
Inflationary freedom and cosmological neutrino constraints

Roland de Putter,1,2 Eric V. Linder,3,4 and Abhilash Mishra2
1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

2California Institute of Technology, Pasadena, California 91125, USA
3Berkeley Lab & Berkeley Center for Cosmological Physics, University of California,

Berkeley, California 94720, USA
4Institute for the Early Universe WCU, Ewha Womans University, Seoul 120-750, Korea

(Received 5 February 2014; published 1 May 2014)

The most stringent bounds on the absolute neutrino mass scale come from cosmological data. These
bounds are made possible because massive relic neutrinos affect the expansion history of the universe
and lead to a suppression of matter clustering on scales smaller than the associated free streaming length.
However, the resulting effect on cosmological perturbations is relative to the primordial power spectrum
of density perturbations from inflation, so freedom in the primordial power spectrum affects neutrino
mass constraints. Using measurements of the cosmic microwave background (CMB), the galaxy power
spectrum and the Hubble constant, we constrain neutrino mass and number of species for a model-
independent primordial power spectrum. Describing the primordial power spectrum by a 20-node spline,
we find that the neutrino mass upper limit is a factor 3 weaker than when a power law form is imposed, if
only CMB data are used. The primordial power spectrum itself is constrained to better than 10% in the
wave vector range k ≈ 0.01 − 0.25 Mpc−1. Galaxy clustering data and a determination of the Hubble
constant play a key role in reining in the effects of inflationary freedom on neutrino constraints. The
inclusion of both eliminates the inflationary freedom degradation of the neutrino mass bound, giving for
the sum of neutrino masses Σmν < 0.18 eV (at 95% confidence level, Planckþ BOSSþH0),
approximately independent of the assumed primordial power spectrum model. When allowing for a
free effective number of species, Neff , the joint constraints on Σmν and Neff are loosened by a factor 1.7
when the power law form of the primordial power spectrum is abandoned in favor of the spline
parametrization.
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I. INTRODUCTION

Cosmology has revealed rich structure beyond the
Standard Model of particle physics, with dark matter, an
inflationary acceleration of expansion in the early universe
and a dark energy acceleration in the late universe.
Moreover, we now know that a required extension to the
standard models of both particle physics and cosmology is
the presence of neutrino mass. Laboratory neutrino oscil-
lation experiments indicate that at least two species must be
massive, and the sum of all three species must be Σmν >
0.055 eV [1].
The strongest upper bounds arise from cosmological

measurements sensitive to the suppression of matter
density perturbations caused by neutrino free streaming
and to the effect of neutrino mass on the expansion
history of the universe. These bounds, however, start
from assumptions about early universe physics, such as
a power law form for the primordial power spectrum
(PPS). Restricting the form in this way will tighten the
neutrino limits and, if there exists deviation from a
power law, bias the results. While a power law PPS is
predicted by the simplest models of inflation, there exist
other models of inflation with nontrivial features in the

PPS. As such, it is important to investigate the neutrino
bounds without making assumptions about (unknown)
inflationary physics.
The key cosmological observable (in linear perturba-

tion theory) is the late-time power spectrum PðkÞ (or
angular power spectrum Cl), which is a convolution of
the PPS Δ2

RðkÞ that encodes information about infla-
tionary physics and the transfer function of cosmological
perturbations. The transfer function can be calculated
from well-tested physics (linearized gravity and photon-
baryon fluid physics) and is described by a small number
of cosmological parameters, including neutrino mass and
effective number of species, specifying the energy budget
and ionization history of the universe. The PPS on the
other hand depends on physics at an energy scale that has
never been directly tested. Usually, it is parametrized as a
scale invariant power law inspired by the simplest models
of inflation. However, assuming a particular functional
form for the PPS can bias the estimates of cosmological
parameters (e.g. [2,3]).
In this paper we focus on how the constraints on

neutrino mass and effective number of species are
affected when more freedom is allowed in the form of
the PPS. Indeed, even enlarging the parameter space from
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a simple power law PPS to one with running (scale
dependence) of the slope can strongly affect the neutrino
bounds. For example, [4,5] found significant covariance
between running and both neutrino mass and effective
number of species.
Due to the scale-dependent effect of neutrino mass on

the perturbation power spectrum, properties of neutrinos
and of the inflaton responsible for generating the PPS
enter in the data tied closely together in ways different
from other extensions to the Standard Model like dark
matter and dark energy. Many inflation theories in the
post-Planck data era do have spectral features deviating
from a simple power law. These may include oscillations,
steps, and bumps and can arise from physics such as
axion monodromy [6], holography [7], sound speed [8],
among many other current ideas.
Several approaches exist in the literature for reconstruct-

ing a free PPS. These include the “cosmic inversion”method
[9–13], regularization methods like truncated singular
value decomposition [14] and Richardson-Lucy iteration
[3,15,16], and maximum entropy deconvolution [17].
Recently the authors of [18] carried out a reconstruction
of the PPS employing Tikhonov regularization using multi-
ple data sets and detected several features in the PPS at a 2σ
level of significance (also compare [3]).
Here we focus on the issue of the dependence of

neutrino constraints on assumptions about the PPS,
rather than reconstructing the PPS per se. Suppression
of growth due to massive neutrinos enters around the
free streaming scale, or comoving wave numbers
k≳ 0.01 Mpc−1. Moreover, power spectra of cosmic
perturbations are fundamentally observed as a function
of angular scales (and redshifts, in case of three-dimen-
sional large-scale structure), so that the effect of massive
neutrinos on the expansion history can in principle
cause changes in the observed CMB and large-scale
structure power spectra on all scales by shifting these
spectra horizontally. Variations in primordial power on
all observable scales, from approximately the cosmic
horizon scale, down to small scales where Silk damping
(CMB) or nonlinear clustering (large-scale structure)
degrades the cosmological information, may therefore
affect neutrino constraints. Thus we investigate how
freedom in the PPS over some 2.5 orders of magnitude,
k ≈ 0.001 − 0.35 Mpc−1, affects determination of the
neutrino and cosmological parameters.
For our purposes of investigating effects on the cosmo-

logical parameters we want a robust, model-independent
description. Examples include the use of wavelets [19–22],
principal components [23], tophat bins with no interpola-
tion [24], linear interpolation [25–31], smoothing splines
[32–35], and power-law bins [36]. We choose to describe
the PPS by cubic splines, following [37]. This preserves
model independence while encompassing the power law
model, and is smooth.

A completely free form PPS could exactly mimic (at
least within cosmic variance) neutrino mass effects for a
single type of observations, e.g. cosmic microwave
background (CMB) temperature perturbations, though
possibly requiring order unity sculpting of the PPS [2].
Since other observations, such as CMB polarization
spectra or matter density power spectra, enter with
different redshift-weighted transfer functions relative
to the PPS, and since these transfer functions depend
in different ways on cosmological parameters, then
combining power spectra data (or external constraints
on other cosmological parameters) plays an important
role in fitting both inflaton and neutrino properties
(see [38]).
We therefore carry out several studies on how freedom

in the PPS affects neutrino constraints: we consider CMB
data alone, with inclusion of large-scale structure data,
and with inclusion of Hubble constant measurement. As
well we investigate the standard scenario with three
neutrinos with unknown total mass, and also the scenario
with a free total mass and a free effective number of
neutrino species, Neff .
Section II discusses the treatment of the PPS in a

substantially model-independent manner. We describe the
data used and our method for calculating parameter
constraints in Sec. III. Cosmological parameter estimation
results are presented in Sec. IV, examining the covariance
between standard, neutrino, and extended PPS parameters,
and the role of CMB, large-scale structure, and Hubble
constant data. We summarize our results in Sec. V and
discuss the sensitivity of our constraints to the assumed
PPS spline parametrization and to the CMB data included
in the Appendixes.

