtained by
keeping only the quadratic terms in a Taylor expansion
about the þ phase [10,15]. In our phenomenological
model, this total force is given by Ftot ¼ p−ðTþÞ −
pþðTþÞ − η=λ (see Ref. [17] for details). Therefore, the
condition for the existence of a runaway solution is

p−ðTþÞ − pþðTþÞ > η=λ: (27)

For given values of the friction parameters, both con-
ditions (26) and (27) will be fulfilled for high enough
supercooling (i.e., small enough values of Tþ=Tc).
Nevertheless, it is important to notice that, when the
condition (27) is already fulfilled, the condition (26)
may not be fulfilled yet. Indeed, for a stationary solution,
the driving force is smaller than p−ðTþÞ − pþðTþÞ (due to
hydrodynamic effects). Hence, even if the runaway solution
exists, the wall may still not run away, since a detonation
solution may exist as well. In the case of coexistence of a
stationary solution and a runaway solution, one expects that
the former will be the one to be realized in the phase
transition, unless it is unstable.

E. A specific example: Bag EOS

The simplest phenomenological equation of state for a
phase transition is the well-known bag EOS, which consists
of radiation and vacuum energy. The pressure in each phase
can be written in the form

pþðTÞ ¼
a
3
T4 −

L
4
; p−ðTÞ ¼

�
a
3
−

L
4T4

c

�
T4: (28)

The thermodynamic quantities can be obtained from
s ¼ dp=dT, w ¼ Ts, e ¼ Ts − p. This model has three
free parameters, namely, the critical temperature Tc, the
latent heat L, and the coefficient a. The latter is related to
the number of degrees of freedom of radiation in the
þ phase. The speed of sound is the same in both
phases, cs ¼ 1=

ffiffiffi
3

p
.
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In this model, the driving force (22) takes the form

Fdr ¼
L
4

�
1 −

T2
−T2þ
T4
c

�
: (29)

The matching conditions (3) and (4) give the relations

T2
−

T2þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþγ2þ

v−γ2−ð1 − L̄Þ

s
; (30)

v− ¼ 1

6vþ

h
1 − 3αþ 3ð1þ αÞv2þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − 3αþ 3ð1þ αÞv2þ�2 − 12v2þ

q i
; (31)

where

L̄≡ L
4aT4

c=3
¼ L

wþðTcÞ
; (32)

and

α≡ L
4aT4þ

¼ L̄
3

T4
c

T4þ
: (33)

The þ sign in Eq. (31) corresponds to weak detonations or
strong deflagrations (i.e., jv−j > cs), while the − sign
corresponds to strong detonations or weak deflagrations
(jv−j < cs). At the Jouguet point, we have v− ¼ −cs and

vþ ¼ −vJ ≡ −
1=

ffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2α=3

p
1þ α

: (34)

Here, the þ and − signs correspond to detonations and
deflagrations, respectively.
Using the above relations, we can obtain the stationary

wall velocity from Eq. (24). For deflagrations, the

boundary conditions give vw ¼ −v−. Besides, the temper-
ature Tþ is obtained by applying Eqs. (3) and (4) to the
shock front discontinuity. This gives

ffiffiffi
3

p ðT4þ − T4
NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3T4þ þ T4
NÞð3T4

N þ T4þÞ
p ¼ vþ − v−

1 − vþv−
: (35)

For detonations, in contrast, the fluid is not reheated in front
of the wall, and we have simpler conditions, namely,
Tþ ¼ TN , vw ¼ −vþ.
The condition (27) for the existence of runaway solutions

gives, for the bag EOS,

1 −
T4
N

T4
c
>

4

λ

η

L
: (36)

On the other hand, according to Eq. (26), detonations
cannot exist if

1 −
T2
−T2

N

T4
c

>
4

λ

η

L
: (37)

For a complete description of the solutions, see Ref. [17].
Here, we are primarily interested in weak detonations. In
Fig. 4 we show the weak detonation velocity as a function
of the friction parameter η (solid lines). We consider two
different amounts of supercooling (left and right panels),
both of which are strong enough (for the given value of the
latent heat) for the existence of detonations and runaway
solutions. For comparison, we show also the weak def-
lagration solutions (dotted lines). We considered a few
values of λ which give different behaviors of the friction
force, namely, λ ¼ 0.2 (in black), λ ¼ 1 (in blue), and λ ¼ 5
(in red).
It is apparent that the value of λ affects especially

supersonic velocities. The value λ ¼ 1 is not special but
is representative for the case in which the “friction
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FIG. 4 (color online). The wall velocity as a function of the friction parameter η, for λ ¼ 0.2 (black), λ ¼ 1 (blue), and λ ¼ 5 (red).
Solid lines correspond to weak detonations and dotted lines to weak deflagrations. The vertical dashed lines indicate the values of η
below which runaway is possible for each value of lambda. The latent heat parameter is given by L̄ ¼ 0.03, and the amount of
supercooling is TN=Tc ¼ 0.9 (left panel) and TN=Tc ¼ 0.95 (right panel).
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coefficient” jFfr=vwj has similar values in the nonrelativ-
istic and ultrarelativistic limits. The value λ ¼ 0.2 corre-
sponds to a high ultrarelativistic friction, while the value
λ ¼ 5 corresponds to a small ultrarelativistic friction.
Except in the limit λ → 0, the friction saturates at high
velocities, and the detonation approaches the speed of light
at a finite value of η, which is given by Eq. (37). Below this
value, we have no detonations, and the wall runs away. The
existence of the runaway solution, on the other hand, is
determined by Eq. (36). The value of η below which
runaway is already possible is indicated in Fig. 4 by the
vertical dashed lines.
For large values of η, the wall velocity is small, and the

hydrodynamic process is a deflagration. As η is decreased,
the velocity increases. However, the velocity does not grow
as vw ∼ 1=η, as Eq. (24) may suggest, since hydrodynamic
effects act as an effective friction [9,12]. Indeed, the
reheating of the plasma slows down the wall, since the
driving force (29) decreases as any of the temperatures T�
approaches Tc.
Below a certain value η ¼ ηmax, we have detonations in

addition to deflagrations. Notice that we have in general
two weak detonation solutions. One of them behaves
“normally” with η; i.e., the velocity increases as the friction
decreases. This branch of solutions ends with a velocity
vw ¼ 1. The other branch corresponds to stronger weak
detonations and ends at the Jouguet point. This branch
behaves rather unphysically, since the velocity decreases as
the friction decreases. This means that the fluid disturb-
ances cause a strong friction effect. Indeed, the reheating is
significant near the Jouguet point. This can be appreciated
in Fig. 5, where we show the reheating as a function of vw
for the two values of TN considered in Fig. 4. Notice that,
for vw ≃ 1, the temperature T− is quite close to TN .
However, as the velocity decreases, the reheating increases,
and we may even have T− > Tc as the Jouguet velocity is
approached.

It is worth commenting that the deflagration solutions
have a similar behavior; i.e., if the deflagration curve in
Fig. 4 is continued beyond the speed of sound, it becomes
double valued (see, e.g., Ref. [13]). However, this occurs
for strong deflagrations, which are unstable [21]. In the
case of detonations, in contrast, this behavior occurs
already for weak solutions, although the “unphysical”
branch is closer to the Jouguet point and, thus, corresponds
to stronger weak detonations.

