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Bulk motions of electrons along the line of sight induce secondary temperature fluctuations in the
postdecoupling, reionized Universe. In the presence of a magnetic field not only the scalar mode but also
the vector mode act as a source for the bulk motion. The resulting angular power spectrum of temperature
anisotropies of the cosmic microwave background is calculated assuming a simple model of reionization.
Contributions from the standard adiabatic, curvature mode and a nonhelical magnetic field are included.
The contribution due to magnetic fields with field strengths of order nG and negative magnetic spectral
indices becomes important for multipoles larger than l ∼ 104.
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I. INTRODUCTION

Current measurements of the cosmic microwave back-
ground (CMB) give a very precise image of the CMB
anisotropies. The acoustic peaks have been detected and
measurements are now moving to larger multipoles with
the South Pole Telescope (SPT) covering 2000<l<9400
[1] and the Atacama Cosmology Telescope (ACT) meas-
uring 500 < l < 10000 [2]. Primary CMB anisotropies are
calculated in linear perturbation theory. The observed peak
structure as well as the damping tail for 500 < l < 3000
are, in general, well explained by the ΛCDM model [3–6].
At higher multipoles secondary CMB anisotropies caused
by nonlinear effects can dominate over the primary signal.
After decoupling at zdec ¼ 1088 [4] scattering of CMB
photons off free electrons becomes important again within
the reionized Universe. From quasar absorption spectra it
is known that the Universe is completely reionized at
redshifts z ∼ 6 [7]. Within the ΛCDM model CMB anisot-
ropies rule out reionization before redshifts of around
z ∼ 10 [4]. Moving ionized matter induces temperature
fluctuations. At linear order this is described by the Doppler
term in the final line-of-sight integral of the brightness
perturbation which however on small scales becomes
very small. This is due to rapid oscillations in the integral
averaging to zero assuming a homogeneous electron
distribution. However, taking into account the perturbations
in the baryon energy density this is no longer the case and at
second order there can be an important contribution which
is also known as the Ostriker-Vishniac effect [8–12]. It has
been shown that the Ostriker-Vishniac effect is the largest
second-order contribution due to electron photon interac-
tion [13,14]. Thus primary fluctuations on small scales are
erased once the Universe becomes reionized but secondary
ones are generated.

Magnetic fields present before decoupling have an
effect on the CMB anisotropies and in difference to the
standard ΛCDM model they also source vector modes
[15–19]. The field strength of a putative magnetic field
present before decoupling has been limited by the Planck
data in combination with ACT and SPT data to be less than
3.4 nG with a preference for negative spectral indices [3].
The Ostriker-Vishniac effect is determined by the baryon
density perturbation and the baryon velocity perturbation.
Whereas in the case of the ΛCDM model the velocity field
is purely irrotational, there is in addition a vortical
component in the presence of a magnetic field. In the
following the Ostriker-Vishniac effect is calculated in the
presence of a stochastic magnetic field using the analytical
treatment of [11,12].

II. SECONDARY ANISOTROPIES

The motion of the electrons and ions induce temperature
fluctuations in the CMB determined by [11]

Θðn̂Þ ¼
Z

dDgðDÞn̂ · VbðxÞ; ð2:1Þ

where n̂ is the direction in the sky and Vb is the baryon
velocity along the line of sight at x ¼ Dn̂. Moreover, DðzÞ
is the conformal distance or look-back time from the
observer at z ¼ 0 given by [11]

DðzÞ ¼
Z

z

0

H0

Hðz0Þ dz
0 ð2:2Þ

and H0 is the Hubble parameter today. This is related to
conformal time η by DðηÞ ¼ a0H0ðη0 − ηÞ. g is the
visibility function which determines the probability of
scattering of a CMB photon. At linear order g is just a
function of time. Fluctuations in the baryon energy density*kkunze@usal.es
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along the line of sight change the number density of
potential scatterers for the CMB photons and thus change
their scattering probability. Therefore with g → gðηÞþ
δgðx; ηÞ the velocity field in Eq. (2.1) can be written in
terms of an effective velocity δVb as gVb→gðVbþδVbÞ¼
gð1þ δg

g ÞVb. Thus the bulk motion of the scatterers with
inhomogeneous number densities effectively contributes a
velocity perturbation δVbðx; ηÞ at second order given by