II. PRIMORDIAL POWER SPECTRUM

In the inflationary scenario for generation of density
perturbations, the universe is in a near-de Sitter state
where the quantum fluctuations of the inflaton field
produce scalar (gravitational potential) and tensor
(gravitational wave) metric perturbations. In simple,
single field models of inflation the gravitational poten-
tial perturbations are Gaussian and nearly scale invari-
ant. This implies that they (and the density perturbations
through the Poisson equation) are completely charac-
terized by the two-point function or power spectrum.
Since inflation must end, the spacetime is not exactly de
Sitter and so the power spectrum is not exactly scale
invariant.
For slow rolling of the inflaton field value over time, the

PPS is conventionally expanded in a Taylor series about the
value at some pivot scale,

Δ2
RðkÞ ¼ Δ2

Rðk0Þ
�
k
k0

�
ns−1þðαs=2Þ lnðk=k0Þ

; (1)
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where Δ2
R is the curvature perturbation power spectrum, k0

the pivot wave number, ns the tilt, and αs the running.
However, in more general inflation scenarios the slow,
smooth evolution of the field can be replaced with faster
variations, oscillations, and features (which can in particu-
lar circumstances be treated through a generalized slow roll
formalism [39]).
Forcing a power law form could bias the results for all

quantities, even the late-time cosmological parameters, and
certainly affects the uncertainty of their estimation. Given
that current cosmological data are severely constraining the
sum of neutrino masses from above, with this bound
beginning to approach the lower limit imposed by neutrino
oscillation terrestrial experiments, it is worthwhile explor-
ing the link between inflationary assumptions and neutrino
constraints.
Therefore we attempt a model-independent approach

where no functional form is assumed. The values of the
PPS amplitude at various wave numbers (nodes) are
allowed to float freely, and these are smoothly connected
using a cubic spline. With enough nodes this can give an
excellent approximation to a wide range of functions,
including nonmonotonic and oscillatory behavior. The
typical number of nodes used in the literature is around
20 though it can be as high as 50 [40]; we use 20, although
we explore the effects of using 10 or 40 in Appendix A. The
number of nodes (parameters) is thus much less than the
number of data points and a Markov chain Monte Carlo
(MCMC) analysis is expected to give accurate confidence
limits on cosmological parameters.
We first define a normalized primordial power spectrum

pðkÞ, such that

Δ2
RðkÞ≡ Δ2

R;0pðkÞ ¼ Δ2
R;0 × spline½pfkig�; (2)

where we choose Δ2
R;0 ≡ 2.36 × 10−9 (the approximate

value of the primordial power spectrum amplitude preferred
by current data), such that pðkÞ is expected to be of order
unity. Note that the actual amplitude can vary without loss
of generality by changing pðkÞ. We then specify the values
pi ≡ pðkiÞ of this normalized PPS at a set of N spline
nodes, ki. At k < k1, we fix pðkÞ ¼ 1, whereas at k > kN ,
we set pðkÞ ¼ pN . In the intermediate range, pðkÞ is given
by a cubic spline.
To encompass the range of scales well probed by CMB

and galaxy clustering data we take k1 ¼ 0.001 Mpc−1 and
kN ¼ 0.35 Mpc−1. The low end is slightly larger than the
wave vector corresponding to the cosmic horizon, and is
thus close to the smallest k that could be probed by any
observable. For the spacing of the ki nodes we follow [37],
using N ¼ 20 nodes with a logarithmic spacing, such that
kiþ1 ¼ 1.36 ki. This allows the PPS to cause variations in
the CMB and galaxy power spectra on scales comparable to
those associated with the features (such as baryon acoustic
oscillations) introduced by the transfer functions depending

on cosmological parameters, and hence we can explore
how PPS freedom interacts with cosmological parameter
estimation. In Appendix A we will consider alternative
choices of the PPS characteristics to test the robustness of
the results.
We allow the PPS parameters fpig to vary in the range

0.01 < pi < 10 (imposing uniform priors). When the node
parameters are close to zero, it is possible for the spline to
return negative values for pðkÞ at some intermediate k.
To avoid this unphysical behavior of the PPS, we restrict
to pðkÞ ≥ 0.01, setting pðkÞ ¼ 0.01 whenever the spline
returns a value smaller than 0.01. Our results are insensitive
to the exact choice for the lower bound of the pi range and
to the details of the cutoff because primordial power spectra
with nodes pi ∼ 0.01 have a very low likelihood. Given the
PPS, the CMB temperature and polarization power spectra
and the matter power spectrum at any redshift are obtained
by convolving the PPS with the transfer functions for CMB
multipoles and matter density perturbations, in the usual
manner.

III. DATA AND METHOD

Our choice of CMB data closely follows that of the
Planck Collaboration [41,42]. We use the Planck temper-
ature power spectrum, together with high resolution
(high-l) temperature data from the Atacama Cosmology
Telescope (ACT) [43,44] and the South Pole Telescope
(SPT) [45,46]. We also include low multipole (l < 23)
polarization data from WMAP (referred to as WP in the
Planck papers) [47]. In the standard case of a power law
PPS, the latter data set mainly serves to constrain the optical
depth due to reionization, τ, which is otherwise strongly
degenerate with the amplitude of primordial perturbations,
As. For a free PPS, the polarization data play a more
important role, as discussed in Appendix B. The temper-
ature power spectrum measurements from Planck, ACT,
and SPT are illustrated in Fig. 1 (see Sec. IV for more
discussion of this figure).
We incorporate the required set of 31 “nuisance”

parameters needed to take into account foregrounds,
beams, and calibration uncertainties. These parameters will
be marginalized over when parameter constraints are
computed. The main use of the high-l data is to help
constrain a number of these nuisance parameters describing
extragalactic foregrounds, thus improving constraints on
cosmological parameters that are partially degenerate with
the “nuisance” parameters when using Planck data only.
In order to keep the number of observables small and

the interpretation of our results clean, we do not include
the reconstructed lensing potential power spectrum data
from Planck. However, the effect of gravitational lensing
on the CMB temperature power spectrum is modeled and
in fact contributes strongly to the constraints on neutrino
mass in the case of a power law primordial power
spectrum [41].
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Physically, neutrino mass acts to suppress power in the
photon or matter density perturbations, damping small
scale power. Moreover, massive neutrinos affect the expan-
sion history and thus cosmic distances, modifying the
projection from physical scales to observed angles and
redshifts. For a free form PPS one can imagine a complete
degeneracy could arise between a power law primordial
spectrum with some neutrino mass and an appropriate PPS
with a different neutrino mass. A similar confusion could
occur for the number of effective neutrino species, although
this can also affect larger scales through changing the time
of matter-radiation equality. However, since these are one
time adjustments, measurements of the perturbation power
spectrum with different redshift weightings would become
distinguishable. Such different weights occur in the polari-
zation, lensing, or matter power spectra relative to the
temperature power spectrum.
One of the goals of this article is to see to what extent

combining the high redshift measurement from the CMB
with a low redshift measurement of large-scale structure
can constrain neutrino properties (and other cosmological
parameters) without making strong assumptions about the
primordial power spectrum. The current state of the art in
large-scale structure surveys is the Baryon Oscillation
Spectroscopic Survey (BOSS) [48]. Therefore, we use
the angle-averaged galaxy density power spectrum
obtained from the BOSS CMASS sample (see, e.g.