F. Physical and unphysical weak detonations

The example considered in the previous subsection (the
bag EOS) shows an interesting feature of weak detonations,
namely, the existence, in a certain range of parameters, of
two solutions. Although the lower-velocity branch has a
strange dependence on the parameters, these solutions are
not physically forbidden. Their behavior is due to strong
hydrodynamics effects. We shall now analyze this feature
in detail, without specifying any equation of state.
Let us consider the dependence of vw on the friction and

the amount of supercooling. Differentiating Eq. (24), we
have

−hvγλidηþ ηhv3γ3λiλdλ −
∂Fdr

∂Tþ
dTN ¼ Qdvw; (38)

with

Q¼ −
η

2

�
γ3λw þ γ3λ−

∂v−
∂vþ

�
þ ∂Fdr

∂T−

T−

w−

c2s−
1þ c2s−

∂w−

∂vw ; (39)

where ∂v−=∂vþ and ∂w−=∂vw are given by Eqs. (9) and
(10). Therefore, the derivatives of vw with respect to any of
the parameters η, λ, or TN are inversely proportional to the
factor Q and shear some essential properties. Consider, for
instance, TN and λ fixed. We have

∂η=∂vw ¼ Q=h−vγλi: (40)

Since −v is positive, the sign of ∂η=∂vw depends on the
two terms in Eq. (39). The first term is negative, since
∂v−=∂vþ is positive for weak detonations. On the other
hand, the second term is positive, since we have
∂Fdr=∂T− < 0 (the driving force increases as T�
decreases) and ∂w−=∂vw < 0, as can be seen in Eq. (10)
(for weak detonations). The first term in Eq. (39) is due to
the dependence of the friction force on the velocity. This
term would give a “normal” variation of vw with η (i.e., vw
decreasing with η). On the other hand, the second term
comes from ∂Fdr=∂vw and is due entirely to hydrody-
namics. Indeed, notice that the driving force does not
depend on the wall velocity explicitly but only through the
temperature T−.
The negative sign of ∂w−=∂vw implies that, the higher

the velocity, the smaller the reheating behind the wall. This
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FIG. 5 (color online). The fluid temperature T− (solid lines) as a
function of the detonation wall velocity, for L̄ ¼ 0.03, and for
TN=Tc ¼ 0.9 (in blue) and TN=Tc ¼ 0.95 (in red). Dashed lines
indicate the values of TN as well as the critical temperature.
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means that the hydrodynamics is always weaker for higher
velocities. The strengthening of hydrodynamics effects as
the Jouguet point is approached is apparent in Eqs. (9) and
(10) if we notice the dependence on the two parameters
vþ − v− and v2− − c2−. The former is the velocity disconti-
nuity across the interface, which vanishes for vw → 1 and is
maximum at the Jouguet point (see Fig. 2). In Eqs. (9) and
(10), this maximum is further emphasized by the diver-
gence due to the factor v2− − c2− in the denominators. Thus,
for very weak detonations (i.e., in the limit vw → 1), we
have a finite value of ∂v−=∂vþ (namely, ∂v−=∂vþ ¼
γ2þ=γ2− ¼ w−=wþ) and a vanishing ∂w−=∂vw, (hence, a
variation of the wall velocity does not alter the reheating
temperature). On the other hand, at the Jouguet point, both
∂v−=∂vþ and ∂w−=∂vw diverge. These are the behaviors
observed for the particular cases considered in Figs. 2
and 5.
Obtaining the effect of this hydrodynamics on the wall

velocity is straightforward from Eq. (40). For vw close to 1,
we will have ∂vw=∂η < 0, since the second term in Eq. (39)
will be vanishingly small. On the other hand, at the Jouguet
point, we will have ∂vw=∂η ¼ 0, since both terms of Q
diverge (cf. Fig. 4 for the particular case of the bag EOS).
Besides, near the Jouguet point, we will see that the second
term in Eq. (39) becomes larger than the first one. Hence,
we have ∂vw=∂η > 0; i.e., we obtain the “unphysical
branch” of weak detonations. Indeed, replacing in
Eq. (39) the expressions for ∂v−=∂vþ and ∂w−=∂vw given
by Eqs. (9) and (10), it can be seen that Q vanishes at a
velocity vcrit given by the equation

γ−1−

�
γ3λ
γ2

�
v2− − c2s−

c2s−
¼

�
β− −

v2− þ c2s−
2c2s−

γ3λ−
γ3−

�
1 − vþv−
1 − v2−

Δv
vþ

;

(41)

where

β− ¼ hγλviv−
γ−

2T−

Fdr

�
−
∂Fdr

∂T−

�
: (42)

The velocity vcrit corresponds to the maximum ηmax of the
curve of η vs vw. Provided that the factor in parenthesis in
Eq. (41) is positive, the equation will be satisfied for a
velocity vcrit between the Jouguet value vJ and the speed of
light. We shall see that this is indeed the case. Hence, the
curve of vw vs η is always of the form of Fig. 4.
To see that the factor in parenthesis in Eq. (41) is in

general positive, notice that the second term inside the
parenthesis is at most∼1 for jv−j between cs− and 1. On the
other hand, in β− we distinguish two factors of different
nature.6 The first factor depends on the velocity and is ∼v2w,

whereas the second factor contains the information on the
equation of state. We may write

β− ∼ v2w=v2c; (43)

with

v2c ∝
Fdr

T−∂Fdr=∂T−
: (44)

For weak detonations, vw is supersonic, while the velocity
parameter vc is in general very small. Indeed, v2c gives a
dimensionless measure of the driving force, which is very
small for T� close to Tc. Hence, we will generally have
β− ≫ 1. In particular, the large reheating near the Jouguet
point will cause a very small Fdr. Physically, this effect
prevents the velocity from increasing as the friction
decreases and causes the lower-velocity branch of weak
detonations.
For the sake of concreteness, let us consider again the

bag EOS, for which we have

β− ¼ γ−1− hγλviv−
1
4
ð T4

c
T2
−T2

þ
− 1Þ

ðbagÞ: (45)

For small reheating (T− ≃ Tþ ¼ TN), the denominator is
given by 1

4
ðT4

c=T4
N − 1Þ. Consider, for instance, the electro-

weak phase transition. For different extensions of the
standard model, the value of TN=Tc is typically in the
range 0.8–1, while very strong phase transitions may reach
a supercooling of TN=Tc ≃ 0.7 [21]. For this lower limit,
we have 1

4
ðT4

c=T4
N − 1Þ≃ 0.8. However, a large super-

cooling will be accompanied in general by a large latent
heat, since both are characteristics of a strong phase
transition. Even disregarding the reheating caused by the
release of latent heat, for such a large supercooling, we
expect a high velocity, vw > 0.9, and the numerator in
Eq. (45) will be ∼v2w > 0.8. Therefore, even in such an
extreme case, we expect β− ≳ 1. Because of reheating, the
denominator in Eq. (45) will be in general quite smaller
than 1

4
ðT4

c=T4
N − 1Þ. As we have seen, we may even have

T− > Tc. Thus, in the general case, we will have β− ≫ 1.

III. STABILITY ANALYSIS OF WEAK
DETONATIONS

The structure of multiple stationary solutions observed in
Fig. 4 was found in different numerical calculations (see,
e.g., Ref. [24]). There exist also supersonic Jouguet
deflagrations (not shown in Fig. 4 for simplicity), which
also coexist with detonations in some parameter ranges.
Besides, as we have seen, there are ranges of coexistence
with runaway walls. The coexistence of hydrodynamic
solutions is an important issue, since one has to determine
which of these will be realized during the phase transition.