δVbðx; ηÞ ¼ Δbðx; ηÞVbðx; ηÞ: ð2:3Þ

Expanding Eq. (2.3) in terms of spherical harmonics yields
to (e.g. [20])

δVb;iðx; ηÞ ¼
X

m¼0;�1

X
k

δVðmÞ
b ðk; ηÞQðmÞ

i ðk; xÞ; ð2:4Þ

where Qð0Þ
i ¼ −k−1∇iQð0Þ, Qð0Þ ¼ eik·x in a flat universe,

so that Qð0Þ
i ¼ −i kik e

ik·x. A coordinate system with basis

vectors êðiÞk is chosen such that êð3Þk jjk. Moreover, the

helicity basis is defined by êð�1Þ
k ¼ − iffiffi

2
p ðêð1Þk � iêð2Þk Þ.

Finally, Qð�1Þ
i ¼ ðêð�1Þ

k Þieik·x. Following [21] the bright-
ness perturbation Θðx; n̂; ηÞ including only scalar (m ¼ 0)
and vector (m ¼ �1) modes is given by

Θðx; n̂; ηÞ ¼
Z

d3k
ð2πÞ3

X
l

Xm¼1

m¼−1
ΘðmÞ

l ðk; ηÞGm
l ðk; xÞ; ð2:5Þ

where Gm
l ¼ ð−iÞl

ffiffiffiffiffiffiffiffi
4π

2lþ1

q
Ym
l ðn̂Þeik·x. Using that [21]

niQð0Þ
i ¼ G0

1 and niQð�1Þ
i ¼ G�1

1 then

n̂ · δVbðx; ηÞ ¼
X
k

½δVð0Þ
b ðk; ηÞGð0Þ

1 þ δVð�1Þ
b ðk; ηÞGð�1Þ

1 �:
ð2:6Þ

In the continuum limit
P

k →
R

d3k
ð2πÞ3 Eqs. (2.3) and

(2.4) yield

δVð0Þ
b ðk; ηÞ ¼

Z
d3k1
ð2πÞ3 ½V

ð0Þ
b ðk1; ηÞêð3Þk1

· êð3Þk þ iVðþ1Þ
b ðk1; ηÞêðþ1Þ

k1
· êð3Þk þiVð−1Þ

b ðk1; ηÞêð−1Þk1
· êð3Þk �Δbðk − k1; ηÞ; ð2:7Þ

δVðþ1Þ
b ðk;ηÞ¼−

Z
d3k1
ð2πÞ3 ½−iV

ð0Þ
b ðk1;ηÞêð3Þk1

· êð−1Þk þVðþ1Þ
b ðk1;ηÞêðþ1Þ

k1
· êð−1Þk þVð−1Þ

b ðk1;ηÞêð−1Þk1
· êð−1Þk �Δbðk−k1;ηÞ; ð2:8Þ

δVð−1Þ
b ðk;ηÞ¼−

Z
d3k1
ð2πÞ3 ½−iV

ð0Þ
b ðk1;ηÞêð3Þk1

· êðþ1Þ
k þVðþ1Þ

b ðk1;ηÞêðþ1Þ
k1

· êðþ1Þ
k þVð−1Þ

b ðk1;ηÞêð−1Þk1
· êðþ1Þ

k �Δbðk−k1;ηÞ: ð2:9Þ

Finally, using the expressions for the line-of-sight
integral for the Doppler term [21] for the effective velocity

perturbation δVðmÞ
b ðk; ηÞ results for the scalar mode

contribution in

Θð0Þ
l ðk;η0Þ
2lþ1

¼
Z

η0

0

dηgðηÞδVð0Þ
b ðk;ηÞjð10Þl ½kðη0−ηÞ�: ð2:10Þ

The vector mode contribution is determined by

Θð�1Þ
l ðk; η0Þ
2lþ 1

¼
Z

η0

0

dηgðηÞδVð�1Þ
b ðk; ηÞjð11Þl ½kðη0 − ηÞ�:

ð2:11Þ

The radial functions are given by

jð10Þl ðxÞ ¼ j0lðxÞ;

jð11Þl ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
jlðxÞ
x

: ð2:12Þ

For large l and small scales the contribution due to the
scalar mode can be neglected as the integrand is an
oscillating function leaving a negligible effect [8–12].
Therefore, the angular power spectrum of the temperature
anisotropies due to the vector mode is found to be

CðVÞ
l ¼ 2

π

Z
dk
k
k3ð2lþ 1Þ−2

× hΘðþ1Þ�
l ðk; η0ÞΘðþ1Þ

l ðk; η0Þ
þ Θð−1Þ�

l ðk; η0ÞΘð−1Þ
l ðk; η0Þi; ð2:13Þ

where
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ð2lþ 1Þ−2hΘðþ1Þ�
l ðk;η0ÞΘðþ1Þ

l ðk;η0ÞþΘð−1Þ�
l ðk;η0ÞΘð−1Þðk;η0Þi

¼
Z

η0

0

dηgðηÞ
Z

η0

0

dη0gðη0Þlðlþ 1Þ
2

jl½kðη0 − ηÞ�
kðη0 − ηÞ

jl½kðη0 − η0Þ�
kðη0 − η0Þ hδVðþ1Þ�

b ðk;η0ÞδVðþ1Þ
b ðk;ηÞþ δVð−1Þ�

b ðk;η0ÞδVð−1Þ
b ðk;ηÞi:

ð2:14Þ

In order to calculate the two-point function of δVð�1Þ
b the

solutions for the baryon velocity fields of the scalar and
vector modes at linear order are required which will be
given in the following. In the baryon density perturbation as
well as the baryon velocity at linear order are included the
contributions from the adiabatic, primordial curvature
mode as well as the magnetic mode. The magnetic field
is assumed to be a nonhelical, Gaussian random field with a
two-point function in k space given by

hBiðkÞBjðk0Þi ¼ δk;k0PBðkÞ
�
δij −

kikj
k2

�
; ð2:15Þ

where the spectrum is chosen to be of the form [19]

PBðk; km; kLÞ ¼ AB

�
k
kL

�
nB
Wðk; kmÞ; ð2:16Þ

where kL is a pivot wave number chosen to be 1 Mpc−1 and
Wðk; kmÞ ¼ π−3=2k−3m e−ðk=kmÞ2 is a Gaussian window func-
tion. km corresponds to the largest scale damped due to
radiative viscosity before decoupling [22,23]. km has its
largest value at recombination

km ¼ 286.91

�
B
nG

�
−1

Mpc−1 ð2:17Þ

for the best-fit parameters of WMAP9 data only [4,24].

A. Scalar mode

The perturbation equations of baryons and cold dark
matter (e.g. [18–20]) can be combined to yield the
evolution equation of the total matter perturbation
Δm ¼ ~RcΔc þ ~RbΔb, where ~Ri ¼ ρi

ρm
denotes the fractional

energy density of the component i ¼ b, c with respect to
the total matter density ρm ¼ ρc þ ρb. Namely, for the
magnetic mode during matter domination it evolves as

d2Δm

dw2
þ 2

w
dΔm

dw
−

6

w2
Δm ¼ −

1

3

Ωγ;0

Ωm;0

�
w0

w

�
2

LðkÞ; ð2:18Þ

where w≡ kη and w0 ≡ kη0. LðkÞ is related to the Lorentz
force Lðx; ηÞ ¼ ½ð∇ × BÞ × B�ðx; ηÞ (e.g. [19]). Similarly
for the baryon density perturbation,

d2Δb

dw2
þ 2

w
dΔb

dw
¼ 6

w2
Δm −

1

3

Ωγ;0

Ωb;0

�
w0

w

�
2

LðkÞ: ð2:19Þ

Solving Eq. (2.18) and using the solution for Δm in
Eq. (2.19) shows that the amplitude of the growing mode
of the baryon perturbation is the same as that of the total
matter perturbation. Thus also in the magnetized case the
baryon density perturbation is following the total matter
perturbation [25]. In particular, the growing mode of the
baryon perturbation due to the magnetic mode ðBÞ is
given by

ΔðBÞ
b ðk; ηÞ ¼ DðηÞΔðBÞ

b ðk; η0Þ; ð2:20Þ

where the growth factor

DðηÞ ¼
�
η

η0

�
2

ð2:21Þ

has been introduced and

ΔðBÞ
b ðk; η0Þ ¼ −

L
30

Ωγ;0

Ωm;0
ðkη0Þ2

�
η0
ηi

�
2

; ð2:22Þ

where ηi is some initial time at which ΔðBÞ
b ðxiÞ ¼ 0.