[49,50]) made available with data release 9 (DR9, [51]).
This sample has an effective redshift zeff ¼ 0.57 and covers
an effective volume Veff ¼ 2.2 Gpc3. The observed power
spectrum is shown in Fig. 5 (see Sec. IV for further
discussion of this figure). We include only the black data
points in our likelihood, corresponding to the wave vector
range k ¼ 0.03 − 0.12 h=Mpc.
In the likelihood analysis, we marginalize over possible

systematic contributions to the large-scale power spectrum,
by subtracting from the observed spectrum a template,
Pg;obsðkÞ → Pg;obsðkÞ − SPsysðkÞ, where PsysðkÞ is the tem-
plate and S a free parameter with prior range S ¼ ½−1; 1�.
We refer to [52,53] for details. For each set of cosmological
and nuisance parameters, we then compare the observed
spectrum to a theory spectrum. Since we restrict the
analysis to linear and only mildly nonlinear scales, it is
appropriate (see e.g. [4,54]) to model this theory power
spectrum using the simple “P-model,”

PgðkÞ ¼ b2PmðkÞ þ P0: (3)

Here, b is a free, scale-independent galaxy bias and PmðkÞ
the linear matter power spectrum. The additional free
parameter P0 is included to describe deviations from
scale-independent bias, which can arise from a combination
of nonlinear galaxy bias, nonlinear redshift space distor-
tions and stochastic bias. Finally, this theory spectrum is
convolved with the survey window function to match the
expectation value of the spectrum estimated from the data;
see [4] for details. Our analysis of the BOSS power
spectrum is identical to that in [55].
Finally, we consider the inclusion of a prior on the

Hubble constant. We use the value H0 ¼ 73.8�
2.4 km=s=Mpc by [56] (R11) based on supernova dis-
tances, which are calibrated using Cepheids observed with
the Hubble Space Telescope. We will refer to this meas-
urement as HST. Since the CMB is mostly sensitive to the
physical densities, while the matter clustering is more
affected by the fractional densities, the Hubble constant
can play an important role in linking the two. Moreover, the
CMB data alone leave a strong anticorrelation between
neutrino mass and H0 so that the inclusion of a tight H0

prior can be expected to have a significant effect on the
neutrino mass bound.
While the H0 measurement by R11 has been widely

used in cosmological analyses, some caution is in order
with regards to constraints based on this measurement.
First of all, there is a significant and well-known tension
between the above direct measurement and the value
inferred from the Planck data in the context of the
standard ΛCDM model [41] (regardless of whether
neutrino mass is a free parameter). While this might
be a sign of new physics, such as the existence of
additional relativistic species, it could also point to a
problem with the data (analysis). Secondly, the R11

FIG. 1 (color online). The CMB temperature power spectrum is
plotted with data points from Planck in red, from ACT in green
and from SPT in magenta. The large green dots indicate the
locations of the spline nodes. The blue (black) solid curve is the
best-fit theory spectrum to the CMB data set in the case of a power
law (free/splined) PPS, for fixed Σmν ¼ 0 eV. The respective
dashed curves show the best fit spectra for fixed Σmν ¼ 2.5 eV.
The freedom in the spline PPS can compensate for the neutrino
mass to keep the power spectrum at l > 10 virtually the same as
the zero mass case, showing how inflaton freedom affects
neutrino constraints.
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Cepheid data have recently been reanalyzed [57] (taking
into account the revised geometric maser distance to
NGC4258 and modifying the treatment of outliers and
Cepheid metallicity), leading to a non-negligible shift in
the Hubble constant, H0 ¼ 72.5� 2.5 km=s=Mpc. In
Sec. IV C, we will therefore also present neutrino mass
constraints using the revised H0 measurement.
We modify CAMB [58] to use the set fpig as a

replacement for the usual amplitude As and tilt ns (and
running αs). We obtain both the CMB power spectra and
the low redshift matter power spectrum (which in turn is
used to compute the galaxy power spectrum) from this
modified version of CAMB. In addition to the remaining
four standard vanilla cosmology parameters of the physical
baryon density ωb ≡Ωbh2, cold dark matter density
ωc ≡Ωch2, cosmological constant density ΩΛ (or, equiv-
alently, Hubble parameter H0), and reionization optical
depth τ, we include parameters to describe the neutrino
sector. We consider two scenarios: one where the effective
number of neutrino species is fixed to the standard model
value Neff ¼ 3.046 and only the sum of neutrino masses
Σmν is a free parameter, and one where Neff is left free
as well.
For the standard scenario with three species, we

assume a degenerate hierarchy, with each neutrino having
a mass Σmν=3. With Neff free and Neff > 3.046, we
simply add an effective number of Neff − 3.046 massless
neutrino species to the three massive ones. When
Neff < 3.046, we lower the temperature of the three
standard neutrinos to obtain the energy density corre-
sponding to Neff . In this regime, the parameter Σmν

should be interpreted as a rescaled sum of neutrino
masses, ðNeff=3.046Þ3=4Σmν.
Thus there are either 25 or 26 cosmological parameters

overall, plus 34 (31 for the CMB and 3 for the galaxy power
spectrum) “nuisance” parameters from the data. We will be
particularly interested in the covariance between the PPS
parameters and the neutrino parameters—that is, how much
the relaxation of an assumed power law form influences the
neutrino constraints. Modifying CosmoMC [59], we carry
out a Markov chain Monte Carlo analysis for parameter
estimation, sampling the cosmological parameters includ-
ing PPS parameters, and the nuisance parameters.
Before moving on to the results, we note that, generally,

the constraints on neutrino properties come both from the
suppressed growth of cosmic perturbations and from the
expansion history. The latter relates to cosmic distances
dðzÞ ¼ R

dz=HðzÞ and the Hubble rate HðzÞ, which,
through the Friedmann equation, is proportional to the
(square root of the) total energy density of the universe.
Since the present neutrino energy density is proportional to
the sum of neutrino masses, ων ≡Ωνh2 ≈ Σmν=94 eV,
and since the relativistic neutrino energy density is propor-
tional to Neff , both cosmic distances and the Hubble rate
probe neutrino mass.

IV. COSMOLOGICAL CONSTRAINTS

A. CMB-only constraints on neutrino mass

We first consider constraints from the CMB-only com-
bination of data sets. The temperature power spectrum
measurements are shown in Fig. 1. For comparison, the
solid black (spline PPS) and blue (power law PPS) curves
show the best-fit theory power spectra for fixed Σmν ¼ 0.
These are in excellent agreement on multipoles l≳ 60, and
the spline PPS has the freedom to fit variations in the data at
smaller multipoles. The dashed curves then show the effect
of Σmν ¼ 2.5 eV. This noticeably changes the CMB power
spectrum and hence can be ruled out in the power law PPS
case at high1 significance. However, there can be enough
freedom in general in the PPS to allow even such a large
sum of neutrino masses, as shown by the agreement of the
dashed and solid black (spline PPS) curves. This is
reflected by the fact that, as we will see, Σmν ¼ 2.5 eV
lies within the 99.9% C.L. region for the spline PPS
(although outside the 95% C.L. region).
The green dots indicate the multipoles corresponding to

the projected spline node wave vectors, li ¼ kiDLSS, where
DLSS is the comoving distance to the CMB last scattering
surface. While the mapping between k and l is in reality
not one-to-one, i.e. power at a given wave vector k
translates to power at a range of multipoles l rather than
just li, the li’s give an impression of where a given PPS
node modifies the angular temperature power spectrum.
Specifically, one sees that the PPS spline is flexible enough
to affect the temperature spectrum across the full range of
multipoles constrained by the data (the signal-to-noise in
the multipoles below our lowest node, l≲ 10, is small),
and to alter the spectrum on the scale of the acoustic
oscillations, like late-time cosmological parameters.
Figure 2 shows that, despite the large freedom allowed in

its shape, the CMB data place strong constraints on the
PPS. The black points and error bars show the mean PPS
values at the spline nodes and the uncertainties. The black
curve represents the corresponding best-fit PPS at all k (i.e.
the cubic spline going through the nodes shown in the
figure). These PPS constraints are obtained while simulta-
neously fitting for the cosmological parameters and the
nuisance parameters associated with the CMB data. The
dashed straight line in Fig. 2 depicts the power law PPS best
fitting the CMB data set for comparison.
Except for the highest k node (k ¼ 0.35 Mpc−1, not shown

in Fig. 2), all node powers are reasonably well constrained.
The nodes in the range k ¼ 0.009 − 0.26 Mpc−1 all have <
10% uncertainties (relative to the fiducial amplitude
Δ2