6The parameter β− is associated to the fluid perturbations
behind the wall and will appear again when we consider the
stability of the stationary solution in the next section.
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Investigating the stability of the stationary motion may help
deciding which solutions to choose. In particular, one
expects that the unphysical weak detonations described
above should not be realized [9]. As a matter of fact,
numerical simulations suggest that the detonations which
are closer to the Jouguet point are unstable [24]. We shall
now consider the linear stability of the weak detonation
solution.

A. Linear perturbations

We shall consider small variations of the wall position
ζðx⊥; tÞ around a planar interface. For planar symmetry, we
only need to consider a single direction x⊥ transverse to the
wall motion. Besides, we need to consider, on each side of
the wall, the longitudinal perturbation of the velocity
δvðx⊥; z; tÞ and the transverse velocity v⊥ðx⊥; z; tÞ, as well
as the pressure fluctuation δpðx⊥; z; tÞ (the latter may be
replaced by the temperature fluctuation δT).
The standard approach (see, e.g., Refs. [20–23]) consists

of considering small perturbations around a solution with
v ¼ const and T ¼ const. This allows us to consider
Fourier modes and, hence, to deal with algebraic equations
(dispersion relations). It is worth remarking that this
assumption is not always valid. Such is the case, for
instance, of the fluid profile for the Jouguet detonation
(Fig. 3, right panel). Perturbing this profile gives much
more involved equations and is out of the scope of
this work.
For the weak detonation solution depicted in the left

panel of Fig. 3, the fluid profile is a constant in front of the
wall. Behind the wall, the profile is a constant up to a point
z0 ¼ ξ0t, with ξ0 given by Eq. (15). Beyond this point, we
have the rarefaction wave vrarðz=tÞ. In general, assuming a
constant profile is a good approximation for perturbations
originated at the wall. Indeed, the Fourier modes will decay
as e−qjzj away from the wall, within a distance scale q−1,
which will be given, in general, by q−1 ∼ d. In contrast, the
zone of constant v and T will grow quickly to values
jξ0tj ≫ d, since the scale d is much smaller than the time
associated to bubble expansion [see the discussion below
Eq. (23)]. This approach will break down, anyway, for
weak detonations which are very close to the Jouguet point,
where ξ0 vanishes.

1. Fluid equations and junction conditions

The equations for the fluid perturbations were consid-
ered recently in Ref. [21], and we shall only write down the
results. We shall consider a reference frame moving with
the unperturbed wall. The equations for the fluid perturba-
tions, as well as their matching conditions at the interface,
are derived by considering Eqs. (1) as in the previous
section, this time for the perturbed variables, and keeping to
linear order in the perturbations. For the fluid away from
the wall, we have

c2swðγ2vδv;0þγ2δv;z þ v⊥;⊥Þ þ δp;0 þ vδp;z ¼ 0; (46)

wγ2ðδv;0 þ vδv;zÞ þ vδp;0 þ δp;z ¼ 0; (47)

wγ2ðv⊥;0 þ vv⊥;zÞ þ δp;⊥ ¼ 0; (48)

while the matching conditions at the interface are given by

Δ½wγ2ð1þ v2Þð−∂0ζ þ γ2δvÞ þ ð1þ c−2s Þγ2vδp� ¼ 0;

(49)

Δðv⊥ þ v∂⊥ζÞ ¼ 0; (50)

σð∂2
0 − ∂2⊥Þζ þ Δ½2wγ4vδvþ ð1þ ð1þ c−2s Þγ2v2Þδp� ¼ 0;

(51)

where Δ applied to any function f means fþ − f−. Notice
that these equations depend on the equation of state only
through the parameter cs.

2. Equation for the interface

The equation for the interface perturbations is obtained
from the field equation (2), like in the previous section. We
have already derived this equation in Ref. [21]. However,
we considered a simplified version of the damping term in
Eq. (2), corresponding to the particular case λ ¼ 0. As can
be seen in Fig. 4, this is generally a good approximation for
deflagrations but not for detonations, which depend
strongly on λ. We shall consider here the general case.
We consider perturbations around a stationary wall,

which is at zw ¼ 0, and for which we have _zw ¼ ̈zw ¼ 0.
On the other hand, the perturbed wall is at the position
zw ¼ ζðx⊥; tÞ. We thus assume a field profile7 of the form
ϕðz; x⊥; tÞ ¼ ϕ½z − ζðx⊥; tÞ�. To first order in ζ and v⊥,
we have ∂μ∂μϕ ¼ ϕ0ð∂2⊥ − ∂2

0Þζ − ϕ″ and uμ∂μϕ ¼
γð−∂0ζ þ vÞϕ0. Multiplying Eq. (2) by ϕ0ðz − ζÞ and
integrating in z, we obtain

σð∂2
0 − ∂2⊥Þζ ¼ Fdr½T� þ Ffr½γðv − ∂0ζÞ�; (52)

where the forces Fdr½T�, Ffr½γv� are given by Eqs. (19) and
(20) as functionals of the temperature and velocity con-
figurations. We notice the following differences with
Eq. (17). The term −σ∂2⊥ζ gives the restoring force due
to the curvature of the surface. The argument of the driving
force is now the perturbed temperature, T → T þ δT. The
velocity v in the friction force is the perturbed one,
v → vþ δv, and the argument of Ffr is further modified
by the term −∂0ζ. To understand this dependence, notice
that the friction must depend on the relative velocity vr

7The small perturbation ζ is macroscopic in comparison with
the wall width lw.
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between the fluid and the wall, which is given by the
relation γrvr ¼ γðv − ∂0ζÞ.
We may use the approximations for the force functionals

derived in Sec. II in terms of the values of the variables
outside the wall,

Fdr½T�≃ FdrðTþ; T−Þ; Ffr½γv�≃ Ffrðγþvþ; γ−v−Þ;
(53)

where we must do the replacements T → T þ δT, γv →
γvþ δðγrvrÞ in each argument. Hence, the perturbations
from the stationary case are given by

δFdr ¼
∂Fdr

∂Tþ
δTþ þ ∂Fdr

∂T−
δT−; (54)

δFfr ¼
∂Ffr

∂ðγþvþÞ ½δðγþvþÞ − γþ∂0ζ�

þ ∂Ffr

∂ðγ−v−Þ ½δðγ−v−Þ − γ−∂0ζ�: (55)

Using Eq. (21), Eq. (52) gives

σð∂2
0 − ∂2⊥Þζ ¼ 2

�∂Fdr

∂T δT

�
þ η

�
δðγvÞ − γ∂0ζ

ð1þ λ2γ2v2Þ3=2
�
:

(56)

The parameters σ and η can be written in terms of the fluid
velocity and the scale d using Eqs. (24) and (23).
Furthermore, the temperature variation is related to our
perturbation variable δp through δp ¼ sδT. Thus, we may
write

�
γλvdð∂2

0 − ∂2⊥Þζ þ γ3λδv −
γ3λ
γ2

∂0ζ þ
γβ

v
δp
w

�
¼ 0; (57)

where the parameters β� contain information about the
equation of state (we have already introduced β− in the
previous section),

β� ¼ hγλviv�
γ�

2T�
Fdr

�
−
∂Fdr

∂T�

�
¼ hγλviv�

γ�

4T2
�

Fdr

�
−
∂Fdr

∂T2
�

�
:

(58)

The last equality is useful if Fdr is quadratic in the
temperature [21].

