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We report on a remarkable class of exact solutions to force-free electrodynamics that has four-current
along the light cones of an arbitrary timelike worldline in flat spacetime. No symmetry is assumed, and the
solutions are given in terms of a free function of three variables. The field configuration should describe the
outer magnetosphere of a pulsar moving on the worldline. The power radiated is the sum of an acceleration
(Larmor-type) term and a pulsar-type term.

DOI: 10.1103/PhysRevD.89.103013 PACS numbers: 97.60.Gb, 04.40.Nr, 52.27.Ny

I. INTRODUCTION AND MAIN RESULTS

Pulsars are believed to be rapidly rotating neutron stars
with extremely strong magnetic fields, whose pulses are
caused by misalignment of the field and rotation axes. Such
a configuration is inconsistent with a vacuum exterior [1],
so that pulsars must have a plasma magnetosphere. The
strong magnetic field ensures that the energy (including rest
mass) and momentum of the charged particles is negligible
compared to that of the fields. Conservation then dictates
that the Lorentz force density must vanish everywhere in
the plasma, FabJb ¼ 0. Eliminating the current via
Maxwell’s equation ∇bFab ¼ 4πJa, we may write the
complete set of equations as

∇½aFbc� ¼ 0; Fab∇cFbc ¼ 0: (1)

These are the equations of force-free electrodynamics, a
nonlinear, deterministic set of equations for the electro-
magnetic field of a magnetically dominated plasma [2,3].
Force-free electrodynamics is very different from vac-

uum electrodynamics. One dramatic example is the open-
ing of magnetic field lines [1,4–6]. If a rotating, conducting
star is endowed with a magnetic dipole and immersed in
vacuum, the field lines form closed loops, as usual. If, on
the other hand, the star is surrounded by a force-free
plasma, lines leaving the star near its poles actually “open
up,” proceeding all the way to infinity, never to return to the
star (Fig. 1). Closed field lines are confined to a region near
the star, so that the outer magnetosphere contains only open
lines, which run in opposite directions on opposite sides of
a current sheet. For aligned magnetic and rotation axes
(“aligned rotor”), this sheet is on the equatorial plane,
whereas for inclined axes it traces an oscillatory pattern at
the rotational frequency.
A second, key difference from vacuum electrodynamics

is that stationary, axisymmetric force-free fields can trans-
port energy and angular momentum away from an isolated
source. For example, even an aligned rotor loses energy
to a force-free magnetosphere, at a rate comparable to the

inclined case [7]. For spinning black holes, a stationary,
axisymmetric magnetosphere can extract the hole’s rota-
tional energy, as first shown by Blandford and Znajek [8].
While vacuum electrodynamics relies on acceleration to
produce radiation that transports energy, force-free fields
can carry away energy in steady state.
It is nevertheless natural to ask how force-free energy

transport proceeds when acceleration is added to the mix. If
a magnetized neutron star is accelerated, how does the
magnetosphere respond, and how is the energy output
modified? These questions have direct astrophysical appli-
cation in modeling emission from compact object binaries,
as potential electromagnetic counterparts to gravitational-
wave observations [9,10] or precursor emission to gamma-
ray bursts [11]. While numerical simulations have now
successfully treated some important configurations [12–14],
the high computational cost of three-dimensional runs

FIG. 1 (color online). Sketch of the pulsar magnetosphere.
Outside of a zone of closed field lines near the star, magnetic field
lines (blue) run in opposite directions on opposite sides of a
current sheet (brown). (The field lines also wind around azimu-
thally, not shown in this projection.) Despite the complicated
geometry, the current density (black) is approximately null and
radial in the open zone.
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precludes a systematic exploration using numerical tech-
niques alone. It is therefore of interest to develop analytical
tools to address the question of the accelerated pulsar
magnetosphere.
The present approach is motivated by the observation

that in numerical simulations of the magnetosphere of
nonmoving pulsars [7,15–18], the four-current vector
becomes very nearly null and radial at a few light cylinder
radii from the pulsar [18,19]. It is therefore natural to
suppose that, for a pulsar in motion, the outer magneto-
sphere continues to host a null current pointing towards the
star. For relativistic motion, the current should point
towards the pulsar location at the retarded time. Thus we
expect that the outer magnetosphere of a moving pulsar has
null four-current along the light cones of the star’s
worldline.
In this paper we find all solutions with null current along

the light cones of a timelike worldline in flat spacetime. We
use techniques developed recently in [20], combined with
technology developed in [21–24]. For fields that are
smooth everywhere off the worldline, the result takes a
simple form. Let ua be the four-velocity of the worldline,
extended to all spacetime by parallel transport along the
(future) null cones, and let la be the tangent to the null
generators of the cones that satisfies uala ¼ 1. The general
solution to Eqs. (1) that is smooth away from the worldline
and has four-current Ja ∝ la is given by