R;0 ¼ 2.36 · 10−9), with the best-constrained node (at
k ¼ 0.14 Mpc−1) being measured with 3% precision. The

1A mass Σmν ¼ 2.5 eV is ruled out at (much) more than 3σ,
but the exact significance is difficult to quantify as the chains do
not contain any points beyond Σmν ¼ 2.5 eV.
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pi parameters are strongly correlated among themselves,with
correlation coefficients up to jρj ¼ 0.93. Moreover, it is not
only the nearest neighbors that are strongly correlated (or
anticorrelated), but the correlations persist for pairs of nodes
well separated in k space.
The reconstructed power spectrum displays no strong

evidence for deviations from a power law PPS. The spline
PPS model does lead to a better fit to the data, with
Δχ2 ¼ 33.8. Given that the spline PPS has 18 parameters
more than the power law model, this means that the spline
model gives a slightly bigger improvement in the fit to the
data than expected purely based on the larger number of
free parameters, but the difference is not significant enough
to claim strong evidence in favor of the spline model. Some
studies have claimed evidence for a dip in the PPS at
k < 0.001 Mpc−1, but our parametrization does not probe
this range because these wave vectors correspond to such
large scales that the data are expected to have very little
constraining power. We do find a dip in the primordial
power spectrum around k ¼ 0.002 Mpc−1. This is driven
by the deficit in the CMB temperature power spectrum,
relative to the best-fit power-law model, around l ≈ 20.

Figure 3 displays the cosmological parameter constraints
both for the free PPS case (for which we discussed the PPS
constraints themselves above) using solid black curves/
contours, and for a power law PPS using dashed black
curves/contours (we will discuss the results shown in red in
the next subsection). The contours show the 68% and
95% C.L. regions, while the one-dimensional distributions
are the marginalized posterior probability distributions.
Allowing more freedom in the PPS relative to a power
law spectrum causes both a shift in the best-fit/mean
parameter values as well as a widening of the distributions.
For the neutrino mass, the data are consistent with

Σmν ¼ 0 for both choices of the PPS, but a free (splined)
PPS significantly loosens the upper bound from

Σmν < 0.63 eVðpower lawÞ
to

Σmν < 1.9 eVðsplineÞ
both at 95% C.L. This is as expected from Fig. 1, where the
free PPS could compensate for neutrino mass effects while

×

FIG. 2 (color online). The mean PPS node values are shown, including error bars. The black points and error bars indicate the fit to
CMB data only, and the results in light red correspond to CMBþ BOSS galaxy clustering (points slightly offset for clarity). The solid
lines are the primordial power spectra corresponding to the node values shown. The dashed line is the best-fit power law spectrum to the
CMB-only data, marginalized over other parameters.
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the restricted power law case strongly disfavored larger
neutrino masses (despite the ability to adjust noninfla-
tionary cosmological parameters).
Let us discuss the constraints in more detail below. In the

following, we will often distinguish between “late-universe”
parameters on the one hand,H0 andΣmν, and the parameters
traditionally constrained very tightly by the acoustic peak
structure of the CMB, ωb and ωc, on the other hand. It is
instructive to take the power law case (dashed black curves

in Fig. 3) as our starting point. In this case, the PPS is
essentially featureless, so that features in the observed CMB
spectra directly tell us about the transfer functions, which
encode the rich physics of acoustic oscillations during the
drag epoch and of the growth of structure at late times, and
thus carry a wealth of information on cosmological param-
eters. Indeed, the CMB peak structure allows for precise
measurements of the baryon and cold dark matter densities
ωb and ωc, as shown in Fig. 3.

FIG. 3 (color online). The posterior probability distributions of the cosmological parameters, including neutrino mass. Results for the
CMB-only data combination are shown in black and those for CMBþ BOSS in light red. The solid curves give the results with a free
(splined) PPS, while the dashed curves indicate results for the power law case. The number of neutrino species is here fixed to the
standard three.
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Late-universe (z < 1100) physics ismainly constrained by
the distance to the CMB last scattering surface and by CMB
lensing, and to a lesser extent by the integrated Sachs-Wolfe
(ISW) effect. Still, in the presence of massive neutrinos,
significant freedom remains in the parameter direction
corresponding to simultaneously varying Σmν and H0.
This degeneracy can be understood in the following sim-
plified picture (see, e.g., [41,60]). Assume that the CMB
measures ωb and ωc well, independently of neutrino mass.
Then, ifwe increaseΣmν, themain effect on theCMB, ceteris
paribus, is a decrease in the distance to the last scattering
surface of the CMB2 because neutrino mass increases
the neutrino energy density and thus the expansion rate.
However, this shift in distance can be compensated by
simultaneously lowering the dark energy density ΩΛ, and
thus H0. This explains the degeneracy direction seen in the
H0 − Σmν panel of Fig. 3.When the distance to last scattering
is kept constant like this, the joint variation inΣmν andH0 has
a remaining effect on the ISW signal [60] and CMB lensing,
so that the Σmν −H0 degeneracy is not exact and the CMB
can still place ameaningful upper limit on neutrinomass. The
above explanation is of course only approximate, as in reality
there is also some degeneracy with ωb and ωc.
The late-universe degeneracy of Σmν vs H0 (or other

combinations of late-universe parameters) will play an

important role in understanding how the neutrino and other
constraints improvewhen low-redshift data (galaxy clustering
and/or a direct H0 measurement) are added. We therefore
illustrate this CMB-only degeneracy in Fig. 4. The left panel
depicts thepower lawPPScase. It showsa scatter plot ofH0 vs
the ratio rs=DVðz ¼ 0.57Þ, where rs is the sound horizon
scale, and DVðz ¼ 0.57Þ the volume-weighted distance to
z ¼ 0.57. For fixed ωb and ωc, the latter quantity can be
derived from Σmν and H0 (i.e. it is not an independent
parameter). The ratio rs=DVðz ¼ 0.57Þ will be useful for
analyzing the tightening of constraintswhen including galaxy
clustering in the BOSS CMASS sample, where much of the
information comes from the baryon acoustic oscillation
(BAO) measurement of rs=DVðz ¼ 0.57Þ. The colors indi-
cate the values of Σmν. The correlation between the three
quantities plotted is clear from the figure: increasing Σmν

leads to decreasingH0 and rs=DVðz ¼ 0.57Þ. The horizontal
and vertical bands indicate the 1σ ranges for the measured
BAO scale from the BOSS CMASS sample [50] and for H0