Neglecting perturbations from before decoupling the
initial time is set to ηi ¼ ηdec [25,26]. Matter perturba-
tions in a magnetized medium cannot grow on scales
below the magnetic Jeans length as the magnetic pressure
will prevent any further collapse [25,26]. Therefore the
simplest approach is to assume DðηÞ ¼ 0 on scales
corresponding to k > kJ, where kJ is the wave number
corresponding to the magnetic Jeans scale. It is given
by [25]

�
kJ

Mpc−1

�
¼

�
14.8

�
Ωm

0.3

�1
2

�
h
0.7

�

×

�
B

10−9 G

�
−1
�

kL
Mpc−1

�nBþ3

2

� 2
nBþ5

: ð2:23Þ

In the case of the adiabatic, primordial curvature mode
ðadÞ the baryon density perturbation follows the total
matter perturbation which is given by (e.g. [11,12])

ΔðadÞ
m ðk; ηÞ ¼ DðηÞΔðadÞ

m ðk; η0Þ: ð2:24Þ

The linear matter power spectrum Pm is defined by

hΔ�
mðk; η0ÞΔmðk0; η0Þi ¼ PmðkÞδk;k0 : ð2:25Þ
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For the adiabatic, curvature mode it is given by

PðadÞ
m ðkÞ ¼ 2π2

k3

�
k

a0H0

�
4 4

25
As

�
k
kp

�
ns−1

T2ðkÞ; ð2:26Þ

where the transfer function TðkÞ is given by [27,28]

TðkÞ ¼ lnð1þ 2.34qÞ
2.34q

½1þ 3.89qþ ð16.1qÞ2

þ ð5.46qÞ3 þ ð6.71qÞ4�−1
4; ð2:27Þ

where q ¼ k
Ωm;0h2 Mpc−1.

For the magnetic mode the matter power spectrum is
found to be from Eq. (2.22)

PðBÞ
m ðkÞ ¼ 2π2

k3

�
k

a0H0

�
4 4

225
ð1þ zdecÞ2

�
Ωγ;0

Ωm;0

�
2

PLðkÞ;

ð2:28Þ

where PLðkÞ is the dimensionless power spectrum deter-
mining the two-point function of the Lorentz term
hL�ðkÞLðk0Þi ¼ 2π2

k3 PLðkÞ given by [19]

PLðkÞ ¼
9

½ΓðnBþ3
2
Þ�2

�
ρB;0
ργ;0

�
2
�

k
km

�
2ðnBþ3Þ

e−ð
k
km
Þ2

×
Z

∞

0

dzznBþ2e−2ð
k
km
Þ2z2

×
Z

1

−1
dxe2ð

k
km
Þ2zxð1 − 2zxþ z2ÞnB−22

× ½1þ 2z2 þ ð1 − 4z2Þx2 − 4zx3 þ 4z2x4�;
ð2:29Þ

and x≡ k·q
kq and z≡ q

k, where q is the wave number over
which the resulting convolution integral is calculated.
During the matter-dominated era the baryon velocity is

determined by (e.g. [20])

Vb ¼ −k−1 _Δb: ð2:30Þ

Therefore the total baryon density perturbation and the
baryon velocity at linear order are found to be

Δbðk; ηÞ ¼ DðηÞΔðadÞ
b ðk; η0Þ þDðηÞΔðBÞ

b ðk; η0Þ; ð2:31Þ

Vð0Þ
b ðk;ηÞ¼−

_DðηÞ
k

ΔðadÞ
b ðk;η0Þ−

_DðηÞ
k

ΔðBÞ
b ðk;η0Þ: ð2:32Þ

For simplicity, it is assumed that there is no cross
correlation between the adiabatic, curvature mode and
the magnetic mode.