Fab ¼ Fq
ab − 2l½a∇b�ψ ; (2)

where Fq
ab is the field of a magnetic monopole of charge q

moving on the worldline (the magnetic dual of the Lienard-
Wiechert field) and ψ is an arbitrary scalar field satisfying
la∇aψ ¼ 0. In light of the nonlinearity of Eq. (1), it is
remarkable that such a broad class of solutions can be
written down analytically. For a stationary worldline the
solutions reduce to those of [20] restricted to flat spacetime,
which in turn contain those of Michel [25] and Lyutikov
[26] as special choices of ψ . The solutions (2) are
magnetically dominated (FabFab > 0) when q ≠ 0 and
null (FabFab ¼ 0) when q ¼ 0.
The power radiated on each cone by Eq. (2) is

PðuÞ ¼ 2

3
q2a2 þ 1

4π

Z
∇aψ∇aψdS; (3)

where a is the magnitude of the four-acceleration at the
vertex of the cone (proper time u), and the surface of
integration (area element dS) is a “retarded time rest frame
sphere,” the intersection of the light cone and a spacelike
plane orthogonal to the four-velocity at time u. (One may
think of this as a sphere at future null infinity, but the
integral is independent of the sphere on account of
la∇aψ ¼ 0.) The first term of Eq. (3) arises from the
monopole field (this is simply the Larmor formula), while

the second term is due to the second term in Eq. (2). The
cross term turns out to be a total derivative, and has
vanished by Stokes’ theorem.
Real pulsars do not contain monopoles, and the outer

magnetosphere instead has a split monopolar structure,
where two regions of opposite polarity are separated by a
current sheet. The split case introduces two subtleties. First,
we may no longer assume globally smooth fields. For fields
that are only locally smooth, we find that the charge q may
depend on time u, and an additional term proportional to
the time derivative _q appears, Eq. (34) below. For the
present work we set _q ¼ 0, in which case Eq. (2) gives the
general locally smooth solution. As explained below, q
corresponds to intrinsic pulsar parameters (magnetic field
strength and rotation rate), so _q ¼ 0 restricts to pulsars
whose intrinsic properties do not change significantly in
time.
The second subtlety of the split case is that Stokes’

theorem fails, in general, to eliminate the cross term in the
power radiated. In the simplest models of current sheets
[6,27] the field strength undergoes a sign change at the
sheet, so that the cross term is continuous, and no extra
terms arise. However, in the most general case allowed by
the electromagnetic junction conditions, we must supple-
ment Eq. (3) by boundary integrals taken on the inter-
section of the current sheet and the sphere, Eq. (42) below.
In [18] it was shown that the shape of the dipole pulsar’s
current sheet precisely matches the simple model of [27],
where the field strength undergoes a sign flip. For this
reason we expect current sheets formed in the exterior of
rotating stars to generically have this simple behavior.
We therefore expect that the outer magnetosphere of an

accelerated pulsar will be described by Eq. (2), with sign
reversed on either side of a current sheet,1 with the power
radiated given by Eq. (3). The solution has three free
parameters/functions: the worldline, the monopole charge
q, and the function ψ . We imagine fixing these as follows.
First, perform numerical simulations of nonmoving pulsars
with a variety of physical parameter choices (spin, mag-
netic dipole, etc.) and, in each case, determine the asso-
ciated q and ψðt − r; θ;ϕÞ by fitting the exterior
magnetosphere to Eq. (2) with a stationary worldline.
One thus has a map between pulsar parameters at time t
and a function ψðθ;ϕÞ on the sphere, which describes the
field on the associated light cone. Now suppose the pulsar
is accelerated. Provided the acceleration does not signifi-
cantly affect the near-zone physics,2 one should be able to
simply use the “same” q and ψ for an accelerated worldline.
That is, the same q is used, while ψ is promoted by
demanding that it agree with the nonmoving case on each

1If the pulsar is given a quadrupole or higher moment magnetic
field, one would expect additional current sheets, which can also
be described by our solution.

