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The crystalline color superconducting phase is believed to be the ground state of deconfined quark
matter for sufficiently large values of the strange quark mass. This phase has the remarkable property of
being more rigid than any known material. It can therefore sustain large shear stresses, supporting torsional
oscillations of large amplitude. The torsional oscillations could lead to observable electromagnetic signals
if strange stars have a crystalline color superconducting crust. Indeed, considering a simple model of a
strange star with a bare quark matter surface, it turns out that a positive charge is localized in a narrow shell
about ten Fermi thick beneath the star surface. The electrons needed to neutralize the positive charge of
quarks spill in the star exterior forming an electromagnetically bounded atmosphere hundreds of Fermi
thick. When a torsional oscillation is excited, for example by a stellar glitch, the positive charge oscillates
with typical kHz frequencies, for a crust thickness of about one-tenth of the stellar radius, to hundreds of
Hz, for a crust thickness of about nine-tenths of the stellar radius. Higher frequencies, of the order of few
GHz, can be reached if the star crust is of the order of a few centimeters thick. We estimate the emitted
power considering emission by an oscillating magnetic dipole, finding that it can be quite large, of the order
of 1045 erg=s for a thin crust. The associated relaxation times are very uncertain, with values ranging
between microseconds and minutes, depending on the crust thickness. The radiated photons will be in part
absorbed by the electronic atmosphere, but a sizable fraction of them should be emitted by the star.
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I. INTRODUCTION

One of the routes for studying the properties of matter at
very high densities is by the inspection of the properties of
compact stellar objects (CSOs). These are stars having a
mass of 1–2M⊙ and a radius of about 10 km, typically
observed as pulsars. Baryonic matter inside a CSO is
squeezed at densities about a factor 3–5 larger than in heavy
nuclei. From a simple geometrical reasoning one can argue
that in these conditions baryons are likely to lose their
identity [1] and a new form of matter should be realized.
One possibility is that the extremely high densities and

low temperatures may favor the transition from nuclear
matter to deconfined quark matter in the core of the CSO
[2–5]. In this case compact (hybrid) stars featuring quark
cores and a crust of standard nuclear matter would exist.
A second possibility is that strange matter is the ground

state of the hadrons [6]. In this case at high densities there
should exist the possibility of converting nuclear matter to
deconfined matter. The resulting CSO would be a strange
star [7,8], i.e., a CSO completely constituted of deconfined
matter; see [9] for a review.

Unfortunately these two possibilities cannot be checked
by first principle calculations. Indeed at the densities
relevant for CSOs, quantum chromodynamics (QCD) is
nonperturbative, because the typical energy scale is about
ΛQCD. Moreover, lattice QCD simulations at large baryonic
densities are unfeasible because of the so-called sign
problem [10]; see [11] for a recent review and [12] for a
study of an inhomogeneous phase.
Although not firmly established by first principles, it is

reasonable to expect that if deconfined quark matter is
present, it should be in a color superconducting (CSC)
phase [13–15]. The reason is that the critical temperature
of color superconductors is large, Tc ≃ 0.57Δ, where Δ ∼
5– 100 MeV is the gap parameter. For the greatest part of
the CSO lifetime, the temperature is much lower than this
critical temperature and the CSCphase is thermodynamically
favored.
It is widely accepted that at asymptotic densities, when

the up, down, and strange quarks can be treated as massless,
the color-flavor locked (CFL) phase [16] is the ground state
of matter. This phase is energetically favored because
quarks of all flavors and of all colors form standard
Cooper pairs, thus maximizing the free energy gain.
However, considering realistic conditions realizable within
CSOs, a different CSC phase could be realized. The reason
is that the nonzero and possibly large value of the strange
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quark mass, Ms, combined with the requirement of beta
equilibrium, electromagnetic and color neutrality, tends
to pull apart the Fermi spheres of quarks with different
flavors [17]. The mismatch between the Fermi spheres is
proportional to M2

s=μ, where

μ ¼ μu þ μd þ μs
3

(1)

is the average quark chemical potential. The free energy
price of having simultaneous pairing of three-flavor quark
matter increases with increasing values of M2

s=μ. Since the
free energy gain is proportional to the CFL gap parameter,
ΔCFL, ifM2

s=μ > cΔCFL, with c a number of order 1 [18], a
different and less symmetric CSC phase should be favored.
One possibility is that the crystalline color superconducting
(CCSC) phase is realized [15,19–21]. In this phase quarks
form Cooper pairs with nonzero total momentum, and there
is no free energy cost proportional to M2

s=μ. The only free
energy cost is due to the formation of counterpropagating
currents; see, for example, the qualitative discussion
in [21].
Actually, with increasing values of M2

s=μ various inho-
mogeneous CSC phases can be realized, because the
system has many degrees of freedom [15]. The CCSC
phase should be favored for certain values of the chemical
potential mismatch. In reality, the CCSC phase is not one
single phase but a collection of phases, characterized
by their crystalline arrangements, which are favored for
different values of M2

s=μ. The Ginzburg-Landau (GL)
analysis of [20] has shown that in three-flavor quark matter
there are two good candidate crystalline structures that are
energetically favored for

2.9ΔCFL ≲M2
s

μ
≲ 10.4ΔCFL: (2)

This range of values is certainly model dependent, and
moreover the GL expansion is under poor quantitative
control [15]. For this reason we shall consider strange star
models in which both the CFL phase and the CCSC phase
are realized. Since the CFL phase is expected to be favored
at high densities, we shall assume that it is realized in the
core of the CSO. The CCSC phase is favored at smaller
densities and constitutes the crust of the CSO. The radius,
Rc, at which the CFL core turns into the CCSC crust will be
used as a free parameter. We shall restrict our analysis to
bare strange stars [7], meaning that we shall assume that on
the top of the strange star surface there is no other layer of
baryonic matter.
Our model of a strange star resembles the typical onion

structure of a standard neutron star with a solid crust and a
superfluid core. It is similar to the model discussed in [22]
for studying r-mode oscillations. In that work the core
radius was determined using a microscopic approach;
instead we treat Rc as a free parameter.