B. Vector mode

After decoupling and assuming matter domination the

baryon vorticity Vð�1Þ
b is determined by (e.g. [29])

dVð�1Þ
b

dw
þ 2

w
Vð�1Þ
b ¼ −

1

6

Ωγ;0

Ωb;0
πð�1Þ
B

�
w0

w

�
2

; ð2:33Þ

where as before w ¼ kη and w0 ¼ kη0. The dominant
solution is sourced by the magnetic field and is given by

Vð�1Þ
b ðk; ηÞ ¼ FkðηÞπð�1Þ

B ðkÞ; ð2:34Þ
where the growth factor is given by

FkðηÞ ¼ −
1

6

Ωγ;0

Ωb;0
kη0

�
η0
η

�
: ð2:35Þ

The two-point function of the anisotropic stress term
πð�1ÞðkÞ is given by (e.g. [29])

hπðþ1Þ�
B ðkÞπðþ1Þ

B ðk0Þ þ πð−1Þ�B ðkÞπð−1ÞB ðk0Þi

¼ 2π2

k3
Phπð�1Þ�

B πð�1Þ
B iðkÞδk;k0 ; ð2:36Þ

where for a nonhelical magnetic field

Phπð�1Þ�
B πð�1Þ

B iðkÞ ¼
72

½ΓðnBþ3
2
Þ�2

�
ρB;0
ργ;0

�
2
�

k
km

�
2ð3þnBÞ

e−ð
k
km
Þ2
Z

∞

0

dzznBþ2e−2ð
k
km
Þ2z2

×
Z

1

−1
dxe2ð

k
km
Þ2zxð1 − 2zxþ z2ÞnB−2

2 ð1 − x2Þð1þ z2 − 3zxþ 2z2x2Þ; ð2:37Þ

and x and z are defined as in the case of the scalar mode [cf. Eq. (2.29)].

C. Results

The expression for the angular power spectrum of the secondary CMB anisotropies CðVÞ
l (2.13) involves the two-point

function of δVð�1Þ
b [cf. Eqs. (2.8) and (2.9)] which is found to be

KERSTIN E. KUNZE PHYSICAL REVIEW D 89, 103016 (2014)

103016-4



hδVðþ1Þ�
b ðk;η0ÞδVðþ1Þ

b ðk;ηÞþδVð−1Þ�
b ðk;η0ÞδVð−1Þ

b ðk;ηÞi

¼1

4

Z
∞

0

dy1

Z
1

−1
dyDðηÞDðη0Þ

�
k
π2

_DðηÞ _Dðη0Þð1−y2Þð1−2yy1Þ
1−2yy1þy21

½PðadÞ
m ðk1ÞPðadÞ

m ðjk−k1jÞþPðadÞ
m ðk1ÞPðBÞ

m ðjk−k1jÞ

þPðBÞ
m ðk1ÞPðadÞ

m ðjk−k1jÞþPðBÞ
m ðk1ÞPðBÞ

m ðjk−k1jÞ�þFkðηÞFkðη0Þ
1þy2

y1
Phπð�1Þ�

B π�1
B iðk1Þ½P

ðadÞ
m ðjk−k1jÞþPðBÞ

m ðjk−k1jÞ�
�
;

ð2:38Þ

where y1 ≡ k1
k and y≡ k·k1

kk1
. Since this expression is separable in the conformal times η and η0 Eq. (2.14) can be

written as

ð2lþ 1Þ−2hΘðþ1Þ�
l ðk; η0ÞΘðþ1Þ

l ðk; η0Þ þ Θð−1Þ�
l ðk; η0ÞΘð−1Þðk; η0Þi ¼

lðlþ 1Þ
2

X2
i¼1

βiðkÞUi;lðk; η0Þ2; ð2:39Þ

where

Ui;lðk; η0Þ ¼
Z

η0

0

dηgðηÞαiðη; kÞ
jl½kðη0 − ηÞ�
kðη0 − ηÞ : ð2:40Þ

Moreover, α1ðη; kÞ ¼ DðηÞ _DðηÞ and α2ðη; kÞ ¼ DðηÞFkðηÞ
and the remaining terms in Eq. (2.39) are collected in β1ðkÞ
and β2ðkÞ, respectively. As shown in [12] Ui;l can be
approximated by