[56]. We will discuss in the following sections how the BAO
measurement relates to the CMASS data used in this work,
and how theCMASSdata andH0 prior help to constrainΣmν.
Let us now consider what happens when we allow for

a splined PPS (right panel of Fig. 4, and solid black line
in Fig. 4). The features now allowed in the PPS are
partially degenerate with the effect of the transfer functions,
thus affecting the cosmological parameter constraints.
Specifically, we see that ωb and ωc become significantly
less tightly constrained and that the mean of (especially) ωc

is shifted to a larger value. Note however that these shifts,
and those in the other parameters, are consistent, in the sense
that the mean value in the power law scenario is always

FIG. 4 (color online). Posterior distribution, for the CMB-only data combination, of late-universe “observables” H0 and
rs=DVðz ¼ 0.57Þ, with Σmν color coded. Here rs is the sound horizon scale and DVðz ¼ 0.57Þ an effective distance to z ¼ 0.57,
as measured from the angle-averaged BAO scale in the BOSS CMASS sample. The contours indicate 68% and 95% confidence regions
and the dashed lines indicate 1σ ranges from direct measurement ofH0 and rs=DV (see text). Note that our analysis uses the full shape of
the galaxy power spectrum rather than just the BAO measurement. Left: power law PPS. Right: splined PPS. Allowing more freedom in
the PPS causes a broadening of the distribution, but retains the strong parameter (anti)correlations so that the addition of a galaxy
clustering and/or H0 measurement will still tighten the neutrino mass constraint.

2A shift in the distance to CMB last scattering quickly worsens
the fit to the data, as the angular size of the sound horizon, which
is the ratio of the sound horizon scale and the distance to last
scattering, rs=DLSS, is measured very accurately. Note the effect
of neutrino mass on rs is small (in the power law PPS scenario,
we are in the regime where neutrinos become nonrelativistic after
CMB last scattering).
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within the range of values allowed by the splined PPS
posterior. This makes sense as the power law PPS is
effectively embedded within the spline parametrization
(one can adjust spline parameters to very closely approxi-
mate any power law spectrum). Since the power law case
gives a good fit to the data, its mean cosmological parameter
values should still give a good fit in the splined PPS scenario.
Moving on to the late-universe parameters, we see that the

mean of H0 shifts down (in accordance with the anticorre-
lation with ωc) and that H0 obtains a larger uncertainty.
Finally, the additional PPS freedomallows for larger values of
Σmν. Given the anticorrelation withH0 discussed above, this
is what would be expected based on both the broadening of
the H0 posterior and the downward shift of the mean of H0.
The degeneracy directions of Σmν with the other cosmologi-
cal parameters remain approximately the same when going
from a power law to a splined PPS, and the contours are
simplywidened in all directions (and shifted). For example, as
Σmν goes up,H0 has to decrease tomaintain the best possible
fit to the CMB data, as in the power law case. Thus, the same
physics (e.g. keeping the distance to last scattering constant)
still explains the interplay between parameters, but the free
PPS allows for larger parameter variations in all directions.
This is also shown in the right panel of Fig. 4, which presents
the joint constraints on Σmν, H0, and rs=DVðz ¼ 0.57Þ for
the case of a free PPS. This figure will be useful when
considering the effect of adding the BOSS and/or H0 data.
To summarize the main result of this subsection, the

neutrino mass bound from CMB-only data strongly
depends on assumptions made about the PPS. If the PPS
is restricted to a power law form, a strong upper bound on
Σmν is obtained. However, taking an agnostic approach
with regards to the inflationary specifics of the primordial
density fluctuations by allowing for a free form PPS largely
undoes the ability of CMB data to provide detailed
information on neutrino mass.

B. CMBþBOSS galaxy power spectrum
constraints on neutrino mass

As mentioned previously, however, the PPS enters
differently into the matter density power spectrum, so
we now investigate inclusion of the galaxy power spectrum
of the BOSS CMASS sample in the data used. The
measurements are shown in Fig. 5, with the range used
for our analysis colored black. The green dots again
indicate the PPS node wave vectors.3

For illustration, the solid lines in Fig. 5 show the best-fit
spectra to the CMB-only data set for fixed Σmν ¼ 0, i.e. for
the same cosmologies as the solid lines in Fig. 1. The
dashed lines show the best-fit spectra to the CMB-only data
for fixed Σmν ¼ 2.5 eV (also as in Fig. 1). While the
Σmν ¼ 0 spectra for the two PPS treatments provide a
decent fit to the galaxy clustering data and are very similar,
increasing neutrino mass to Σmν ¼ 2.5 eV significantly
worsens the fit in both cases, although less in the case
of a free PPS. This suggests that, with the large-scale
structure data included, neutrino mass can be constrained
meaningfully even in the free (splined) PPS case (although
not as well as in the power law PPS scenario); as we have
seen in the previous section that is not the case with CMB
data only. We will see below that this improvement
indeed holds.
The constraints from CMBþ BOSS on the spline PPS

are shown in red in Fig. 2. For most nodes, both the mean
values and uncertainties are very similar to those from
CMB only, with only slight improvements in the uncer-
tainties. Thus, the current galaxy clustering data do not
have a strong effect on primordial power spectrum
constraints.
However, the galaxy power spectrum data do have a

strong impact on the cosmological parameter constraints.
The posterior distributions from the CMBþ BOSS analy-
sis are shown in Fig. 3 in red. In the case of a power
law primordial spectrum (dashed), the neutrino mass
bound is now

FIG. 5 (color online). The measured galaxy power spectrum of
the BOSS CMASS sample is plotted as dots with error bars. The
black data points are the only ones used in our analysis, spanning
the range k ¼ 0.03 − 0.12 hMpc−1. The solid curves (black for
spline PPS, blue for power law PPS) represent the models that
best fit the CMB-only data for fixed Σmν ¼ 0, while the dashed
curves give the predictions by the models best fitting the CMB
data for Σmν ¼ 2.5 eV (same as in Fig. 1). The green dots again
indicate the locations of the PPS spline nodes.

3Note that we show the power spectrum obtained from the data
assuming a fiducial cosmology; the inferred spectrum in a
different cosmology is a shifted version of the plotted spectrum
(both in the horizontal and vertical directions). The mapping
between the wave vector in the plot and true wave vector (which
is used in the PPS parametrization) is thus cosmology dependent.
To allow a direct, but cosmology-dependent, comparison, we
have converted the node wave vectors to units h=Mpc, using the
value of h in the fiducial cosmology of the BOSS analysis.
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Σmν < 0.34 eVðpower lawÞ
at 95% C.L., an improvement by almost a factor 2 from the
CMB-only case. Note that our bound is slightly stronger
than the result Σmν < 0.39 eV from combining CMBþ
BOSS CMASS in [61]; the difference is due to their
inclusion of the reconstructed CMB lensing power spec-
trum from Planck [62], which prefers a larger Σmν and thus
weakens the upper limit somewhat (see also [41]).
For the free PPS case, we find that the neutrino mass

bound from CMBþ BOSS data becomes

Σmν < 0.72 eVðsplineÞ
at 95% C.L., a factor 2.6 stronger than the CMB-only case.
Thus, the galaxy power spectrum is able to rein in the effect
of PPS freedom. Indeed this bound is comparable to having
no galaxy data but restricting to a power law PPS.
To gain insight into the tightening of the neutrino mass