B. Fourier modes of the perturbations

The fluid equations away from the wall, Eqs. (46)–(48),
can be expressed in matrix form, defining the perturbation
vector,

~U ≡
" δp
δv
v⊥

#
: (59)

We are interested in solutions of the form

~Uðt; z; x⊥Þ ¼ ~LeΩtþqzþikx⊥ ; (60)

where k is a real wave number corresponding to Fourier
modes along the wall and Ω; q are in general complex
numbers. The stationary solution will be unstable if there
are modes with ReðΩÞ > 0. Inserting Eqs. (59) and (60)
into the fluid equations, we obtain an eigenvalue equation
for the perturbation modes (for details, see Ref. [21]). This
gives the dispersion relations

q1 ¼ −Ω=v; (61)

q2;3 ¼
ð1 − c2sÞvΩ� csð1 − v2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ ðc2s − v2Þγ2k2

p
c2s − v2

;

(62)

corresponding to the eigenvectors

~L1 ¼
" 0

1
iq1
k

#
; ~L2;3 ¼

2
64−wγ2

�
Ωþq2;3v
Ωvþq2;3

�
1
ik

Ωvþq2;3

3
75: (63)

The eigenvector ~L1 is a special mode corresponding to a
perturbation with δp ¼ 0, which moves with the fluid (i.e.,
the perturbation is a function of z − vt).
In Fig. 6 we show the real part of q as a function of the

real part of Ω for the three modes. For the special mode, we
have a linear relation between q and Ω, q1 ¼ Ω=jvj.
Regarding the solutions q2;3, the relation is linear for k ¼ 0,

q2;3 ¼ Ω=a2;3; (64)

with

a2;3 ¼
jvj � cs
1� csjvj

: (65)

For k ≠ 0, the lines (64) are asymptotes for the curves of
ReðqÞ vs ReðΩÞ. These asymptotes depend on the value of
v. We are interested in the weak detonation case, for which
both vþ and v− are supersonic (left panel of Fig. 6). In this
case, ReðqÞ and ReðΩÞ have always the same sign. Notice
that, in the limit jvj ¼ cs, one of the asymptotes becomes
vertical, and we are left with only two modes (central
panel); specifically, we have q1 ¼ −Ω=v and

q2 ¼
csk2

2Ω
þ ð1þ c2sÞ

2cs
Ω: (66)
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The subsonic case (right panel) is only relevant for
deflagrations or strong detonations.
For given k and Ω, the general solution will be a

superposition of these modes,

~Uðt; z; x⊥Þ ¼ ~AðzÞeðΩtþikx⊥Þ; (67)

with

~AðzÞ ¼
X3
j¼1

Aj
~Ljeqjz; (68)

where the constants Aj are different on each side of the

wall. The function ~AðzÞmust satisfy the junction conditions
at the wall. On the other hand, the surface perturbation will
be of the form

ζðt; x⊥Þ ¼ DeðΩtþikx⊥Þ: (69)

Notice that, for weak detonations, we always have
ReðqÞ ¼ 0 for ReðΩÞ ¼ 0. This case corresponds to
undamped oscillations of the wall which generate plane
waves in the fluid. Since we are looking for instabilities, we
are interested in the case ReðΩÞ > 0. In this case, we have
always ReðqÞ > 0. The condition that the source of
instabilities is the wall itself, and not something outside
it, implies that the perturbations must decrease with the
distance from the wall [22]. Therefore, we must require
ReðqÞ < 0 for z > 0 (i.e, in theþ phase) and ReðqÞ > 0 for
z < 0 (i.e., in the − phase).
The requirement ReðqÞ < 0 in front of the wall implies,

for detonations, ReðΩÞ < 0. This means that perturbations
of the fluid in front of the wall decay exponentially. This is
a consequence of the fact that the fluid enters the wall
supersonically. The absence of unstable modes in the þ
phase led the authors of Ref. [20] to the conclusion that
detonations are always stable. However, as pointed out in
Ref. [25], perturbations in the − phase should also be
considered. Behind the wall we require ReðqÞ > 0, for
which we have ReðΩÞ > 0 in the weak detonation case.
Such a perturbation will grow exponentially. Thus, weak
detonations may be unstable. Nevertheless, not any fluid
perturbation will fulfill the junction conditions. We have
just seen that perturbations which are localized near the
wall have a different time dependence in front of and
behind the wall. Such perturbations cannot be matched.
Therefore, if we look for unstable perturbations, we must
consider a solution which is of the general form (68) behind
the wall and vanishes in front it.
The approach of previous works [25,26] to the stability

of detonation fronts in a cosmological phase transition
consisted essentially of solving the aforementioned match-
ing conditions. However, the general treatment of these
works is more suitable for chemical burning than for a

phase transition. Although the case of chemical burning is
out of the scope of the present paper, we wish to point out
that, even in that case, some aspects of the treatment of
Refs. [25,26] seem to be incorrect.
In the first place, only strong and Jouguet detonations

were considered in Refs. [25,26]. We remark that, for a
phase-transition front, strong detonations are impossible,
since the stationary profile cannot satisfy the boundary and
junction conditions (see, e.g., Refs. [18,19]). Therefore,
this solution should not be considered from the beginning.
In the case of chemical burning, according to the
Chapman–Jouguet theory, strong detonations should decay
to a Jouguet detonation.
In contrast, in the case of chemical burning, weak

detonations are not possible. According to an argument
by Steinhardt [18], this would also be the case of a
cosmological phase transition. However, as already pointed
out by Landau [22], a phase transition front must be treated
differently than a burning front. In Ref. [19] it was shown,
in particular, that weak detonations are possible in a
cosmological phase transition.
In this regard, we may note, for instance, that in the case

of chemical burning the reheating of the fluid favors the
combustion and, thus, the propagation of the burning front.
In contrast, in the case of a phase transition, the reheating
causes a decrease of the pressure difference between phases
and, thus, opposes the propagation of the front.
This last feature is taken into account by the interface

equation, either Eq. (24) for the stationary case or Eq. (57)
for the perturbed wall. No equation for the interface was
considered in Refs. [25,26]. Therefore, only the three
junction conditions (49)–(51) were imposed on the system.
In the case of Jouguet or strong detonations, this is
compatible with the number of unknowns. Indeed, notice
that, in the Jouguet case (central panel of Fig. 6), we have
only two unstable modes in the − phase. Similarly, it can be
seen from the right panel of Fig. 6 that, for strong
detonations, we also have only two unstable modes. We
thus have three unknowns, namely, the coefficients A1 and
A2 of these modes, plus the coefficient D of the surface
perturbation. By solving this system of equations, it was
found in Ref. [25] that unstable modes exist at all wave-
lengths. In contrast with this result, in Ref. [26] it was
found, with a similar treatment, that strong detonations can
be stable and that Jouguet detonations are unconditionally
stable.
In any case, an important feature seems to have been

missed by the authors of Refs. [25] and [26], namely, that
the usual approach of considering perturbations around a
constant solution will break down for the profile of a
Jouguet detonation, as already discussed.
Let us go back to the phase transition case. Notice that, if

we take into account the surface equation (57) together with
the junction conditions (49)–(51), then we have, for the
Jouguet and the strong detonation, four equations for the
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three unknowns A1, A2, and D. Therefore, these cases are
not evolutionary, and the linear perturbation theory breaks
down. This is just a sign of the problems discussed above
for these solutions. In contrast, as seen in the left panel of
Fig. 6, in the weak detonation case, we have three unstable
modes behind the wall. Therefore, there are four unknowns,
namely, A1, A2, A3, and D, and the weak detonation is
evolutionary.