One quantitative difference between our model and
standard neutron star models, is that the CCSC phase is
extremely rigid, much more rigid than the ironlike crust.
The shear modulus of the energetically favored phase can
be obtained studying the low energy oscillations of the
condensate modulation [23–26]. In particular, the low
energy expansion of the GL Lagrangian of [26] leads to
a shear modulus

ν≃ ν0

�
Δ

10 MeV

�
2
�

μ

400 MeV

�
2

; (3)

where

ν0 ¼ 2.47
MeV
fm3

(4)

will be our reference value. The reader is warned that the
actual value of the shear modulus might differ from ν0 by a
large amount because of the various approximations used in
[26]. The value of Δ is also uncertain, with reasonable
values ranging between 5 MeV and 25 MeV; see the
discussions in [15,26]. Regarding the quark chemical
potential, we shall consider the values obtained in the
construction of hydrodynamically stable strange stars. The
shear modulus of different crystalline structures is propor-
tional to ν, with corrections of the order unity. Since in our
treatment we shall only exploit the rigidness of the CCSC
phase giving the order of magnitude estimates for the
various computed quantities, the actual crystalline pattern is
irrelevant for our purposes.
Taking into account the uncertainty in the gap parameter

and in the quark chemical potential, it can be estimated that
the value of ν is larger than in the conventional neutron star
crust (see for example [27]), by at least a factor of 20–1000
[26]. This large value of the shear modulus is due to the
fact that the typical energy density associated with
the oscillations of the condensate modulation is μ2Δ2,
where Δ is determined by the strong interaction in the
antitriplet channel. Instead, in a conventional neutron star
the associated energy is at the electromagnetic scale.
Given the large shear modulus, one immediate conse-

quence is that CCSC matter can sustain large deformations.
In Refs. [22,28–31] the emission of gravitational waves by
various mechanisms that induce a quadrupole deformation
of the CCSC structure has been studied. See also [32] for a
discussion of a different mechanism of gravitational wave
emission from strange stars.
In the present paper we shall instead consider the

electromagnetic (EM) emission by strange stars with a
CCSC crust. Since the strange star surface confines
baryonic matter but allows the leakage of electrons, it
follows that at the star surface there is a charge separation at
the hundreds of Fermi scale [7]. Because of the large shear
modulus, our model of a bare strange star can sustain large
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and fast torsional oscillations, leading to a periodic
displacement of the surface charge. We shall see that
the frequencies of torsional oscillations are of the order
of MHz if the crust is hundreds of meters thick. Lower
frequencies are reached if the crust is a few kilometers
thick; GHz frequencies are reached if the crust is a few
centimeters thick.
The amplitude of the oscillations at the star surface is in

any case of the order of centimeters, leading to an
enormous emitted radiation, of the order of 1041 erg=s,
steeply increasing for thin crusts. Thus the oscillation
energy should be radiated away very efficiently, on time
scales of milliseconds or even microseconds for a thin crust
and of the order of hundreds of seconds for a thick crust.
More in detail, we shall determine the frequency, the
amplitude, the damping times, and the emitted power as
a function of the various parameters that characterize the
strange star.
This paper is organized as follows. In Sec. II we discuss

spherically symmetric strange stars in hydrodynamical
equilibrium. In Sec. III we determine the charge distribu-
tion close to the surface of the strange star. In Sec. IV we
study the torsional oscillations of the strange star, estimat-
ing the frequencies, the emitted power, and the decay time
as a function of the various parameters of the model. We
draw our conclusions and a possible connection with
astronomical observations in Sec. V.

II. EQUILIBRIUM CONFIGURATIONS OF
SPHERICALLY SYMMETRIC STRANGE STARS

For a spherically symmetric nonrotating star, the unper-
turbed background can be described by the static metric

ds2 ¼ gμνdxμdxν ¼ −e2ΦðrÞdt2 þ e2ΛðrÞdr2 þ r2dΩ2: (5)

The relation between the function ΛðrÞ and the mass
distribution mðrÞ is given by the solution of Einstein’s
equations inside the star, namely

e2ΛðrÞ ¼
�
1 −

2mðrÞG
r

�
−1
; mðrÞ ¼

Z
r

0

dr0r02ρðr0Þ;
(6)

where ρðrÞ is the energy density of the fluid. The
equilibrium structure is obtained by solving the Tolman-
Oppenheimer-Volkov (TOV) equation

∂p
∂r ¼ −

Gðpþ ρÞðmþ 4πpr3Þ
rðr − 2GmÞ ; (7)

once the equation of state (EoS) pðρÞ is specified. The star
radius, R, is determined by the boundary condition on the
pressure pðRÞ ¼ 0, simply meaning that the pressure at the
surface of the star should vanish.