2This should at least be true for small acceleration, a ≪ Ω,
where Ω is the angular frequency of the pulsar.
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light cone of the accelerated worldline (Fig. 2). In this way
the outer magnetosphere and radiated power can be obtained
without the need to simulate the accelerated pulsar.
We may determine the effect of acceleration on the

power radiated without performing this procedure explic-
itly. The second term in Eq. (3) agrees with the energy flux
for an unaccelerated pulsar whose parameters agree instan-
taneously with the accelerated one. The first term may
therefore be regraded as the correction due to acceleration.
For a dipole pulsar with magnetic moment μ and angular
velocityΩ, dimensional analysis and linearity of the field in
μ imply that q ∝ μΩ and ψ ∝ μΩ2. The second term in
Eq. (3) has the usual pulsar energy loss scaling μ2Ω4, while
the first term gives the acceleration correction as

Paccel: ¼
2

3
q2a2 ∝ μ2Ω2a2: (4)

For comparison, note that the power radiated by an
accelerated constant dipole in vacuum scales as μ2 _a2,
where dot is a time derivative [28].
In Sec. V we estimate the size of this effect for

astrophysical binaries, concluding that it is too small to
be observable with present methods. However, it is an
significant fraction of the ordinary pulsar power for binaries
near merger, and it would be interesting to compare with
numerical simulations of binary systems. During the
inspiral it should be possible to regard each member as
approximately following an accelerated trajectory in flat
spacetime, and the scaling μ2Ω2a2 should appear as part of
the energy flux. Thus far, numerical simulations of mag-
netized binaries have been performed only in the irrota-
tional case, Ω ≈ 0. It would be interesting to perform
simulations with nonzero values of spin in order to see
if the characteristic μ2Ω2a2 energy flux appears. In prin-
ciple this could be distinguished from other effects like
unipolar induction [29] by its dependence on spin and

acceleration. Alternatively one could perform a simulation
of a pulsar with an unmagnetized, nonconducting com-
panion, where there should be no unipolar induction.
From a purely theoretical standpoint, this work provides

a nice coda to the story of the pulsar magnetosphere.
Perhaps the most dramatic aspect of this story is the
opening of field lines, wherein the force-free plasma
converts dipoles to (split) monopoles. In a sense, our
results indicate that this conversion extends to radiation,
too: An accelerated pulsar radiates not as a dipole μ, but
rather as a monopole q ∝ μΩ.
In Sec. II we review some computational technology,

which we use to solve the force-free equations in Sec. III.
We compute the energy flux in Sec. IV and discuss
astrophysical applicability in Sec. V. Latin indices are
abstract spacetime indices (holding independent of coor-
dinates), while Greek indices label components in a
coordinate system. The signature of our (flat) metric
is ðþ;−;−;−Þ.

II. TECHNOLOGY

We begin by reviewing some technology for the light
cones congruence [21–24]. Consider flat spacetime in
Cartesian Minkowski coordinates xμ, and let ðζ; ζ̄Þ be
complex stereographic coordinates for two-spheres in this
fixed frame. (Complex stereographic coordinates are
related to spherical coordinates by ζ ¼ eiϕ cot θ

2
.) Con-

sider a timelike worldline parametrized by proper time u
as xμ ¼ zμðuÞ. The four-velocity is uμ ¼ _zμ, where dot
denotes a u derivative. Define a new set of coordinates
ðu; r; ζ; ζ̄Þ by

xμ ¼ zμðuÞ þ rlμðu; ζ; ζ̄Þ; (5)

where lμðu; ζ; ζ̄Þ are the Minkowski coordinate compo-
nents of the null vector pointing in the spatial direction
ðζ; ζ̄Þ, and normalized so that laua ¼ 1. This latter con-
dition gives r the interpretation of the spatial distance
between the point ðu; r; ζ; ζ̄Þ and the worldline point zμðuÞ,
as measured in the rest frame of the worldline at time u.
Since these points are null related, we refer to u as the
retarded time. The new coordinates are defined everywhere
except for the worldline r ¼ 0, where Eq. (5) is not
differentiable.
Letting an arbitrary factor vðu; ζ; ζ̄Þ absorb the normali-

zation, we may write vlμ ¼ f1; n̂ðζ; ζ̄Þg, where n̂ ¼ ~x=j~xj
is the radial unit vector in the fixed frame. In terms of ðζ; ζ̄Þ
we then have

lμ ¼ 1

vP

�
P; ζ þ ζ̄;