C. Solving the perturbation equations

Let us, thus, consider a solution of the form ~AþðzÞ ¼ 0
for z > 0 and

~A−ðzÞ ¼ A1
~L1eq1z þ A2

~L2eq2z þ A3
~L3eq3z (70)

for z < 0. The junction conditions (49)–(51), as well as the
surface equation (57), require evaluating Eq. (70) at the
interface position z ¼ ζðx⊥; tÞ. However, to first order in
the perturbations, this is equivalent to evaluating at z ¼ 0.
Therefore, we have, in front of the wall

δvþ ¼ 0; δpþ ¼ 0; v⊥þ ¼ 0 (71)

and behind the wall (omitting a factor eΩtþikx⊥)

δv− ¼ A1 þ A2 þ A3; (72)

δp− ¼ −w−γ
2
−

	
Ωþ q2v−
Ωv− þ q2

A2 þ
Ωþ q3v−
Ωv− þ q3

A3



; (73)

v⊥− ¼ iq1
k

A1 þ
ik

Ωv− þ q2
A2 þ

ik
Ωv− þ q3

A3: (74)

On the other hand, for the perturbation of the wall, we have
(omitting again a factor eΩtþikx⊥)

∂0ζ ¼ ΩD; ∂⊥ζ ¼ ikD; ∂2
0ζ ¼ Ω2D;

∂2⊥ζ ¼ −k2D:
(75)

Inserting Eqs. (71)–(75) in Eqs. (49)–(51) and (57), we
obtain a homogeneous system of linear equations for the
constants A1, A2, A3 and D. It is convenient to redefine the
unknowns as ~A ¼ ðγ2−=γ2s−ÞA3=Q3, ~B ¼ ðγ2−=γ2s−ÞA2=Q2,
~C ¼ −γ2−A1, and ~D ¼ kD, where the quantities γ2s− and
Q2;3 are defined below. After some manipulations, the
system of equations can be written in matrix form as (from
now on, we use the notation k ¼ jkj)

2
666666664

− 1
R

1
R

Ω̂
v−γ2−

−Δv

−
�
1þ v−Ω̂

R

�
−
�
1 − v−Ω̂

R

�
1þ v2− ð1 − v−vþÞ Δvvþ Ω̂

−
�
1þ Ω̂

v−R

�
−
�
1 − Ω̂

v−R

�
2 Fdr

wþvþγ2þ
ðΩ̂2 þ 1Þkd

γ3λ−
γ3−
Q3 −

β−
v−
P3

γ3λ−
γ3−
Q2 −

β−
v−
P2

−γ3λ−
γ3−γ

2
s−

2
γ2s−

h
hγλvi
γ−

ðΩ̂2 þ 1Þkd −
D
γ3λ
γ2

E
Ω̂
γ−

i

3
777777775

2
6664

~A
~B
~C
~D

3
7775 ¼ 0; (76)
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FIG. 6 (color online). The real parts of the dispersion relations q1ðΩÞ (in red), q2ðΩÞ (in black), and q3ðΩÞ (in blue) for different values
of the imaginary part ImðΩÞ. Gray dashed lines indicate the asymptotes of these solutions.
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where we have defined the quantities Ω̂ ¼ Ω=k, and

1

γ2s−
¼ 1 −

v2−
c2s−

; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2−
γ2s−

þ Ω̂2

c2s−

s
;

P 2
3

¼ v− � Ω̂
R
; Q 2

3

¼ 1� v−
c2s−

Ω̂
R

(77)

(notice that, for weak detonations, we have γ2s− < 0).
Nontrivial solutions exist if the determinant of the matrix
in Eq. (76) vanishes.
Because of the symmetry of the matrix, the 4 × 4

determinant is easy to calculate. Indeed, calling detij the
determinant of the 3 × 3matrix that results by removing the
ith row and the jth column, we find that det14 ¼ 0, and we
have the equation

	
Fdr

wþ

det34
vþγ2þ

−
2hγλvidet44

γ2s−



kdðΩ̂2 þ 1Þ

−
	
Δv
vþ

ð1 − vþv−Þdet24 −
�
γ3λ
γ2

�
2det44
γ2s−



Ω̂ ¼ 0: (78)

Moreover, all of the 3 × 3 determinants are proportional to

2

R

�
1 −

Ω̂2

v2−γ2−

�
: (79)

Therefore, a solution for Ω > 0 is given by Ω̂ ¼ −γ−v−.
For this value of Ω̂, we have R ¼ γ−, P2 ¼ 0, Q2 ¼ γ−2s− ,
and we obtain, from Eq. (76), ~B − ~C ¼ ~A ¼ ~D ¼ 0. This
gives A1 þ A2 ¼ A3 ¼ D ¼ 0. As a consequence, all the
perturbation variables in Eqs. (72)–(75) vanish in this case
(notice that Ωþ q2v− ∝ P2, Ωv− þ q2 ∝ Q2). Hence, this
is a spurious solution, like in the case of deflagrations
[20,21]. Omitting the factor (79), which cancels out in
Eq. (78), the determinants are given by

det24 ¼
γ3λ−
γ3−

c2s− þ v2−
c2s−

− 2β−;

det34 ¼
γ3λ−
γ3−

v2−
c2s− þ 1

c2s−
− β−ð1þ v2−Þ;

det44 ¼
1

γ2−
: (80)

Notice that Ω̂ does not appear in these expressions. Hence,
Eq. (78) gives a simple quadratic equation for Ω. The
solution is

Ωd ¼ C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − ðkdÞ2

q
; (81)

where the real constant C is given by

C ¼ 1

2jv−j
N
D

; (82)

with

N ¼ −
1

γ−

�
γ3λ
γ2

�
v2− − c2s−

c2s−

þ 1 − vþv−
1 − v2−

	
β− −

γ3λ−
γ3−

c2s− þ v2−
2c2s−



Δv
vþ

; (83)

D ¼ hγλvi
γ−v−

v2− − c2s−
c2s−

−
1þ v2−
2v2−

	
β− −

γ3λ−
γ3−

1þ c2s−
1þ v2−

v2−
c2s−



Fdr

w−
:

(84)

The structure of the solutions ΩðkÞ is very simple. For
kd < jCj we have two real solutions, whereas for kd > jCj
we have two complex solutions with the same real part. In
either case, we have ReðΩÞ > 0 if, and only if, C > 0 (see
Fig. 7). If this is the case, perturbations at all wave numbers
are unstable. As we discuss below, the constant C will take
positive as well as negative values in different velocity
intervals. For C < 0, we have ReðΩÞ < 0 for all k. It is
important to remember, though, that we are considering
perturbations behind the wall, which, for ReðΩÞ < 0
increase exponentially with the distance from the wall
[i.e., correspond to ReðqÞ < 0] and must be discarded.
Since there is also no solution with ReðΩÞ > 0, in this case
there must be solutions corresponding to undamped oscil-
lations. Studying these solutions, which correspond to
ReðΩÞ ¼ ReðqÞ ¼ 0, is not one of the goals of the present
paper. In any case, such solutions with ReðΩÞ ¼ 0 are
marginally stable, and, to determine the stability, one
should go beyond linear perturbations.
For completeness, we have also considered perturbations

in front of the wall, for which the treatment is very similar.
As we have seen, in this case, the solutions which must be
discarded are those with ReðΩÞ > 0. We found again two
solutions of the form (81). Nevertheless, in this case, it can
be seen that the stability parameter is always negative. This