bound, let us first consider the power law PPS case, which is
relatively easy to understand. In this case, to a good
approximation, the information in the BOSS power spectrum
can be represented by ameasurement of the BAO scale, given
for the DR9 CMASS sample in [50] byDVðz ¼ 0.57Þ=rs ¼
13.67� 0.22. While this measurement ignores any informa-
tion on the scale-dependent suppression of power due to
neutrinos, and is based on a larger range of scales than used in
our analysis, we have checked explicitly that the constraints
on all parameters from this BAO measurement (combined
with CMB) are very similar to those using the full galaxy
power spectrum (see also, e.g., [61]).
Since ωb and ωc are already well measured from CMB

only, and are very weakly affected by the BOSS measure-
ment, we focus on the late-universe parameters in Fig. 4 (left
panel). The 1σ allowed range for rs=DVðz ¼ 0.57Þ (from
now on just rs=DV) from [50] is shown by the horizontal
bands. We have already discussed the CMB-only Σmν −H0

degeneracy in the previous subsection, and the anticorrela-
tion of Σmν with rs=DV can be understood in the same way.
An increase in Σmν needs to be compensated by a decrease
in the dark energy density to keep the distance to CMB last
scattering fixed, which in turn leads to a longer distance to
z ¼ 0.57. Since the sound horizon rs is hardly affected when
Σmν is varied, this leads to a smaller value of the ratio
rs=DV . It is now obvious from the degeneracy direction
shown in the left panel of Fig. 4 and explained above, why
the BAO prior leads to the tightening of the H0 posterior,
shift upward of its mean, and the strong improvement of the
upper bound on Σmν seen in Fig. 3. The smaller than
expected shift in H0 is due to the difference between the
BAO prior and the actual galaxy clustering measurement
used in the chains. Indeed, when we replace the galaxy
power spectrum measurement with the BAO measurement
(not shown), the H0 posterior shifts to slightly larger values.
When the PPS is parametrized by a spline (solid curves

in Fig. 3), the CMB-only (black) constraints are weaker

than in the power law scenario and the inclusion of galaxy
clustering data (red) tightens even the ωb and ωc posteriors.
Regarding the late-universe parameters, the right panel of
Fig. 4 shows a similar situation to the power law case (left
panel) for the CMB-only data combination: while the
allowed ranges of Σmν, H0, and rs=DV are significantly
widened, there is a strong anticorrelation between neutrino
mass and rs=DV (and H0), due to the need for the dark
energy density to compensate for the effect of Σmν on the
distance to last scattering. Treating the galaxy power
spectrum measurement as a BAO prior, as we did for
the power law PPS, would thus again explain the strong
improvement in the neutrino mass bound seen in Fig. 3 and
quoted above. In other words, the larger range of allowed
Σmν values in the splined PPS case, as compared to the
power law case, is in large part caused by extending the
degeneracy direction with H0 and rs=DV (moving further
along the diagonal to the bottom left in Fig. 4), and can thus
largely be undone by a prior on rs=DV (or H0).
An important caveat is that, in the splined PPS case,

replacing the galaxy power spectrum measurement with a
BAO prior is less justified than in the power law case
because, in principle, freedom in the PPS can be (ab)used to
mimic or shift the acoustic peak in the galaxy power
spectrum, which could result in a completely wrong estimate
of rs=DV . In practice, the inclusion of CMB data signifi-
cantly restricts the allowed variations in the PPS so that
information on rs=DV is encoded in the galaxy clustering
data even with a splined PPS. Indeed, we find that the error
bar on rs=DV improves by a factor 2 relative to the CMB-
only case when the BOSS data are added (from rs=Dv ¼
0.0662� 0.0037 to 0.0667� 0.0018). On the other hand,
the resulting uncertainty is still about 50% larger, and the
best-fit value significantly smaller, than the direct measure-
ment from [50] (rs=DV ¼ 0.0732� 0.0012).
Based on the above arguments, and since an exact

description of the parameter (and PPS) direction(s) con-
strained by the galaxy power spectrum would be very
complex and most likely not that helpful, we simply note
that a description in terms of a prior on rs=DV is an
insightful approximation and does qualitatively reproduce
the effect of the BOSS power spectrum data on the
parameter constraints. As in the case of the power law
scenario, the BOSS data induce a tightening of the H0 and
Σmν bounds and shift the mean values of H0 (slightly) up
and the mean value of Σmν down, as expected from the
degeneracy directions depicted in the right panel of Fig. 4.
For comparison, we have also calculated the posteriors that
would be obtained if the direct BAO measurement from
[50] could be used in the splined PPS case (replacing
the galaxy power spectrum measurement) and found
that the parameter constraints using the BAO prior would
be significantly stronger than the true constraints from
the galaxy power spectrum (e.g. Σmν < 0.32 eV instead
of Σmν < 0.72 eV), confirming that much of the BAO
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information in the galaxy power spectrum gets lost due to
the additional freedom in the PPS and that, unlike in the
power law PPS case, treating the galaxy power spectrum
measurement as a measurement of the BAO scale is not a
quantitatively accurate approximation.
In summary, combining measurements of cosmological

perturbations at redshift z ∼ 1100 and at low redshift
(z ∼ 0.57) provides valuable information on neutrino mass
(and other parameters) even without assuming a form for

the primordial power spectrum. The influence of neutrino
mass on expansion, rather than the free streaming sup-
pression of the matter power spectrum, is the dominant
effect for current large-scale structure data.

C. CMBþ BOSSþH0 constraints on neutrino mass

In the previous sections, and in Figs. 3 and 4, we have
explained and shown that Σmν is strongly anticorrelated

FIG. 6 (color online). The posterior probability distributions of the cosmological parameters, including neutrino mass, when CMB
data are combined with low-redshift observations. Note the change of scale from Fig. 3. Results for the CMBþ BOSS data combination
are shown in light red, while the CMB þ BOSS þH0 case is shown in dark blue. In both cases, solid curves depict the free (splined)
PPS and dashed curves show the power law PPS. The number of neutrino species is here fixed to the standard three.
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withH0. Moreover, when including the BOSS data with the
CMB data, with a splined PPS the preferred value of the
Hubble parameter,H0¼61.6�2.7 km=s=Mpc (68% C.L.),
is low compared to the value obtained with the standard
power law PPS, H0 ¼ 66.1� 1.3 km=s=Mpc (which in
turn is slightly lower than the value when Σmν is fixed
to 0.06 eV), and even lower compared to the direct
HST measurement discussed in Sec. III, H0 ¼ 73.8�
2.4 km=s=Mpc. This means that including the HST H0

measurement in our combination of data sets should
strongly tighten the upper bound on Σmν, and especially
so for a splined PPS.
Thus, it is worth investigating constraints from the

CMBþ BOSSþ HST data set. We show the results with
the blue curves and contours in Fig. 6 and repeat the
CMBþ BOSS results from Fig. 3 in red for comparison.
We find that, especially in the splined PPS case, the bounds
on Ωch2, H0, and Σmν are all strongly affected. All the
changes can be easily understood in terms of the degen-
eracies between each parameter and H0, as shown by the
red contours. The neutrino mass upper bound becomes
much stronger. In the power law case the upper limit
becomes

Σmν < 0.19 eVðpower lawÞ

while for the spline case it becomes

Σmν < 0.18 eVðsplineÞ.