The gravitational potential Φ can be found from

∂Φ
∂r ¼ Gðmþ 4πpr3Þ

rðr − 2GmÞ ; (8)

once p is derived from the solution of Eq. (7). Outside the
star, for r > R, defining mðRÞ ¼ M, we have that

e2ΛðrÞ ¼
�
1 −

2MG
r

�
−1
; e2ΦðrÞ ¼ 1 −

2MG
r

: (9)

In the present work we consider a simple strange star
model, entirely composed of deconfined three-flavor quark
matter in the CSC phase. The detailed form of the CSC
phase is not important here, because quark pairing should
account for a small variation of the quark matter EoS.
Since for the range of densities attainable in compact

stars QCD perturbative calculations are not trustable, we
use the general parametrization of the EoS given in [33]

ΩQM ¼ −
3

4π2
a4μ4 þ

3

4π2
a2μ2 þ Beff ; (10)

where a4, a2, and Beff are independent of the average quark
chemical potential μ. This parametrization can be seen as a
Taylor expansion of the grand potential, with phenomeno-
logical coefficients (see [33] for a discussion of the relevant
range of values of each parameter). To take into account the
impact of the uncertainty of these coefficients on our
results, we consider two extreme situations, namely A
[a4 ¼ 0.7, a2 ¼ ð200 MeVÞ2, and Beff ¼ ð165 MeVÞ4]
and B [a4 ¼ 0.7, a2 ¼ 0, and Beff ¼ ð145 MeVÞ4]. In
Fig. 1 we report the mass-radius sequences obtained
solving the TOV equations using the above EoS for the
two different sets of parameters. The largest attainable mass

6 9 12
R (km)

0

0.5

1

1.5

2

2.5

M
/M

O. A

B

FIG. 1 (color online). Mass radius relation for strange stars with
the EoS given in Eq. (10) for the two sets of parameter values
discussed in the text. Changing these parameters, it is possible to
span a large range of values of mass and radius. The black dots
represent the equilibrium structure assumed as reference models
in this paper.
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with each set will be our reference model, represented as a
black dot in Fig. 1. In detail, Model A has a total mass of
M ¼ 1.27M⊙, radius R≃ 7.1 km, and central density
ρc ≃ 5 × 1015 g=cm3; and Model B has M ≃ 2.0M⊙,
R≃ 10.9 km, and ρc ≃ 2 × 1015 g=cm3. The presence of
the electric charge is expected to produce corrections on
masses and radii of strange quark stars at the 15% and 5%
levels, respectively [34].
In both models we assume that at a certain radial

distance, Rc ¼ aR with 0 ≤ a ≤ 1, there is a phase tran-
sition between the CFL phase and the CCSC phase. In
Fig. 2 we show a pictorial description of the star structure.
Since the values of Ms and of the gap parameters are
unknown, it is not possible to determine from first
principles the radial distance at which the CFL phase turns
into the CCSC phase. For this reason we treat a as a
parameter. More in detail, in our model we are assuming
that the CFL-CCSC phase transition does not change in an
appreciable way the EoS. Thus, our assumption is that at a
given Rc the pressure of the CCSC phase and of the CFL
phase are equal, but the difference between the pressure of
these two phases is always small in the sense that
computing the star mass and radius using only a CFL
EoS or only a CCSC EoS does not change the results in an
appreciable way. This is a fair approximation as far as the
gap parameter in both phases are similar and much less than

the average chemical potential. Our model is basically the
model discussed in [22], but we treat a as a free parameter,
whereas they compute it by a microscopic theory.

III. CHARGE DISTRIBUTION

It is very interesting to study the charge distribution close
to the surface of the strange star. The reason is that quarks
are confined inside the strange star by the strong inter-
action, while electrons can leak by a certain distance
outside the star and are bound only by the electromagnetic
interaction [7]. As we shall see in detail below, electrons
form an electrosphere hundreds of Fermi thick on the top of
the star surface. This negative charge is compensated by a
positive charge of quarks in a narrow layer, about 10 fm
thick, beneath the star surface.
Let us see how this charge separation happens. At

equilibrium, the chemical potentials associated with any
free particle species must be constant, i.e., space indepen-
dent; otherwise particles would move to compensate the
chemical potential difference. However, in the presence of
an electrostatic potential, ϕ, the density of particles can be
space dependent. In the local density approximation this
fact can be taken into account defining the space dependent
effective chemical potential

μiðxÞ ¼ μi þ eQiϕðxÞ; (11)

where Qi is the charge of the species i, in units of the
electric charge, e. Note that because of the weak process
uþ d↔uþ s one has μsðxÞ ¼ μdðxÞ. Note also that the
average chemical potential, μ [see Eq. (1)], is space
independent; indeed, μuðxÞ þ μdðxÞ þ μsðxÞ ¼ μu þ μdþ
μs ¼ 3μ.
To simplify the charge distribution treatment, we shall

assume that the leading effect of color interactions is to
provide confinement of quarks in the interior of the star [7].
This is a good approximation if the subleading effect of
color interactions is the quark condensation. Indeed quark
condensation is expected to produce corrections to our
results of the order Δ=Ms. Since the surface of the star is in
the CCSC phase, it amounts to less than 10% corrections.
We also neglect the fact that in the CCSC phase the Uð1Þem
is rotated to a ~Uð1Þ, because the mixing angle between the
photon and the pertinent color field is small [14–16].
Therefore, we approximate the number density of the

fermionic species, ni, as a free Fermi gas, meaning that

niðxÞ ¼ Ci
kF;iðxÞ3
3π2

; (12)