FIG. 7 (color online). The real part of Ω as a function of k, for
C > 0.
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indicates that any perturbation in front of the wall is
exponentially stable, as expected physically.
Before going on to the determination of the instability

intervals, we wish to compare these results with the
deflagration case [20,21]. In brief, deflagrations with
velocities above a critical velocity vc are stable under
perturbations at any wavelength. Below the velocity vc,
there is a range of unstable wave numbers, 0 < k < kc.
Thus, short wavelengths, as well as long wavelengths, are
stable. In contrast, for detonations all wave numbers are
either stable or unstable, depending on the wall velocity. It
is interesting that the critical velocity vc arises due to the
dependence of Ω on terms which are roughly of the form
β� − 1. A similar dependence is present in Eqs. (83) and
(84). Indeed, except for the limit vw → 1, most of the
factors in Eqs. (83) and (84) are ∼1, and we may write,
roughly,

N ∼ −
v2− − c2s−

c2s−
þ ðβ− − 1ÞΔv

vþ
; (85)

D ∼
v2− − c2s−

c2s−
− ðβ− − 1ÞFdr

w−
: (86)

In the deflagration case, the parameters β� are critical for
stability, since, as we have seen in the previous section, we
have roughly β� ∼ v2w=v2c. Since vc is generally small, for a
deflagration the factors, β� − 1 will change sign at
vw ≃ vc. In contrast, for weak detonations we generally
have β− ≫ 1. In this case, the sign of the numeratorN will
depend essentially on the balance between two parameters
characterizing the hydrodynamics, namely, ðv2− − c2s−Þ and
Δv. On the other hand, the sign of the denominator D
depends on ðv2− − c2s−Þ and Fdr.

IV. STABILITY OF WEAK DETONATIONS

Let us first consider a specific example. In Fig. 8 we plot
the value of the stability parameter C as a function of vw, for
the cases considered in the right panel of Fig. 4. For the

case of small λ, we have changed the value λ ¼ 0.2 of Fig. 4
to λ ¼ 0 in order to show the behavior in this limiting case.
We see that the curves are qualitatively similar for the three
values of λ. Indeed, C is positive for the unphysical branch
of weak detonations discussed in the previous section and is
negative for the “physical” branch, as expected. (We plotted
the negative part of the curve in gray dashes to emphasize
the fact that C < 0 actually corresponds to marginal
stability.) For a better comparison, we show the curves
of η vs vw (dotted lines). As is observed, the change of the
sign of C occurs exactly at the velocity vcrit corresponding
to maximum friction ηmax (cf. Fig. 4) (we shall check this
analytically). Furthermore, C (and, thus, Ω) seems to
diverge at the Jouguet velocity vJ. However, the present
treatment breaks down near the Jouguet point. Below, we
analyze this behavior in detail.

A. Range of instability

It is easy to see, from Eq. (83), that the numeratorN will
always change sign at the velocity vw ¼ vcrit, as observed in
Fig. 8. Indeed, notice that the condition for vanishing N is
the same as Eq. (41), corresponding to the point separating
the two branches of solutions. Moreover, from the approxi-
mation (85), we see that N is negative for vw ¼ 1 and
positive at the Jouguet point, since the quantities Δv and
v2− − c2s− vanish at these opposite ends of the weak
detonation interval (in blue in Fig. 2).
In the limit vw → 1, the approximation (85) is not valid,

since the factors γ−1− in Eq. (83) vanish. For λ ¼ 0, the
gamma factors cancel out. However, for λ ≠ 0, both N and
D vanish. Nevertheless, it is not difficult to see that, in this
limit, we have N ∼ γ−3− , D ∼ γ−1− . Hence, the parameter C
vanishes in the limit vw → 1, as seen in the central and right
panels of Fig. 8. This is the only qualitative difference
between the cases λ ¼ 0 and λ ≠ 0, and it does not affect
the stability analysis.
Regarding the denominator D, it is apparent in Eq. (86)

that it has a zero in the weak detonation range. This zero is
not at the Jouguet point. Indeed, for v− ¼ −cs−, we have
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FIG. 8. The stability parameter C as a function of vw, for the bag model with L̄ ¼ 0.03, TN=Tc ¼ 0.95, and for λ ¼ 0 (left), λ ¼ 1
(center), and λ ¼ 5 (right). The vertical lines indicate the values of vJ and vcrit.
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D < 0. Hence, the divergence of Ω does not occur exactly
at the Jouguet point but at a velocity v0crit > vJ (see Fig. 9),
although this cannot be appreciated in Fig. 8. For vw > v0crit
we have D > 0, and the sign of the stability parameter C is
determined by the numeratorN . As observed in Figs. 8 and
9, the velocity v0crit is very close to the Jouguet velocity vJ.
Below, we shall see that this is the general case.
Thus, the whole branch of weaker weak detonations

(vcrit < vw < 1) corresponds to ReðΩÞ < 0. As already
discussed, these solutions must be discarded, and we have
no solution with ReðΩÞ ≠ 0. Hence, for this velocity range,
we have marginal stability, and one should consider non-
linear perturbations. Nevertheless, the linear perturbation
result suggests that these detonations will be stable. In
contrast, detonations in the velocity range v0crit < vw < vcrit
are unstable. This constitutes almost the whole branch of
stronger weak detonations, since we have v0crit ≃ vJ.
It is important to notice that our treatment breaks down

for velocities which are too close to the Jouguet point. In
the first place, for the unstable solutions on the right of the
singularity, the growth rate becomes higher and higher as
vw approaches v0crit. Hence, the small perturbation calcu-
lation will break down as the characteristic growth time
becomes much shorter than the scale which characterizes
the dynamics. This happens for ReðΩÞ−1 ≪ d (equiva-
lently, for C ≫ 1). Therefore, the actual value of Ω may
have a natural cutoff. Nevertheless, even if ReðΩÞ does not
diverge, we expect a strong instability at vw ¼ v0crit.
For the solutions on the left of the singularity, the

situation is much less clear. Here, we have ReðΩÞ < 0,
which means that the linear stability analysis is incon-
clusive. However, as we have already discussed, the
approach of considering perturbations from a constant
solution breaks down as we approach the Jouguet point.
Therefore, instead of considering nonlinear perturbations,
one should consider perturbations around the appropriate
fluid profile. It is perfectly possible that such a calculation
will give linearly unstable modes. This would match
smoothly the behavior for vw > v0crit.

We shall now estimate the value of v0crit and analyze how
close it is to vJ in the general case. To begin with, we can
see, from Eqs. (86) and (85) that v0crit is much closer to vJ
than vcrit. More explicitly, we can see that the correspond-
ing value of v− is much closer to cs−. Indeed, taking into
account that β− ≫ 1, we see that N vanishes for

jv−j − cs−
cs−

≈
1

2

1

s−

�
−
∂Fdr

∂T−

�
Δv=vþ
Fdr=w−

; (87)

while D vanishes for

jv−j − cs−
cs−

≈
1

2

1

s−

�
−
∂Fdr

∂T−

�
: (88)

Thus, we see that, for the case of vcrit, the value of v− will
lie somewhere between cs− and 1 but cannot be very close
to cs−, since at the Jouguet point, we have a maximum Δv
and a minimum Fdr. Moreover, Fdr=w− can be very small,
since the reheating is maximum at the Jouguet point.8 On
the other hand, the rhs of Eq. (88) is suppressed by a factor
ðFdr=w−Þ=ðΔv=vþÞ with respect to the rhs of Eq. (87).
Hence, v− will be much closer to cs− in this case.
Consequently, v0crit will be much closer to vJ than vcrit.
For a given model, we can estimate the value of v−

corresponding to vw ¼ v0crit from Eq. (88). For the bag
EOS, this gives

jv−j − cs−
cs−

≈
1

2

L
w−

T2
−T2þ
T4
c

∼
L̄
2
: (89)

Besides, since the Jouguet point is a minimum of jvþj vs
jv−j (see Fig. 2), we have jvþj − vJ ∼ ðjv−j − cs−Þ2. Hence,
according to Eq. (89), we have

v0crit − vJ ∼ ðL̄=2Þ2: (90)

The parameter L̄ is bounded by 1, and in most cases we
have L̄ ≪ 1. Moreover, a large L̄ hinders the existence of
detonations, due to the hydrodynamical obstruction caused
by the release of latent heat. As can be observed in Fig. 10
(left panel), detonations cannot exist at all if the latent heat
is too large. How large depends on the amount of
supercooling (see Ref. [9]). For the case considered in
the figure, i.e., for a supercooling of TN=Tc ¼ 0.9, the limit
is L̄≃ 0.35. This hydrodynamic effect is most important
near the Jouguet point, where the reheating is maximum.
For large enough latent heat, T− surpasses the critical
temperature (see Fig. 10, right panel). Moreover, the
reheating may cause the driving force to become negative.