ζ − ζ̄

i
; ζζ̄ − 1

�
; (6)

where P ¼ 1þ ζζ̄. If we write uμ ¼ γf1; ~βg then ~β is the
three-velocity of the worldline relative to the fixed frame.

FIG. 2 (color online). For an accelerated pulsar we expect the
far-zone four-current to be along the light cones of the worldline.
We find that exact solutions with such current are classified by a
number q and a function ψ on the sphere cross the worldline.
These parameters therefore encode the relevant details of the
near-zone pulsar physics.

ON THE MAGNETOSPHERE OF AN ACCELERATED PULSAR PHYSICAL REVIEW D 89, 103013 (2014)

103013-3



From uala ¼ 1 and vlμ ¼ f1; n̂g we then obtain the
explicit formula v ¼ γð1 − ~β · n̂Þ. This form helps for
checking a convenient identity satisfied by v,

v−2 ¼ 1þ Δ log v; (7)

where Δ is the Laplacian on the unit two-sphere.
In Eq. (5), rlμ is naturally regarded as a “displacement

vector” between zμðuÞ and the field point xμ. For later
purposes it is convenient to let la be the vector field whose
Minkowski coordinates are given by Eq. (6) at each point
ðu; r; ζ; ζ̄Þ on the manifold. This vector field is tangent to
the congruence of future-directed null geodesics emanating
from the worldline, and ill defined on the worldline itself.
We will also regard vðu; ζ; ζ̄Þ as a scalar field on the
manifold (minus the worldline), whose particular space-
time dependence encodes the three-velocity ~βðuÞ. Finally
we extend the four-velocity off the worldline by parallel
transport along the light cones, i.e., uμðu; r; ζ; ζ̄Þ ¼ _zμðuÞ.
To compute the metric components in the new coor-

dinates it is useful to note that ∂ζlμ is complex null and
orthogonal to lμ and uμ ¼ _zμ. From Eq. (5) we then find

ds2 ¼
�
1 − 2r

_v
v

�
du2 þ 2dudr −

4r2

v2P2
dζdζ̄: (8)

The metric of a (unit) two-sphere in complex stereographic
coordinates is given by 4P−2dζdζ̄. The extra factor of v2 in
Eq. (8) reflects the fact that the two-surface u ¼ r ¼ const
is a constant distance sphere in the rest frame associated
with retarded time u, whereas ðζ; ζ̄Þwere defined relative to
the fixed frame. We refer to u ¼ r ¼ const spheres as rest
frame spheres.
By construction, we have l ¼ ∂r in the new coordinates.

From Eq. (8) we may select three other null vectors
satisfying the Newman-Penrose (NP) [30] require-
ments lana ¼ 1 and mam̄a ¼ −1 (other inner products
vanishing),

lμ ¼ ð0; 1; 0; 0Þ; (9a)

nμ ¼
�
1;−

1

2

�
1 − 2r

_v
v

�
; 0; 0

�
; (9b)

mμ ¼
�
0; 0;

vPffiffiffi
2

p
r
; 0

�
; (9c)

m̄μ ¼
�
0; 0; 0;

vPffiffiffi
2

p
r

�
: (9d)

The vectors l and n are null normals to the rest frame
spheres, while m and m̄ are complex-null tangents. From
Eq. (5), the ðu; r; ζ; ζ̄Þ coordinate components of the
extended four-velocity are

uμ ¼
�
1; r

_v
v
; 0; 0

�
¼ nμ þ 1

2
lμ: (10)

Finally, a unit vector orthogonal to ua and to rest frame
spheres is given in these coordinates by

Rμ ¼
�
1;−1 − r

_v
v
; 0; 0

�
¼ nμ −

1

2
lμ: (11)