where Ci is a factor taking into account the color degrees of
freedom and kF;iðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μiðxÞ2 −m2

i

p
is the Fermi momen-

tum, with mi the mass.
The number density of quarks ends abruptly at the

surface of the star, but the number density of electrons

electrosphere

RcR

CFL

CCSC

FIG. 2 (color online). Sketch of the structure of the considered
bare strange star model. The star core extends up to a radius Rc
and is made by color-flavor locked matter. The crust is made by
the extremely rigid crystalline color superconducting matter. The
star radius, R, is determined by the solution of the TOV
equation (7) with the EoS in Eq. (10). We treat the core radius,
Rc ¼ aR, as a free parameter. The strange star is surrounded by a
cloud of electrons, the electrosphere, having a width (not in scale
in the figure) of hundreds of Fermi; see Sec. III.

MANNARELLI et al. PHYSICAL REVIEW D 89, 103014 (2014)

103014-4



extends over distances r > R, determining the thickness of
the electrosphere. If the charge distribution varies in a
region much smaller than the star radius, it is possible to
approximate the geometry of the interface as planar. We
shall assume that this is the case and then check that it is a
good approximation. For a planar interface the Poisson’s
equation reads

d2ϕ
dz2

¼ e
X
i

QiniðzÞ; (13)

where z measures the distance from the quark matter
discontinuity, located at z ¼ 0; the star interior corresponds
to z < 0.
Two boundary conditions are obtained requiring that the

charge density vanishes far from the interface. For the sake
of notation we define

VðzÞ ¼ μeðzÞ ¼ μe − eϕðzÞ; (14)

and we can rewrite Poisson’s equation as

d2V
dz2

¼ −
4αem
3π

X
i

QiCik3F;i: (15)

Considering the weak equilibrium processes, the effective
quark chemical potentials can be written as

μuðzÞ ¼ μ −
2

3
VðzÞ; μdðzÞ ¼ μsðzÞ ¼ μþ 1

3
VðzÞ;

(16)

and the corresponding number densities can be obtained
substituting these expressions in Eq. (12). In principle the
average quark chemical potential depends on the radial
coordinate as well. Indeed, from the EoS we can determine
for any value of r the function μðrÞ. However, the average
quark chemical potential varies on the length scale of
hundreds of meters at least, much larger than the length
scale of the quark charge distribution, which as we shall see
below is of few tens of Fermi at most. Since the z ¼ 0
region corresponds to the star surface, we can take

μ≃ μR ≡ μðRÞ. We report in Table I the values of these
quantities for the two considered models.
No net charge is present far from the boundary, and

therefore we require that

neðzÞz→þ∞ ¼ 0 (17)

and that�
2

3
nuðzÞ −

1

3
ndðzÞ −

1

3
nsðzÞ − neðzÞ

�
z→−∞

¼ 0: (18)

Neglecting the electron mass the first condition leads to
Vðþ∞Þ ¼ 0; neglecting also the light quark masses the
second condition leads to

V3
q ¼ 2

�
μR −

2

3
Vq

�
3

−
�
μR þ 1

3
Vq

�
3

−
��

μR þ 1

3
Vq

�
2

−M2
s

�3
2

(19)

that fixes a relation among Ms, μR, and Vq ¼ Vð−∞Þ.
Assuming that at the crust-electrosphere interface there

is no surface charge, we obtain a third boundary condition
requiring that the electric field is a continuous function at
z ¼ 0. This boundary condition can be used to obtain an
expression of the effective electron chemical potential at the
surface that depends on Vq and μ, approximately given by

V0 ¼ Vq −
V2
q

2
ffiffiffi
3

p
μ
þOðV3

q=μ2Þ: (20)

Note that in most of the studies it is assumed that the quark
distribution is constant, leading to V0 ¼ 3=4Vq; see [7].
Here we have instead used the free Fermi gas distribution
for quarks, but the quantitative result remains basically the
same: V0 is slightly smaller than Vq.
The Poisson’s equation (15) can be analytically solved

for positive values of z, and we find

VðzÞ ¼ V0

1þ
ffiffiffiffiffiffiffi
2αem
3π

q
V0z

for z > 0: (21)

TABLE I. Values of the parameters characterizing the surface of the two considered star models. The second and third columns
represent the average quark chemical potential and the matter density at the surface of the star, respectively. Considering two different
values of the strange quark mass we report for each stellar model the parameters d; b, and V0 characterizing the charge distributions [see
Eqs. (21) and (22)] and the positive surface charge density, Qþ [see Eq. (24)].

Model μR [MeV] ρR [g=cm3] Ms [MeV] d [fm] b [MeV3] V0 [MeV] Qþ [MeV3 fm]