0.6606 0.6607 0.6608 0.6609 0.6610
vw

2000

1000

1000

2000

FIG. 9. The same as Fig. 8, zooming in near vw ¼ vJ. Vertical
dashed lines indicate the values vJ and v0crit.

8For instance, for the bag EOS, we have Fdr=w−∼
L̄ð1 − T2

−T2þ=T4
cÞ, while, estimating Δv near the Jouguet point,

we have, from Eqs. (29)–(34), Δv ∼
ffiffiffiffī
L

p
. Hence, we have

Fdr=w− ≪ Δv=vþ.
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Of course, this means that such a solution is unreachable, as
it would require a negative friction (this can be observed in
the left panel of Fig. 10). For the approximation (29), this
happens for T− ¼ T2

c=TN. As a consequence, for large
enough latent heat, the velocity v0crit, being very close to the
Jouguet point, will not be achieved. In the case of Fig. 10,
the existence of the Jouguet point requires L̄≲ 0.15. Thus,
for the cases where vJ and v0crit exist, we have, according to
Eq. (90), v0crit − vJ ≲ 0.005.

B. Bubble expansion, detonations, and runaway walls

As already mentioned, hydrodynamic instabilities may
determine, in the case of multiple solutions, which one will
be realized during a phase transition. In principle, the fact
that a solution is unstable does not imply that it will not be
realized. For instance, in the case of an unstable deflagra-
tion, the wall is unstable under corrugations on a character-
istic scale λc, while long wavelengths, as well as short
wavelengths, are stable [21,23,32]. Thus, a bubble will
grow to a size ∼λc before these corrugation instabilities can
destabilize the wall.
The case of detonations is certainly different. As we have

seen, an unstable detonation is unstable at all wavelengths
with similar growth rates. As a consequence, such a
configuration, if ever formed during bubble expansion,
will decay immediately, either to some of the stable
configurations, such as a weaker weak detonation, or to
a runaway solution. Thus, weak detonations of the lower-
velocity branch will most likely never be realized in a phase
transition. In particular, if the ultrarelativistic friction is
small enough, there will be no detonations at all, as in the
cases represented in red in Fig. 4.
As discussed in Sec. II, detonations may coexist with

runaway solutions for certain ranges of parameters. For
instance, as we decrease the friction parameter η, the
runaway solution appears before the stationary solution

ceases to exist (see Fig. 4). This raises the question of
whether the detonation becomes unstable when the run-
away solution appears. According to the linear perturbation
theory, the answer seems to be no. As discussed above,
although inconclusive, the analysis suggests that the
detonation solution is stable in the range vcrit < vw < 1.
There is no reason, thus, for the wall to run away, as long as
a detonation solution exists. Indeed, the runaway solution
requires highly ultrarelativistic velocities, i.e., an extremely
high gamma factor γw, while a detonation will most likely
have γw ∼ 1.

C. Cosmological implications

The unstable growth of a bubble wall may in principle
have interesting cosmological consequences. For instance,
in the case of deflagrations, instabilities under corrugations
of the wall may lead to dendritic growth [23,33]. Such a
complex dynamics may have effects on electroweak baryo-
genesis [34,35], magnetic field generation [36], and gravity
wave formation [21]. However, the case of unstable
detonations is quite different, since large wavelengths are
as unstable as short wavelengths. As we have discussed,
such detonations will probably not be formed at all, rather
than forming and then decaying. Hence, in this case there
will not be such interesting effects. On the contrary, any
mechanism of relic generation which relies on stronger
weak detonation solutions will be negatively affected. Here,
we discuss a couple of examples.
Being supersonic, detonation fronts are important for the

generation of gravitational waves. In this field, a Jouguet
detonation has often been assumed for the calculation of the
gravitational wave background from a cosmological phase
transition. The Jouguet velocity depends only on thermo-
dynamical parameters and, for a given EOS, is easy to
calculate [see, e.g., Eq. (34)]. However, if the friction force
is taken into account, the wall velocity will depend also on
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FIG. 10 (color online). Left panel: the wall velocity for λ ¼ 0 as a function of η, for TN=Tc ¼ 0.9 and L̄ ¼ 0.05 (solid), 0.1 (dashed),
0.15 (dotted), 0.22 (dotted dashed), and 0.3 (dotted-dotted dashed). Right panel: the reheating as a function of the wall velocity,
corresponding to the curves of the left panel. Blue segments indicate stable solutions, and red segments indicate unstable solutions.
Black segments indicate the region where our stability analysis breaks down, and grey segments indicate nonrealizable solutions which
require negative values of η. In the right panel, the points corresponding to v0crit are indicated by a dashed green line, and those
corresponding to vcrit are indicated by a solid green line. The horizontal dashed line indicates the value T− ¼ Tc, and the solid line
indicates the value T− ¼ T2

c=TN , for which the driving force vanishes.
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friction parameters, and the solution will not necessarily be
a Jouguet detonation. Moreover, we have argued that this
particular solution is quite unlikely. In the first place, due to
strong hydrodynamics, the Jouguet velocity may just be
unreachable for positive friction. Even if the Jouguet point
exists, it corresponds to the lower end of the lower-velocity
branch of weak detonations, which behaves unphysically as
the parameters are varied. Unfortunately, our stability
analysis breaks down near the Jouguet point. However,
as we have argued, the fact that the growth rate of the
instabilities becomes very large near this point suggests that
the Jouguet solution is probably unstable as well.9 We
remark, however, that weaker detonations, although caus-
ing fewer disturbances in the fluid, have higher velocities
and, hence, may cause stronger gravitational waves (see,
e.g., Ref. [11]).
An interesting feature of detonations is the fact that the

reheating behind the wall may surpass the critical temper-
ature (provided that the latent heat is high enough for the
given amount of supercooling). An application of this fact
is the interesting idea of supersonic electroweak baryo-
genesis [37]. In this scenario, small bubbles of the
symmetric phase nucleate in the superheated broken-
symmetry phase behind the wall. Baryogenesis occurs at
the walls of these small bubbles, which move slowly with
respect to the fluid. Thus, the necessary conditions for
baryogenesis are fulfilled, and the required baryon asym-
metry is generated for reasonable values of the parameters,
although there are some restrictions. One of them is the fact
that the superheating must be strong enough for the
symmetric bubbles to fill a sizeable fraction of space.