Ui;lðk; η0Þ≃
ffiffiffiffiffiffi
π

2l

r
gðηlÞαiðηl; kÞ
k2ðη0 − ηlÞ

; ηl ¼ η0 −
lþ 1

2

k
:

ð2:41Þ
We are interested in the CMB anisotropies generated by

the bulk motion in the postdecoupling Universe. After a
long period after decoupling at around zdec ¼ 1088 with a
small residual fraction of matter in an ionized state the

Universe is reionized at some redshift zr ¼ 10.6 as indi-
cated, e.g., by WMAP9 [4]. The amplitude of the temper-
ature fluctuations depends on the visibility function gðηÞ
and hence on the reionization history of the Universe. For
simplicity it is assumed that the visibility function can be
approximated by a Gaussian as [10,30]

gðηÞ ¼ 1 − expð−τrÞffiffiffi
π

p
Δηr

exp

�
−
�
η − ηr
Δηr

�
2
�
; ð2:42Þ

where the optical depth to the epoch of reionization at ηr is
τr ¼ 0.089 from WMAP9 data only [4]. Moreover, follow-
ing [30] the width of the rescattering surface is chosen to be
determined by Δηr ¼ 0.25ηr. This yields to the following
expressions for the angular power spectrum. The secondary
CMB temperature anisotropies sourced by the scalar mode
at linear order are determined by

CV;S
l ¼ 2π

lþ 1

ðlþ 1
2
Þ2 ð1 − e−τrÞ2ð1þ zrÞ

Z
∞

0

dk
k

�
k

a0H0

�
4

κ6le
−32½ ffiffiffiffiffiffiffiffi

1þzr
p

κl−1�2
Z

∞

0

dy1

Z
1

−1
dyð1 − y2Þð1 − 2yy1Þϑ−2

×

�
16

625
A2
s

�
k
kp

�
2ðns−1Þ

yns1 ϑ
nsT2ðky1ÞT2ðkϑÞ þ 16

5625
Asð1þ zdecÞ2

�
Ωγ;0

Ωm;0

�
2
�
k
kp

�
ns−1

× ½yns1 ϑT2ðky1ÞPLðkϑÞ þ ϑnsy1T2ðkϑÞPLðky1Þ� þ
16

50625
ð1þ zdecÞ4

�
Ωγ;0

Ωm;0

�
4

y1ϑPLðky1ÞPLðkϑÞ
�
; ð2:43Þ

where κl≡1− 1
2
ðlþ 1

2
Þð k

a0H0
Þ−1 and ϑ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2yy1 þ y21
p

.
In the numerical solutions in Fig. 1 the adiabatic mode is
determined by the best-fit parameters of WMAP9 only [4]:
As ¼ Δ2

R ¼ 2.41 × 10−9, ns ¼ 0.972, kp ¼ 0.002 Mpc−1.
The optical depth at reionization τr ¼ 0.089 with the
corresponding redshift zr ¼ 10.6. The magnetic field

energy density over photon energy density is given by
ρB;0
ργ;0

¼ 9.54 × 10−8ð B
nGÞ2. The maximal undamped wave

number of the magnetic field spectrum is km ¼
286.91ð B

nGÞ−1 Mpc−1. The angular power spectrum of the
secondary temperature anisotropies induced by the vector
mode at linear order is given by

SECONDARY CMB ANISOTROPIES FROM BULK MOTIONS … PHYSICAL REVIEW D 89, 103016 (2014)

103016-5



CV;V
l ¼ π

9

lþ 1

ðlþ 1
2
Þ2
�
Ωγ;0

Ωb;0

�
2

ð1 − e−τrÞ2ð1þ zrÞ
Z

dk
k

�
k

a0H0

�
4

κ2le
−32½ ffiffiffiffiffiffiffiffi

1þzr
p

κl−1�2

×
Z

∞

0

dy1

Z
1

−1
dy

1þ y2

y1
Phπð�1Þ�

B π�1
B iðky1Þ

�
4

25
As

�
k
kp

�
ns−1

ϑnsT2ðkϑÞþ 4

225
ð1þ zdecÞ2

�
Ωγ;0

Ωm;0

�
2

ϑPLðkϑÞ
�
: ð2:44Þ

The total secondary temperature anisotropies due to the
bulk motion of the scatterers is then given by