A 387 9.0 × 1014 150 3.8 4.5 × 103 14.2 1.7 × 104

A 387 9.0 × 1014 250 3.9 3.0 × 104 37.4 1.2 × 105

B 302 4.1 × 1014 150 4.9 5.5 × 103 17.8 2.7 × 104

B 302 4.1 × 1014 250 3.3 5.2 × 104 46.9 1.7 × 105
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Upon substituting the expression above in Eq. (12) (taking
Ce ¼ 1), one readily obtains the electron distribution for
positive z.
In the interior of the star the Poisson’s equation must be

solved numerically. For negative values of z we obtain by a
fit of the total charge distribution,X

i

QiniðzÞ ¼ bez=d z ≤ 0; (22)

where the b and d are two parameters describing the
maximum charge density and the Debye screening length
of the total charge distribution, respectively. The screening
length has been computed in a different way in [35], finding
results analogous to ours. The values of V0 and of the fitting
parameters b and d for the considered models and for two
values of Ms are reported in Table I. In the interior of the
star, the positive charge distribution corresponds to a shell
of thickness less than 10 fm peaked at r ¼ R. This result is
basically independent of the considered star model and of
the strange quark mass. It relies on the fact that we are
considering that the dominant charge carriers in the interior
of the star are gapless quarks. Indeed, in the relevant CCSC
phases quarks have a linear direction dependent dispersion
law; see [15,20]. Moreover, unpaired quarks are present as
well. For this reason the Debye screening length is
approximately given by the free fermi gas expression for
three massless flavors,

d≃ dFermi gas ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

8αemμ
2

r
∼ 5 fm (23)

for μ ¼ 300 MeV.
The number density at the surface is approximately

independent of the considered model, but depends on the
chosen value of the strange quark mass. The reason is that
with the decreasing strange quark mass the electronic
density decreases. This effect can also be seen from the
values of the positive surface charge density beneath the
star surface

Qþ ¼ e
X
i

Qi

Z
R

0

drniðrÞ; (24)

reported in the last column of Table I. This positive charge
is balanced by the electron negative charge outside the
star. The electron distribution extends outside the star

for a distance approximately given by ð
ffiffiffiffiffiffiffi
4αem
3π

q
M2

s=μÞ−1
[see Eqs. (19), (20), and (21)] of the order of hundreds
of Fermi. Therefore, the length scales of both charge
distributions are much less than the star radius.
Note that, in principle, a charge separation should occur

as well at Rc, at the CFL-CCSC interface; the reason being
that the bulk CFL matter has vanishing electron chemical
potential [14–16]. However, whatever phenomenon takes

place at the CFL-CCSC interface should be screened by the
overlying CCSC layer.

IV. NONRADIAL OSCILLATIONS

We now consider the possible oscillations of the above
determined charge distribution. In particular, we are inter-
ested in nonradial oscillations, which can generate an EM
current at the star surface.
Stars have a large number of nonradial oscillations,

which can be classified as spheroidal and toroidal oscil-
lations; see for example [36]. For definiteness, we focus on
torsional oscillations [37–40], a particular class of toroidal
oscillations. The torsional oscillations are the only toroidal
oscillations in nonrotating stars with a negligible magnetic
field [36]. These oscillations can be produced by acting
with a torque on a rigid structure, as shown in Fig. 3
for a simple rigid slab. When the applied forces are parallel
to the sides of the slab they produce a deformation of
the structure. As the external torque vanishes, the slab
starts to oscillate around the equilibrium configuration.
The restoring force is proportional to the shear modulus,
and the frequency of the small amplitude oscillations is
given by

ω ∝
1

D

ffiffiffi
ν

ρ

r
; (25)

where D is the thickness of the slab. The slab can be
thought as a local approximation of the CCSC crust, and

L θ
−F

F −θ

D

FIG. 3 (color online). Pictorial description of the torsional
oscillations of a homogeneous two-dimensional slab with
D ≪ L. The equilibrium configuration corresponds to the one
in which all the horizontal lines are parallel (left panel). A torque
applied at the surfaces of the slab slightly deforms it by an angle θ
(central panel). As the applied forces vanish, the slab starts
to oscillate around the equilibrium configuration, reaching
the configuration with deforming angle −θ (right panel). The
restoring force governing the oscillation is proportional to the
shear modulus, ν. The applied force determines the amplitude of
the oscillation; the frequency of the oscillation is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν=ðρD2Þ
p

, where ρ is the matter density of the slab.
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therefore we expect that the frequency of the crust torsional
oscillations has the same qualitative dependence on ν, ρ and
the crust thickness, D ¼ R − Rc, as in Eq. (25).
Our interest in the torsional oscillations is clearly due to

the fact that in the CCSC phase the shear modulus is
extremely large and can therefore sustain large amplitude
oscillations. We shall show that for a sufficiently thin
CCSC crust, the frequency of the oscillations lies in the
MHz radio-frequency range, whereas for a thick CCSC
crust the frequency of the oscillations lies in the hundreds
of Hz range.
Given the spherical symmetry of the nonrotating stars, it

is useful to use spherical coordinates for the displacement
vector

ξrnl ¼ 0; ξθnl ¼ 0; ξϕnl ¼
WnlðrÞ
r sin θ

∂Plðcos θÞ
∂θ eiωnlt;

(26)

where l is the angular momentum and n is the principal
quantum number indicating the number of nodes. In
the following we shall study these oscillations in the
Newtonian approximation. We expect that a treatment with
full general relativity (GR) should give correction factors of
order unity. Given the large uncertainties of the various
parameters of the model, it seems appropriate to neglect GR
corrections. We shall investigate the GR corrections in a
future work.
In the Newtonian limit the velocity perturbation1 is

given by

δunl ¼ iωnlξnl; (27)

and the amplitude of the horizontal oscillation satisfies the
following differential equation:

ω2
nlWnl ¼

ν

ρ

�
−
1

ν

dν
dr

�
dWnl

dr
−
Wnl

r

�
−

1

r2
d
dr

�
r2
dWnl

dr

�

þ lðlþ 1Þ
r2

Wnl

�
: (28)