In this respect, the analysis of Ref. [37] lacks an important
feature of bubble growth, namely, the friction force. Indeed,
the wall velocity is left as a free parameter, and the
temperature T− is calculated as a function of vw. This is
always possible, since the reheating is given exclusively by
hydrodynamics. As we have seen, the fluid variables T−; v−
only depend on TN and vw (besides the EOS parameters). In
the general case, these relations can be obtained from
Eqs. (3) and (4). For the bag EOS, T− and v− are given
by Eqs. (30) and (31), respectively, as a function of vw,
TN=Tc, and L̄. Moreover, a weak detonation profile like that
of Fig. 3 will always exist for each wall velocity in the range
vJ < vw < 1. However, if the velocity is not left as a free
parameter but is calculated, this interval will be reduced, due
both to physical impossibility and hydrodynamic instabil-
ities. Unfortunately, the reheating is higher for solutions
which are closer to the Jouguet point. Therefore, most of the
interesting solutions will belong to the unstable branch.
Consider the plots of Fig. 10. The curves of T− vs vw

(right panel) can be plotted without knowing the friction
force. We have T− > Tc for wide ranges of values of L̄ and
vw (namely, all the curves or parts of curves which lie above
the horizontal dashed line). However, if we actually
calculate the velocity as a function of the friction, we
know that a part of each curve (the gray segments)
corresponds to velocities which cannot be achieved at all
for any positive friction parameter. Besides, another part of
each curve corresponds to unstable solutions (the red
segments). Only the lower parts of the curves (the blue
segments) corresponds to stable detonations. Notice that, in
fact, the upper physical bound on T− (the horizontal solid
line) is never reached for stable solutions, which give values
of T− below the solid green line. This reduces the region of
realizable solutions with T− > Tc to the triangular region
between this line and the horizontal dashed line.
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the right panel, the black dashed line corresponds to solutions with η ¼ 0, and the black dotted line corresponds to vw ¼ vcrit.

9In any case, we have seen that previous results claiming that
the Jouguet detonation is stable [26] are not valid.
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These restrictions on the reheating will certainly shrink
the available parameter space for the supersonic baryo-
genesis scenario, since the symmetric bubbles need a
considerable amount of superheating to nucleate. It is
out of the scope of the present work to calculate the
nucleation of symmetric bubbles, which would require
considering a specific model. To appreciate the restriction
on the scenario discussed in Ref. [37], we consider, as in
that work, the detonation region in the ðαN; vwÞ plane for
the bag EOS,10 for L̄ ¼ 0.15 (see Fig. 11). Here, the
variable αN ¼ L=ð4aT4

NÞ is the same as the variable α
defined in Eq. (33) (since for detonations we have
Tþ ¼ TN). Thus, the left panel of Fig. 11 coincides with
Fig. 3 of Ref. [37]. The region in white corresponds to
detonations for which the reheating exceeds the critical
temperature. We see that solutions with higher values of T−
are closer to the Jouguet point.
In the right panel of Fig. 11, we have incorporated the

restrictions arising from the calculation of vw and from the
stability analysis. We considered the case λ ¼ 0, which is
the most favorable for detonations (for nonvanishing λ,
runaway solutions appear, and detonations get reduced to
smaller regions of parameter space). We see that the region
corresponding to T− > Tc is significantly reduced, since
most of the detonations in this region are unphysical or
unstable. Notice that the region corresponding to T− < Tc
is also affected, but the reduction of parameter space in this
case is insignificant. This can be appreciated already in the
right panel of Fig. 10.

V. CONCLUSIONS

The possible cosmological consequences of a first-order
phase transition depend on the dynamics associated to the
motion of bubble walls. It is well known that several
hydrodynamic solutions are, in principle, possible for the
propagation of these phase-transition fronts. In particular,
for the steady-state motion, we may have weak or Jouguet
detonations, as well as weak, Jouguet, or strong deflagra-
tions. Nevertheless, some of these solutions are, in fact,
unstable. The stability analysis is thus important in order to
determine which of the propagation modes will be actually
realized in a phase transition.
In this work we have studied the stability of detonations

under small perturbations of the fluid and the interface.
This paper is a sequel of a similar study for the case of
deflagrations [21]. The treatment of detonations is quite
simpler, due to the fact that the incoming fluid (in the
reference frame of the wall) is supersonic. Thus, the fluid in
front of the wall is not affected by the phase-transition
front. This has two practical consequences for the calcu-
lation. On the one hand, for the stationary case, the
incoming fluid velocity is given by the wall velocity,

vþ ¼ −vw, and the temperature in front of the wall is
given by the boundary condition Tþ ¼ TN . On the other
hand, perturbations originated at the wall cannot grow in
front of it. This simplifies the treatment of the stability,
since only perturbations of the outgoing fluid must be
considered (i.e., perturbations which vanish in front of the
wall) [25]. These simplifications allow us to obtain ana-
lytical and model-independent results.
Before the stability analysis, we have discussed in detail

the detonation solutions. It is well known that strong
detonations are hydrodynamically forbidden [18]. Weak
detonations can exist in the velocity range vJ < vw < 1,
while the Jouguet detonation corresponds to the case
vw ¼ vJ. The Jouguet velocity vJ depends on the param-
eters of the equation of state and is only determined by the
temperature TN . However, the precise value of vw within
this interval will be determined by the balance of the
driving and friction forces and will further depend on
friction parameters. Because of strong hydrodynamic
effects, it turns out that some velocities in this range
may not be realized. Besides, the resulting velocity turns
out to be a double valued function of the parameters, and
the bubble wall will need to “choose” which of the two
possible hydrodynamic configurations to adopt.
Thus, we have two branches of weak detonation

solutions. One of them, with velocities in the range
vcrit < vw < 1, where vcrit is given by Eq. (41), corresponds
toweaker weak detonations. The other branch has velocities
in the range vJ < vw < vcrit and corresponds to stronger
weak detonations. This branch behaves rather unphysically
with the parameters. Although weak detonations are gen-
erally believed to be stable [20], numerical simulations [24]
suggest that these stronger solutions are not.
We have applied the standard stability analysis for fluid

interfaces [22] to the case of relativistic detonation fronts in
a phase transition. We have pointed out that this analysis
breaks down at the Jouguet point. This is because the
approach considers perturbations around constant velocity
and temperature, which is not the case of the Jouguet
detonation profile. As a consequence, previous results on
the stability of Jouguet detonations [25,26] are not valid.
We have shown that weak detonations of the lower-velocity
branch are generally unstable under linear perturbations at
all wavelengths. More specifically, weak detonations are
unstable in the range v0crit < vw < vcrit, where v0crit is
roughly given by Eq. (88). Below v0crit, our approach breaks
down. Nevertheless, as we have seen, v0crit is very close to
the Jouguet velocity vJ. Therefore, it is quite unlikely that
the actual value of the wall velocity (taking into account the
friction) will fall in this very small interval. Regarding the
higher-velocity branch, the linear perturbation analysis is
not conclusive, but we have argued that these solutions will
probably be stable. This means that, in the case of the
coexistence of a detonation and a runaway solution, the
stationary solution is the one which will be realized.

10In the notation of Ref. [37], we have aþ ≡ a, a− ≡ að1 − L̄Þ,
and the value L̄ ¼ 0.15 corresponds to a−=aþ ¼ 0.85.
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Our main result is, thus, that the branch of weak
detonations which are closer to the Jouguet point will
not be realized during a phase transition. Unfortunately,
these solutions are cosmologically interesting due to their
strong disturbance of the fluid. We have discussed, in
particular, how our results affect a mechanism of electro-
weak baryogenesis with detonation walls [37]. This mecha-
nism is based on the fact that the reheating behind the
wall may exceed the critical temperature, allowing the

nucleation of symmetric-phase bubbles in the superheated
fluid inside the broken-symmetry bubbles. The regions in
parameter space for this scenario are significantly reduced
once unstable detonations are discarded.
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