CV
l ¼ CV;S

l þ CV;V
l ; ð2:45Þ

which is shown together with the individual contributions
sourced by the scalar and vector mode, respectively, in
Figs. 1 and 2.
As can be appreciated from Fig. 1 the contribution

induced by the scalar mode is important on larger scales as
compared to that which is sourced by the magnetic vector
mode. For a magnetic field of 3 nG a local maximum is
observed at l ∼ 2 × 104. This is shifted towards larger
values of l for smaller field strengths. The formation of a
local maximum is due to the cutoff of the matter power
spectrum of the magnetic mode at the wave number
corresponding to the magnetic Jeans scale. Not taking into
account this cutoff would actually lead to a monotonic
increase on these scales in the angular power spectrum due
to the magnetic field contribution. The contribution due to
the vector mode dominates on very small scales. For
magnetic fields of strength 3 nG this happens for
l ∼ 2 × 105. For weaker magnetic fields the domain where

the vector mode induced contribution is important is shifted
to even larger values of l.
Current data from SPT and ACT do not constrain this

contribution to the secondary CMB anisotropies. However,
with future observations from Atacama Large Millimeter/
submillimeter Array (ALMA)1 [31], for example, the
interesting region between 104 < l < 106 might be
reached. A similar strong peak on very small angular
scales l > 105 is also predicted, e.g., by scattering of
CMB photons within protogalactic clouds [32] or by the
effects of massive black hole formation [33]. In compari-
son, secondary CMB anisotropies induced by the kinetic
Sunyaev-Zeldovich effect in a patchy reionized universe
leads typically to a plateau over a range 103 < l < 106 at a
lower amplitude [34,35]. The contribution to the thermal
Sunyaev-Zeldovich effect due to the presence of a primor-
dial magnetic field has been studied in [36,37]. It leads to a
significant rise in the angular power spectrum of the
temperature fluctuations on scales larger than those where
the Ostriker-Vishniac effect is important. In particular for
magnetic fields which are not close to scale invariance
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FIG. 1 (color online). Contributions and total angular power spectrum of the temperature fluctuations of the Ostriker-Vishniac effect
for magnetic field strengths B ¼ 1 nG and B ¼ 3 nG for spectral indices nB ¼ −2.9 (left panel) and nB ¼ −2.5 (right panel). The
contributions induced by the scalar mode and the one of the vector mode are shown together with the total amplitude of the angular
power spectrum.

1https://almascience.nrao.edu/.
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observations for l < 104 constrain quite strongly the
magnetic field parameters [36,37]. Depending on details
of the calculation of the matter perturbations limits are
more [36] or less stringent [37].

III. CONCLUSIONS

The secondary temperature anisotropies caused by the
combination of inhomogeneous distribution and movement
of electrons and generally ionized matter along the line of
sight has been calculated in the presence of a stochastic
magnetic field in the postdecoupling, reionized Universe.

A simple model of reionization has been used in which
reionization is not assumed to be instantaneous but rather a
finite width of the rescattering surface has been introduced
by choosing the visibility function to be a Gaussian. As
magnetic fields induce vector modes at linear order there is
an additional source term for the secondary anisotropies.
Magnetic fields also have an important contribution to the
scalar mode on small scales. This can be seen in their effect
on the total linear matter power spectrum where there is a
rise in power on small scales due to the effect of the Lorentz
term in the baryon velocity equation [18,38]. Similarly, the
Lorentz term is responsible for an increase on small scales
of the angular power spectrum of the secondary CMB
anisotropies calculated here. However, due to the cutoff at
the magnetic Jeans scale for matter density perturbations
induced by the magnetic field a local maximum results at
multipoles l≳ 104. For even larger values of l the
contribution sourced by the magnetic vector mode becomes
dominant. For magnetic fields of strength 3 nG and
negative spectral index this results in a rise in the angular
power spectrum for l > 2 × 105 corresponding to angular
scales less than 3.2”. These scales might be probed with
ALMA in the future which might provide an interesting
possibility to search for traces of large-scale, cosmological
magnetic fields.
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