The torsional oscillation extends in the CCSC crust and
disappears suddenly in both the CFL phase and the
electrosphere. The displacement is discontinuous at these
interfaces because both the CFL and the electrosphere have
a vanishing shear modulus.
We shall simplify the discussion assuming that the quark

matter in the CCSC crust has constant density,
ρ≃ ρR ¼ ρðRÞ; see Table I. This is a good approximation
because all the considered cases correspond to a CCSC
crust a few kilometers thick at most. In any case, the density
of quark matter in strange stars does not sharply change,

because strange stars are self-bound CSOs. We shall as well
neglect the radial dependence of the shear modulus and
take it as a constant. In this way the displacement satisfies
the following differential equation:

d2Wnl

dr2
þ 2

r
dWnl

dr
þ
�
ω2
nl

v2s
−
lðlþ 1Þ

r2

�
Wnl ¼ 0; (29)

where vs ¼
ffiffiffiffiffiffiffiffiffiffi
ν=ρR

p
is the shear wave velocity. It is useful

to switch to the adimensional variable y ¼ ωnlr=vs, and to
define Wnl ¼ Unl=y. In this way the above differential
equation can be written as

U″
nlðyÞ þ

�
1 −

lðlþ 1Þ
y2

�
UnlðyÞ ¼ 0: (30)

The solution of this equation can be expressed as a sum of
spherical Bessel and Neumann functions

UnlðyÞ ¼ c1jlðyÞ þ c2nlðyÞ: (31)

After an initial stage in which the crust has been excited by
some external agency, we assume that there is no torque
acting on both interfaces of the crust. This corresponds to
assuming the no-traction condition [36], leading to

U0
nlðy1Þ ¼ 2

Unlðy1Þ
y1

; U0
nlðy2Þ ¼ 2

Unlðy2Þ
y2

; (32)

where y2 ¼ ωnlR=vs corresponds to the CCSC-electro-
sphere interface and y1 ¼ ωnlaR=vs ¼ ay2 corresponds to
the CFL-CCSC interface. One of the two conditions can be
used to eliminate one of the two coefficients in Eq. (31).
The other condition determines the quantized frequencies.
For definiteness, we shall hereafter assume that the only
excited mode is the one with l ¼ 1 and with one node,2

n ¼ 1. In this case we find that for a≳ 0.3 one can use the
approximate functions

y2 ≃ π

1 − a
; y1 ≃ aπ

1 − a
; (33)

and the corresponding oscillation frequency is given by

ω11 ≃ 0.06

�
ν

ν0

�
1=2
�

δR
1 km

�
−1
�
ρR
ρ0

�
−1=2

MHz; (34)

where δR ¼ ð1 − aÞR and ρ0 ¼ 1015 g=cm3. Note that for
each set of parameters the equation above gives the smaller
attainable frequency. Radial overtones, having higher
frequencies, could as well be excited by the external
agency triggering the oscillation of the crust.

1Eulerian and Lagrangian perturbations are identical for
toroidal oscillations [36].

2The mode with n ¼ 1 is the first nontrivial mode for l ¼ 1.
Indeed, the mode with no nodes ðn ¼ 0Þ corresponds to a global
rotation of the star.
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As in the simple example of the slab (see the caption of
Fig. 3) the amplitude of the oscillations is determined by
the external agency, which fixes the amount of energy of
each mode. The frequency of the oscillations is propor-
tional to the shear velocity divided by the crust width.
For definiteness, we shall assume that a fraction α of the

energy of a glitch excites the l ¼ 1; n ¼ 1 mode, and thus

αEglitch ¼
ρR
2

Z
jδu11j2dV; (35)

where we shall consider as a reference value EVela
glitch ¼

3 × 10−12M⊙ as estimated for the giant Vela glitches. Less
energetic glitches, as for the Crab, simply correspond to
smaller values of α. Of particular relevance for us is the
amplitude of the oscillation at the star surface, because it
determines the displacement of the quark electric charge.
The displacement does in general depend on the thickness
of the crust, on the shear modulus, and can be expressed as

W11ðRÞ ¼ AðaÞ
�
ν

ν0

�
−1=2

�
R

10 km

�
−1=2

�
αEglitch

EVela
glitch

�
1=2

;

(36)

where AðaÞ is reported in Fig. 4.
The amplitude of the oscillations is in general quite large,

of the order of centimeters, except for a≃ 1. Indeed, the
amplitude vanishes for a ¼ 1, because this case corre-
sponds to a star completely made of CFL matter. In the
following we shall always consider the case in which
the crust has a macroscopic extension, much larger than the
extension of the positive charge distribution. Notice that
considering a perturbation that excites more modes does
not qualitatively change the above results. The only effect is
a distribution of the total energy among modes with higher
frequency.
The fluctuation of the current density induced by

periodic horizontal displacement associated with the

torsional oscillation is given by δJ ¼ e
P

iQiniðzÞδu11.
The EM vector field in a point outside the source is
given by

δAðr; tÞ ¼
Z

δJðr0; tRÞ
jr − r0j dV 0; (37)

where tR ¼ t − jr − r0j. We estimate the emitted power by
considering the moving electric charges as an oscillating
magnetic dipole. In the far field approximation (jrj ≫ jr0j),
and for a coherent emission (ω11 ≪ 1=jr0j), we obtain that

P ¼ e2π4ω6
11

6

�X
i

Qi

Z
R

0

drniðrÞr3W11ðrÞ
�

2

sin2ðω11tÞ

≃ π4ðω11RÞ6
6

W11ðRÞ2Q2þsin2ðω11tÞ; (38)

whereQþ is given in Eq. (24). An approximate value of the
radiated power is given by