The spin coefficients for the tetrad (9) are

ρ ¼ 2μ ¼ −
1

r
; α ¼ −β̄ ¼ ∂ ζ̄ðPvÞ

2
ffiffiffi
2

p
r
;

γ ¼ −
_v
2v

; ν ¼ −
Pvffiffiffi
2

p ∂ ζ̄

�
_v
v

�
; (12)

with all other coefficients vanishing. From κ ¼ σ ¼
Im½ρ� ¼ 0 we see that the null congruence along l is
geodesic, shear free, and twist free [30]. Using ua ¼ na þ
1
2
la and the NP equations [30] we may compute the frame

components of the four-acceleration aa ¼ ub∇bua

(extended off the worldline by parallel transport along null
cones), finding aa ¼ νma þ ν̄m̄a þ γðla − 2naÞ. Two
particularly useful quantities are the projection on to la,

aala ¼
_v
v
; (13)

and the magnitude,

aaaa ¼ −P2v2∂ζ

�
_v
v

�
∂ ζ̄

�
_v
v

�
−
�
_v
v

�
2

: (14)

A final bit of technology wewill find useful are the ð and
ð̄ operators. These operators are defined on functions with
a definite spin weight as

ð η ¼ P1−s∂ζðPsηÞ; (15)

ð̄ η ¼ P1þs∂ ζ̄ðP−sηÞ: (16)

The spin weight s of a function η is refers to its behavior
η → exp½iθs�η under rotations of the sphere tetrad vectors
m → exp½iθ�m. The application of ð raises the spin weight
of a quantity by one, while ð̄ lowers by one. Any smooth
function of spin weight −1 can be written as ð of a spin-
weight zero function (and similarly for ð̄ and spin weight
þ1). Acting on spin-weight zero functions, we have
ð ð̄ ¼ ð̄ ð ¼ Δ, where Δ ¼ P2∂ζ∂ ζ̄ is the sphere
Laplacian. Both ð and ð̄ obey the Leibniz rule and have
the property that the sphere integral of ð f (or ð̄ f) is
vanishing for any spin-weighted function f. Thus total
derivatives may be freely thrown away under integrals. In
anticipation of this use we rewrite Eq. (14) as

T. DANIEL BRENNAN AND SAMUEL E. GRALLA PHYSICAL REVIEW D 89, 103013 (2014)

103013-4



ð
�
_v
v

�
ð̄
�
_v
v

�
¼ −

2

3

aaaa
v2

þ 1

6
ð ð̄

�
_v
v

�
2

; (17)

where v and _v have spin-weight zero, and Eq. (7) has
been used.

III. SOLUTION

We follow the general approach of [20], using some
techniques from [23,24]. The electromagnetic NP scalars
are defined as [30]

ϕ0 ¼ Fablamb; (18a)

ϕ1 ¼
1

2
Fabðlanb þ m̄ambÞ; (18b)

ϕ2 ¼ Fabm̄anb: (18c)

We assume that the current is along the null congruence,
Ja ¼ J la with J ≠ 0. The force-free condition FabJb ¼ 0
then becomes Fablb ¼ 0, or equivalently

ϕ0 ¼ 0; Re½ϕ1� ¼ 0: (19)

Using Eqs. (19), (12), and (9) in the spin-coefficient version
of Maxwell’s equations [31], we find

�
∂r þ 2

r

�
ϕ1 ¼ 0; χ∂ζϕ1 ¼ 0; (20)

�
∂r þ 1

r

�
ϕ2 − χ∂ ζ̄ϕ1 ¼ 0; (21)

χ2∂ζ

�
ϕ2

χ

�
−
�
∂u − 1

2

�
1 − 2r _v

v

�
∂r − 1

r

�
ϕ1 ¼ 2πJ ; (22)

where χ ¼ ðvPÞ=ð ffiffiffi
2

p
rÞ.