It is interesting to note that the H0 prior is so powerful that
the freedom in the PPS in the case of a splined primordial
spectrum no longer weakens the neutrino bound.
The prior on H0 has little influence on the constraints on

the splined PPS itself; those from the CMBþ BOSSþ
HST data combination are similar to those without the HST
prior, so we do not show them separately in Fig. 2.
We discussed above that the CMBþ BOSS data combi-

nation prefers a much lower H0 value than the R11 Hubble
constant measurement, and that the discrepancy is more
severe in the case of a free PPS. This tension between the
data sets (in the context of ΛCDM with massive neutrinos)
is also reflected in the goodness of fit. WhenH0 is added to
the CMBþ BOSS data combination, the fit worsens by
Δχ2 ¼ 10.5 (using the splined PPS), while Δχ2 ≈ 1 is
expected if all data are consistent with a single underlying
model. The tight bounds presented above are largely driven
by this tension because neutrino mass is anticorrelated with
H0. Because of this importance of the large value of the H0

prior, and because, as discussed briefly in Sec. III, the
tension between R11 and Planck might point to the
presence of additional errors in the direct H0 measurement
not included in the published uncertainty, we next study
briefly how the Σmν bound is affected if the H0 measure-
ment is modified.

Replacing the R11 measurement by the revised H0 prior
of [57] (H0 ¼ 72.5� 2.5 km=s=Mpc), we find the upper
limit Σmν < 0.21 eV, both for a power law and for a
splined PPS. The constraint is thus only slightly weakened
and it remains true that the inclusion of the Hubble prior
renders the neutrino mass limit insensitive to the choice
of PPS model. However, if we instead use the value
given in [57] based on the maser distance anchor only
(H0 ¼ 70.6� 3.3 km=s=Mpc), the neutrino bound weak-
ens to Σmν ≲ 0.27 eV for both choices of PPS. Since the
neutrino mass bound has a non-negligible dependence on
which H0 value is used, it will be extremely valuable to
reach a robust, consensus Hubble constant measurement in
the near future.

D. Summary of neutrino mass bounds

Table I summarizes the 95% C.L. upper bounds obtained
on Σmν for the various combinations of data sets and PPS
cases. We see that inflationary freedom strongly affects
neutrino mass bounds. Constraining the PPS through
multiple types of observations, such as the CMB temper-
ature power spectrum and galaxy power spectrum together,
helps considerably. Further adding an external constraint on
the Hubble constant compensates almost totally for the
added inflationary freedom, allowing a more inflationary
model-independent bound.

E. Joint constraints on neutrino mass
and number of species

An important property of neutrinos in addition to their
total mass is the effective number of neutrino species
(quantifying the energy density of relativistic neutrinos in
terms of the energy density of a neutrino that has decoupled
completely before electron-positron annihilation). In the
standard picture this is Neff ¼ 3.046. This can be altered
either by adding more species, e.g. sterile neutrinos, or
adding more energy density, e.g. by changing the neutrino
thermal history or even having other contributions to the
(free-streaming) relativistic energy density (in which case
the more general term dark radiation applies). Sterile
neutrinos in particular have received a lot of recent attention
(see [63] and references therein), as the addition of one or
two light sterile neutrinos may help explain observed
anomalies in short baseline neutrino oscillation experi-
ments. Moreover, Neff > 3.046 would ameliorate the ten-
sion discussed briefly above between the preferred value of

TABLE I. The 95% C.L. upper bounds on Σmν, in eV, are listed
for the various combinations of data and theory models. The
number of neutrino species is fixed at three.

PPS CMB CMBþ BOSS CMBþ BOSSþH0

Power law Σmν < 0.63 Σmν < 0.34 Σmν < 0.19
Spline Σmν < 1.9 Σmν < 0.72 Σmν < 0.18
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H0 from CMB data and direct measurements of H0 (see
also [41,64–67]).
We therefore now include Neff as a free parameter and

examine the constraints on its value,4 as well as the effect
on the neutrino mass bound. When Neff is a free parameter

and the PPS is described by a spline, the freedom in
parameter space is so large that we can only obtain robust
constraints when all data are combined. We thus only show
results for the CMBþ BOSSþH0 data combination. The
green solid (splined PPS) and dashed (power law PPS)
curves and contours in Fig. 7 show the posterior distribu-
tions with free Neff . For comparison, we show in blue the
results for the same data combination when Neff is fixed to
the standard value.

FIG. 7 (color online). The posterior probability distributions of the cosmological parameters for the CMBþ BOSSþH0 data
combination. The light green curves and contours present the case with both the total neutrino mass Σmν and the effective number of
neutrino species Neff allowed to vary, while the results in dark blue are for the fixed Neff ¼ 3.046, also shown in Fig. 6. Note the change
of scale from the previous figures. In both cases, solid curves depict the free (splined) PPS and dashed curves show the power law PPS.

4Big bang nucleosynthesis also constrains Neff , see e.g. [68],
but we do not include these data in this study.
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Table II summarizes the constraints. Looking first at the
mean and standard deviation of Neff (second column), we
find that the CMBþ BOSSþH0 data have a mild pref-
erence for Neff larger than the standard value, at slightly
more than 95% C.L. significance. This is largely driven by
the large value of the direct measurement5 of H0 in
combination with the strong correlation between H0 and
Neff . The splined PPS case prefers a slightly larger Neff and
constrains its value less tightly than the power law PPS
case. Also the upper bound on the neutrino mass is weaker
for the spline PPS than for a power law, while both are
weaker than the bounds obtained for fixed Neff ¼ 3.046
(shown in parentheses). Thus, unlike in the case of fixed
Neff , when Neff is a free parameter, even the CMBþ
BOSSþH0 constraints are weakened by allowing addi-
tional freedom in the PPS.
The physics behind the Neff constraint can be under-

stood in the usual way when the PPS follows a power law
(e.g. [41,60]). In order to fit the CMB temperature power
spectrum, an increase in Neff needs to be accompanied by
an increase in ωc to keep the matter-radiation equality
scale constant, and by an increase in H0 to keep the
angular size of the sound horizon constant (since the
increase in Neff decreases rs). Moving along this degen-
eracy direction in parameter space, the dominant remain-
ing effect on the CMB is that the angular size of the Silk
damping scale decreases (leading to more damping),
making it possible even for CMB-only data to constrain
Neff . The strong correlation between Neff and H0 dis-
cussed above explains how adding an H0 (and galaxy
clustering) measurement to the CMB data strongly
tightens the Neff bound. The above explanation mostly
also applies to the splined PPS case, leading to the
same approximate parameter degeneracy directions
(except for ωb), while the extra freedom in the PPS
simply broadens (and slightly shifts) the contours.
Finally, we note that Neff and Σmν are only weakly
correlated with each other.

V. SUMMARY AND CONCLUSIONS

The universe on large scales provides a unique labo-
ratory for studying fundamental properties of neutrinos.
While neutrino mass differences are well measured by more
traditional particle physics experiments, the most accurate
bound on the absolute neutrino mass scale currently, and
for the foreseeable future, comes from cosmological data. It
is therefore crucial to investigate to what extent this
measurement depends on the assumed cosmological model.
One key ingredient of the assumed cosmology is the

primordial power spectrum of curvature perturbations. The
strong bounds on neutrino mass quoted in the literature
(e.g. Σmν < 0.23 eV [41]) typically assume a power law
PPS (sometimes with a running index). In this article, we
have instead studied cosmological neutrino constraints
when no functional form is assumed for the PPS. As a
compromise between allowing as much freedom in the PPS
as possible and computational practicality, we have mod-
eled the PPS by a spline with 20 free nodes (though the
results are insensitive to the exact number). We have
derived constraints using a compilation of CMB data
and have quantified the effect of including low redshift
measurements of the Hubble constant H0 and galaxy
clustering.
We found that CMB data alone constrains the PPS to