PðaÞ≃ 6.4 × 1041
�
y2ðaÞ6A2ðaÞ
y2ð0Þ6A2ð0Þ

��
ν

ν0

�
2
�
ρR
ρ0

�
−3

×

�
R

10 km

�
−1
�
αEglitch

EVela
glitch

��
Qþ
Q

�
2

erg=s; (39)

where we have averaged over time and considered as a
reference value for the surface charge density
Q ¼ 105 MeV3 fm. The values of Qþ for the two consid-
ered models and for two different values ofMs are reported
in Table I. The radiated power increases with increasing a,
meaning that the thinner the crust, the larger the radiated
power (as far as the crust remains larger than the region in
which there is a positive electric charge). For example,
considering a ¼ 0.9 we obtain a radiated power of about
1045 erg=s. The radiated power increases because the
oscillation frequency increases with increasing a. It cer-
tainly happens that for a → 1 the amplitude of the
oscillation decreases (see Fig. 4), but it does not decrease
fast enough to compensate for the increase of the frequency,
and thus the product y2ðaÞ6A2ðaÞ in Eq. (39) increases with
increasing a.
Approximate values of the damping time, τ, for the two

considered models and for different values ofMs and Δ are
reported in Table II, for two values of a. The damping time
is computed simply dividing the energy of the oscillation
for the corresponding emitted power. This certainly gives a
rough, order of magnitude, estimate of the time needed for
emitting all the energy. We find that τ decreases with
increasing values of Ms and/or Δ. The reason is that with
increasing values ofMs the positive charge close to the star
surface increases; see Eq. (22) and Table I. With increasing
values of Δ the shear modulus increases [see Eq. (3)], and
therefore the frequency of the oscillations increases. Since

0 0.2 0.4 0.6 0.8 1
a

0

0.02

0.04

0.06

0.08

0.1

A
 [

m
]

FIG. 4. Function determining the horizontal displacement at the
surface of the star associated with the considered torsional
oscillation; see Eq. (36).
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P ∝ Q2þω6
11, the dependence onΔ is particularly strong; see

Eqs. (34) and (3).
Now we have assumed that the electrosphere does not

screen the radiated photons. However, it is conceivable that
a sizable fraction of the emitted energy will be scattered by
the electrosphere. The detailed modelization of the electro-
sphere and of the interaction with the photons emitted by
the positive charged quark layer is a nontrivial problem; see
for example [22,41–43]. We shall estimate the absorbed
fraction considering a completely degenerate electron gas
at a small temperature [41]. The absorption is due to the
Thomson scattering of photons off degenerate electrons and
leads to an exponential reduction of the emitted power.
Assuming that electrons are degenerate and considering
that temperature corrections, of order T=me, can be
neglected, one finds that the intensity of the emitted
radiation is suppressed by [41]

η ¼ exp

 
−
1.129
6π2

ffiffiffiffiffiffiffiffiffiffi
3π

2αem

s
σTV2

0

!
; (40)

where σT ¼ 8π=3ðα2em=m2
eÞ is the total Thomson cross

section. For the considered values of the surface potential
(see Table I), we obtain suppression factors of order 0.1.

V. CONCLUSIONS

We have discussed two very simple strange star models
entirely composed of deconfined color superconducting
matter. Our star models are very similar to those proposed
in [22] for the discussion of r-mode oscillations. We
assume that the star core is composed by CFL matter
and there is a crust of rigid CCSC quark matter. The size of
the star crust is unknown, because it depends on the
detailed values of the strange quark mass and of the gap
parameters, which are very uncertain. For this reason we

have treated the ratio between the core radius and the star
radius as a free parameter.
In our treatment of the crust we have determined the

equilibrium charge configuration, in Sec. III, using the free
Fermi gas distributions but at the same time we have
considered CCSC matter, in Sec. IV, as a rigid crystalline
structure. These two facts may seem to be in contradiction.
However, in the relevant crystalline phases, quarks close to
the Fermi sphere have a linear dispersion law [15,44],
which indeed mimics the behavior of free quarks. The
effect of the condensate is to induce a direction dependent
Fermi velocity. Moreover, not all quarks on the top of the
Fermi sphere are paired. For these reasons we have
assumed that the EM properties of the CCSC phase are
similar to those of unpaired quark matter. What is rigid is
the modulation of the underlying quark condensate that can
be seen as the structure on the top of which quarks
propagate. This treatment of the EM properties of the
CCSC phase is in our opinion an educated assumption.
A detailed study of the EM properties of the CCSC phase is
necessary to substantiate this approach.
The discussion of the quark matter surface can certainly

be improved including condensation effects, following for
example the discussion in [45], or viscous damping below
the star crust as in [46]. Moreover it would be interesting to
study whether strangelet crystals could form on the star
surface [47]. One should investigate whether these strange-
let nuggets might coexist with the CCSC phase, presum-
ably assuming that the surface tension of quark matter is not
too large, eventually leading to a drastic reduction of the
surface charge density.
In our simple treatment, we estimate the emitted energy

of the torsional oscillations using an oscillating magnetic
dipole. The emitted power is extremely large, and for stars
with a small CFL core it is of the order of 1041η erg=s,
where η is a screening factor due to the presence of the
electrosphere, estimated in Eq. (40). The emitted power
steeply increases with increasing values of a (see Fig. 5),
meaning that stars with a large CFL core and a thin CCSC
crust would probably emit all the oscillation energy in
milliseconds. For a sufficiently thin crust, say hundreds of
meters thick, we expect that the emission is at the MHz
frequency.
Given the large emitted power, it is tempting to compare