Equation (20), together with the fact that ϕ1 is pure
imaginary, implies that ϕ1 ¼ iqðuÞ=ð2r2Þ for a real func-
tion qðuÞ, where the factor of 1=2 is convenient. This
function must be independent of angles ðζ; ζ̄Þ to satisfy the
equations locally, but our application to split monopole
magnetospheres requires us to allow different local sol-
utions to be patched together, so that qðuÞ becomes a
piecewise-constant function on the sphere. We will write
qðu;DÞ to remind the reader that this function may take
different constant values on different domains D of the
sphere,

ϕ1 ¼
iqðu;DÞ

2r2
: (23)

The magnetic monopole charge Q of a field configuration
may be defined as 1=ð4πÞ times the magnetic flux through a
closed surface. (For regular fields satisfying Maxwell’s
equations such an integral is always zero, but our fields are
singular on the worldline.) From Eq. (18) together with the
fact that m and m̄ span rest frame spheres S, we see that

Q ¼ 1

4π

Z
S
F ¼

Z
qðu;DÞdΩ; (24)

where the first statement views F as a two-form. A solution
with nonzero Q cannot be realized physically, since it
would require the presence of a magnetic monopole charge
on the worldline. (In the picture of matching the solution to
a pulsar interior, the matching could only succeed if the
pulsar contained magnetic monopoles.) Thus for physical
solutions we require that

Z
qðu;DÞdΩ ¼ 0: (25)

If we regard qðu;DÞ as the effective local monopole charge,
this statement means that the total effective monopole
charge must vanish.
Note that we work locally on each domain D, so that

ð q ¼ 0. Requiring Eqs. (20)–(22) to also be satisfied at the
domain boundaries (i.e., in a distributional sense on
spacetime) would enforce a strictly null, radial, current
even on any current sheets. This is too restrictive for the
application to pulsar magnetospheres. Instead, one must
allow (non-force-free) charge-current to flow in the sheets.
We defer the specific selection of appropriate domains to
the task of constructing a detailed model of an outer
magnetosphere.
Plugging Eq. (23) into Eq. (21), we find that

ϕ2 ¼
fðu; ζ; ζ̄Þ

r
(26)

for a complex function fðu; ζ; ζ̄Þ. Equation (22) then yields

1ffiffiffi
2

p ð
�
f
v

�
−
iq
2
∂u

�
1

v2

�
¼ 2π

r2

v2
J þ i _q

2v2
; (27)

where we use the ð operator introduced in Eq. (15), and
f=v has spin weight −1. Using the identity (7) we may
express Eq. (27) as

ð
�

fffiffiffi
2

p
v
−
iq
2
ð̄
_v
v

�
¼ 2π

r2

v2
J þ i _q

2v2
: (28)

Since the term in parentheses is a spin −1 function of
ðu; ζ; ζ̄Þ, it may be expressed as 1

2
ð̄ψ for a spin-zero

function ψðu; ζ; ζ̄Þ (with a convenient factor of 1
2
),

ð̄ψ ¼
ffiffiffi
2

p f
v
− iqð̄

�
_v
v

�
: (29)

Then Eq. (28) becomes

Δψ ¼ 4π
r2

v2
J þ i _q

2v2
; (30)

where ð ð̄ ¼ Δ is the sphere Laplacian.
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To solve Eq. (30) we use the identity (7) and split ψ into
real and imaginary parts ψ ¼ ψR þ iψ I , finding

ΔψR ¼ 4π
r2

v2
J (31)

and

Δðψ I − _q log vÞ ¼ _q: (32)

Equation (31) provides no constraint on ψR, since we allow
the current J to take on whatever value is set by the
solution of Eq. (1). On the other hand, Eq. (32) should be
solved for ψ I. This equation asks for a function on the
sphere whose Laplacian is constant. There is no such
globally regular solution, but using Δ ¼ P2∂ζ∂ ζ̄ it is easy
to see that the general solution is

ψ I − _q log v ¼ _q logPþ αðζÞ þ βðζ̄Þ; (33)

where α and β are free functions representing the freedom
of adding homogeneous solutions. However, since only ð̄ψ
appears in the field strength [see Eqs. (29) and (26)], we
may set α ¼ 0 without loss of generality. But the constraint
that ψ I be real then implies that β is constant (recall
ζ ¼ eiϕ cot θ

2
), in which case we may also set β ¼ 0. In this

case combining Eqs. (26), (29), and (33) yields

ϕ2 ¼
1ffiffiffi
2

p v
r
ð̄
�
ψR þ iq

_v
v
þ i _q logðPvÞ

�
: (34)