better than 10% over a large range of wave vectors,
k ≈ 0.01 − 0.25 Mpc−1, as shown in Fig. 2. No significant
deviation from a power law is found. The PPS constraint
itself does not improve significantly when current low-
redshift data are included.
The constraints on the sum of neutrino masses (Table I)

do depend strongly on whether or not low-redshift infor-
mation is used. For the CMB data set only, Σmν is very
poorly constrained when the PPS is left free, giving a bound
Σmν < 1.9 eV (95% C.L.) compared to Σmν < 0.63 eV
assuming a power law PPS. However, when low-redshift
data are added, the neutrino mass bound becomes stronger
and more robust against the choice of the PPS model.
Including the galaxy power spectrum from BOSS leads to a
bound Σmν < 0.72 eV (splined PPS) compared to Σmν <
0.34 eV for a power law PPS. Finally, when also a prior on
H0 from HST is incorporated, the mass limit becomes
almost independent of the chosen PPS model, and very
strong: Σmν ≲ 0.18 eV.
We also derived joint constraints on neutrino mass and

the effective number of neutrino species, Neff , which are
summarized in Table II. Combining all three probes, we
obtained strong bounds on both quantities, even with a free
PPS. Unlike in the case of fixed Neff , the extra freedom in
the PPS does weaken the neutrino bounds relative to the
power law scenario, by approximately a factor of 1.65 on
both the mass and number of species uncertainties. The
data show a preference for Neff larger than the canonical
value Neff ¼ 3.046, but only at slightly more than
95% C.L. and strongly driven by the H0 measurement.

TABLE II. The 95% C.L. upper bounds on Σmν, in eV, and the
mean and standard deviation for Neff, fitting for both simulta-
neously, are listed for the CMBþ BOSSþH0 combination of
data. Recall from Table I the corresponding neutrino mass
constraints for fixed Neff ¼ 3.046 are 0.19 eV for power law
and 0.18 eV for spline PPS.

PPS CMBþ BOSSþH0 for Neff free

Power law Σmν < 0.26, Neff ¼ 3.59� 0.25
Spline Σmν < 0.43, Neff ¼ 3.92� 0.42

5For example, in the power law case, using only CMB data or
CMB with a BAO measurement, the Neff measurement is
consistent with Neff ¼ 3.046 at the 95% C.L. [41].
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In summary, we have found no strong deviations from a
power law primordial power spectrum and have shown that,
while with a free (splined) PPS, CMB data alone hardly
constrain Σmν, adding galaxy clustering or H0 measure-
ments enables strong neutrino limits regardless of the
primordial power spectrum model.
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APPENDIX A: VARYING THE PPS MODEL

Our goal in this work has been to derive cosmological,
and specifically neutrino, constraints when no assumptions
are made on the form of the primordial power spectrum. To
this end, we have modeled the PPS as a spline with 20

nodes logarithmically spaced in the range k ¼ 0.001−
0.35 Mpc−1. We chose this number of nodes because it
leads to a large amount of freedom in the PPS, allowing for
features on approximately the same scales as those induced
in the observed power spectra by the transfer functions for
matter and radiation perturbations. Moreover, this number
of nodes is still small enough for the PPS to be well
constrained (to better than 10% for k≈ 0.01−0.25Mpc−1)
and for it to be possible to obtain properly converged
MCMC results.
While our default parametrization is thus well motivated,

it is interesting to see how the results change when the
number of nodes is varied. We have therefore also
calculated constraints using 10 and 40 nodes (with the
same k range), using the full CMBþ BOSSþH0 data
compilation. The left panel of Fig. 8 shows the mean
posterior PPS for these cases (and the best-fit power law
spectrum for comparison). As expected, the PPS choices
with fewer nodes and hence less freedom approximately
follow a smoothed version of the ones with more nodes.
While error bars are not explicitly shown to avoid clutter,
the uncertainties in the individual node values increase with
increasing number of nodes.
The right panel of Fig. 8 shows the resulting posterior

distribution of the sum of neutrino masses. As already
suggested by the good agreement between the power law
and the 20-node spline neutrino limits, the Σmν bound is
remarkably robust against changes in the assumed PPS
model. We do note, however, that the posteriors of other

FIG. 8 (color online). Left: mean posterior PPS for different choices of the number of spline nodes (with the best-fit power law PPS
shown for comparison), using the full CMBþ BOSSþH0 data combination. The number of neutrino species is fixed to the standard
three. Allowing more nodes makes the reconstructed individual PPS node values more noisy (error bars not shown). Right: posterior
distribution of the sum of neutrino masses for the cases shown in the left panel. When all data are combined, the bound is remarkably
robust against varying assumptions about the PPS and to a first approximation stays constant. The counterintuitive (but small)
improvement in the Σmν bound as freedom in the PPS is increased can be explained by the fact that the CMB data prefer a lower H0

when more freedom in the PPS is allowed, so that adding the higher H0 (and galaxy clustering) measurement forces Σmν along its
degeneracy direction with H0, to lower values.
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parameters undergo more significant shifts as the number
of nodes is varied. Moreover, the robustness of the neutrino
bound relies on the use of low-redshift data to complement
the CMB power spectra. The Σmν limit depends more
strongly on the PPS parametrization when fewer data sets
are used.

APPENDIX B: THE ROLE OF MULTIPLE
TRANSFER FUNCTIONS AND OF CMB

POLARIZATION

We have seen in this article that access to multiple probes
is crucial for obtaining PPS-independent cosmology con-
straints. When the combined data sets are measurements of
cosmic perturbations, here in the form of CMB and galaxy
power spectra, this can be understood qualitatively as
follows (see, e.g., [38]). An observed power spectrum is
the convolution of a transfer function with the primordial
power spectrum, with the relevant cosmological (e.g.
neutrino) information encoded in the former. If only one
power spectrum is observed, the effects of the cosmological
parameters are in principle degenerate with variations in the
PPS. However, when multiple spectra, with differing
transfer functions, are combined, freedom in the PPS
can in general not be used to undo the transfer functions
effects on all spectra simultaneously and PPS-independent
transfer function information can be extracted. As a simple
example, if the matter power spectrum could be directly
measured at two redshifts, then the ratio of these power
spectra would be explicitly independent of the PPS and
would give the transfer function of matter perturbations
between the two redshifts, leading to constraints on the
dark energy density and neutrino mass.

The example of the complementarity described above
that we have focused on in this article is the combination of
the CMB power spectra with the galaxy power spectrum. In
this appendix, we note that even the CMB-only data set
makes use of two types of perturbations, namely temper-
ature and E-mode polarization. To see to what extent the
inclusion of polarization data has provided PPS-indepen-
dent cosmological information according to the above
description, we have run Monte Carlo chains with the
WMAP polarization (WP) data set replaced by a prior on
the optical depth to reionization,6 τ ¼ 0.09� 0.013 (see
also [41]). In the power law PPS case, we find that the τ
prior is a good approximation of the information carried by
the WP data: the Σmν bound only weakens slightly from
Σmν < 0.63 eV to Σmν < 0.83 eV. However, for the
splined PPS, the neutrino bound weakens by a large amount
when the WP data are replaced, going from Σmν < 1.9 eV
to Σmν < 3.2 eV. Thus, without the E-mode polarization
data, even when τ is still known as well as it would be with
those data, the CMB-only neutrino bound is extremely
weak. The polarization data have therefore played a large
role in our CMB-only constraints for a free PPS. This is in
agreement with our qualitative picture described above of
the importance of having access to multiple transfer
functions, and bodes well for future data with full polari-
zation information and measurements of galaxy clustering
at multiple redshifts.
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