our results with the most powerful observed EM emissions.
The radio bursts observed from rotating radio transients
have a duration of a few milliseconds, and the associated
flux energy is extremely large [48]. However, the observed
frequencies are of the order of GHz (see [49–51]), whereas
we found that the frequencies associated with the n ¼
1; l ¼ 1 mode of a star with a 1 km CCSC crust are of the
order of tens of kHz. If the crust is thinner, say a few
centimeters thick, then GHz frequencies can be attained,
but in this case the emitted power, estimated by Eq. (39), is
extremely large and the damping time should be much less

TABLE II. Approximate values of the damping times for the
two considered models for two different values of the strange
quark mass and of the gap parameter. In the third column we have
assumed that a ¼ 0.9, meaning that the CCSC crust is about
0.7 km (1.1 km) thick for Model A (Model B). In the fourth
column we have taken a ¼ 0.1, meaning that the CCSC crust is
about 6.4 km (9.8 km) thick for Model A (Model B).

Model Ms [MeV] Δ [MeV] τa¼0.9 [s] τa¼0.1 [s]

A 150 5 2.0 × 10−1 1.7 × 103

A 150 25 3.1 × 10−4 2.8 × 101

A 250 5 4.2 × 10−3 3.7 × 101

A 250 25 6.7 × 10−6 5.9 × 10−2

B 150 5 3.3 × 10−1 2.9 × 103

B 150 25 5.2 × 10−4 4.6 × 100

B 250 5 8.2 × 10−3 7.3 × 101

B 250 25 1.3 × 10−5 1.2 × 10−2
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than the observed milliseconds. A loophole might be that
by Eq. (39) we are overestimating the emitted power by
orders of magnitude. The reason is that in Eq. (39) we are
using the coherent emission approximation, which con-
ceivably breaks down at such large frequencies. Moreover,
we are assuming the presence of a net positive charge, with
electrons only providing a screen for the emitted power.
A more refined treatment should include the effect of
the star magnetic field which might strongly couple the
oscillation of the star and of the electrosphere. Therefore,
future work in this direction is needed to clarify how the
presented discussion of the emitted EM power changes in
the presence of strong magnetic fields; see for example
[52,53]. A different possibility is that there exists a
mechanism for exciting predominantly modes with higher
angular momentum and/or higher principal quantum num-
bers. In this case, frequencies larger than tens of kHz could
be reached for stars with a thick crust as well.
Different powerful phenomena of great interest are giant

magnetar x-ray flares [54]. The observation of these flares
has posed a challenge to strange stars with no crust [55].
The standard explanation of these flares is indeed related
with the seismic vibrations of the crust triggered by a
starquake. Typical frequencies are of the order of hundreds
of Hz at most and the emitted luminosities is of the order of
1044– 1046 erg=s. The measured decaying time is of order
of minutes. In our model, oscillations of hundreds of Hz
can be reached only if the shear modulus is sufficiently
small, of the order of ν010−4, making it comparable with
standard nuclear crusts, and if the CCSC crust is suffi-
ciently thick, say of the order of a few kilometers, meaning

that a ∼ 0.1. For these small values of a the damping time
can be of the order of hundreds of seconds; see the last
column in Table II. Basically, our bare strange star model
has frequency and decay times compatible with magnetar
flares only if it has the same structure of a standard neutron
star. The caveat is that these flares are observed in
magnetars, which are CSOs expected to have a large
magnetic field. In our simple treatment we have neglected
the effect of the background magnetic field, which, how-
ever, in the case of magnetars could be sizable.
We have neglected the effect of the temperature as well.

Although temperature effects are negligible for strange
stars older than ∼10 s [56], when the temperature has
dropped below the MeV scale, it would be interesting to see
what is the effect of a large, say ∼10 MeV, temperature; see
for example the discussion in [41,57]. Unfortunately, the
shear modulus has only been computed at vanishing
temperature [26]. A detailed study of the temperature
dependence of the shear modulus and of the response of
the CCSC structure to the temperature is needed to
ascertain the correct temperature dependence of the tor-
sional oscillations. However, let us assume that the CCSC
structure has already formed when the temperature is of the
order of a few MeV and that it responds to the temperature
as a standard material, meaning that with increasing
temperature the shear modulus decreases. From Eq. (34)
it follows that the frequency of the torsional oscillation
decreases and, from Eq. (36), that the amplitude increases.
Moreover, an increasing temperature should lead to an
increase of the number densities of the light quarks and
electrons, leading to a larger Qþ. The overall effect on the
radiated power is not obvious, because in Eq. (38) we have
that ω11 decreases, but W11 and Qþ increase; therefore a
careful study of the various contributions is necessary.
Regarding the emission mechanisms of the electrosphere,
one should consider the various processes that become
relevant at nonvanishing temperature. In particular, eþe−
production is believed to be the dominant process at high
temperature [58–61].
Finally, note that in the evaluation of the horizontal

displacement one should include the radial dependence of
the shear modulus and of the matter densities as well as GR
corrections, which are expected to be small, but should
nevertheless be considered for a more refined study.
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FIG. 5. Radiated power [see Eq. (39)] as a function of the ratio
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star with a rigid crust extending from the surface down to the
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