While the last term in Eq. (34) diverges at the “south
pole” ζ; ζ̄ → ∞, the choice of this pole is arbitrary (picked
out here by working in a particular set of coordinates), and
a regular solution could be constructed by taking regular
portions of this term on each domain D. We will discuss
this type of construction in a future paper. For this paper we
set _q ¼ 0.
Setting _q ¼ 0 and collecting everything together, our

solution for the NP scalars is

ϕ0 ¼ 0; (35)

ϕ1 ¼
iq
2r2

; (36)

ϕ2 ¼
1ffiffiffi
2

p v
r
ð̄
�
ψ þ iq

_v
v

�
; (37)

where ψðu; ζ; ζ̄Þ is a free real function on the sphere cross
time, and qðDÞ is a piecewise constant function on the
sphere. The domains D may in general change with time u,
but the value of the q within each domain must remain
constant. While every choice of ψ and qðDÞ gives rise to a
solution away from the domain boundaries, ensuring that
the field satisfies appropriate junction conditions at the
domains (i.e., that the boundaries do not host magnetic
monopole sources) will restrict the choice.

When ψ vanishes (or is constant), Eqs. (35)–(37) are the
spin coefficient form of the point monopole field [23,24],
locally in each domain D. To see that the ψ term gives the
correction listed in Eq. (2), contract l½a∇b�ψ with tetrad
vectors to compute the associated NP scalars, using the
formulae (9) for our tetrad.
For a field with ϕ0 ¼ 0, the quadratic invariants are given

by �FabFab ¼ −4Im½ϕ2
1� and FabFab ¼ −8Re½ϕ2

1� [20].
Thus our solutions have �FabFab ¼ 0 [which is true of
any nonvacuum solution of Eq. (1)] and FabFab ¼ 2q2=r4.
In particular the solutions are magnetically dominated
(FabFab > 0) when the monopole charge is nonvanishing,
and otherwise null (FabFab ¼ 0).
The charge-current for the solution is given by Eq. (30)

with _q ¼ 0,

J ¼ 1

4π

v2

r2
Δψ : (38)

Integrating Eq. (38) with respect to the sphere element dΩ
shows that

R
J v−2dΩ ¼ 0, or equivalently

R
JadSa ¼ 0,

where dSμ ¼ r2=v2RμdΩ is the oriented area element on
rest frame spheres. Thus no three-current flows through any
such sphere, and, since Ja is null, the net charge on the
sphere vanishes. In particular, the worldline does not act as
a source or sink of current, and the magnetosphere is charge
neutral overall.

IV. POWER

We now compute the power radiated by Eqs. (35)–(37),
making the additional assumption that the magnitude
of qðDÞ is the same in each domain. Since power is
Lorentz invariant, we may use the frame defined by the
four-velocity at each retarded time. The flux through a large
rest frame sphere (sphere at future null infinity) is

PðuÞ ¼ lim
r→∞

Z
TabuaRb r

2

v2
dΩ ¼ 1

2π
lim
r→∞

Z
jϕ2j2

r2

v2
dΩ:

For the second equality we have used the NP form of the
electromagnetic stress tensor Tab [31], the formulas ua ¼
na þ 1

2
la and Ra ¼ na − 1

2
la, and the facts that ϕ0 ¼ 0 and

ϕ1 ¼ Oð1=r2Þ for our solution. Using the explicit formula
(37) yields

PðuÞ ¼ 1

4π

Z
ð
�
ψ − iq

_v
v

�
ð̄
�
ψ þ iq

_v
v

�
dΩ

¼ 1

4π

Z �
ðψ ð̄ψ þ q2ð

�
_v
v

�
ð̄
�
_v
v

�

þ iq

�
ð̄
�
_v
v
ðψ

�
− ð

�
_v
v
ð̄ψ

��	
dΩ; (39)

where we have used the Leibniz rule and the fact that ð and
ð̄ commute on spin-zero functions.
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We call the first term in Eq. (39) the pulsar power. To
rewrite this term covariantly, note that the nonzero compo-
nents of the inverse metric are gur ¼ 1, grr¼−1þ2rð_v=vÞ,
and gζζ̄¼−ðP2v2Þ=ð2r2Þ. Furthermore, the area element on
the surface of integration is dS ¼ −r2=v2dΩ. We then have
ðψ ð̄ψdΩ¼P2∂ζψ∂ ζ̄ψð−v2=r2ÞdS¼ gμν∇μψ∇νψdS. This
latter expression is covariant, and we have

PpulsarðuÞ ¼
1

4π

Z
∇aψ∇aψdS; (40)

deriving the second term in Eq. (3). While the integral arose
on a large sphere, it is in fact independent of the sphere
radius.
We call the second term in Eq. (39) the acceleration

power. To evaluate this term we use Eq. (17). Since q2 is
assumed constant over the sphere, q2 1

6
ð ð̄ ð _v=vÞ is a total

derivative and does not contribute. We are then left with

Paccel:ðuÞ ¼
1

4π

Z �
−
2

3
q2

aaaa
v2

�
dΩ ¼ −

2

3
q2aaaa; (41)

where we pull the constants q2 and aaaa out of the integral
and then use Eq. (7), throwing away the total derivative.
This derives the first term in Eq. (3).
We call the remaining contribution to Eq. (39) the

sheet power. Since ð̄ ðAðBÞ − ð ðAð̄BÞ is equal to
P2½∂ ζ̄ðA∂ζBÞ − ∂ζðA∂ ζ̄BÞ� for spin-zero functions A and
B, we identify this contribution [last line of Eq. (39)] as the
integral of the two-form −2qdð _vv dψÞ, where d is the
exterior derivative. Then by Stokes theorem on each
domain and _v=v ¼ aala [Eq. (13)], we have

PsheetðuÞ ¼
−1
2π

Z
S
d

�
q
_v
v
dψ

�
¼ −1

2π

Z
C�

qaaladψ : (42)

Here C represents the oriented curve(s) on the sphere
present at the boundary between domains D. The notation
C� indicates that an integral is to be performed using the
limiting value of the integrand from either side of the curve,
with opposite orientations on opposite sides, as required by
Stokes’ theorem.
The integral arises for a large sphere, but since

neither the domains D nor the integrand qaaladψ depend
on r, the integral does not depend on the radius of the
sphere. The curve C may be characterized in an invariant
manner as the intersection between the current sheet, the
light cone at time u, and a spacelike plane orthogonal to the
four-velocity. The choice of spacelike plane corresponds to
the radius r, and the above properties ensure that the
integral is independent of this choice. As discussed in the
Introduction, we expect the contributions from Cþ and C−
to cancel for the current sheets that arise in pulsar

magnetospheres, so that this term makes no contribution
to the energy flux.

V. ASTROPHYSICAL APPLICABILITY

Our exact solutions involve the idealization that the
force-free plasma fills all of space. In reality, the force-free
magnetosphere of a compact object will only extend a finite
distance. (This distance is hard to estimate, since the force-
free description does not include information on the particle
density.) To apply our solutions and their predicted scaling
(4), the force-free magnetosphere should extend for at least
several characteristic lengths of the trajectory. In the case of
a comparable mass binary, this characteristic length is the
orbital radius.
For a pulsar member of a comparable mass Newtonian

binary in circular orbit, Eq. (4) becomes

Paccel: ≈ 1036
B12

2M1.4
2R10

6

P2D10
4

erg=s; (43)

where B12 × 1012 Gauss is the surface magnetic field
strength, R10 × 10 km is the stellar radius, M1.4 ×
1.4 M⊙ is the stellar mass, P × 1 s is the rotational period,
and D10 × 10 km is the orbital separation. The relative
strength of the acceleration power μ2Ω2a2 to the pulsar
power μ2Ω4 is

Paccel:

Ppulsar
∼
a2

Ω2
≈ 106

M1.4
2P2

D10
4

≈ 10−5
�
M1.4P3

P4
orb:

�
2=3

; (44)

where Porb. is the orbital period of the binary in seconds.
The energy lost due to the acceleration will come at the

expense of some combination of the rotational (spin) and
translational (orbital) kinetic energy of the body. Any
orbital energy decrease will be undetectably small, since
Paccel. is vastly subdominant (by a factor of ∼10−30D10) to
the power in gravitational-wave emission. The effect on
spin-down is also small, but may become relevant for
binaries near merger: The ratio Paccel:=Ppulsar can range
from ∼10−15 for known binary pulsars (Porb: ∼ hours) all
the way to order unity for binaries near merger
(Porb: ∼ 0.01 s). Unfortunately, there is little prospect for
receiving electromagnetic signals from this premerger
inspiral period.
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